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If n nd x re positive integers, then we letf(n, x) denote the number men-
tioned in the title, i.e., the number of integers m with 1 <= m <= x,
(The notation m n means that m divides some power of n, or in other words,
that all prime factors of m divide n.)

P. ErdSs conjectured (in a letter to the author, December 2, 1960) that the
average M(x) x-i=1 f(n, x) can be written as

M(x) x-iF(x) exp((log x)l2+()), where (x) --, 0 for x ---,

We shall show in this paper (Theorem 2) that this is true. In fct we cn
get a much more precise result, viz. that log M(x) is asymptotically equiv-
lent to (8 log x)lZ2(log log x) -lz. Needless to say, this is still very far from
an asymptotic formul for M(x) itself.
The asymptotic formula for the logarithm of the average does not change if

we replace =1f(n, x) by =f(n, n), which is also considered in The-
orem 2. This may give an ide of how rough our result still is.
We shll derive Theorem 2 from Theorem 1, which has some interest in itself.

It dels with the partial sums of the series that results from the hrmonic
series if every denominator n is replaced by the product of the primes that
divide it. This result will be obtained in a classical way: We build the cor-
responding Dirichlet series f() (see Lemma 2), we derive asymptotic infor-
mation about f() if ---, 0 (provided by Lemm 1), and we translate this
information into information concerning the partial sums. This translation
is achieved by a Tauberin theorem of Hardy and Ramanujan (see Lemm 3).

LEMMA 1. Let h be a positive constant. If > O, we define

A (r) {log 1 -t- x-(x 1 )-) (log x)- dx.

Then we have, if --+ O, > O, and if h is fixed,

A.(a) h-ir-i(log (r-i) -h -{- O{q-i(log 0"--1) -h-1 log log

Proof. Throughout this proof we abbreviate

(log 0"-1)-1 "
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e firs integrate from to , where
1

which is if is small enough. e have 0 1 lo provided
that is small enough (notice that log x tends to zero if tends to zero).
It follows that, if __< x -< x,

0 -< x1+’- x <- x(x 1) __< 2 axi log x,

whence 0 =< x1+ x __< 1/2 in that interval, provided that a is small enough.
We can now apply the inequality

1 -t-W-1 < W--2 (0 < W < 1/2 ),

withw x(x- 1). Remarking thatx- 1 > alogx(sincealogx > 0)
and x log x > 1/2 (x -> ), we obtain x(x 1) > 1/2 a > a, whence

log 1 -I- z-1 (x 1 )-) (log z)- dx < log o-(log z)- dx.

It follows thag ghe contribution of ghe interval 2 __< z -< x go our integral is
O/(log o--)(log z)-xl O(o---n+).
For ghe remaining integral from x to we shall derive an upper esgimate

and a lower esgimate. For the upper esgimage, we remark ghat

llog(1 + x-(z 1)-)/ < z-(z 1)- < (zo- log z)-
for all z > 1, whenee

log 1 -t- x- (z 1 )-) (log z)- dx < x-o-- (log x)-- dz
Xl

(ha)-(log x)- (ha)-iyh -- O(a-qTM log log a-).
It follows that

Ah(o’) < (ho’)-i?h + O(ff-lTM log log a-).
For our lower estimate we shall use

> where z. -, x exp{ (log -)+}.

If x -< z _<_ x, we have
-1z(x- 1) > zologz >_- zo’logx. n

Applying ghe inequaligy
--1v log(1 -t-v) ->_ 1 1/2v (0 < v < 1),

with v (x(x 1))- we deduce that

log/1 -t- (z(z 1))-} >__ {z(z 1)}-(1 1/2r) (x2 -< x -< x),
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provided that a is small enough. Furthermore we have, if x2 --< x

_
x3, that

alogx =< alogxa 0(a

whence, if is small enough,

x- 1 < (1 + )logx (x2-< x-< x).
It follows that

> -1( 1 1/2rt) 1 + rt)-I x-1 (log x)-- dx.

The integral on the right equals
h hq-1),h-(log x2)- h-(log xa)-

It follows that Ah(z) > (hz)-r 0(z-lrt+), and this completes the proof
of the lemma.

LEMMA 2. Let a(n) denote the product of the different primes dividing n
(n 1, 2, 3, ), and let f(a) denote the sum of the Dirichlet series

(.(n)

This series converges if a > O, and we have the asymptotic equivalence

log f(a) a-(log a-1)- (a --* 0).

Proof. The Dirichlet series has the product expansion

f(a) II, {1 -+-p-l- -t-p-l- + p--3 + ...} =/-I {1 -t- p-(p- 1)-1},

where p runs through the primes. If a is a fixed positive number, the factors
of this product are, with at most a finite number of exceptions, less than the
corresponding factors of the Euler product expansion for {’(1 -t- a)}: (where

" is the Riemann zeta function). In fact we have

1 + p-l(p,_ 1)-1 < 1 -t-2p-- < (1 --p--)-

as soon as p > 2. This settles the matter of convergence.
It is a direct consequence of well-known facts in prime number theory that

there exists a positive constant C such that

(log t)-’ C(log t)-2 dt < r(x) < (log t)-a + C(log t)- dr,
12 12

for all x >= -, where r(x) stands for the number of primes -< x. Consequently,
if g(x) is a monotonically decreasing positive function with

f g(x) (log <dx
/2
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we have _, g(p) g(x) (log x)-1 dx < C g(x) (log x)- dx.
v /2 /2

Applying this with
g(x) log{1 -t- x-l(x 1)-1/,

we infer that, with the notation of Lemma 1,

logf(a) Al(a) < CA.((r).

The asymptotic formula for log f(a) now follows at once from that lemma.

LEMMA 3. Let a, -> 0 (n 1, 2, ), assume that

f(z) = a n

converges for all > O, and that

logf(a) g-l(log ff-1)-i (ff > O, ff 0),
Then we have

log nx a (8 log x/log log x) /e (x ).

This is special cse of Tuberin theorem given (for generM Dirichlet
series) by Hrdy nd Rmnujn [2]. (For further generalizations of that
Tuberian theorem we refer to [1] nd [3].)
Combining Lemms 2 nd 3, we obtain

THEOREM 1. If a(n) represents the product of the different primes dividing
n (n 1, 2, 3, ), then we hae

log[ nx ((n))-1 (8 log x)l/2(log log X)-1/2 (X ).

THEOREM 2. Let f(n, x) be the number of positive integers x which are
products of powers of prime factors of n. We put

F(x) sxf(n,x), G(x) ,f(n, n).

Then we have, as x ,
log(x-F(x)) log(x-lG(x)) (8 log x)/(log log x)-.

Proof. Noticing that [n is equivalent to n 0 (mod a(k)), we obtain

where [z] denotes the largest integer z. And

EkxEnNx,nk,nO(moda(k)) 1

s {[x/.()]- [/()1 + 1.
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From these formulas we deduce

F(x) XZk<=x (Ol(]) )-l -Jf

G(x) Zk_x, (x ])(ol(]) )-1-
and for the latter sum we have

1/2XZk<=x/2 (Oldie))--1 . Zk_<x (X ])(Ol(]) )--1 XZk<__ (Ol(]) )--1,
The theorem now follows ut once from the previous one.

The author is indebted to P. T. Bateman nd E. E. Kohlbecker for several
corrections.
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