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1. Introduction

The main theorem of this paper concerns the Hausdorff-Besicovitch dimen-
sion of the range of the sample functions of a stable process in Ry . Results
of this sort for the symmetric stable processes were obtained earlier by Mc-
Kean [6], [7] and by us [1]. The symmetric stable processes are subordinate
to Brownian motion, a fact that we found useful in [1]; but there seems to be
no similar relationship for the general stable processes, so a different approach
is necessary.

2. Preliminaries

If F is a stable probability distribution on Ry and ¢ is its N-dimensional
characteristic function, then either F is a (possibly degenerate) N -dlmen-
sional normal distribution, or else

() log o(y) = ia, 1) = M " [ wa(y, O)u(ab)

for some ¢ in Ry, A > 0,0 < a < 2, u a probability measure on the surface
of the unit sphere Sy in By . In this formula 6 denotes a variable point on
Sw~, and the function w, is defined by

wa(y, 0) = [L — i sgn (y/| y |, 6) tan 3mal-| (y/| ¥ |, ) |*
if o # 1, and

wi(y, ) = [ (w/lyl, 0| + (2i/x)(y/|y ]|, 0) log | (y, 6) |.

The correct interpretation of this if y = 0 or if (y, ) = 0 is obvious. The
number « is called the index of the stable distribution. Formula ¢1) is due
to Lévy [5]. If a < 2, then ¢ is integrable, so any stable distribution of
index o < 2 has a bounded continuous density. From now on we will
consider only the nonnormal stable distributions.
If F is stable of index «, then for every &k > 0
F{{z:|z| > rn})/F({x:|z| > kr}) = k% as r— o,

This is a consequence of Theorem 4.2 of [8], and it implies that if p > 0, then
[ leP ) < =
Ry
if and only if p < a.
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Let {X(#); t = 0} be a stable process in Ry of index a < 2 defined over
some basic probability space Q of points w; that is, a process with stationary
independent increments, such that for each ¢ > s the characteristic function
of X(t) — X(s)is "™ with ¢ given by (1). We assume that X(0) = 0
and that in (1) we have ¢ = 0 and N\ = 1. It follows that if & ¢ 1 and r
and ¢ are positive, then /*X (¢) has the same distribution as X(rt). In the
case o = 1, rX(¢) has the same distribution as X (#r) + ¢(r log r) a, where
a is the point in Ry with coordinates

2
a; = fsN‘l—r ; u(df).

We will assume that the process has been normalized to have right-continu-
ous sample functions.

Now let 8 be a positive real number, and E a subset of Ry. For each
e > 0set A%E) = inf D2 (diam E;)? where {E; ;i = 1} is a cover of E
by subsets of Ry all of diameter not exceeding &, and the infimum is taken
over all such covers. We would get the same number if we restricted the
E s to be open sets or closed sets or, in the case of the real line, closed inter-
vals. Let A’(E) = lim._o A%(E). A®is called the Hausdorff 8-dimensional
outer measure on Ry . It is a metric outer measure, and so the Borel sets
are always measurable. If E is a Borel set with A*(E) = M £ », and
if0 < h < M, then there is a closed set F contained in E such that A’(F) = h.
This fact, actually for analytic E, is proved by Davies in [2], and it implies
that A® restricted to the Borel sets is inner regular. In general A’ is not
outer regular. It is also true that

sup {8: A°(B) = «} = inf {8: A°(E) = 0}.
This common value is called the Hausdorff-Besicovitch dimension of E, and
is denoted by dim E.
We need two more facts. First of all, a Borel subset £ of Ry is said to

have positive g-capacity (Cs(E) > 0) if there is a probability measure m,
concentrated on E, such that

(2) LL |2 — y | m(de)m(dx) < oo.

A theorem of Frostman [3, p. 86] states that if E is closed and A*(E) > 0,
then Cg(E) > 0. Secondly we need the following fact which is implicit in
[7): If f is a measurable function from [0, 1] to By and E is a Borel subset of
[0, 1], and if there is probability measure m on [0, 1] with m(E) = 1 such
that

[ [156) = 10 17 mG@omian < »,

then AP[f(E)] > 0.
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3. Dimension theorem
In what follows, E will be a Borel subset of [0, 1] of dimension v, and «
will be the index of our process { X (t);t = 0} taking valuesin Ry . IfN = 1,
we will always assume oy = 1. We denote by X(F, w) the range of the
function X (¢, w) as ¢t varies over E. We will almost always delete the  in
expressions involving the sample functions. Our theorem is that if dim E = v,
then dim X(F, w) = oy for almost all . We proceed in steps.

() P{dim X(E) = ay} = 1.

Proof. Assume « # 1. Let 8 be positive and strictly less than ay, but
otherwise arbitrary. Then B/a < v, so AY*(E) = «, and according to
Davies’ theorem there is a closed set F contained in E such that A**(F) > 0.
Then Cgo(F) > 0 by Frostman’s theorem. Let m be a probability measure
concentrated on F such that (2) holds with 8 replaced by 8/a. Now

gl X(t) — X(s) | =gl X(t — ) |7
=t — s X(1) [P =¢|t—s|P"

with 0 < ¢ < = (recall that ay £ 1 if N = 1 and that X(1) has a con-
tinuous density). Integrating this relation over F X F with respect to
m X m and using Fubini’s theorem, we find that

(3) [F fr | X(4 @) — X(s, 0) [ m(d)m(ds) < w

for almost all w. Then as noted above, P{A*(X(F)) > 0} = 1 and so
P{A*(X(E)) > 0} = 1. The necessary modification of this argument in
case @ = 1 is obvious. Since 8 < oy was arbitrary, the proof is complete.

Gi) If v <1, then P{dim X(E) < an} = 1.

Proof. Assume a % 1. Choose 8 > v with fa < «, but B8 otherwise
arbitrary. For each n let {E. ;7 = 1} be a cover of E by closed intervals
such that >_7_; (diam Ew)? —> 0 as n — . This can be done since
AP(E) = 0. Now for each n, {X(Eiw, »); ¢ = 1} is a cover of X(E, w),
and moreover [diam X (E:)1*

is distributed as
(diam E.)? [diam X ({0, 1])1%*.
Assuming for the moment that &(diam X ([0, 1))*® < «, we have
(4) 827 [diam X (Ea)* = 33 (diam Bs,)gldiam X ([0, 1)1

The right side of (4) goes to 0 as n — o, and so for a subsequence of n’s
approaching « (which is all we need) D i [diam X (i, w)’* — 0 for
almost all w. Since 8 was arbitrary, this implies P{dim X(E) = ay} = 1.
Concerning the finiteness of the expected value above: pick a number M
such that for every ¢t < 1, P{| X(t) — X(1) | = M} £ 4. This can be
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done since almost all sample functions of our process are bounded on bounded
-intervals. A standard argument then shows that for every A > M
Plsup:<: | X(¢) | = 20} = 2 P{| X(1) | = N},
and so for allN > M
P{diam X[0, 1] = 4\} < 2 P{| X(1) | = N}.

We observed in Section 2 that & X(1) |** < «, and so the expected value
in question is finite. Again, the necessary modification of the proof if @ = 1
is easily found, and we omit the details.

Gil) If v =1, then P{dim X(E) < o} = L.

Proof. We may as well assume E = [0, 1]. We first remark that if
a = 1, then an argument involving the variation of the sample functions, as
used in [7], gives the result, and if N = 1, these are the only values of a worth
considering. But for the other cases, this argument is not available. We
proceed with the proof in general.

First assume o % 1. Choose 8 > 1, but otherwise arbitrary, and for
each ¢ > 0 define as follows:

Ty = inf {t > 0: | X(¢) | > e,
Tisr,e = inf {t > 0: | Xt + Tie + -+ + The)
= X(Tw + -+ The) | > €%

for all k = 1. Our process has right-continuous paths and stationary inde-
pendent increments, and so it follows from the extended Markov property
of such processes (see [4, Sections 1-3]) that T, Te - is a sequence of
mutually independent and identically distributed random variables. Now

P{Ty. < a} = P{supia | X(t) | > £/
= P{supia € 7| X(t) | > 1} = P{supwa | X(te™) | > 1}
= P{supscac—t | X(t) | > 1} = P{Tu < ac™},

80 T has the same distribution as €T (T is defined as above with ¢ = 1).
Let N. be the smallest value of n such that Ty, + -+ + Tn. > 1. If S(0, ¢)
denotes the solid closed sphere with center at 0 and radius "%, and S(k, €)
denotes a similar sphere with center at X(T5. + :--- + Tk), then
S(0, ), -+, S(N. — 1, €) is a cover of X[0, 1] by sets of diameter 2¢"*
and

eyt (diam S(k, €))% = 29N, .

Given any z > 0
P{SBNE Sa} =P{Tee+ -+ Tiwernye > 1)
P{ETu + e+ ST[:cs_pl.l > 1}'

I
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If we write ¢ as 2'/°/k"?, this probability is
Pla®(Ty + +++ + Tw) /K" > 13,

and, since 8 > 1, by the law of large numbers this probability approaches 1
as k— ® (¢ —0). We have shown then that ¢N.—0 in probability
as £ — 0. Hence a subsequence approaches 0 with probability 1, and thus
P{A**(X[0, 1]) = 0} = 1. Since 8 > 1 was arbitrary, the proof is com-
plete, at least if & = 1.

We will indicate the changes required if @« = 1. Assume now a = 1.
We observed earlier that for each positive r and ¢, rX(¢) has the same dis-
tribution as X(rt) 4+ tr log r-a where a is a point in Ry . Moreover the
process {X(rt) + tr log r-a; t = 0} has stationary independent increments
and hence is probabilistically the same as the process {rX(¢);t = 0}. Given
any 8 > 1, pick & > 0 but such that 8 — 88 > 1. Now &’|log | — 0 as
£ — 0, and hence there is an & > 0 such that |log ¢||a| + 1 < £ for
all ¢ £ & . Given any ¢ > 0 let

Ty = inf {t > 0: | X(¢) | > &7,

and define Ty, T, - - - inductively as we did above. Then Ty, Ta, - -
are independent and identically distributed. Now given any ¢ £ & (above)
and ¢ £ ¢ we have

P{T:. < ¢} = Plsupwc. | X(2) | > €7

Supice € | X (1) | > &Y

"U

{
{

= P{supic, | X(te™) — te ' log e-a| > )
{

= P{suprcee—1 | X(r) — rlog e-a| > 7.

Since ¢/e = 1 and ¢ < &, it follows that r|log e||a| + 1 < ¢, and so
the last displayed expression above does not exceed

P{Sup,<cg—1 lX(T) l > 1} = P{ Tn < Cé‘—l}.
Let
Ry=Tw if Th =1,

=1 if Tw>1.

Then R;, R:, - -- are independent and identically distributed, and for each
e > 0 and each z, P{eR; < a} = P{T% =< xz}. From here the proof pro-
ceeds as in the case a % 1. We let N, denote the smallest n» for which

T1£+"'+Tne>1,

cover X[0, 1] with N, closed spheres each of diameter 2¢'°, and thus get a
cover by sets, the sum of whose diameters raised to the 8 power is 2°* "N, .
Then for any x > 0

PPN, < 2} = P{Tie + +++ + Traepssyc > 1}

= P{ERI + e + SR[ch"ﬂl > 1};
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and since 8 — B§ > 1, this probability approaches 1 as € — 0. Thus the
proof is complete. Let us summarize the results of this section.

TueorEM. If dim E = v, then P{dim X(E) = ay} = 1.
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