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Introduction
For finite-memory channels as defined in [1] it has been an open question

since Hin6in’s paper [2] as to whether the ergodic capacity equals the sta-
tionary capacity. That is, using R(p) to denote the rate achieved on the
channel by input measure p, is it true that

(a) supp {R(p); p stationary} supp {R(p);p ergodic} ?

We show not only equality but, denoting the common value by C, that there
is at least one ergodic measure p such that

(b) C R().

The method used depends essentially on the following theorem.

THEOREM 1. An upper-semicontinuous U.S.C.) bounded linear functional
defined on a convex compact subset of a linear locally convex separated topological
space assumes its supremum on at least one of the extreme points of the set.

Theorem 1 is a simple consequence of the Krein-Mil’man theorem (see, for
example [3]), and its proof is relegated to an appendix since theorems of the
same nature can be found in the literature. Its relevance is that, looked at
in the right way, the set of stationary input measures is a convex compact
subset of a linear topological space whose extreme points are the ergodic
input measures. This fact, along with other definitions, we develop in the
first section. Secondly, we show that for a general channel, not necessarily
of finite memory, the rate R(p) is a linear function of the input measure.
In the third section we show that in the correct sense R(p) is an U.S.C. rune-
tional for channels of finite memory.

Note added after completion of the paper. There have been a number of
recent papers relevant to this one, and a few remarks on these would not be
inappropriate. HinSin’s definition in [2] of finite-memory channels seems to
be insufficiently restrictive to establish his indicated results. Takano in [4]
imposed severer conditions, using what he termed m-finite memory m-de-
pendent channels in order to derive the results of [2]. This latter class of
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This statement is no longer true. See the remarks at the end of the introduction.
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channels we refer to, following the terminology of Feinstein [1], as finite-
memory channels, and they form the concern of the present paper. Tsare-
gradsky [5] proved (a) using HinSin’s definition of finite memory. However,
his proof is not easy to follow, and it is not clear whether implicit use is not
made of other restrictions. Feinstein in [6] published an elegant and ele-
mentary proof of (a) and other significant results for finite-memory channels
as defined here. Both of the above proofs have the same plan: A new deft-
nition of capacity is introduced leading to a number Co such that Co is obvi-
ously larger than the stationary capacity. Then for any > 0, an ergodic
input p is constructed such that R(p) > Co . The definition of Co is
the same in both proofs and was also introduced by Wolfowitz [7]. The
major part of the present work was finished before the above results became
known to us and obviously proceeds along much different lines. Although
our approach is not elementary, it gives, as a by-product, the proof of (b),
which we doubt can be established by the more elementary methods used in
[5] and [6].

Definitions, notations, and assorted facts
We define very briefly a channel (see [1], [4], or [8] for a fuller definition).

Suppose we are given an alphabet D, that is, a finite set of symbols
(dl, dt). We denote by a(D) the set of all doubly infinite sequences
(..- z_l, z0, zl, such that each coordinate takes values in D, by if(D)
the field of all finite-dimensional cylinder sets, and by (g(D) the Borel field
generated by if(D). Any cylinder set in if(D) of the type {/c*h coordinate is
zk, n*h coordinate is z} we refer to as the finite message (zk, z)
of length n /c + 1.
A channel consists of an output alphabet B and an input alphabet A to-

gether with a set of conditional probabilities

P(Yk, Y x-l, Xo, X, ...)

defined for every finite message (y, y) in if(B) and for every sequence
(..., x_l, x0, x, ...) in a(A). We consider the general channel to be
stationary and nonanticipatory.
For the channel to have finite memory, there must be an integer m such

that
(i) for alln,/c, n_>_ /

P(y, "", yn I"" Xn) P(Yk, "’’, Yn Xk-m, *’’, Xn),

(ii) for allk, i,j,n, n >- j > i >= tc and j- i > m

The smallest integer m for which (i) and (ii) hold is called the memory
length.
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The set of all finite measures on 63(A) forms a linear space . We topolo-
gize so that -- if and only if (xk, x) -- (xk, x) for
every finite message (x,-.., x). In this topology we have

THEOREM 2. is a linear locally convex separated topological space, and the
set 6 of probability measures on 63(A is a compact subset of .
As with Theorem 1, we give a brief sketch of the proof of Theorem 2 in the

uppendix. The set of stationary probability measures S, that is, the set of
all probability measures invariant under the shift operation, is easily seen to
be closed, therefore compact, and obviously convex. We assert

THEOREM 3. The set of extreme points of is exactly the set of ergodic sta-
tionary measures on 63(A).

Proof. Let u be stationary and ergodic, and assume
a 1, a, O,u,# $. Supposeuisnotergodic, andletSbe
invariant Borel set such that 0 < u(S) < 1. Then 0 < u(S) < 1, which
shows that both u and u must be ergodic. A consequence of the ergodic
theorem is that any two distinct ergodic measures on 63(A) are 2_. Let S
now be an invariant Borel set such that u(S) 1, u(S) 0; we have the
contradiction 0 < u(S) < 1. Now let v be an extreme point of $, and sup-
pose that v is not ergodic. Then there is an invariant set S in 63(A) such
that 0 < v(S) < 1. We define two stationary probability measures v,
as follows. If E e 63(A), then

v(E) v(S E)/v(S), w.(E) v(S n E)/v(S).

Hence v(E) v(S)vl(E) + v(Sc)v2(E) SO that v must be ergodic.
We proceed to define the rate of a channel which is a functional R(p) on

$. For any alphabet D, with q a stationary probability measure on
we form the functions of q

H(q) (1/n) z q(z) log q(z),

where z is any message n long beginning at the first coordinate, and the sum-
marion is over all such messages. McMillan [8] has shown that H,(q) >=
H,+l(q), and H(q) lim H(q) is called the entropy of the process. If we
have a channel and a stationary probability p on 63(A), then we use the
conditional probabilities of the channel in the time-honored fashion to put a
stationary probability p" on the Borel field of the sequence space

(x_l, y-i), (x0, y0), x e A, y e B. The marginal of p" induces a
stationary probability p’ on 63(B). The expression

R(p) H(p) 4- H(p’) H(p")

is the rate produced by the source p.
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1. The additive property of entropy and rate

THEOREM 4. Let p, q , a -f- 1, a O, >. O. Then

H(ap + q) all(p) + H(q),

R(ap + q) aR(p) + fiR(q).

Proof. Let x denote messages of length n.

Hn(ap "- tip) -(l/n) x lap(x) + flq(x)] log Jan(x) + flq(x)]

We use

(l/n) ap(x) log p(x) (l/n)

_
q(x) log q(x)

(l/n) z ap(x) log [a + q(x)/p(x)]
(l/n) q(x) log [ -t- ap(x)/q(x)].

log a _<_ log [a + q(x)/p(x)] <= log a - (/a)(q(x)/p(x))

to deduce

(l/n) a log a <- (l/n) ap(x) log [a + q(x)/p(x)]
<- (l/n) a log a -]- 1In) (/a)

and conclude that the third term on the right above goes to zero. We treat
the fourth term similarly and conclude that H(p) is additive. To check the
additivity of R(p) we have only to note that p’ and p" are linearly dependent
on p.

2. R(p) is an U.S.C. functional on 8 for finite-memory channels
THEOREM 5. H(p’) is an U.S.C. functional on S for channels of finite

memory length m.

Proof. H(p’) lim H,(p’) where H,+I(p’) <= H,(p’). Take any
sequence {pN} c $ such that pN -- p, let y be any message/c m long in
f(B) beginning at coordinate m + 1, and let x denote messages of length ]

in if(A) beginning at, coordinate one. Then p’(y) P(ylx)pN(x) so
p,that pv(y) (y) as pN ---+ p. Thus

(l/n) p(y) log p’(y) -- (l/n) p’(y) log p’(y)

as pN -- p, so that Hn(p’) is a continuous function on $. Thus H(p’), being
the limit of a decreasing sequence of continuous functions, is U.S.C.
To deal with the rest of R(p) we introduce functions Ln(p) on $ as follows:

Let y be any message n m long in if(B) beginning at m + 1, and x any
message n long in f(A) beginning at one; then define

L(p) (l/n) ,P(ylx)p(x) log P(ylx).
PROIOSlTION 1. For a channel with memory length m,

L(p) ---> H(p) H(p’).
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L,(p) (l/n) x.y P(y x)p(x) log P(y x)p(x) k" H,(p)

(l/n) ’. p" (y, x) log p" (y, x) - H(p).

Let stand for any message n long in if(B) that starts at one and coincides
with y from m -t- 1 on, and _x any message n m long in if(A) that starts at
m -t- 1 and coincides thereafter with x. Then log p,t (, x) -< log p" (y, x), so

(l/n) ,9 p" (, x) log P" (!7, x) < (l/n) .9 p" (, x) log p’ (y, x)

(l/n) , p"(y, x) log p"(y, x).

The left-hand side above is Hn(p);passing to the limit gives

H(p) H(p") <= lim inf L,(p).

On the other hand, log p’ (y, x) _-> log p" (y, _x), yielding

(l/n) , p" (y, x) log p’ (y, x) >__ (l/n) .p"(y, x) log p’(y, x_)

(1In) u._ P" (Y, x. log p" (y, _x).

The right:hand side is equal to -(n m/n)Hn(p’), and the limit gives
H(p) H(p") >= lim sup Ln(p). Now we prove

THEOREM 6. For a channel with finite memory length m, H(p) H(p")
is an U.S.C. functional on $.

Proof. Letn k(m 1),k > 1,1etx, y be as before, letu,vi,wibe
the parts of the x and y messages as in these diagrams

Xl Xm-t-1 X2(m-t-/) X(k--1)(m-bl).-bl Xk(m-bl)

’ltl Y U2 Y2

Ym+ Ym+l Y2m+l Y2(m+l) Ym+a

Pk-1 Uk

Ykm+(k--1)l Yk(m+l)

We write

L,(p) = (l/n) -’,,,,,, P(Ul v v_ u w w)p(w w)

log P(ul, vl, uklw, w),
but

log P(u v vk_ u wl w)

<- log P(u, u w, w) =1 logP(u w,).
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Therefore,

1 ., P(u w)p(w) log P(uiL,(p) <= k(1 + m) .=

1 P(u wl)p(w) log P(u [w) L+(p).
-t-m,o

Now L(p) depends only on finite-dimensional distributions, and just as in
Theorem 5, we easily prove that Ln(p) is a continuous function of p. By
the inequality Lk(+,)(p) <__ L+,(p) we may choose a subsequence of the
L converging monotonically downward to H(p) H(pt’), which proves the
theorem.

Since the sum of two U.S.C. functions is again U.S.C., we have shown that
for finite-memory channels R(p) is U.S.C. on $. When we combine this
fact with the previous theorems, the result announced in the introduction is
assembled.

Appendix

Proof of Theorem 1. Let 9 be a compact, convex subset of a linear locally
convex separated topological space, and f(x) a bounded U.S.C. functional on
9. Since f is U.S.C. and 9 compact, f assumes its supremum on 9. Let

be the subset of 9 on which f equals its supremum; then by U.S.C. is
closed, and by the linearity at f, 9 is convex. By the Krein-Mil’man theorem
i) must have at least one extreme point. Let x be such an extreme point;
thenxmustbeextremein9. For ifx axl + x., a -t- 1, a, > O,
xl, x. e 9, then f(x) af(x) -t- f(x) which implies that both x and x
are in ), and proves the theorem.

Proof of Theorem 2. We consider t(A) as II+: A, where each A is a
copy of A. In the product topology, by Tychonoff’s theorem, 2(A) is com-
pact.. The space is the adioint of the space of all continuous functions
on 2(A). In the weak dual topology on , i.e., that topology such that

for every f e a, the unit sphere in is compact. (See, for example, [9].)
The set of probability measures on 6(A) form a closed, and therefore com-
pact, subset of the unit sphere. It remains to show that the weak dul
topology is equivalent to convergence on finite-dimensional cylinder sets.
One way is quick; if - in the weak dual topology, then for ny finite-
dimensional cylinder set S, we have that Is(x) is continuous, and hence
(s) -- (s). Going the other way is accomplished by using the elementary
result that every continuous function on 2(A can be uniformly approximated
by a finite linear combination of indicators of finite-dimensional cylinder sets,
which follows from the compactness of 2(A).
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It is a pleasure to acknowledge the pleasant and illuminating discussions
we have had with A. Feinstein touching on the subject treated above.

Note added in proof. We have been informed that K. 1. Parthasaraty of
the Indian Statistical Institute has recently used similar methods to derive
the result (a) above.
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