BEHAVIOR OF INTEGRAL GROUP REPRESENTATIONS UNDER GROUND RING EXTENSION

BY

IRVING REINER

1. Let K be an algebraic number field, and let R be a subring of K containing 1 and having quotient field K. Of primary interest will be the cases

(i) $R = K$,
(ii) $R = \text{alg. int. } \{K\}$, the ring of all algebraic integers in K.
(iii) $R = \text{valuation ring of a discrete valuation of } K$.

Given a finite group G, we denote by RG its group ring over R. By an RG-module we shall mean a left RG-module which as R-module is finitely generated and torsion-free, and upon which the identity element of G acts as identity operator. Each RG-module M is contained in a uniquely determined smallest KG-module

$$K \otimes_R M,$$

hereafter denoted by KM. For a pair M, N of RG-modules, we write

$$M \sim_R N$$

to denote the fact that $M \cong N$ as RG-modules. The notation

$$M \sim_K N$$

shall mean that $KM \cong KN$ as KG-modules.

Now let K' be an algebraic number field containing K, and let R' be a subring of K' which contains 1 and has quotient field K'. Suppose further that R' is a finitely generated R-module such that

$$R' \cap K = R.$$

Each RG-module M then determines an $R'G$-module denoted by $R'M$, given by

$$R'M = R' \otimes_R M.$$

If M, N are a pair of RG-modules, we write $M \sim_{R'} N$ if $R'M \cong R'N$ as $R'G$-modules. Surely

$$M \sim_{R'} N \Rightarrow M \sim_{R'} N.$$

The reverse implication is false, as we shall see. We propose to investigate more closely the connection between R- and R'-equivalence.

As a first step we may quote without proof a well-known result [9, page 70] which is a consequence of the Krull-Schmidt theorem for KG-modules.

Received November 23, 1959.

1 The research in this paper was supported in part by a contract with the Office of Naval Research.
Theorem 1. Let M, N be KG-modules, and let K' be an extension field of K. Then

$$M \sim_{K'} N \Rightarrow M \sim_{K} N.$$

Remark. This result is valid for any pair of fields $K \subset K'$, even for those of nonzero characteristic.

Corollary. If M, N are RG-modules, then

$$M \sim_{R'} N \Rightarrow M \sim_{K} N.$$

2. An RG-module M is called irreducible if it contains no nonzero submodule of smaller R-rank. As is known [10], M is irreducible if and only if KM is irreducible as KG-module. Call M absolutely irreducible if for every field $K' \supset K$, the module $K'M$ is irreducible as $K'G$-module. Repeated use will be made of the following result [9, page 52]:

M is absolutely irreducible if and only if every KG-endomorphism of KM is given by a scalar multiplication

$$x \rightarrow ax,$$

for some $a \in K$.

As a first result, we prove

Theorem 2. Let R be a principal ideal ring, and let M, N be a pair of absolutely irreducible RG-modules. Then

$$M \sim_{R'} N \Rightarrow M \sim_{R} N.$$

Proof. The preceding corollary shows that $M \sim_{K} N$. After replacing N by some new RG-module which is RG-isomorphic to N, we may in fact assume that $M \supset N$.

The isomorphism $R'M \cong R'N$ can be extended to an isomorphism $K'M \cong K'N$. As a consequence of the absolute irreducibility of M, and the fact that $K'M = K'N$, this latter isomorphism must be given by a scalar multiplication. Consequently there exists a scalar $\alpha \in K'$ such that

$$R'N = \alpha \cdot R'M.$$

Since R is a principal ideal ring, we may find an R-basis $\{m_1, \ldots, m_k\}$ of M, and nonzero elements $a_1, \ldots, a_k \in R$, such that

$$M = Rm_1 \oplus \cdots \oplus Rm_k,$$

$$N = Ra_1 m_1 \oplus \cdots \oplus Ra_k m_k.$$

Then

$$R'M = \sum R'm_i, \quad R'N = \sum R'a_i m_i = \sum R'\alpha m_i.$$

Let $u(R')$ be the group of units of R', and $u(R)$ that of R. Then (4)
implies the existence of $\beta_1, \cdots, \beta_k \in u(R')$ such that
\[a_i = \beta_i \alpha, \quad 1 \leq i \leq k. \]
Therefore
\[a_i/a_1 = \beta_i/\beta_1 \in u(R'), \]
and so
\[b_i = a_i/a_1 \in u(R') \cap K = u(R). \]
Therefore
\[N = \sum Ra_i m_i = a_1 \sum Rb_i m_i = a_1 M, \]
which shows that N, M are R-equivalent, Q.E.D.

We next give an example to show that the result stated in Theorem 2 need not hold when R is not a principal ideal ring. Set
\[\sigma = \text{alg. int. } \{K\}, \quad \sigma' = \text{alg. int. } \{K'\}, \]
where σ is not a principal ideal ring. It is possible to choose K' so that for each ideal a in σ, the induced ideal $\sigma'a$ in σ' is principal (see [4]). Now let M be any absolutely irreducible σG-module, a nonprincipal ideal in σ, and set $N = aM$. Then M, N cannot be σ-equivalent, since by the above remarks the isomorphism $M \cong N$ would imply that $N = aM$ for some $a \in K$. On the other hand,
\[\sigma'N = \sigma'aM = \alpha'\sigma'M \]
for some $\alpha' \in K'$, and so M, N are σ'-equivalent.

If M, N are σG-modules, we say that M, N are in the same genus (notation: $M \vee N$) if $RM \cong RN$ for each valuation ring R of a discrete valuation of K (see [5, 6]).

Corollary. Let M, N be absolutely irreducible σG-modules. Then
\[M \sim_{\sigma'} N \Rightarrow M \vee N. \]

Proof. Let R be a valuation ring of a discrete valuation ϕ of K, and let ϕ' be an extension of ϕ to K', with valuation ring R'. Then R is a principal ideal ring, and so
\[M \sim_{\phi'} N \Rightarrow M \sim_{R'} N \Rightarrow M \sim_{R} N \]
by Theorem 2, Q.E.D.

Maranda [5] showed that a pair of absolutely irreducible σG-modules M, N are in the same genus if and only if $M \cong aN$ for some σ-ideal a in K. But then $\sigma'M \cong \sigma'aN$, so M, N are σ'-equivalent if and only if $\sigma'a$ is a principal ideal in K'. Thus, the converse of the above corollary holds if and only if every ideal in σ induces a principal ideal in σ'.

3. Throughout this section let R be the valuation ring of a discrete valuation ϕ of K, with unique maximal ideal P, and residue class field $\overline{K} = R/P$. Let ϕ' be an extension of ϕ to K', with valuation ring R', maximal ideal P',
residue class field $\bar{K}' = R'/P'$. We shall give some sufficient conditions for the validity of the implication:

\begin{equation}
M \sim_{R'} N \implies M \sim_{R} N,
\end{equation}

where M, N denote RG-modules.

Theorem 3. If the group order $(G:1)$ is a unit in R, then (5) is valid.

Proof. Use Theorem 1, together with the result [5] that if $(G:1)$ is a unit in R, then $M \sim_{R} N$ if and only if $M \sim_{K} N$.

Theorem 4. If $\bar{K}' = \bar{K}$, then (5) holds.

Proof. Since R, R' are principal ideal rings, we may use matrix terminology. Let M, N be R-representations of G such that $M \sim_{R'} N$. Set

\[
C = \{ X \text{ over } R : M(g)X = XN(g), g \in G \},
\]

\[
C' = \{ X \text{ over } R' : M(g)X = XN(g), g \in G \}.
\]

Since C is a finitely generated torsion-free R-module, we may choose an R-basis $\{ X_1, \cdots, X_n \}$ of C. It is easily verified that this is also an R'-basis of C'.

The hypothesis $M \sim_{R'} N$ is equivalent to the statement that there exist elements $\alpha_1, \cdots, \alpha_n \in R'$ such that

\[
\alpha_1 X_1 + \cdots + \alpha_n X_n
\]

is unimodular over R', that is, has entries in R' and satisfies

\[
| \alpha_1 X_1 + \cdots + \alpha_n X_n | \in u(R') \quad \text{(the group of units of } R').
\]

Since $\bar{K}' = \bar{K}$, we may choose $\alpha_1, \cdots, \alpha_n \in R$ such that

\[
a_i \equiv \alpha_i \pmod{P'},
\]

1 \leq i \leq n.

In that case,

\[
a_1 X_1 + \cdots + a_n X_n \in C,
\]

and is unimodular over R. Therefore $M \sim_{R} N$, Q.E.D.

In particular, suppose that K' is an *Eisenstein extension* of K relative to the valuation ϕ, that is, suppose that $K' = K(\alpha)$ where

\[
\text{Irr } (\alpha, K) = x^m + b_1 x^{m-1} + \cdots + b_m
\]

with $b_1, \cdots, b_m \in P$, $b_m \in P^2$ (see [3]). In this case ϕ is uniquely extendable to K', and $\bar{K}' = \bar{K}$, so that (5) is true. We shall apply this later on.

Let us call a matrix of the form

\[
\begin{bmatrix}
1 \\
\vdots \\
* \\
\vdots \\
1
\end{bmatrix}
\]
a translation; by such a notation, we mean to imply that the elements below
the main diagonal are all zero. If \(M, N \) are \(R \)-representations of \(G \), we write
\(M \cong N \) to indicate that \(M, N \) can be intertwined by a translation matrix.

On the other hand, suppose that

\[
M = \begin{bmatrix}
M_1 & * & \\
\vdots & \ddots & * \\
M_k & & \\
\end{bmatrix}, \quad N = \begin{bmatrix}
M_1 & * & \\
\vdots & \ddots & * \\
M_k & & \\
\end{bmatrix}
\]

are a pair of \(R \)-representations of \(G \) in which the \(\{M_i\} \) are distinct (that is,
not \(K \)-equivalent) and absolutely irreducible. If \(M, N \) can be intertwined
by a matrix \(X \) over \(R \) of the form

\[
X = \begin{bmatrix}
a_1 I & \\
\vdots & \ddots & * \\
a_k I & \\
\end{bmatrix},
\]

in which \(a_i \in \text{u}(R) \), the group of units of \(R \), then we shall say that \(M, N \) are
\(i \)-intertwinable. Call \(M, N \) everywhere intertwinable if for each \(i, 1 \leq i \leq k \),
\(M, N \) are \(i \)-intertwinable. Clearly if \(M, N \) are \(i \)-intertwinable, and if\(^2\)

\[
M \cong M', \quad N \cong N',
\]

then also \(M', N' \) are \(i \)-intertwinable.

Lemma. Let \(M, N \) be given by (6), and suppose the \(\{M_i\} \) distinct and abso-
lutely irreducible. Suppose that \(M, N \) are everywhere intertwinable, and further
that they are intertwined by a matrix \(X \) given by (7) for which

\[
a_1, \ldots, a_r \in \text{u}(R), \quad a_{r+1}, \ldots, a_k \in \text{u}(R).
\]

Then

\[
M \cong \begin{bmatrix}
M_1 & * & 0 \\
& \ddots & * \\
& & M_r \\
& & & M_{r+1} \\
& & & & \ddots & * \\
& & & & & M_k
\end{bmatrix}, \quad N \cong \begin{bmatrix}
M_1 & * & 0 \\
& \ddots & * \\
& & M_r \\
& & & M_{r+1} \\
& & & & \ddots & * \\
& & & & & M_k
\end{bmatrix}.
\]

Proof. Use induction on \(r \). The result is trivial when \(r = 0 \), so assume
\(r \geq 1 \), and write

\[
M = \begin{bmatrix}
M_1 & * & * \\
M' & \Delta & * \\
M'' & & \\
\end{bmatrix}, \quad N = \begin{bmatrix}
M_1 & * & * \\
N' & \Delta & * \\
N'' & & \\
\end{bmatrix},
\]

\(^2\) We use \(^tM \) to denote the transpose of \(M \); thus, \(M' \) is just another representation in
this context.
where

\[
M' = \begin{bmatrix} M_2 & \cdots & \ast \\ \vdots & \ddots & \vdots \\ M_r & \cdots & \ast \end{bmatrix}, \quad M'' = \begin{bmatrix} M_{r+1} & \cdots & \ast \\ \vdots & \ddots & \vdots \\ \ast & \cdots & \ast \end{bmatrix}, \quad \text{(submatrices of } M)\text{),}
\]

\[
N' = \begin{bmatrix} M_2 & \cdots & \ast \\ \vdots & \ddots & \vdots \\ M_r & \cdots & \ast \end{bmatrix}, \quad N'' = \begin{bmatrix} M_{r+1} & \cdots & \ast \\ \vdots & \ddots & \vdots \\ \ast & \cdots & \ast \end{bmatrix}, \quad \text{(submatrices of } N)\text{).}
\]

Then also

\[
\begin{bmatrix} M' & \Delta \\ M'' \end{bmatrix}, \quad \begin{bmatrix} N' & \Delta \\ N'' \end{bmatrix}
\]

are everywhere intertwining, and furthermore are intertwined by

\[
\begin{bmatrix} a_1 I \\ \vdots \\ a_k I \end{bmatrix},
\]

a submatrix of \(X \). It follows from the induction hypothesis that by transforming \(M, N \) by suitable translation matrices, we can make \(\Delta = \Delta = 0 \). The new \(M, N \) will still be everywhere intertwining, and also intertwined by a new \(X \) for which (8) still holds.

Let us write

\[
M = \begin{bmatrix} M_1 & \ast & \Lambda_{r+1} & \cdots & \Lambda_k \\ \Lambda_{r+1} & \cdots & \ast & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \ast & \cdots & \ast & \ast & \ast \\ M' & 0 & \cdots & \cdots & M'' \end{bmatrix}, \quad N = \begin{bmatrix} M_1 & \ast & \Delta_{r+1} & \cdots & \Delta_k \\ \Delta_{r+1} & \cdots & \ast & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \ast & \cdots & \ast & \ast & \ast \\ N' & 0 & \cdots & \cdots & N'' \end{bmatrix},
\]

\[
X = \begin{bmatrix} a_1 I & \ast & T_{r+1} & \cdots & T_k \\ \ast & \vdots & \ast & \vdots & \vdots \\ X' & \cdots & \vdots & \ddots & \vdots \\ \ast & \cdots & \ast & \cdots & \ast \\ X'' & \ast & \cdots & \cdots & a_k I \end{bmatrix}, \quad X'' = \begin{bmatrix} a_{r+1} I & \ast \\ \ast & \vdots \\ \ast & \ast \\ \ast & \vdots \\ a_k I \end{bmatrix}.
\]

Then

\[
\begin{bmatrix} M' & 0 \\ M'' \end{bmatrix} \begin{bmatrix} X' & T \\ X'' \end{bmatrix} = \begin{bmatrix} X' & T \\ X'' \end{bmatrix} \begin{bmatrix} N' & 0 \\ N'' \end{bmatrix},
\]

whence \(M'T = TN'' \). Since \(M', N'' \) have no common irreducible constituent, we conclude that \(T = 0 \).

It now follows that

(10) \[
\begin{bmatrix} M_1 & \Lambda_{r+1} \\ M_{r+1} & \ast \end{bmatrix}, \quad \begin{bmatrix} M_1 & \Delta_{r+1} \\ M_{r+1} & \ast \end{bmatrix}
\]

are \(R \)-representations intertwined by
This implies that
\[M_1 T_{r+1} + a_{r+1} A_{r+1} = a_1 \Delta_{r+1} + T_{r+1} M_{r+1}, \]
and hence (since \(a_{r+1} \in u(R) \)),
\begin{align*}
(12) \quad \Delta_{r+1} & = b \Delta_{r+1} + M_1 U - UM_{r+1}, \\
& \quad b = a_{r+1}^{-1} a_1 \in u(R),
\end{align*}
for some \(U \) over \(R \). On the other hand, the hypothesis that \(M, N \) are 1-inter-twinable guarantees the existence of a matrix of the form (11) which intertwines the representations given in (10), but for which the element playing the role of \(a_1 \) is a unit in \(R \). Therefore we also have
\[\Delta_{r+1} = c \Delta_{r+1} + M_1 V - VM_{r+1} \]
for some \(c \in R \) and some \(V \) over \(R \). Combining (12) and (13), we obtain
\[(1 - bc) \Delta_{r+1} = M_1 W - WM_{r+1} \]
for some \(W \) over \(R \). Since \((1 - bc) \in u(R) \), we conclude that
\[\Delta_{r+1} = M_1 Y - YM_{r+1} \]
for some \(Y \) over \(R \). Hence by a translation transformation of \(M \), we can make \(\Delta_{r+1} = 0 \). From (13) it follows that we can also make \(\Delta_{r+1} = 0 \) by a translation transformation of \(N \). For this new \(M, N \) we must have \(T_{r+1} = 0 \).

But now we observe that
\[\begin{bmatrix} M_1 & \Delta_{r+2} \\ M_{r+2} & \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} M_1 & \Delta_{r+2} \\ M_{r+2} & \end{bmatrix} \]
are representations intertwined by
\[\begin{bmatrix} a_1 I & T_{r+2} \\ a_{r+2} I & \end{bmatrix}. \]
The above type of argument shows that we can make \(\Delta_{r+2} = \Delta_{r+2} = 0 \), and therefore also \(T_{r+2} \) must be 0. By continuing this process, we establish the validity of (9), Q.E.D.

We may now prove one of the main results of this paper.

Theorem 5. Let \(M, N \) be \(RG \)-modules which are \(R' \)-equivalent, and suppose that the irreducible constituents of \(KM \) (which coincide with those of \(KN \)) are distinct from one another and are absolutely irreducible. Then also \(M, N \) are \(R \)-equivalent.

Proof. Again use matrix terminology, and proceed by induction on the number \(k \) of irreducible constituents of \(KM \). The result for \(k = 1 \) follows from Theorem 2; suppose it known up to \(k - 1 \), and let \(KM \) have \(k \) distinct absolutely irreducible constituents. There will be no confusion from our
using M to denote both the module and the R-representation it affords. The R-representations of G afforded by the RG-modules M, N may be taken to be of the form

\begin{equation}
M = \begin{bmatrix} M_1 & \cdots & \ast \\ \vdots & \ddots & \vdots \\ M_k & \end{bmatrix}, \quad N = \begin{bmatrix} N_1 & \cdots & \ast \\ \vdots & \ddots & \vdots \\ & & N_k \end{bmatrix},
\end{equation}

where the $\{M_i\}$ and $\{N_i\}$ are absolutely irreducible, and where

\begin{equation}
M_i \sim_K N_i, \quad M_i \sim_K M_j, \quad j \neq i, \quad 1 \leq i \leq k.
\end{equation}

Since M, N are R'-equivalent, they are intertwined by a matrix X' unimodular over R'. From (15) we find readily (see [6]) that X' has the form

\begin{equation}
X' = \begin{bmatrix} X'_1 & \cdots & \ast \\ \vdots & \ddots & \vdots \\ X'_k & \end{bmatrix},
\end{equation}

and necessarily each X'_i is also unimodular over R'. But we have then

\begin{equation}
M_i X'_i = X'_i N_i, \quad 1 \leq i \leq k,
\end{equation}

so that M_i, N_i are R'-equivalent for each i. By the induction hypothesis it follows that for each $i, 1 \leq i \leq k, M_i$ and N_i are R-equivalent. Consequently for each i there exists a matrix Y_i unimodular over R which intertwines M_i and N_i. Setting $Y = \text{diag} (Y_1, \cdots, Y_k)$, we deduce that

\begin{equation}
N \sim_R Y N Y^{-1} = \begin{bmatrix} M_1 & \cdots & \ast \\ \vdots & \ddots & \vdots \\ & & M_k \end{bmatrix} \quad \text{(say)}.
\end{equation}

Replacing N by YNY^{-1}, we may henceforth assume that $N_1 = M_1, \cdots, N_k = M_k$, that is, that M, N are given by (6).

From the R'-equivalence of M, N it follows that they are intertwined by a unimodular matrix X' over R', given by (16). Since now $M_i = N_i$, and M_i is absolutely irreducible, (17) implies that each X'_i is a scalar matrix, so that we may write

\begin{equation}
X' = \begin{bmatrix} \alpha_1 I & \cdots & \ast \\ \vdots & \ddots & \vdots \\ & \alpha_k I \end{bmatrix}, \quad \alpha_1, \cdots, \alpha_k \in u(R').
\end{equation}

Let us now set

\begin{equation}
R' = R \beta_1 \oplus \cdots \oplus R \beta_n, \quad \beta_1 = 1, \quad n = (K':K).
\end{equation}

\footnote{This really follows from [10].}
Then we may write

\[X' = \sum_{\nu=1}^{n} X^{(\nu)} \beta_{\nu}, \]

we note that

\[
X^{(\nu)} = \begin{bmatrix}
a^{(\nu)}_1 I \\
\ddots \\
1 & \ddots \\
& a^{(\nu)}_k I
\end{bmatrix}, \quad 1 \leq \nu \leq n,
\]

where

\[
\alpha_i = \sum_{\nu} a^{(\nu)}_i \beta_{\nu}, \quad a^{(\nu)}_i \in R.
\]

Let us fix \(i, 1 \leq i \leq k \). Then \(\alpha_i \in u(R') \), and so by (19) at least one of \(a^{(1)}_i, \ldots, a^{(n)}_i \) is a unit in \(R \). Since each \(X^{(\nu)} \) intertwines \(M \) and \(N \), and since \(a^{(\nu)}_i \) occurs in the \(i \)th diagonal block of \(X^{(\nu)} \), we may conclude that \(M, N \) are \(i \)-intertwinable. This shows then that if \(M, N \) given by (6) are \(R' \)-equivalent, they must be everywhere intertwinable.

Since \(M, N \) are \(1 \)-intertwinable, there exists an \(X \) (over \(R \)) given by (7) which intertwines \(M \) and \(N \), and for which \(a_1 \in u(R) \). If also \(a_2, \ldots, a_k \in u(R) \), then \(X \) is unimodular over \(R \), and so \(M, N \) are \(R \)-equivalent. For the remainder of the proof we may therefore suppose that not all of \(a_2, \ldots, a_k \) are units in \(R \). Let us write

\[
a_1, \ldots, a_q \in u(R), \quad a_{q+1}, \ldots, a_r \notin u(R), \quad a_{r+1}, \ldots, a_k \in u(R), \ldots.
\]

Partition \(X \) accordingly, say

\[
X = \begin{bmatrix} Y_1 & \cdots & \ast \\ \ast & \ddots & \ast \\ Y_k & \cdots & \ast \end{bmatrix}, \quad Y_1 = \begin{bmatrix} X_1 & \cdots & \ast \\ \ast & \ddots & \ast \\ X_q & \cdots & \ast \end{bmatrix}, \quad Y_2 = \begin{bmatrix} \cdots & \ast & \ast \\ \cdots & \ddots & \ast \\ \cdots & \ast & \cdots \end{bmatrix}, \ldots
\]

Correspondingly partition \(M, N \), say

\[
M = \begin{bmatrix} M_1 & \Lambda_{12} & \Lambda_{13} \\ \Lambda_{22} & M_2 & \Lambda_{23} \\ \cdots & \cdots & \ddots \end{bmatrix}, \quad N = \begin{bmatrix} \bar{N}_1 & \Delta_{12} & \Delta_{13} \\ \Delta_{22} & \bar{N}_2 & \Delta_{23} \\ \cdots & \cdots & \ddots \end{bmatrix},
\]

where

\[
\bar{M}_1 = \begin{bmatrix} M_1 & \cdots & \ast \\ \ast & \ddots & \ast \\ \ast & \cdots & M_q \end{bmatrix}, \quad \bar{N}_1 = \begin{bmatrix} M_1 & \cdots & \ast \\ \ast & \ddots & \ast \\ \ast & \cdots & M_q \end{bmatrix}, \ldots
\]

By repeated use of the lemma, we may transform \(M, N \) by translations so as to make successively

\[
\Lambda_{12} = \Delta_{12} = 0, \quad \Lambda_{23} = \Delta_{23} = 0, \quad \cdots, \quad \Lambda_{t-1,t} = \Delta_{t-1,t} = 0.
\]
Such transformations do not affect the diagonal blocks of X, nor the R'-equiva-
lence of M, N. We may therefore assume for the remainder of the proof that
(21) holds. But in that case we see from (20) that
\[
\begin{bmatrix}
\tilde{M}_1 & \Lambda_{14} \\
\tilde{M}_4 & \Lambda_{14}
\end{bmatrix}, \quad
\begin{bmatrix}
\tilde{N}_1 & \Delta_{14} \\
\tilde{N}_4 & \Delta_{14}
\end{bmatrix}
\]
are R-representations of G, and again we may apply the lemma to conclude
that M, N may be further transformed by translation matrices so as to make
$\Lambda_{14} = \Delta_{14} = 0$, and so on. Continuing in this way, we find that
\[
M \approx M' = \begin{bmatrix}
\tilde{M}_1 & \Omega \\
\cdot & \cdot \\
\tilde{M}_t &
\end{bmatrix}, \quad
N \approx N' = \begin{bmatrix}
\tilde{N}_1 & \Sigma \\
\cdot & \cdot \\
\tilde{N}_t &
\end{bmatrix},
\]
where $\Omega_{ij} = \Sigma_{ij} = 0$ whenever the diagonal entries of X associated with
\tilde{M}_i are units, those with \tilde{M}_j nonunits, or vice versa. But we may then find a
permutation matrix F such that
\[
FM'F^{-1} = \begin{bmatrix}
M^* & 0 \\
M^{**}
\end{bmatrix}, \quad
FN'F^{-1} = \begin{bmatrix}
N^* & 0 \\
N^{**}
\end{bmatrix},
\]
where
\[
M^* = \begin{bmatrix}
\tilde{M}_1 & * \\
\cdot & \cdot \\
\tilde{M}_3 & *
\end{bmatrix}, \quad
M^{**} = \begin{bmatrix}
\tilde{M}_2 & * \\
\cdot & \cdot \\
\tilde{M}_4 & *
\end{bmatrix},
\]
\[
N^* = \begin{bmatrix}
\tilde{N}_1 & * \\
\cdot & \cdot \\
\tilde{N}_3 & *
\end{bmatrix}, \quad
N^{**} = \begin{bmatrix}
\tilde{N}_2 & * \\
\cdot & \cdot \\
\tilde{N}_4 & *
\end{bmatrix}.
\]
We now have
(22) $M \sim_R \begin{bmatrix} M^* & 0 \\ M^{**} \end{bmatrix}$, \quad $N \sim_R \begin{bmatrix} N^* & 0 \\ N^{**} \end{bmatrix}$,
and so (since $M \sim_{R'} N$),
\[
\begin{bmatrix} M^* & 0 \\ M^{**} \end{bmatrix} \sim_{R'} \begin{bmatrix} N^* & 0 \\ N^{**} \end{bmatrix}.
\]
Since M^*, M^{**} have no common irreducible constituents, this latter equiva-
lence implies that $M^* \sim_{R'} N^*$, $M^{**} \sim_{R'} N^{**}$.

We may (at last) use the induction hypothesis to conclude from this that
\[
M^* \sim_R N^*, \quad M^{**} \sim_R N^{**}.
\]
This, together with (22), implies that M, N are R-equivalent. Thus the theorem is proved.

4. We shall apply the preceding result to the case of p-groups.

Theorem 6. Let G be a p-group, where p is an odd prime. Let R be the ring of p-integral elements of the rational field Q. Suppose that K' is an algebraic number field, and R' any valuation ring of K' such that $R' \supseteq R$. Then for any pair of irreducible RG-modules M, N we have

$$M \sim_{R'} N \Rightarrow M \sim_R N.$$

Proof. Set $(G:1) = p^m$, $m > 1$, and let ζ be a primitive $(p^m)^{th}$ root of 1 over Q. Let M, N be R'-equivalent irreducible RG-modules. As a first step, let us set $K_1 = K'((\zeta))$, and let R_1 be a valuation ring of K_1 such that $R_1 \supseteq R'$. Then since $M \sim_{R'} N \Rightarrow M \sim_{R_1} N$, we may now restrict our attention to K_1, R_1 instead of K', R'.

Next we note that

$$f(x) = \text{Irr}(\zeta, Q) = x^{p^m-1(p-1)} + x^{p^m-1(p-2)} + \cdots + x^{p^m-1} + 1,$$

and that $f(x + 1)$ is an Eisenstein polynomial at the prime p. If we set $K_0 = Q((\zeta))$, it follows that K_0 contains a uniquely determined valuation ring R_0 such that $R_0 \supseteq R_1$, and further that the residue class fields corresponding to R_0, R coincide. We may therefore conclude from Theorem 4 that

$$M \sim_{R_0} N \Rightarrow M \sim_R N.$$

The proof will be complete as soon as we establish

$$M \sim_{R_1} N \Rightarrow M \sim_{R_0} N.$$

This is a consequence of Theorem 5, however, as we now proceed to demonstrate. The modules $R_0 M, R_0 N$ are (in general) no longer irreducible. Since K_0 is an absolute splitting field for G (see [1]), the irreducible constituents of $K_0 M$ and $K_0 N$ are all absolutely irreducible. The multiplicity with which any absolutely irreducible constituent of $K_0 M$ occurs is precisely the Schur index of that constituent relative to the rational field (see [7]). On the other hand, for p-groups (p odd) it is known [2, 8] that this Schur index is 1. Hence the irreducible constituents of $R_0 M$ and $R_0 N$ are distinct and absolutely irreducible. We may therefore apply Theorem 5, and obtain

$$R_1 M \cong R_1 N \Rightarrow R_0 M \cong R_0 N,$$

so that (25) is proved, Q.E.D.

The referee has kindly pointed out that the preceding theorem is also valid for the more general case in which R is a valuation ring of an algebraic number field K such that R lies over the ring of p-integral elements of the rational
field. Indeed, the above proof requires only a minor modification for the more general case.

5. We conclude by listing a number of open questions.

A. If $R \subset R'$ are valuation rings, does (5) hold without any restrictive hypotheses?

B. Using the notation of Section 2, under what conditions does $\sigma'M \triangleright \sigma'N$ imply $M \triangleright N$, where M and N are σG-modules?

C. If σ is a principal ideal ring, does σ'-equivalence imply σ-equivalence?

It may be of interest to mention yet one more special case in which additional information may be obtained. Suppose that M and N are projective RG-modules, where R is the valuation ring of a discrete valuation of K. (For example, M and N might be direct summands of RG.) Then it is known\(^4\) that $M \sim_R N$ if and only if $M \sim_K N$. Using Theorem 1 and its corollary, we conclude that (5) holds in this case.

In particular, if M and N are projective σG-modules, then $\sigma'M \triangleright \sigma'N$ surely implies that M and N are K'-equivalent, and hence by the above discussion that $M \triangleright N$.

Added in proof. In a recently completed paper [11], Zassenhaus and the author have shown that (5) holds without any restrictive hypotheses, assuming still that R and R' are valuation rings as in Section 3. This settles questions A and B, but C is still open.

References

University of Illinois

Urbana, Illinois

\(^4\) R. G. Swan, Induced representation and projective modules, University of Chicago, mimeographed notes, 1959, Corollary 6.4.