TWO THEOREMS ON AUTOMORPHIC FUNCTIONS

Dedicated to Hans Rademacher on his seventieth birthday

BY
JosEPH LEHNER

1. Recently Rademacher gave a new proof of the fundamental theorem
that a modular function belonging to a modular congruence subgroup and
which is regular and bounded in the upper half-plane is a constant [6]. His
argument relies on the divergence of the Poincaré series

Sle+d? V= <“ 3)

v C

where V runs over the principal congruence subgroup of level N with the re-
striction —4N = R(V (7)) < 3N.

The natural generalization of the modular group is the class of horocyclic
groups (Grenzkreisgruppen, Fuchsian groups of the first kind) that have
fundamental regions with a finite number of sides. We call this class §. In
attempting to apply Rademacher’s reasoning one must first prove the diver-
gence of the analogous Poincaré series, a fact we state as Theorem 1. For
convenience we shall assume our groups are defined on the unit disk . As
is well known, every linear transformation mapping U on itself can be written

as
a C _ _
_), ad — ¢c¢ = 1.
c a

TareoreEM 1. If T €5, then
(1) Z:=0lcnz+dn l_2= ®
for each z e W. Here

{V,, - ("" C>n >0V, = 1}
Cp, [

is an enumeration of the elements of T.

Theorem 1 is classical ([3], pp. 255-258). The first object of this paper is
to present a new proof. After this it will be easy to extend Rademacher’s
argument and so obtain

THEOREM 2. A function regular and bounded in U and automorphic on a
group T € F is a constant.

I am indebted to W. K. Hayman for a helpful conversation on some points
in Section 2.
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2. Let ' eF. Let the elements of T' be denoted as in Theorem 1. It is
known that there is only a finite number of n for which ¢, = 0; for these n,
and only these n, V,(0) = 0. The set {d./c. , ¢» # 0} is bounded above, and
it is trivial that | @./c. | > 1.

We shall prove Theorem 1 by contradiction: Assume

(2) dlenz+ad. | < o

for some z = 2o € U. Since for each z € U the ratio | ¢, 20 + @x |/| cn2 + Gn |
is bounded above, this implies that (2) converges throughout .
Now

1— | Vaz|® _ 1 )
L— (27 ez + an |’
hence (2) implies the convergence of > (1 — | Vi, 2 |* ), from which it follows
that
(3 (L= |Vaz]) < .
Consider the Blaschke product
T 2 — 2, .
(4) w(z) = JEIO =1 (—1Bn),
where

20 = Va(0), Bn = arg z, .

1

It can be shown [2] that the product converges uniformly in |z| < p <
|= 1.

whenever (3) holds. Hence, 7(z) is regular in U. Obviously | (z)
It is also true that

|w(2)| = IInl(z — 20)/ (B2 — 1)]
converges absolutely, and so the factors may be rearranged. Now
(2 — 2,)/(Zaz — 1)| = | Va'e|.
It follows that | = | is invariant under I':
(5) | m(Le)| = | = (2)]

for each L ¢ I' and each z e .
It is known that =(z) possesses radial limits of absolute value 1 almost every-
where ([5], p. 196). = vanishes exactly on the set {z,}. Let

D= U — {2}.
Then the function
(6) ¢(z) = log | x(2)|
is harmonic in D and invariant under I'. The limit function
(7) w(8) = lim,., ¢(re”)

vanishes for almost all 6.
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3. We now proceed as follows. An upper bound for ¢ in U is clearly 0.
If T has a compact fundamental region R (i.e., R is contained in a
disk | 2] £ p < 1), it is clear that the maximum of ¢ will be attained at a
point of B. TForif w(f) exists and equals 0, let {, = 7, exp (26,) be a sequence
tending to exp (6)). Each ¢, has an image—call it ¢,—that liesin B. Let
¢'» be a subsequence converging to ¢*, a pointof B. Because of the invariance
of ¢, we deduce ¢({p) — 0 from ¢(¢p) — 0. But {* ¢ {2}, for ¢(2) —» —
asz — 2, . Hence ¢ is continuous at {*, and ¢(¢*) = 0. ¢ assumes its maxi-
mum at ¢*, an interior point of ®. This shows that ¢(z) is constant, which
is a contradiction and proves Theorem 1 for this case.

When R has vertices on the unit circle, the method fails, for the images {n

may tend to the vertices. To get around the difficulty we need a geometrical
lemma.

4. Let @ be the unit circle.

LeMMA. Let ® be the set of parabolic vertices of T'. Let a ¢ @ — @, and let A,
be a radius terminating in . Then there is a constant p (0 < p < 1), depending
only on T, such that on N, there is a sequence ¢, — a having I'-images n lying
inthedisk | 2| < p.

This result is due to Hedlund ([4], p. 538). For the sake of completeness
we reproduce the proof.

A horocycle C(p, r) is a euclidean circle of radius » < 1 tangent to @ at p.
Let py, p2, -+ -, Ps be the parabolic vertices of R. Since R has a finite number
of sides, s is finite. Draw horocycles C; = C(p;,r:),72 = 1,2, -+ , s, so that
the union of their interiors covers the interior of B. This can be done by
taking r; near enough to 1.

Let P; be a parabolic element of T' generating the subgroup of I' that fixes
pi. Then C;is invariant under P;. If 2, is a point on C; different from p; ,
there are two images of 2o on C;, say 21, 22 , whose euclidean distances from
the origin are minimal. The horocycle C; is partitioned into a countable
number of ares, each of which is the image of 2, 2, by some power of P;. Every
point z € C; — p; lies on one of these ares, and so 2 is equivalent under T to a
point on the arc z;2;. Let d; be the maximum of |2, |, |2 |. Then every
point z on C; other than p; has a T-image whose distance from the origin is not
more than d;. Here d; < 1 and depends on 7 but not on the point z ¢ C; .
Set p = max (dy, -+ ,d,;). We have p < 1, and every point on any of the
horocycles C; except a point of tangency has a T-image lying in the disk
lz] = p.

Let C be the set of horocyeles {C;, 7 = 1, --- , s} together with all their
images under I'. Every point of U is interior to some element of the set C.
If o’ is any point other than « on the ray Oe, it lies interior to one of the horo-
cycles of the set C. But the ray o’a cannot lie entirely in any one member of
C, for this would imply that « is a parabolic vertex. Hence o’a must intersect
one of the elements of C. It is now clear there is a sequence of points {, on
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A« such that ¢, — « and each ¢, is the intersection of an element of C with A, .
By what has been proved, each ¢, has a I'-image in the disk |2 | = p.

5. We can now complete the proof of Theorem 1. Since ¢ has the radial
limit 0 almost everywhere, there is a 6, such that « = exp (76p) is not in the
countable set ® and such that ¢(ra) — 0 with » — 1. If ¢, , ¢ are the se-
quences of the lemma, we have ¢(¢5) — 0 and ¢, — * with | ¢*| < p < 1.
The remainder of the proof is the same as in Section 3.

6. We can now prove Theorem 2 by Rademacher’s method [6]. Since
T e, the series (1) diverges (Theorem 1). Let 2, = V,(0) be different from
0 for n = N (cf. beginning of Section 2). The divergence of (1) at z = 0
implies the divergence of . (1 — |z, |), or what is the same thing,

(8) ILo-v |z ] =0.

Let F(2) be automorphic on T and regular and bounded on U. If F is not
constant, we can find an integer k such that

G(z) = (F(2) — F(0))/2"

has the property G(0) 5 0, G is regular and bounded in U. For z, # 0
we have

G(z,) =0
by virtue of F(z,) = F(0). Jensen’s inequality ([1], p. 109) yields
IZNZN.H“'ZmIglG(O)I/M>O, m>N,

where | G(2) | < M for zeU. For m — o this contradicts (8) unless
G(0) = 0. Hence there is no integer &, and F is constant.
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