INVERSION OF TOEPLITZ MATRICES II¹

BY

HAROLD WIDOM

1. Introduction

With a function $\varphi(\theta) \in L_1(0, 2\pi), \varphi(\theta) \sim \sum_{-\infty}^{\infty} c_k e^{ik\theta}$, is associated the semiinfinite Toeplitz matrix $T_{\varphi} = (c_{j-k})_{0 \leq j,k < \infty}$. In case $\sum |c_k| < \infty$, T_{φ} represents a bounded operator on the space l_{ω}^{+} of bounded sequences

$$X = \{x_0, x_1, \cdots\},\$$

and in [1] a necessary and sufficient condition was found for the invertibility of T_{φ} (i.e., the existence of a bounded inverse for T_{φ}), namely that $\varphi(\theta) \neq 0$ and $\Delta_{-\pi \leq \theta \leq \pi} \arg \varphi(\theta) = 0$. If $\varphi(\theta) \in L_{\infty}$, T_{φ} represents a bounded operator on the space l_2^+ of square-summable sequences, and in §3 of [1] sufficient conditions were obtained for invertibility in this situation.

The purpose of the present paper is to obtain conditions which are necessary as well as sufficient for invertibility of T_{φ} as an operator on l_2^+ . That the situation is quite different in the l_{∞}^+ and l_2^+ cases can be seen, for instance, from the fact that in the former, the set of φ for which T_{φ} is invertible forms a group, while in the latter we may have T_{φ} invertible but T_{φ^2} not (Corollary 2 of Theorem IV).

As in all problems of Wiener-Hopf type, and this is one, the basic idea is a certain type of factorization. In our case, the idea is that of writing T_{φ} as the product of triangular Toeplitz matrices (which amounts to a factorization of φ), the question of invertibility for these being simpler since any two triangular Toeplitz matrices of the same type commute. Thus, roughly speaking, if φ is sufficiently nice, we can factor T_{φ} and then invert each factor, thus obtaining the inverse of T_{φ} . This gives rise to sufficient conditions for invertibility, as in [1, §3]. Now in the l_{φ}^{+} theory it turned out that the φ 's for which this could be carried out were *exactly* those giving rise to invertible Toeplitz matrices; thus the invertibility of T_{φ} implies the existence of a suitable factorization of φ . It is the content of Theorem I of the present paper that this situation prevails also in the l_2^+ case. From this result we easily settle the invertibility question for triangular and self-adjoint Toeplitz matrices.

For general Toeplitz matrices we have been unable to find a simple criterion for invertibility; there is one however (Theorem IV) in case $\arg \varphi(\theta)$ is reasonably well-behaved.

Before proceeding, we introduce some notation. For $f(\theta) \in L_p(0, 2\pi)$,

Received August 28, 1958.

¹ This work was supported by a grant from the National Science Foundation.

 $1 \leq p \leq \infty, f(\theta) \sim \sum_{m=\infty}^{\infty} a_k e^{ik\theta}$, we shall say that $f \epsilon L_p^+$ (resp. L_p^-) if $a_k = 0$ for k < 0 (resp. k > 0). Thus $f \epsilon L_p^+$ means there exists an F(z) belonging to H_p of the unit circle [3, Chapter 7] such that $F(e^{i\theta}) = f(\theta)$ pp., and $f(\theta) \epsilon L_p^-$ means $\overline{f(\theta)} \epsilon L_p^+$.

For $f \in L_1$, Cf will denote the conjugate function of f,

$$Cf(\omega) = \frac{1}{2\pi} \operatorname{PV} \int_{\mathbf{0}}^{2\pi} f(\theta) \cot \frac{1}{2} (\omega - \theta) \, d\theta \qquad \text{pp};$$

Mf will be the mean of f,

$$Mf = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) \ d\theta;$$

and the operator P is defined by

(1)
$$Pf = \frac{1}{2}(f + Mf + i Cf)$$

If $f \in L_p$ with $1 , then also <math>Cf \in L_p$, and the Fourier series of Cf is the conjugate series of the Fourier series of f [3, §7.21]. It follows that if $f(\theta) \sim \sum_{-\infty}^{\infty} a_k e^{ik\theta}$, then $Pf(\theta) \sim \sum_{0}^{\infty} a_k e^{ik\theta}$; thus for 1 , <math>P projects L_p onto L_p^* .

Throughout this paper $\varphi(\theta)$ will be bounded, and T_{φ} will be considered an operator on l_2^+ . Now l_2^+ is imbedded in a natural way in the space l_2 of square-summable doubly infinite sequences $X = \{\cdots, x_{-1}, x_0, x_1, \cdots\}$. If we define the isomorphism $\mathfrak{U}: l_2 \to L_2$ in the obvious way, then $\mathfrak{U}l_2^+ = L_2^+$ and $\mathfrak{U}T_{\varphi}\mathfrak{U}^{-1} = P\varphi$. (Here $P\varphi$ means, not P applied to φ , but the operator consisting of multiplication by φ followed by P; ambiguities of this sort will appear occasionally but should cause no difficulty.) The Toeplitz matrix T_{φ} and the operator $P\varphi$ may therefore be discussed interchangeably.

2. A general theorem

THEOREM I. A necessary and sufficient condition for the invertibility of T_{φ} is the existence of functions $\varphi_{+}(\theta)$ and $\varphi_{-}(\theta)$, in L_{2}^{+} and L_{2}^{-} respectively, such that

- (a) $\varphi(\theta) = \varphi_+(\theta)\varphi_-(\theta);$
- (b) $1/\varphi_+ \epsilon L_2^+$ and $1/\varphi_- \epsilon L_2^-$;
- (c) for $f \in L_2$, $Sf = \varphi_+^{-1} P \varphi_-^{-1} f \in L_2$, and $f \to Sf$ is a bounded operator on L_2 .

We first prove the conditions sufficient for invertibility of T_{φ} , or equivalently that of $P\varphi$; in fact we shall show that S, when restricted to L_2^+ is just $(P\varphi)^{-1}$. Let $f \in L_{\infty}^+$. Then

(2)
$$P\varphi Sf = P\varphi_{-}P\varphi_{-}^{-1}f = Pf - P\varphi_{-}(I - P)\varphi_{-}^{-1}f,$$

where I represents the identity operator. Now $g = \varphi_{-}(I - P)\varphi_{-}^{-1}f \epsilon L_{1}^{-}$,

and Mg = 0. It follows from this that Pg = 0. For let $\sigma_n(\theta)$ be the Fejér means of $g(\theta)$. Then clearly $P\sigma_n = 0$ for all n. Since $\sigma_n \to g(L_1)$, we have $P\sigma_n \to Pg(L_p)$ for any p in 0 [3, §7.3 (ii)]. Thus <math>Pg = 0, and (2) gives $P\varphi Sf = Pf = f$ since $f \in L_{\infty}^+$. Since $P\varphi S$ is a bounded operator, we have $P\varphi Sf = f$ for all $f \in L_2^+$, i.e., S is a right inverse for $P\varphi$. To show that S is also a left inverse, again let $f \in L_{\infty}^+$. We have

$$SP\varphi f = \varphi_+^{-1} P\varphi_+ f - \varphi_+^{-1} P\lambda_-^{-1} (I - P)\varphi f.$$

By an argument similar to the one above, we see the second term on the right is zero; moreover since $\varphi_+ f \epsilon L_2^+$, we have $P\varphi_+ f = \varphi_+ f$, and the first term on the right is f. Consequently $SP\varphi f = f$ for $f \epsilon L_{\infty}^+$, and so for $f \epsilon L_2^+$. Thus S is a left inverse for $P\varphi$, and the sufficiency is proved.

To prove the conditions necessary, assume $T\varphi$ is invertible, and denote the inverse matrix by $(s_{jk})_{0\leq j,k<\infty}$. Define

$$\sigma_{jk} = \sum_{l \leq \min(j,k)} s_{j-l,0} s_{0,k-l};$$

we shall prove

(3)
$$\sum_{k=0}^{\infty} c_{h-k} \sigma_{kj} = s_{00} \delta_{hj}, \qquad h, j \ge 0.$$

Note that since $\sum_{j=0}^{\infty} |s_{jk}|^2 < \infty$ for each k, and $\sum_{k=0}^{\infty} |s_{jk}|^2 < \infty$ for each j, similar statements hold for σ_{jk} , so the left side of (3) converges absolutely. We have

$$\sum_{k=0}^{\infty} c_{h-k} \sigma_{kj} = \sum_{k=0}^{\infty} c_{h-k} \sum_{l \le \min(k,j)} s_{k-l,0} s_{0,j-l}$$

$$= \sum_{k=0}^{\infty} c_{h-k} \sum_{l < j; l \le k} s_{k-l,0} s_{0,j-l} + \sum_{k=j}^{\infty} c_{h-k} s_{k-j,0} s_{00}$$

$$= \sum_{l=0}^{j-1} s_{0,j-l} \sum_{k=l}^{\infty} c_{h-k} s_{k-l,0} + \sum_{k=j}^{\infty} c_{h-k} s_{k-j,0} s_{00}$$

$$= \sum_{l=0}^{j-1} s_{0,j-l} \sum_{k=0}^{\infty} c_{h-k-l} s_{k0} + \sum_{k=0}^{\infty} c_{h-j-k} s_{k0} s_{00}.$$
(4)

Now since (s_{jk}) is the inverse of $T_{\varphi} = (c_{j-k})$, we have

(5)
$$\sum_{k=0}^{\infty} c_{h-k} s_{kl} = \sum_{k=0}^{\infty} s_{hk} c_{k-l} = \delta_{hl}, \qquad h, l \ge 0.$$

Thus if $j \leq h$, the inner sum of the first term of (4) is always zero for $0 \leq l \leq j - 1$, so the entire first term is zero. Moreover the second term is $\delta_{hj} s_{00}$. This proves (3) in case $j \leq h$.

To obtain the result for j > h, we note that by (5)

$$0 = \sum_{l=0}^{\infty} s_{0l} c_{l-j-k+h} = c_{h-j-k} s_{00} + \sum_{l=1}^{\infty} c_{l+h-j-k} s_{0l}$$

so
$$\sum_{k=0}^{\infty} c_{h-j-k} s_{k0} s_{00} = -\sum_{k=0}^{\infty} s_{k0} \sum_{l=1}^{\infty} c_{l+h-j-k} s_{0l}$$

(6)
$$= -\sum_{l=1}^{j-k} s_{0l} \sum_{k=0}^{\infty} c_{l+h-j-k} s_{k0}$$

$$= -\sum_{l=1}^{j-k} s_{0l} \sum_{k=0}^{\infty} c_{l+h-j-k} s_{k0}$$

$$= -\sum_{l=1}^{j-1} s_{0,j-l} \sum_{k=0}^{\infty} c_{h-l-k} s_{k0}.$$

Now if j > h, we see from (5) that the outer summation in the first term of (4) may begin with l = h, so we have just shown that the sum of the two terms of (4) is zero, which verifies (3) in the case j > h. We must still, however, justify the step leading to (6), this being not completely trivial. Let $\Psi(z) = \sum_{k=0}^{\infty} s_{k0} z^k$ for |z| < 1. Then

$$\sum_{k=0}^{\infty} s_{k0} r^k c_{l+h-j-k} = \frac{1}{2\pi} \int_0^{2\pi} \Psi(r e^{-i\theta}) \varphi(\theta) e^{i(j-h)\theta} e^{-il\theta} d\theta.$$

Since

(2)
l.i.m._{r→1-}
$$\Psi(re^{-i\theta})\varphi(\theta)e^{i(j-\hbar)\theta} = \Psi(e^{-i\theta})\varphi(\theta)e^{i(j-\hbar)\theta}$$

(note that $\Psi(z) \epsilon H_2$ and $\varphi \epsilon L_{\infty}$), we have

 $\langle \mathbf{a} \rangle$

$$\lim_{r \to 1^{-}} \sum_{l=-\infty}^{\infty} \left| \sum_{k=0}^{\infty} s_{k0} c_{l+h-j-k}(r^{k}-1) \right|^{2} = 0.$$

Consequently,

$$\sum_{l=1}^{\infty} s_{0l} \sum_{k=0}^{\infty} s_{k0} c_{l+h-j-k} = \lim_{r \to 1^{-}} \sum_{l=1}^{\infty} s_{0l} \sum_{k=0}^{\infty} s_{k0} c_{l+h-j-k} r^{k}$$
$$= \lim_{r \to 1^{-}} \sum_{k=0}^{\infty} s_{k0} r^{k} \sum_{l=1}^{\infty} c_{l+h-j-k} s_{0l} = \sum_{k=0}^{\infty} s_{k0} \sum_{l=1}^{\infty} c_{l+h-j-k} s_{0l}$$

since the last series converges. This completes the justification of (6) and therefore the proof of (3).

It follows from (3) and the invertibility of T_{φ} that

(7)
$$\sigma_{kj} = s_{00} s_{kj}.$$

Next we show that $s_{00} \neq 0$. Assume $s_{00} = 0$; then by (7), $\sigma_{kj} = 0$ for all k, j. Assume $s_{01} = \cdots = s_{0,n-1} = s_{10} = \cdots = s_{n-1,0} = 0$. We shall show $s_{0n} = s_{n0} = 0$. For $i \geq n$,

$$0 = \sigma_{in} = \sum_{k \leq n} s_{i-k,0} s_{0,n-k} = s_{i0} s_{0n} .$$

If $s_{0n} \neq 0$, we would have $s_{i0} = 0$ for $i \geq n$. Thus we would have $s_{i0} = 0$ for all *i*, i.e., the first column of the invertible matrix T_{φ}^{-1} consists entirely of zeros. Since this cannot be, we must have $s_{0n} = 0$. A similar argument shows $s_{n0} = 0$. But now we have proved by induction that $s_{0n} = s_{n0} = 0$ for all *n*, which again cannot be. Thus our assumption $s_{00} = 0$ was incorrect.

Introduce the functions

$$\psi_+(\theta) \sim \sum_{k=0}^{\infty} s_{k0} e^{ik\theta}, \quad \psi_-(\theta) \sim \sum_{k=0}^{\infty} s_{0k} e^{-ik\theta}$$

belonging to L_2^+ and L_2^- , respectively. We have, for $j \ge 0$,

(8)

$$\psi_{+}(\theta)P\psi_{-}(\theta)e^{ij\theta} = \psi_{+}(\theta)\sum_{k=0}^{j} s_{0k} e^{i(j-k)\theta}$$

$$= \sum_{l=0}^{\infty} s_{l0} e^{il\theta}\sum_{k=0}^{j} s_{0,j-k} e^{ik\theta}$$

$$= \sum_{n=0}^{\infty} e^{in\theta}\sum_{k\leq j;k\leq n} s_{0,j-k} s_{n-k,0}$$

$$= \sum_{n=0}^{\infty} \sigma_{nj} e^{in\theta} = s_{00} \sum_{n=0}^{\infty} s_{nj} e^{in\theta}$$

by (7). But if S denotes the inverse of $P\varphi$ as an operator on L_2^+ , we have

$$\begin{split} s_{nj} &= (Se^{ij\theta}, e^{in\theta}), \\ \text{so } Se^{ij\theta} &= \sum_{n=0}^{\infty} s_{nj} e^{in\theta}. \quad \text{Therefore by (8)} \\ \psi_+(\theta) P \psi_-(\theta) e^{ij\theta} &= s_{00} Se^{ij\theta}, \qquad j \ge 0, \end{split}$$

from which we conclude $\psi_+ P\psi_- f = s_{00} Sf$ for any trigonometric polynomial $f \epsilon L_2^+$. To prove this for an arbitrary $f \epsilon L_2^+$, let $\{s_N\}$ denote its sequence of partial sums. Then since S is a bounded operator

(9) (2) (2)
(9)
$$s_{00} Sf = \text{l.i.m.}_{N \to \infty} s_{00} Ss_N = \text{l.i.m.}_{N \to \infty} \psi_+ P \psi_- s_N$$

Now since $\psi_{-} \epsilon L_2$, we have

(1)
l.i.m._{$$N\to\infty$$} $\psi_{-} s_{N} = \psi_{-} f,$

so that

$$(p)$$

l.i.m._{N→∞} $P\psi_{-} s_{N} = P\psi_{-} f$

for any p < 1. (This follows easily from [3, Theorem 7.24 (i)].) Therefore, for a suitable subsequence N',

$$P\psi_{-}f = \lim_{N' \to \infty} P\psi_{-} s_{N'} .$$

We obtain from (9) therefore that

(10)
$$s_{00} Sf = \psi_+ P\psi_- f, \qquad f \in L_2^+.$$

Setting $f(\theta) \equiv 1$ and applying $P\varphi$ to both sides of (10), we obtain $s_{00} = P\varphi\psi_+ P\psi_-$. Since $P\psi_-$ is a constant (nonzero since $s_{00} \neq 0$), so is $P\varphi\psi_+$. Thus

(11)
$$\varphi \psi_+ \epsilon L_2^-$$

Now the adjoint of $P\varphi$ is $P\bar{\varphi}$ (since that of T_{φ} is $T_{\bar{\varphi}}$), and that of $\psi_+ P\psi_-$ (which we know to be bounded by (10)) is $\bar{\psi}_- P\bar{\psi}_+$. Therefore

$$(P\bar{\varphi})(\bar{\psi}_{-}P\bar{\psi}_{+})f = s_{00}f, \qquad f \in L_2^+.$$

Setting $f(\theta) \equiv 1$ we see as above that $P\bar{\varphi}\bar{\psi}_{-}$ is a constant, so $\bar{\varphi}\bar{\psi}_{-} \epsilon L_{2}^{-}$; hence

(12)
$$\varphi \psi_{-} \epsilon L_{2}^{+}.$$

Since $\psi_{-} \epsilon L_{2}^{-}$, (11) gives $\varphi \psi_{+} \psi_{-} \epsilon L_{1}^{-}$, and since $\psi_{+} \epsilon L_{2}^{+}$, (12) gives $\varphi \psi_{+} \psi_{-} \epsilon L_{1}^{+}$. Hence $\varphi \psi_{+} \psi_{-} = \alpha$, a constant. Since $S \neq 0$, we have $\psi_{+} \neq 0$ and $\psi_{-} \neq 0$, from which it follows that neither ψ_{+} nor ψ_{-} is zero on a set of positive measure. (In fact $\psi \epsilon L_{2}^{+}$ implies $\log |\psi| \epsilon L_{1}$ [2].) Since, moreover, $\varphi \neq 0$, we deduce $\alpha \neq 0$. Applying (10) to

$$f = P\psi_{-}^{-1} = P\varphi(\varphi\psi_{-})^{-1} = \alpha^{-1}P\varphi\psi_{+},$$

92

we obtain

$$s_{00} \alpha^{-1} \psi_+ = \psi_+ P \psi_- P \psi_-^{-1} = \psi_+ .$$

Therefore $\alpha = s_{00}$, and so

(13) $\varphi \psi_+ \psi_- = s_{00}$.

Finally, set $\varphi_+(\theta) = \psi_+(\theta)^{-1}$ and $\varphi_-(\theta) = s_{00} \psi_-(\theta)^{-1}$. (11)-(13) show that $\varphi_+(\theta)$ and $\varphi_+(\theta)^{-1}$ are in L_2^+ , that $\varphi_-(\theta)$ and $\varphi_-(\theta)^{-1}$ are in L_2^- , and that $\varphi = \varphi_+ \varphi_-$. Thus conditions (a) and (b) of the theorem are satisfied. As for (c), we know from (10) that for some constant A we have

$$\| \varphi_{+}^{-1} P \varphi_{-}^{-1} f \|_{2} \leq A \| f \|_{2}, \qquad \qquad f \in L_{2}^{+}.$$

For general $f \in L_2$,

$$\varphi_{+}^{-1}P\varphi_{-}^{-1}f = \varphi_{+}^{-1}P\varphi_{-}^{-1}Pf + \varphi_{+}^{-1}P\varphi_{-}^{-1}(I-P)f = \varphi_{+}^{-1}P\varphi_{-}^{-1}Pf$$

by the argument used in the proof of sufficiency. Thus

$$\| \varphi_{+}^{-1} P \varphi_{-}^{-1} f \|_{2} = \| \varphi_{+}^{-1} P \varphi_{-}^{-1} P f \|_{2} \le A \| P f \|_{2} \le A \| f \|_{2},$$

and this completes the proof.

COROLLARY. If T_{φ} is invertible, then $1/\varphi \in L_{\infty}$.

Proof. It suffices, in view of Theorem I, to show the following: If ψ_1 , $\psi_2 \in L_2$ are such that $\psi_1 P \psi_2$ represents a bounded operator on L_2 , then $\psi_1, \psi_2 \in L_{\infty}$. Let $f \in L_{\infty}, \psi_2(\theta) f(\theta) \sim \sum_{-\infty}^{\infty} a_k e^{ik\theta}$. Then for n > 0 $e^{-in\theta} P \psi_2(\theta) f(\theta) e^{in\theta} \sim \sum_{k=-n}^{\infty} a_k e^{ik\theta}$,

so $e^{-in\theta}P\psi_2(\theta)f(\theta)e^{in\theta} \to \psi_2(\theta)f(\theta)$ in L_2 as $n \to \infty$. By choosing a subsequence we have convergence pp. Then

$$|\psi_1(\theta)P\psi_2(\theta)f(\theta)e^{in\theta}| \to |\psi_1(\theta)\psi_2(\theta)f(\theta)|$$
pp.

But

$$\|\psi_1(\theta)P\psi_2(\theta)f(\theta)e^{in\theta}\|_2 \leq A \|f(\theta)e^{in\theta}\|_2 = A \|f\|_2$$

for an appropriate A. It follows from Fatou's lemma that $\psi_1 \psi_2 f \epsilon L_2$ and $\| \psi_1 \psi_2 f \|_2 \leq A \| f \|_2$. This holds for all $f \epsilon L_{\infty}$, so $\psi_1, \psi_2 \epsilon L_{\infty}$.

3. Special theorems

LEMMA 1. If either $\varphi_1 \in L_{\infty}^-$ or $\varphi_2 \in L_{\infty}^+$, we have $T_{\varphi_1} T_{\varphi_2} = T_{\varphi_1 \varphi_2}$.

Proof. Let $\varphi_1(\theta) \sim \sum a_k e^{ik\theta}, \varphi_2(\theta) \sim \sum b_k e^{ik\theta}$. Then $T_{\varphi_1} T_{\varphi_2}$ has j, k entry

$$\sum_{l=0}^{\infty} a_{j-l} b_{l-k}$$

If either $a_k = 0$ for k > 0 or $b_k = 0$ for k < 0, the summation may begin with $l = -\infty$. Thus the *j*, *k* entry of $T_{\varphi_1} T_{\varphi_2}$ is

$$\sum_{l=-\infty}^{\infty} a_{j-l} \, b_{l-k} = \sum_{l=-\infty}^{\infty} a_{j-k-l} \, b_l \,,$$

which is the $(j - k)^{\text{tn}}$ Fourier coefficient of $\varphi_1 \varphi_2$.

THEOREM II. Let $\varphi \in L_{\infty}^+$ (resp. L_{∞}^-). Then T_{φ} is invertible if and only if $1/\varphi \in L_{\infty}^+$ (resp. L_{∞}^-), in which case $T_{\varphi}^{-1} = T_{1/\varphi}$.

If φ , $1/\varphi \in L_{\infty}^{+}$ (resp. L_{∞}^{-}), then by Lemma 1 we have $T_{\varphi} T_{1/\varphi} = T_{1/\varphi} T_{\varphi} = I$, so the sufficiency is proved. To prove necessity, we shall assume $\varphi \in L_{\infty}^{+}$, the result for L_{∞}^{-} following by taking adjoints. With $\varphi_{+}(\theta)$ and $\varphi_{-}(\theta)$ as in Theorem I, we have $\varphi \varphi_{+}^{-1} = \varphi_{-}$. Since $\varphi \in L_{\infty}^{+}$ and $\varphi_{+}^{-1} \in L_{2}^{+}$, we have $\varphi \varphi_{+}^{-1} \in L_{2}^{+}$. Moreover $\varphi_{-} \in L_{2}^{-}$. Thus $\varphi \varphi_{+}^{-1} = \varphi_{-} = \alpha$, a nonzero constant. Then $\varphi^{-1} = \alpha^{-1} \varphi_{+}^{-1} \in L_{2}^{+}$. Since, by the corollary to Theorem I, $\varphi^{-1} \in L_{\infty}$, we have $\varphi^{-1} \in L_{\infty}^{+}$.

THEOREM III. Assume φ is real, i.e., T_{φ} is self-adjoint. Then T_{φ} is invertible if and only if either ess sup $\varphi < 0$ or ess inf $\varphi > 0$.

If, for example, ess inf $\varphi = m > 0$, we have for $f \in L_2^+$,

$$(P\varphi f, f) = (\varphi f, f) \geq m || f ||_2^2$$

so that $P\varphi$ is positive definite and therefore invertible.

Suppose now that $T\varphi$ is invertible, and let φ_+ , φ_- be as given by Theorem I. Then since φ is real, $\varphi_+\varphi_- = \bar{\varphi}_+\bar{\varphi}_-$, or $\bar{\varphi}_-\varphi_+^{-1} = \varphi_-\bar{\varphi}_+^{-1}$. The function on the left belongs to L_1^+ , and that on the right to L_1^- . Thus each is a constant α . Then $\varphi_- = \alpha \bar{\varphi}_+$, so $\varphi = \varphi_- \varphi_+ = \alpha |\varphi_+|^2$. Therefore either ess inf $\varphi \ge 0$, or ess sup $\varphi \le 0$. But since $1/\varphi \in L_{\infty}$, equality cannot occur.

The following series of lemmas leads to invertibility criteria for T_{φ} in case φ possesses a sufficiently well-behaved argument.

LEMMA 2. If $\psi \in L_2^+$ and $\Re \psi \in L_{\infty}$, then e^{ψ} , $e^{-\psi} \in L_{\infty}^+$.

Proof. Let $\Psi(z)$ in H_2 of the unit circle be such that $\Psi(e^{i\theta}) = \Psi(\theta)$. The Poisson integral representation shows that $\Re \Psi(z)$ is bounded in |z| < 1, so $e^{\pm \Psi(z)}$ belongs to H_{∞} , which yields the conclusion of the lemma.

LEMMA 3. Assume $\varphi = \varphi_1 \varphi_2$, where $\varphi_1, \varphi_1^{-1}, \varphi_2 \in L_{\infty}$, and there may be defined an arg $\varphi_1(\theta)$ which belongs to L_2 and whose conjugate function belongs to L_{∞} . Then T_{φ} and T_{φ_2} are equivalent, i.e., $T_{\varphi} = UT_{\varphi_2} V$ for invertible U, V.

Proof. Set $\log \varphi_1 = \log |\varphi_1| + i \arg \varphi_1$;

$$\log \varphi_1(\theta) \sim \sum_{k=-\infty}^{\infty} a_k e^{ik\theta}.$$

A simple computation shows

$$2\Re P \log \varphi_1 = \log |\varphi_1| - C \arg \varphi_1 + \Re a_0,$$

so $\Re P \log \varphi_1$ is bounded. Since

$$\Re(I - P) \log \varphi_1 = \log |\varphi_1| - \Re P \log \varphi_1,$$

this is also bounded. Set

$$\psi_+ = \exp (P \log \varphi_1), \quad \psi_- = \exp ((I - P) \log \varphi_1).$$

It follows from Lemma 2 that ψ_+ , $\psi_+^{-1} \epsilon L_{\infty}^+$ and ψ_- , $\psi_-^{-1} \epsilon L_{\infty}^-$. Since $\varphi = \psi_- \varphi_2 \psi_+$, Lemma 1 gives $T_{\varphi} = T_{\psi_-} T_{\varphi_2} T_{\psi_+}$, and by Theorem II, T_{ψ_-} and T_{ψ_+} are invertible.

LEMMA 4. If $1/\varphi \in L_{\infty}$, T_{φ} and $T_{\text{sgn }\varphi}$ are equivalent.

Proof. We write $\varphi = |\varphi| \operatorname{sgn} \varphi$, which is a factorization satisfying the conditions of Lemma 3 since we may take $\arg |\varphi| \equiv 0$.

It follows from the lemma that we may restrict our attention to φ of absolute value 1. We shall assume that $\arg \varphi(\theta)$ is smooth except for a finite number of jumps. Next to a constant, the simplest such function is

$$J(\theta) = \theta - 2\pi [\theta/2\pi].$$

Thus $J(\theta) = \theta$ for $0 \leq \theta < 2\pi$ and has period 2π ; it is continuous except for a jump of -2π at $\theta = 0 \pmod{2\pi}$.

LEMMA 5. Let $\theta_1, \dots, \theta_n$ be distinct (mod 2π), $\alpha_1, \dots, \alpha_n$ real with $|\alpha_k| < \frac{1}{2}$ ($k = 1, \dots, n$). Then if

$$\varphi(\theta) = \exp\left(i\sum_{k=1}^{n} \alpha_k J(\theta - \theta_k)\right),$$

 T_{φ} is invertible.

Proof. Set

$$\varphi_{+}(\theta) = \prod_{k=1}^{n} (1 - e^{i(\theta - \theta_{k})})^{\alpha_{k}}, \qquad \varphi_{-}(\theta) = e^{-i\pi \sum \alpha_{k}} \prod_{k=1}^{n} (1 - e^{-i(\theta - \theta_{k})})^{-\alpha_{k}},$$

where the convention $-\pi/2 < \arg(1 - e^{i\theta}) \leq \pi/2$ makes the powers unambiguous. That $\varphi(\theta) = \varphi_+(\theta)\varphi_-(\theta)$ (except possibly for $\theta = \theta_1, \dots, \theta_n$) is easily verified. Now $\varphi_+(\theta)$ is the boundary function of

$$\Phi_+(z) = \prod_{k=1}^n (1 - z e^{-i heta_k})^{lpha_k}, \qquad |z| < 1,$$

and both $\Phi_+(z)$ and $\Phi_+(z)^{-1}$ belong to H_2 . Therefore $\varphi_+(\theta)$, $\varphi_+(\theta)^{-1} \epsilon L_2^+$. Similarly $\varphi_-(\theta)$, $\varphi_-(\theta)^{-1} \epsilon L_2^-$, so we have verified conditions (a) and (b) of Theorem I; (c) remains. Since $\varphi_+^{-1}\varphi_-^{-1} = \varphi^{-1} \epsilon L_{\infty}$, it suffices to show $\varphi_+^{-1}P\varphi_+$ is a bounded operator, or, by (1), that $\varphi_+^{-1}C\varphi_+$ is a bounded operator. For almost all ω

$$\varphi_{+}^{-1}C\varphi_{+}f(\omega) = \varphi_{+}(\omega)^{-1}\frac{1}{2\pi}\operatorname{PV}\int_{0}^{2\pi}\varphi_{+}(\theta)f(\theta)\cot\frac{1}{2}(\omega-\theta)\,d\theta$$
$$= \frac{1}{2\pi}\int_{0}^{2\pi}\left(\frac{\varphi_{+}(\theta)}{\varphi_{+}(\omega)}-1\right)f(\theta)\cot\frac{1}{2}(\omega-\theta)\,d\theta+Cf(\omega)\,,$$

where in the last integral the PV has been dropped since the integrand is in L_1 . We know $||Cf|| \leq ||f||$. (A norm without a subscript will mean L_2 -norm.) Moreover

$$\left\|\int_{0}^{2\pi}\left|\frac{\varphi_{+}(\theta)}{\varphi_{+}(\omega)}-1\right|\left|f(\theta)\right|d\theta\right\| \leq \left\{\int_{0}^{2\pi}\int_{0}^{2\pi}\left|\frac{\varphi_{+}(\theta)}{\varphi_{+}(\omega)}-1\right|^{2}d\theta\,d\omega\right\}^{1/2}\left\|f\right\|.$$

Therefore, since

$$\cot\frac{1}{2}(\omega-\theta) - \left(\frac{2}{\omega-\theta} + \frac{2}{\omega-\theta-2\pi} + \frac{2}{\omega-\theta+2\pi}\right)$$

is bounded for $0 < \omega$, $\theta < 2\pi$, it suffices to prove

$$\left\|\int_{0}^{2\pi} \left(\frac{\varphi_{+}(\theta)}{\varphi_{+}(\omega)} - 1\right) f(\theta) \left(\frac{1}{\omega - \theta} + \frac{1}{\omega - \theta - 2\pi} + \frac{1}{\omega - \theta + 2\pi}\right) d\theta\right\| \leq A \|f\|,$$

which reduces to inequalities for three integrals. We consider the first, the others being entirely analogous. The relevant inequality is implied by one of the form

$$\int_{\mathbf{0}}^{2\pi} g(\omega) \ d\omega \int_{\mathbf{0}}^{2\pi} \left| \frac{\varphi_{+}(\theta)}{\varphi_{+}(\omega)} - 1 \right| \frac{f(\theta)}{\mid \omega - \theta \mid} d\theta \leq A \| f \| \| g \|$$

holding for all nonnegative $f, g \in L_2$.

For any finite index set L we have

$$\prod_{k\in L} (\xi_k+1) = 1 + \sum_{K\subset L; K\neq 0} \prod_{k\in K} \xi_k,$$

or, replacing ξ_k by $\xi_k - 1$,

$$\prod_{k\in L}\xi_k-1=\sum_{K\subset L; K\neq 0}\prod_{k\in K}(\xi_k-1).$$

In our situation $L = 1, \dots, n$, and

$$\xi_k = \left(\frac{1 - e^{i(\theta - \theta_k)}}{1 - e^{i(\omega - \theta_k)}}\right)^{\alpha_k},$$

so it suffices to prove, for each nonempty $K \subset L$, an inequality of the form

$$\int_{0}^{2\pi} g(\omega) \ d\omega \ \int_{0}^{2\pi} \prod_{k \in K} \left| \left(\frac{1 - e^{i(\theta - \theta_k)}}{1 - e^{i(\omega - \theta_k)}} \right)^{\alpha_k} - 1 \left| \frac{f(\theta)}{|\omega - \theta|} \ d\theta \le A \ \|f\| \ \|g\|.$$

Split the interval $(0, 2\pi)$ into subintervals I_k with θ_k in the interior of I_k ; then split I_k into I_k^{-1} , I_k^0 , I_k^1 with θ_k in the interior of I_k^0 . Then it suffices to show that for each $m, m' \epsilon L, -1 \leq \varepsilon, \varepsilon' \leq 1$,

$$Q = \int_{I_{m'}^{\varepsilon'}} g(\omega) \, d\omega \int_{I_m^{\varepsilon}} \prod_{k \in K} \left| \left(\frac{1 - e^{i(\theta - \theta_k)}}{1 - e^{i(\omega - \theta_k)}} \right)^{\alpha_k} - 1 \left| \frac{f(\theta)}{|\omega - \theta|} \, d\theta \le A \, \|f\| \, \|g\|,$$

Case 1. The intervals I_m^{ε} , $I_{m'}^{\varepsilon'}$ are not adjacent. Then $1/|\omega - \theta|$ is bounded, and

$$\prod_{k \in \mathcal{K}} \left| \left(\frac{1 - e^{i(\theta - \theta_k)}}{1 - e^{i(\omega - \theta_k)}} \right)^{\alpha_k} - 1 \right| \leq A \left| 1 - e^{i(\theta - \theta_m)} \right|^{-|\alpha_m|} \left| 1 - e^{i(\omega - \theta_{m'})} \right|^{-|\alpha_{m'}|},$$

 \mathbf{SO}

$$Q \leq A \int_0^{2\pi} \frac{g(\omega)}{\mid 1 - e^{i(\omega - \theta_m')} \mid |\alpha_m'|} d\omega \int_0^{2\pi} \frac{f(\theta)}{\mid 1 - e^{i(\theta - \theta_m)} \mid |\alpha_m|} d\theta \leq A \parallel g \parallel \parallel f \parallel.$$

Case 2. The intervals are adjacent but $m' \neq m$. In this case, no θ_k touches $I_m^{\varepsilon} \cup I_{m'}^{\varepsilon'}$. It follows that

$$\frac{1-e^{i(\theta-\theta_k)}}{1-e^{i(\omega-\theta_k)}}$$

is continuous on $I_m^{\varepsilon} \times I_{m'}^{\varepsilon'}$ and is in fact $1 + O(|\omega - \theta|)$ there. Consequently

(14)
$$\prod_{k \in K} \left| \left(\frac{1 - e^{i(\theta - \theta_k)}}{1 - e^{i(\omega - \theta_k)}} \right)^{\alpha_k} - 1 \right| = O(|\omega - \theta|)$$

on $I_m^{\varepsilon} \times I_{m'}^{\varepsilon'}$, so $Q \leq A ||f|| ||g||$.

Case 3. The intervals are adjacent and m' = m. If $m \in K$, there is a bound of the type of (14) on $I_m^{\epsilon} \times I_{m'}^{\epsilon'}$, and $Q \leq A ||f|| ||g||$. We assume therefore that $m \in K$. Then

$$\begin{split} Q &\leq A \int_{I_m} g(\omega) \ d\omega \int_{I_m} \left| \left(\frac{1 - e^{i(\theta - \theta_m)}}{1 - e^{i(\omega - \theta_m)}} \right)^{\alpha_m} - 1 \left| \frac{f(\theta)}{|\omega - \theta|} \ d\theta \right. \\ &= A \int_0^{2\pi} g_1(\omega) \ d\omega \int_0^{2\pi} \left| \left(\frac{1 - e^{i\theta}}{1 - e^{i\omega}} \right)^{\alpha} - 1 \left| \frac{f_1(\theta)}{|\omega - \theta|} \ d\theta \right. , \end{split}$$

where we have set $\alpha = \alpha_m$, and

$$f_1(heta) = egin{cases} f(heta+ heta_m), & heta+ heta_m\, \epsilon\, I_m\,, \ 0, & ext{otherwise}, \end{cases} g_1(heta) = egin{cases} g(heta+ heta_m), & heta+ heta_m\, \epsilon\, I_m\,, \ 0, & ext{otherwise}. \end{cases}$$

By symmetry it is clear we may assume $\alpha > 0$. We next use a device suggested by H. Pollard. We change variables:

$$Q \leq A \int_0^\infty \frac{du}{|u-1|} \int_{\substack{0 \leq \omega \leq 2\pi \\ 0 \leq u \, \omega < 2\pi}}^\infty \left| \left(\frac{1-e^{iu\omega}}{1-e^{i\omega}} \right)^\alpha - 1 \right| f_1(u\omega) g_1(\omega) \, d\omega.$$

Now

$$\frac{1-e^{iu\omega}}{1-e^{i\omega}}-1\bigg|=\bigg|\frac{1-e^{i(u-1)\omega}}{1-e^{i\omega}}\bigg|\leq A\mid u-1\mid$$

for $0 < \omega < 2\pi$, $0 < u\omega < 2\pi$. Therefore

$$\left| \left(\frac{1 - e^{iu\omega}}{1 - e^{i\omega}} \right)^{\alpha} - 1 \right| \leq \begin{cases} A \mid u - 1 \mid & \text{for all } u, \\ A(u - 1)^{\alpha} & \text{for } u \geq 2. \end{cases}$$

Thus

$$\begin{split} \int_{0}^{2} \frac{du}{|u-1|} \int_{0 < u \leq 2\pi}^{0 < \omega < 2\pi} \left| \left(\frac{1-e^{iu\omega}}{1-e^{i\omega}} \right)^{\alpha} - 1 \right| f_{1}(u\omega)g_{1}(\omega) \, d\omega \\ & \leq A \int_{0}^{2} du \int_{0 < u \leq 2\pi}^{0 < \omega < 2\pi} f_{1}(u\omega)g_{1}(\omega) \, d\omega \\ & \leq A \int_{0}^{2} du \left\{ \int_{0 < u \leq 2\pi}^{0} f_{1}(u\omega)^{2} \, d\omega \right\}^{1/2} \left\{ \int_{0 < \omega < 2\pi}^{0} g_{1}(\omega)^{2} \, d\omega \right\}^{1/2} \\ & = A \, \|f\| \|g\| \int_{0}^{2} u^{-1/2} \, du = A \, \|f\| \|g\|, \end{split}$$

and similarly

$$\begin{split} \int_{2}^{\infty} \frac{2}{u-1} \int_{0 < u \le 2\pi}^{0 < \omega < 2\pi} \left| \left(\frac{1-e^{iu\omega}}{1-e^{i\omega}} \right)^{\alpha} - 1 \right| f_{1}(u\omega) g_{1}(\omega) \ d\omega \\ & \leq A \| f \| \| g \| \int_{2}^{\infty} \frac{du}{u^{1/2}(u-1)^{1-\alpha}} = A \| f \| \| g \| . \end{split}$$

This completes the proof of Lemma 5.

Call a periodic function $f(\theta)$ nice if it is continuous and either

(a) $f(\theta)$ has an absolutely convergent Fourier series, or

(b) the modulus of continuity $\omega(\delta)$ of $f(\theta)$ is such that $\omega(\delta)/\delta$ is integrable near $\delta = 0$.

THEOREM IV. Assume $1/\varphi \in L_{\infty}$ and that there may be defined an $\arg \varphi(\theta)$ which is continuous except for jumps at $\theta_1, \dots, \theta_m \pmod{2\pi}$. Defining

 $\alpha_k = (1/2\pi) \{ \arg \varphi(\theta_{k+}) - \arg \varphi(\theta_{k-}) \},\$

assume that the continuous function

$$H(\theta) = \arg \varphi(\theta) + \sum_{k=1}^{m} \alpha_k J(\theta - \theta_k)$$

is nice. Write $\alpha_k = \beta_k + \gamma_k$, where β_k is an integer and $-\frac{1}{2} < \gamma_k \leq \frac{1}{2}$.

A necessary condition that T_{φ} be invertible is that each $\gamma_k < \frac{1}{2}$. If this holds, then

 $\sum \beta_k = 0$ implies T_{φ} invertible; (i)

(ii) $\sum_{k} \beta_k < 0$ implies T_{φ} is one-one with range a subspace of deficiency $-\sum_{k} \beta_k$;

(iii) $\sum \beta_k > 0$ implies T_{φ} is onto and has null space of dimension $\sum \beta_k$.

By Lemma 4 we may assume $|\varphi| \equiv 1$. Consider first the case when each $\gamma_k < \frac{1}{2}$. We have $\varphi = \varphi_1 \varphi_2 \varphi_3$, where

$$\varphi_1(\theta) = e^{iH(\theta)}, \qquad \varphi_2(\theta) = e^{-i\Sigma\beta_k J(\theta-\theta_k)}, \qquad \varphi_3(\theta) = e^{-\Sigma\gamma_k J(\theta-\theta_k)}.$$

By Lemma 3 (using the fact that H nice implies CH bounded) T_{φ} is equivalent to $T_{\varphi_2 \varphi_3}$. Since each β_k is an integer, $\beta_k(J(\theta) - \theta)$ is an integral multiple of 2π for all θ , so

$$\varphi_2(\theta) = e^{-i\Sigma\beta_k\theta} e^{i\Sigma\beta_k\theta_k} = \text{constant} \cdot e^{in\theta},$$

where we have set

 $n = -\sum \beta_k$

Thus if we denote by e_n the function whose value at θ is $e^{in\theta}$, T_{φ} is equivalent to $T_{e_n \varphi_3}$. Lemma 5 tells us that T_{φ_3} is invertible. Thus we have (i). If n > 0, we have by Lemma 1

$$T_{e_n \varphi_3} = T_{\varphi_3} T_{e_n},$$

the operator T_{e_n} being one-one with range of deficiency n. Similarly n < 0 gives

$$T_{e_n \varphi_n} = T_{e_n} T_{\varphi_3} ,$$

and T_{e_n} is onto and has null space of dimension -n. Therefore (ii) and (iii) are proved.

To show T_{φ} is not invertible if some $\gamma_k = \frac{1}{2}$, we approximate by noninvertible matrices. Assume first that $\sum \beta_k \ge 0$, and for small positive ε set

$$arphi_{arepsilon}(heta) \,=\, \exp \,ig(i [rg \, arphi(heta) \,-\, arepsilon \sum_{k=1}^m J(heta \,-\, heta_k)]ig),$$

so that

$$\arg \varphi_{\varepsilon}(\theta) = \arg \varphi(\theta) - \varepsilon \sum_{k=1}^{m} J(\theta - \theta_k).$$

Denote by α_k^{ε} the jumps of arg $\varphi_{\varepsilon}(\theta)$ with corresponding β_k^{ε} , γ_k^{ε} . Since $\alpha_k^{\varepsilon} > \alpha_k$ we have $\beta_k^{\varepsilon} \ge \beta_k$ for all k, and $\beta_k^{\varepsilon} > \beta_k$ if $\gamma_k = \frac{1}{2}$. Therefore $\sum \beta_k^{\varepsilon} > 0$. Since, for small enough ε , no $\gamma_k^{\varepsilon} = \frac{1}{2}$, we may apply (iii) to conclude that $T_{\varphi_{\varepsilon}}$ is not invertible. Since $\varphi_{\varepsilon} \to \varphi$ uniformly as $\varepsilon \to 0$, $T_{\varphi_{\varepsilon}} \to T_{\varphi}$ in norm, so T_{φ} is not invertible. A similar argument takes care of the case $\sum \beta_k \le 0$.

COROLLARY 1. Assume $\varphi(\theta)$ is nice and $\varphi(\theta) \neq 0$. Set

$$n = (1/2\pi) \Delta_{0 \le \theta \le 2\pi} \arg \varphi(\theta).$$

Then

(i) n = 0 implies T_{φ} invertible;

(ii) n > 0 implies T_{φ} is one-one with range a subspace of deficiency n;

(iii) n < 0 implies T_{φ} is onto and has null space of dimension -n.

Proof. If arg $\varphi(\theta)$ is continuous for $0 < \theta < 2\pi$, it has a jump of $-2\pi n$ at $\theta = 0$. Therefore $\gamma = 0$, $\beta = -n$, and $H(\theta) = \arg \psi(\theta)$, where we have set $\psi(\theta) = \varphi(\theta)e^{-in\theta}$. The result will follow from Theorem IV if $\arg \psi(\theta)$ is nice, and so certainly if $\log \psi(\theta)$ is nice. In case φ has an absolutely convergent Fourier series, so does ψ , and since $\Delta \arg \psi = 0$, $\log \psi$ has an absolutely convergent Fourier series (see [1], Lemma of §2) and so is nice. If the modulus of continuity of φ is $\omega(\delta)$, then that of $\log \psi$ is at most $A\omega(\delta)$. Thus in either case φ nice implies $\log \psi$ nice.

COROLLARY 2. There is a φ such that T_{φ} is invertible while T_{φ^2} is not.

Proof. We need only take $\varphi(\theta) = e^{i\alpha\theta}$ $(0 \leq \theta < 2\pi)$ where $\frac{1}{4} < \alpha < \frac{1}{2}$.

References

- A. CALDERÓN, F. SPITZER, AND H. WIDOM, Inversion of Toeplitz matrices, Illinois J. Math., vol. 3 (1959), pp. 490-498.
- G. SZEGÖ, Über die Randwerte einer analytischen Funktion, Math. Ann., vol. 84 (1921), pp. 232–244.
- 3. A. ZYGMUND, Trigonometrical series, New York, 1955.

CORNELL UNIVERSITY ITHACA, NEW YORK