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1. Introduction

Consider the stochastic process

S So+X+X+ +X,,., n-> 1.

So is an arbitrary integer, and the X are independent, identically distributed,
integer-valued random variables. It is assumed that the state space of this
process is the set of all integers, and that every point is visited infinitely often
with probability one, for every starting point So. Formally, this means

P(n:= U% [S b] So a) =-- 1
(1.1)

for all a, b O, :i:1, :t:2, ....
In terms of the characteristic function

4(0) =_oP(X k)e= E(eX), -oo < 0 < oo

equation (1.1) is equivalent to

(1.2) 4)(0) 1 for 0 <1o1< , lim
do

,_,- 1 t4(o) -t- oo.

This is so because t,n, according to (1.1 ), is an indecomposable recurrent
Markov chain on the set of all integers, and the first condition in (1..2) is
necessary and sufficient for indecomposability, while the second is necessary
and sufficient for recurrence.

Let xl and x. be two distinct integers, Ix1 x21 k > 0. Consider the
imbedded Markov chain induced by the set S {x, x2} of these two points.
This is the Markov chain whose transition matrix P(S) (P.(S)),
i, j 1, 2, is defined by

Pi(S) = P(S S for 1, 2, ..., n 1; S x.[ So x),
(1.3)

i,j 1, 2,

i.e., the imbedded Markov chain is the original process, observed only when
it assumes a value in S.
The central result of this paper (Theorem 1) asserts that

(1.4) P(S)
p 1 p
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(1.5)
(pk)-I rl 11 --cs(0)k0 dO

n=0 [2P(S 0) P(S, k) P(S, -/)] < .
(In the case of unconditional probabilities, as in (1.5), the condition

S0 0 is understood.)
The proof of (1.4) and (1.5) begins with Fourier analytical estimates, based

on a technique of Chung and ErdSs [1] in 2. In 3 we prove (1.4) and (1.5),
but curiously the proof seems to require an extension of the investigation to
the imbedded Markov chain induced by a set of three instead of two states.
These extended results are summarized in Theorem 2. The necessary combi-
natorial work, involving identities between generating functions, is rendered
simple by using an elegant technique due to P. Frank [3].

Identities such as (1.5) for pk are well adapted to the study of asymptotic
behavior for large k (which evidently depends on the behavior of (0) near
0 0). 4 is therefore devoted to certain new limit theorems valid for
certain (0) in the domain of attraction of symmetric stable laws of index
1 -< a _-< 2. The comparison, in Theorem 6, between absorption problems
involving single points and intervals was made possible by H. Kesten who
kindly made recent results [4] available before publication.

In [6] new methods are developed which lead to an explicit formula for the
transition matrix of the imbedded Markov chain corresponding to an arbi-
trary finite set of states, under the restriction that the process is symmetric,
i.e., that (8) (-8). The methods and results in [6] take the form of a
discrete analogue of classical potential theory.

2. Some Fourier analysis
Let denote the class of trigonometric polynomials f(8) a ei, where

all but a finite number of the coefficients a, ]c 0, 1, +/-2, are zero
and the remaining ones real, and such that f(0) f’(0) 0. It follows that
for each f e there is a constant c such that If(8) --< c8 for 181 =< . Ex-
amples of functions in which we shall use are 1 cos k8 and trigonometric
polynomials of the form ’ b(1 eik), with kb O, b real. In fact
every f in ( is of this latter type. The above-mentioned bound on If(8)
enables us to prove the following lemma (it is easy to see that the proof would
go through if it were only assumed that for some > O, If(8) <-- c[8 ]1+
for all 81 =< .
LEMM 1. If f(8) a e e, then the function f(8)[1 (8)]-1 is

integrable on -- <= 8 <= -, and

(2.1) lim
f(O) dO f(O) dO < ._.- 1 t(8) 1

This is no longer true; see footnote 3, page 239.
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Proof. SinceO(0) is continuous, and satisfies (1.2), it suffices to prove that
for some h > 0, If(0)I 1 (0) 1-1 e Ll(-h, h). Since If(O) =< cOs, it
suffices to show that 01 1 () ]- L(-h,h). Using themethod of Chung
and ErdSs [1], we obtain

(2.2)
( ] 1 2 r sin(k/2),

r P(Z Z[ ), 0,1,2,...,

where X,, X are independent random variables, each with characteristic func-
tion (0). Since]sinx] }2x()-’[ when Ix] r/2, we have, for every
>0

2,r sin (k0/2) > 2/
_

r sin(k0/2) > (20/z)/
_

kr OA ().

We choose sufficiently small so that A () > 0, and obtain

(0) 1- OeA() e-() for 0 8,
(2.3)

A() (2/)// r > 0.

It follows that, for] 0 , except at 0,

=< 20[1 e-O()]-’ e L(--6, 6).

Hence If(0) l 1 0(0) ]-1 is in L,(-6, ) and also in L(-r, ).
We obtain equation (2.1) from the observation that t} z} 1 tz]

whenever 0 1 and the complex number z is of absolute value z 1.
Sincere(0) 1, we have

f(O) < 1 f(O) < 2
f(O) 1 < < 1

1 t(O) = 1 (0) 1 0(0)

and the dominated convergence theorem completes the proof of Lemma 1.

LEMMA 2.

limk_2[lim f f(O)dO= 0- 1 t(O)

when f(0) 1 cos kO, and when f(O) 1 + e- e- e.
Proof. Clearly both sequences of trigonometric polynomials f(0) bdong to

the class , and for each sequence the proof is the same, starting with the
observation that there is a positive constant c such that

]f(0) ck2 for all 101 , 1, 2, 3,....
By Lemma 1,

f" f(O)
b 1 tV(o)

dO

e o11 (o)- do +
<lOlN

I1 4(0) - dO,
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for every i > 0. Hence, also for every > 0,

0 <- lim/c-"bk -< c I1 (O) dO,

and for all sufficiently small > 0 (for which A () in (2.3) is positive)

()]_0 lim k-b 2c 0[1 e- d0.

Suppose0 < 0 < r,A(8o) A0. ThenA() A0for0 < < 0,and

0 N lim k-b N 2e 0[1 e-"]- dO, 0 < < ,
and ghis integral gends go ero as 0, so gha lim b O.

L a. For f O) e e,

2 1 (0) -0

Proof.

Here we used Lemma 1. As[C(0) 1 at most at a finite number of points
in the interval [-r, r], the last integral tends to zero, and Lemma 3 is proved.

3. The imbedded Markov chain

Let S be the set {xl, x, x} where the x are distinct integers.
0 <- < 1 we define the n by n matrix Pt(S) (Pt(S)) by

P(S) _,--1 tnp(s, Sfor 1, 2, n 1;
(3.1)

S x’l So x), i,j 1, 2,

For

Let Tm denote the time of the m visit to S, i.e., Tm= k if exactly m of the
random variables $1, S, S have values in S and if in addition S e S.
It is then clear, by a simple renewal argument, that

[P(S)]. .,_ t"P(T, n; St,, x So x), m >= 1,
and

(3.2) + :-- [P(S)I _,-ot"P(S, x So x).

Since the row sums of P(S) are all positive and less than one when 0 -< 1,
I P(S) has an inverse. It follows from equation (3.2) that

(3.3) I- Pt(S) [-(t)]-1, 0 _<_ < 1,
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where r(t) is the n by n matrix whose elements are

r(t)q t’P(S, xq So x) 1 e-(-x)

(3.4) ,=o ,1 t4(o) dO’ O <= < 1,

p,q 1,2,..-,n.

Equation (3.3) is a special case of a result of P. Frank [3; Theorem VII.
At this point assume that the set S {xl, x2/ with x. xl /,/ 0.

Letting

l f l e- if dO
(3.5) v(t)

l-t(0) d0’ s(t) - ,1 t4(O)’ 0<= < 1,

and performing the matrix inversion in (3.3), one obtains, for 0 _-< < 1,

I-Pt(S)= [v()-t-v_(g) V()v-()l-(t)
(3.6)

[ 1 --l+v__(t)/s(t)11 -k- v(t)/s(t) 1

It is clear that Pt(S) P(S) aS 1-, with P(S) as defined in equation
(1.3). Hence the right-hand side in (3.6) has a limit as 1-. In addition
the diagonal elements of I P(S) are equal, and P(S) is a stochastic matrix,
in view of (1.1). Therefore P(S) has the form asserted in equation (1.4).
Now

Pk t-l-lim [vk(t) -t- v-k(t) vk(t)v-(t)l-l.s(t)
Since p P(S)12 and the process is recurrent by (1.1), p > 0. Therefore

(3.7) p-[l= liE Fvk(t) -+-v_(t) (v(t) + y_k(t)) (v(t) v_k(t))21

By Lemma 1

lim Ivy(t) -t-- v_(t)] -1 f’ 1 cos/0
,_.- - 1 4,(0)

dO.

As s(t) --+ + when --+ 1-, (3.7) becomes

1 /’ 1 cos/0 (vk (t) v_ (t))
3.8 p-I dO + liraLr 1 (0) - 4s(t) < "
Note that the proof of (1.4) and (1.5) is finished now in the symmetric

case, i.e., the case when P(X k) P(X -k), or (0) (-0). For
in this case v (t) v_(t), so that (3.8) becomes (1.5). In the general case
we begin by proving that

lim- vi(t)[s(t)]-1 V
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exists and is finite, and that

(3.9) limt_.l- vk(t)[s(t)]-1/2 lcV, lc ::t:1, -+-2, ....
Let f(t) [vl(t) v_(t)] [s(t)]-1/. Equation (3.8) shows that f(t) has a
finite limit as -- 1-. As f(t) is continuous for 0 -< < 1, f(t) must also
have a limit. By Lemma 1, vi (t) + v_ (t) has a finite limit as -- 1-. Hence

limt_.- v(t)[s(t)]-/ limt_,l-f(t)/2 < ,
and we call this limit V. Again by Lemma 1, we know that vk(t) kv(t)
has a finite limit as -- 1-, and this yields equation (3.9).
Now equation (3.8) becomes

(3.10) p-i _1 f_ 1 cos kO
dO -+- kV2.

We want to prove equation (1.5), which follows from (3.10) and from
Lemma 3 if V 0. Unfortunately the proof that V 0 takes an indirect
route.
We return to equations (3.3) and (3.4) and let T denote the set {Xl, x2,

of three distinct integers. If D(t) denotes the determinant of -(t), I Pt(T)
is of course D(t)-1 times the matrix of cofactors of the transpose of -(t), when
0 -< < 1. Since the stochastic process S, has transition probabilities in-
variant under translation of the state space, it suffices to calculate

1 Pt(T), [D(t)]-ls(t) [’L,-(t) / vx3-x2(t) v_(t)v_(t)j’s(t)

--Pt(T). [D(t)]-s(t) Ivx2-(t) v_(t) Vx_x(t) v-x3(t)v-(t)1s(t)

By equation (3.9), if we let --, 1- and denote A limt_.-D(t)-ls(t),

(3.11) l P( T) A Il f l cs x x3

r 1 (0)

I1 f_ 1 + eio(x-x) eio(x-x) eio(x-x)
P(T) A - 1 4(0)

dO

+ V(x x) (x x)l.
(3.12) came from the fact that just like v_(t) + Vx_x2(t),

1 f g(O)yxe-xl(t) yxa-x(t) l)x_xa(t) --- 1 t4)(O)
dO

This is unnecessary, as the referee has produced a simple proof that V 0, based
on the definition of V in the equation preceding (3.9) as the ratio of the integrals defin-
ing v(t) and s(t) and careful use of Schwarz’s inequality. The present proof is retained
as it will ouickly lead to Theorem 2.
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with g(t) e e, so that Lemma 1 applies. Clearly A >= 0 and finite. In fact
a > 0, for if Zi 0, P(T)11 1 which is impossible in a recurrent process.
To show that V 0, consider the probability that the process, with So xl

will assume the value x2 before it assumes x3, i.e.,

,f,.x -1 P(S x2, x3}
(3.13)

for/ 1, 2, n 1, S x2
One obtains

3f1.** P(T)12 [1 d- P(T)I d- (P(T))
(3.14)

P(T)2/(1 P(T)).
Specializing to x 0, x. /, x 2/,/ > 0,

[" 1 + e-* e- e(2)- 1 (O)
dO d- 2VJ_

[" 1 cos()- dO+

Lemma 2 implies that
lim_,.f0, 2 if V 0.

Since this is impossible, V 0. That completes the proof of

THEOnE 1. Equations (1.4) and (1.5) hold.

Whereas the transition probabilities of the imbedded Markov chain on a
set of more than two states are complicated (because the expression for A in
in (3.11) and (3.12) is complicated) we saw that fx, is independent of A.
Another interesting quantity of this type is

3E,: P(S x for 1, 2, n 1;
(3.15)

S, x S x).

When x, x, and x are distinct, E. is the expected number of visits to
x before the first visit to x when the process starts at So x. But we shall
consider E, for arbitrary values of xl, x, x. The result is

THEOREM 2. When x x x are distinct integers,

:0 [P(S 0)+P(S=x-x) -P(S=x-xl)-P(S=x2-x)]
_o [2P(S=O)-P(S=x-x)-P(S=x-x)]

When x x x3 are arbitrary integers

(3.16)
E,, i+= [P(S=0) d-P(S=x-x)

-P(S=xa-xi) -P(S=x-x)].

The proof of the first part follows from the identities (3.11) and (3.12)
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(with V 0) applied to (3.14). Lemma 3 then converts the ratio of inte-
grals into the ratio of the two series in Theorem 2.
When Xl x2 x, El.x 1 and this agrees with (3.16). When

xl x2 x,wehave

xaExi,x2 :3Ex2,x2 xa-x2Eo,o kEo.o, k xa x2 O.

Let S be the ordered set {0, k}, and P(S) the corresponding two by two transi-
tion matrix. Then

E,,.x,. =1 n[P(S)il]np(s)12 [P()12]-1 1

(3.17) --1-k-lf1 cosk0
r 1- 4)(0)

dO

-1+ -0 [2P(S 0) P(S k) P(S, -k)]

and this agrees with (3.16). (Lemma 3 was used to go from the integral in
(3.17) to the series following it.)
When xl x x, 3El.x 1, and this agrees with (3.16).
When xl x x, we omit a direct proof as (3.16) is then the theorem

of Derman [2]: The expected number of visits to x between successive re-
turns to xl is the ratio of the invariant measures of the pointsx and xl. The
(unique) invariant measure of the process S is constant. Hence El. 1
which agrees with (3.16).
Now only the case of distinct xl, x2, xa remains.

If S and T are the ordered sets {x, x} and {x, x2, x}, equations (3.14) and
(3.17) give

P(T) 1
xsExl,X2 1- P(T)n

By Theorem 1 and equation (3.11) (with V 0)

[1 P(T)n]P(S)12 A,

and by equation (3.12) (with V 0)

1 ’ 1 -I- eiO(x-x2)E,,, A-P(T) - j_ 1 (0) dO,

which is equivalent to equation (3.16) by Lemma 3.

4. Limit theorems
From now on it is assumed that the characteristic function (0) satisfies

equation (1.2) as well as the condition

(4.1) 0 < liml @(O) Q < oo for somea, 1

_
a_ 2.
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It is easily verified that (4.1), with 1 __< -<_ 2, and only with 1 =< a -<- 2,
is compatible with (1.2). It is also clear that (4.1) holds with a 2if
and only if

E(X) O, 0 < E(X)
In this case Q .
The asymptotic behavior of p P(S)I. when S {0, n} or, more gen-

erally, when S {xl, x2} with xl x21 n, is described by

THEOREM 3. If (4.1) holds with

1- -1 2 f(R) 1 cost
1 < a -<_ 2, ,-,lim n P’ ’Q do

dt;

2
if a 1, nlim (log n)-lp71 rQ"

Remarks. When a 2, the integral in Theorem 3 has the value r/2, and
one obtains, for arbitrary (0) satisfying (1.2), but not necessarily (4.1),

(4.2) lim. np /2
One has the identitynp a/2 if and onlyif$(O) 1 p + pcos0,
0 < p 1. One can obtain more than (4.2) by assuming more about $(0).
For instance if E]X] < , one can show that

The proof of (4.3) depends on the identity

1 1 l f’sin(n+{)o 1-cosOn
p+x p ; snO Re

1 -JdO’
and on the properties of the Dirichlet kernel sin(n + )0 (sin 0)-, which
insure that (4.3) holds if (1 cos 0)(1 (0))- is sufficiently smooth at
0 0. The assumption that E] X < suffices to yield sufficient smooth-
ness, whereas a< alone does not suffice.
To prove Theorem 3 let

(o)=.e --2o) o

By Theorem 1
1 . 1 cos-- ol

(oo.

Legging maxos (0) M, and given
(0) 1 < eforO N,wehave

1_p 2_(1 + e)
0

dO+ 0
dO,
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and a similar underestimate. Hence, for a > 1

n Qp:l< _(lq-) 1- cost
dt q- 2M__r f,n 1 -t,cos

2 (1 ) f 1 COS 1--a,- --1n 4p, lira n 4P,
r t"

dt < lim __<

dt,

_-< _2r 1 q- e) f0 1 -t,cos dt.

Since is arbitrary, Theorem 3 follows for a > 1. For a 1 it follows from

1 f0l-cstdt- 1
1 1 cos

dt 0, lim log n(4.4) n-ovlim log n

The parameter a plays an interesting role in the following limit theorem.
Let t 2f0.. By (3.13) this is the probability that S n before S 2n,
if So 0.

THEOREM 4. If (4.1) holds with some 1 _-< __< 2,

limn_.o t 2a-2.
The proof consists of writing tn aS the ratio of two integrals, depending on

n by use of Theorem 2 and Lemma 3. The asymptotic behavior of the
denominator follows from Theorem 3, and that of the numerator by an analy-
sis which imitates the proof of Theorem 3 and is therefore omitted.
That all the processes satisfying (4.1) possess a certain symmetry follows

from the asymptotic behavior of 8n -nfo,n, the probability that S n
before S -n, when So 0.

THEOREM 5. If (4.1) holds with some 1 _-< c =< 2,

limn_,oo s 1/2.

From Theorem 2 it follows that

Sn 1/2 =1/2 f_’ sin 2nO 2sin
1 b(O) dO/ i[ 1-cs2n0d0"l(0)

The asymptotic behavior of the denominator is given by Theorem 3. There-
fore it must be shown that, as n --,

[ 1
for > 1, I(a) n-" sinn0(1 cosn0).Im

1 4(0)
for a 1, the same with n1-" replaced by (log n) -.
Choosing such ghag Im [(1 4(0))-1] N e 0 for 0 N , we have

singl(1-eos) lsinl(1-eos)I() N 2 e
t"

dt + 2M dt
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when a > 1, where M max<o< Im [I 0 I"(1 (t))-1]. As there is a
similar underestimate and is arbitrary, one finds that I,(a) -- O. When
a 1, the proof goes through employing equation (4.4).
Remark. This result can be extended to the probabilities 0ftnt.n, where

[nt] is the greatest integer in nt, 0 < < 1. One finds

(4.5) limn ofE,tl., if and only if a 2.

This is the same result as one obtains for the gambler’s ruin problem, i.e.,
for the probability Og[nt] ,n that S [n, before S (- , 0] when a 2,
and So [nt]. The solution of the gambler’s ruin problem is not known
when 1 < a < 2, whereas it is easy to calculate the limit in (4.5) also when
1 _< a < 2. It seems certainthat

limn- 0fNt].- limn- og[ntl,n whenl < a < 2.

These questions are related to the work in [4] and [5], and so are the follow-
ing occupation time problems. Let So 0, and let the random variables

Nn the number of visits to 0 before the first visit to n,

N,, the number of visits to 0 before the first visit to the set {-n, n}.

Equation (4.1) is assumed to hold and the discussion of Nn,n is only valid
under the additional assumption that(0) (-0). BothN and N. are
defined so that S0 0 counts as the first visit to 0. Equation (3.17) shows
that

(4.6) E[N,] p-.
A calculation, similar to (3.17) shows that, if T {0, n, -n},

E[Nn.,] [1 P(T)n]-.
If (0) (-0), so that v(t) v_(t), equation (3.11) gives

E[N,.n]-- A-lp.,
where

A-l--limt_.-v,(t)[4v,(t)- ,(t)]- (1/2p.,)(2/p,- 1/2pen),

(4.7)

Theorem 3 yields

2 flim._, E[Nn/n"-1] - .o

1 cos
dt, 1 < a <= 2,

,/n (1 - t"
dt,(4.8) lim,_. E[N, "- 2,_ 2 1 cos

l<a_<_2,

lim,_. E[N,/log n] 2/-Q,

This is now known as the gambler’s ruin problem has been solved by R. Getoor for
the symmetric stable processes of index < a < 2, and by H. Kesten who found the
limit of ogtntl,, as n for 1 =< a < 2.
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limn E[Nn,n/log n] 3/2rQ, a 1.

By a trivial argument the above limit theorems are equivalent to the follow-
ing theorem (Nn and Nn, have geometric distributions, which obviously
yield exponential limit distributions).

TftEOREM 6. rf (4.1) holds for some 1 <= a <= 2, and if (0) (-0) in
the case of the random variable N,,, then N. and N,,. normalized as in (4.8),
have an exponential limit distribution as n ---. . The expected value of the
limit distribution is the appropriate limit in (4.8).

Remark. Let N.* be the number of visits to 0 before the first visit to
[n, ), and let N*, be the number of visits to 0 before the first visit to
(-, -n] u [n, ), when So 0. The analogue of equation (4.8) and
of Theorem 6 for N* and N*, are investigated for 2 in [5] and for
1 -<_ a _-< 2in[4]. It turns out that

limn_. E[Nn/n=-1] lim. E[N./n ],
as well as

,/n lim E[N*limn_ E[N, .-1 ,.In ],
if and only if a 2. H. Kesten (in a letter) described this phenomenon as
follows: Single points have the same absorbing power as semi-infinite intervals

if the variance is finite.
Added in proof. Recent work by J. G. Kemeny and J. L. Snell (Potentials

for denumerable Markov chains, to appear in Journal of Mathematical Analysis
and Applications) has provided methods which not only give Theorem 1 much
more easily and naturally, but also generalize it and many results in [6] to a
large class of recurrent Markov chains. For example, their work shows easily
that the partial sums of the series =0 [P(S. O) P(S. k)] are bounded.
By a more delicate argument, based on Kemeny’s and Snell’s potential theory,
one can show that the above series always converges when (1.1) holds.
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