INVERSION OF TOEPLITZ MATRICES $\mathbf{I I}^{1}$

BY
Harold Widom

1. Introduction

With a function $\varphi(\theta) \in L_{1}(0,2 \pi), \varphi(\theta) \sim \sum_{-\infty}^{\infty} c_{k} e^{i k \theta}$, is associated the semiinfinite Toeplitz matrix $T_{\varphi}=\left(c_{j-k}\right)_{0 \leqq j, k<\infty}$. In case $\sum\left|c_{k}\right|<\infty, T_{\varphi}$ represents a bounded operator on the space l_{∞}^{+}of bounded sequences

$$
X=\left\{x_{0}, x_{1}, \cdots\right\}
$$

and in [1] a necessary and sufficient condition was found for the invertibility of T_{φ} (i.e., the existence of a bounded inverse for T_{φ}), namely that $\varphi(\theta) \neq 0$ and $\Delta_{-\pi \leq \theta \leq \pi} \arg \varphi(\theta)=0$. If $\varphi(\theta) \epsilon L_{\infty}, T_{\varphi}$ represents a bounded operator on the space l_{2}^{+}of square-summable sequences, and in $\S 3$ of [1] sufficient conditions were obtained for invertibility in this situation.

The purpose of the present paper is to obtain conditions which are necessary as well as sufficient for invertibility of T_{φ} as an operator on l_{2}^{+}. That the situation is quite different in the l_{∞}^{+}and l_{2}^{+}cases can be seen, for instance, from the fact that in the former, the set of φ for which T_{φ} is invertible forms a group, while in the latter we may have T_{φ} invertible but $T_{\varphi^{2}}$ not (Corollary 2 of Theorem IV).

As in all problems of Wiener-Hopf type, and this is one, the basic idea is a certain type of factorization. In our case, the idea is that of writing T_{φ} as the product of triangular Toeplitz matrices (which amounts to a factorization of φ), the question of invertibility for these being simpler since any two triangular Toeplitz matrices of the same type commute. Thus, roughly speaking, if φ is sufficiently nice, we can factor T_{φ} and then invert each factor, thus obtaining the inverse of T_{φ}. This gives rise to sufficient conditions for invertibility, as in [1, §3]. Now in the l_{∞}^{+}theory it turned out that the φ 's for which this could be carried out were exactly those giving rise to invertible Toeplitz matrices; thus the invertibility of T_{φ} implies the existence of a suitable factorization of φ. It is the content of Theorem I of the present paper that this situation prevails also in the l_{2}^{+}case. From this result we easily settle the invertibility question for triangular and self-adjoint Toeplitz matrices.

For general Toeplitz matrices we have been unable to find a simple criterion for invertibility; there is one however (Theorem IV) in case $\arg \varphi(\theta)$ is reasonably well-behaved.

Before proceeding, we introduce some notation. For $f(\theta) \in L_{p}(0,2 \pi)$,

[^0]$1 \leqq p \leqq \infty, f(\theta) \sim \sum_{-\infty}^{\infty} a_{k} e^{i k \theta}$, we shall say that $f \in L_{p}^{+}$(resp. L_{p}^{-}) if $a_{k}=0$ for $k<0$ (resp. $k>0$). Thus $f \in L_{p}^{+}$means there exists an $F(z)$ belonging to H_{p} of the unit circle [3, Chapter 7] such that $F\left(e^{i \theta}\right)=f(\theta)$ pp., and $f(\theta) \in L_{p}^{-}$means $\overline{f(\theta)} \in L_{p}^{+}$.

For $f \epsilon L_{1}, C f$ will denote the conjugate function of f,

$$
C f(\omega)=\frac{1}{2 \pi} \operatorname{PV} \int_{0}^{2 \pi} f(\theta) \cot \frac{1}{2}(\omega-\theta) d \theta
$$

pp;
$M f$ will be the mean of f,

$$
M f=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta
$$

and the operator P is defined by

$$
\begin{equation*}
P f=\frac{1}{2}(f+M f+i C f) \tag{1}
\end{equation*}
$$

If $f \epsilon L_{p}$ with $1<p<\infty$, then also $C f \epsilon L_{p}$, and the Fourier series of $C f$ is the conjugate series of the Fourier series of f [3, §7.21]. It follows that if $f(\theta) \sim \sum_{-\infty}^{\infty} a_{k} e^{i k \theta}$, then $\operatorname{Pf}(\theta) \sim \sum_{0}^{\infty} a_{k} e^{i k \theta}$; thus for $1<p<\infty, P$ projects L_{p} onto L_{p}^{+}.

Throughout this paper $\varphi(\theta)$ will be bounded, and T_{φ} will be considered an operator on l_{2}^{+}. Now l_{2}^{+}is imbedded in a natural way in the space l_{2} of square-summable doubly infinite sequences $X=\left\{\cdots, x_{-1}, x_{0}, x_{1}, \cdots\right\}$. If we define the isomorphism $\mathfrak{U}: l_{2} \rightarrow L_{2}$ in the obvious way, then $\mathfrak{u} l_{2}^{+}=L_{2}^{+}$ and $u T_{\varphi} \mathcal{U}^{-1}=P_{\varphi}$. (Here P_{φ} means, not P applied to φ, but the operator consisting of multiplication by φ followed by P; ambiguities of this sort will appear occasionally but should cause no difficulty.) The Toeplitz matrix T_{φ} and the operator $P \varphi$ may therefore be discussed interchangeably.

2. A general theorem

Theorem I. A necessary and sufficient condition for the invertibility of T_{φ} is the existence of functions $\varphi_{+}(\theta)$ and $\varphi_{-}(\theta)$, in L_{2}^{+}and L_{2}^{-}respectively, such that
(a) $\varphi(\theta)=\varphi_{+}(\theta) \varphi_{-}(\theta) ;$
(b) $1 / \varphi_{+} \epsilon L_{2}^{+}$and $1 / \varphi_{-} \epsilon L_{2}^{-}$;
(c) for $f \in L_{2}, S f=\varphi_{+}^{-1} P \varphi_{-}^{-1} f \in L_{2}$, and $f \rightarrow$ Sf is a bounded operator on L_{2}.
We first prove the conditions sufficient for invertibility of T_{φ}, or equivalently that of $P \varphi$; in fact we shall show that S, when restricted to L_{2}^{+}is just $\left(P_{\varphi}\right)^{-1}$. Let $f \in L_{\infty}^{+}$. Then

$$
\begin{equation*}
P \varphi S f=P \varphi_{-} P \varphi_{-}^{-1} f=P f-P \varphi_{-}(I-P) \varphi_{-}^{-1} f \tag{2}
\end{equation*}
$$

where I represents the identity operator. Now $g=\varphi_{-}(I-P) \varphi_{-}^{-1} f \epsilon L_{1}^{-}$,
and $M g=0$. It follows from this that $P g=0$. For let $\sigma_{n}(\theta)$ be the Fejér means of $g(\theta)$. Then clearly $P \sigma_{n}=0$ for all n. Since $\sigma_{n} \rightarrow g\left(L_{1}\right)$, we have $P \sigma_{n} \rightarrow P g\left(L_{p}\right)$ for any p in $0<p<1[3, \S 7.3$ (ii)]. Thus $P g=0$, and (2) gives $P \varphi S f=P f=f$ since $f \epsilon L_{\infty}^{+}$. Since $P \varphi S$ is a bounded operator, we have $P \varphi S f=f$ for all $f \epsilon L_{2}^{+}$, i.e., S is a right inverse for $P \varphi$. To show that S is also a left inverse, again let $f \in L_{\infty}^{+}$. We have

$$
S P \varphi f=\varphi_{+}^{-1} P \varphi_{+} f-\varphi_{+}^{-1} P \lambda_{-}^{-1}(I-P) \varphi f .
$$

By an argument similar to the one above, we see the second term on the right is zero; moreover since $\varphi_{+} f \in L_{2}^{+}$, we have $P \varphi_{+} f=\varphi_{+} f$, and the first term on the right is f. Consequently $S P \varphi f=f$ for $f \in L_{\infty}^{+}$, and so for $f \in L_{2}^{+}$. Thus S is a left inverse for P_{φ}, and the sufficiency is proved.

To prove the conditions necessary, assume T_{φ} is invertible, and denote the inverse matrix by $\left(s_{j k}\right)_{0 \leqq j, k<\infty}$. Define

$$
\sigma_{j k}=\sum_{l \leqq \min (j, k)} s_{j-l, 0} s_{0, k-l}
$$

we shall prove

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{h-k} \sigma_{k j}=s_{00} \delta_{h j}, \quad h, j \geqq 0 \tag{3}
\end{equation*}
$$

Note that since $\sum_{j=0}^{\infty}\left|s_{j k}\right|^{2}<\infty$ for each k, and $\sum_{k=0}^{\infty}\left|s_{j k}\right|^{2}<\infty$ for each j, similar statements hold for $\sigma_{j k}$, so the left side of (3) converges absolutely. We have

$$
\begin{align*}
\sum_{k=0}^{\infty} c_{h-k} \sigma_{k j} & =\sum_{k=0}^{\infty} c_{h-k} \sum_{l \leqq \min (k, j)} s_{k-l, 0} s_{0, j-l} \\
& =\sum_{k=0}^{\infty} c_{h-k} \sum_{l<j ; l \leqq k} s_{k-l, 0} s_{0, j-l}+\sum_{k=j}^{\infty} c_{h-k} s_{k-j, 0} s_{00} \\
& =\sum_{l=0}^{j-1} s_{0, j-l} \sum_{k=l}^{\infty} c_{h-k} s_{k-l, 0}+\sum_{k=j}^{\infty} c_{h-k} s_{k-j, 0} s_{00} \\
& =\sum_{l=0}^{j-1} s_{0, j-l} \sum_{k=0}^{\infty} c_{h-k-l} s_{k 0}+\sum_{k=0}^{\infty} c_{h-j-k} s_{k 0} s_{00} \tag{4}
\end{align*}
$$

Now since $\left(s_{j k}\right)$ is the inverse of $T_{\varphi}=\left(c_{j-k}\right)$, we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{h-k} s_{k l}=\sum_{k=0}^{\infty} s_{h k} c_{k-l}=\delta_{h l}, \quad h, l \geqq 0 \tag{5}
\end{equation*}
$$

Thus if $j \leqq h$, the inner sum of the first term of (4) is always zero for $0 \leqq l \leqq j-1$, so the entire first term is zero. Moreover the second term is $\delta_{h j} s_{00}$. This proves (3) in case $j \leqq h$.

To obtain the result for $j>h$, we note that by (5)

$$
0=\sum_{l=0}^{\infty} s_{0 l} c_{l-j-k+h}=c_{h-j-k} s_{00}+\sum_{l=1}^{\infty} c_{l+h-j-k} s_{0 l}
$$

so

$$
\begin{align*}
\sum_{k=0}^{\infty} c_{h-j-k} s_{k 0} s_{00} & =-\sum_{k=0}^{\infty} s_{k 0} \sum_{l=1}^{\infty} c_{l+h-j-k} s_{0 l} \\
& =-\sum_{l=1}^{\infty} s_{0 l} \sum_{k=0}^{\infty} c_{l+h-j-k} s_{k 0} \tag{6}\\
& =-\sum_{l=1}^{j-k} s_{0 l} \sum_{k=0}^{\infty} c_{l+h-j-k} s_{k 0} \\
& =-\sum_{l=h}^{j-1} s_{0, j-l} \sum_{k=0}^{\infty} c_{h-l-k} s_{k 0}
\end{align*}
$$

Now if $j>h$, we see from (5) that the outer summation in the first term of (4) may begin with $l=h$, so we have just shown that the sum of the two terms of (4) is zero, which verifies (3) in the case $j>h$. We must still, however, justify the step leading to (6), this being not completely trivial. Let $\Psi(z)=\sum_{k=0}^{\infty} s_{k 0} z^{k}$ for $|z|<1$. Then

$$
\sum_{k=0}^{\infty} s_{k 0} r^{k} c_{l+h-j-k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi\left(r e^{-i \theta}\right) \varphi(\theta) e^{i(j-h) \theta} e^{-i l \theta} d \theta
$$

Since

$$
\begin{equation*}
\text { l.i.m. } \cdot r \rightarrow 1-\Psi\left(r e^{-i \theta}\right) \varphi(\theta) e^{i(j-h) \theta}=\Psi\left(e^{-i \theta}\right) \varphi(\theta) e^{i(j-h) \theta} \tag{2}
\end{equation*}
$$

(note that $\Psi(z) \in H_{2}$ and $\varphi \in L_{\infty}$), we have

$$
\lim _{r \rightarrow 1-} \sum_{l=-\infty}^{\infty}\left|\sum_{k=0}^{\infty} s_{k 0} c_{l+h-j-k}\left(r^{k}-1\right)\right|^{2}=0
$$

Consequently,
$\sum_{l=1}^{\infty} s_{0 l} \sum_{k=0}^{\infty} s_{k 0} c_{l+h-j-k}=\lim _{r \rightarrow 1-} \sum_{l=1}^{\infty} s_{0 l} \sum_{k=0}^{\infty} s_{k 0} c_{l+h-j-k} r^{k}$

$$
=\lim _{r \rightarrow 1-} \sum_{k=0}^{\infty} s_{k 0} r^{k} \sum_{l=1}^{\infty} c_{l+h-j-k} s_{0 l}=\sum_{k=0}^{\infty} s_{k 0} \sum_{l=1}^{\infty} c_{l+h-j-k} s_{0 l}
$$

since the last series converges. This completes the justification of (6) and therefore the proof of (3).

It follows from (3) and the invertibility of T_{φ} that

$$
\begin{equation*}
\sigma_{k j}=s_{00} s_{k j} \tag{7}
\end{equation*}
$$

Next we show that $s_{00} \neq 0$. Assume $s_{00}=0$; then by (7), $\sigma_{k j}=0$ for all k, j. Assume $s_{01}=\cdots=s_{0, n-1}=s_{10}=\cdots=s_{n-1,0}=0$. We shall show $s_{0 n}=s_{n 0}=0$. For $i \geqq n$,

$$
0=\sigma_{i n}=\sum_{k \leqq n} s_{i-k, 0} s_{0, n-k}=s_{i 0} s_{0 n}
$$

If $s_{0 n} \neq 0$, we would have $s_{i 0}=0$ for $i \geqq n$. Thus we would have $s_{i 0}=0$ for all i, i.e., the first column of the invertible matrix T_{φ}^{-1} consists entirely of zeros. Since this cannot be, we must have $s_{0 n}=0$. A similar argument shows $s_{n 0}=0$. But now we have proved by induction that $s_{0 n}=s_{n 0}=0$ for all n, which again cannot be. Thus our assumption $s_{00}=0$ was incorrect.

Introduce the functions

$$
\psi_{+}(\theta) \sim \sum_{k=0}^{\infty} s_{k 0} e^{i k \theta}, \quad \psi_{-}(\theta) \sim \sum_{k=0}^{\infty} s_{0 k} e^{-i k \theta}
$$

belonging to L_{2}^{+}and L_{2}^{-}, respectively. We have, for $j \geqq 0$,

$$
\begin{align*}
\psi_{+}(\theta) P \psi_{-}(\theta) e^{i j \theta} & =\psi_{+}(\theta) \sum_{k=0}^{j} s_{0 k} e^{i(j-k) \theta} \\
& =\sum_{l=0}^{\infty} s_{l 0} e^{i l \theta} \sum_{k=0}^{j} s_{0, j-k}^{i i k \theta} \\
& =\sum_{n=0}^{\infty} e^{i n \theta} \sum_{k \leqq j ; k \leqq n} s_{0, j-k} s_{n-k, 0} \\
& =\sum_{n=0}^{\infty} \sigma_{n j} e^{i n \theta}=s_{00} \sum_{n=0}^{\infty} s_{n j} e^{i n \theta} \tag{8}
\end{align*}
$$

by (7). But if S denotes the inverse of $P \varphi$ as an operator on L_{2}^{+}, we have

$$
s_{n j}=\left(S e^{i j \theta}, e^{i n \theta}\right)
$$

so $S e^{i j \theta}=\sum_{n=0}^{\infty} s_{n j} e^{i n \theta}$. Therefore by (8)

$$
\psi_{+}(\theta) P \psi_{-}(\theta) e^{i j \theta}=s_{00} S e^{i j \theta}, \quad j \geqq 0
$$

from which we conclude $\psi_{+} P \psi_{-} f=s_{00} S f$ for any trigonometric polynomial $f \epsilon L_{2}^{+}$. To prove this for an arbitrary $f \in L_{2}^{+}$, let $\left\{s_{N}\right\}$ denote its sequence of partial sums. Then since S is a bounded operator

$$
\stackrel{\text { (2) }}{s_{00}} S f=\stackrel{\text { (2) }}{\text { l.i.m. }} \cdot{ }_{N \rightarrow \infty} s_{00} S s_{N}=\stackrel{\text { li..m. }{ }_{N \rightarrow \infty} \psi_{+} P \psi_{-} s_{N} .}{ }
$$

Now since $\psi_{-} \in L_{2}$, we have

$$
\begin{equation*}
\text { l.i.m. }{ }_{N \rightarrow \infty} \psi_{-} s_{N}=\psi_{-} f, \tag{1}
\end{equation*}
$$

so that

$$
\begin{aligned}
& \text { (p) } \\
& \text { l.i.m. }{ }_{N \rightarrow \infty} P \psi_{-} s_{N}=P \psi_{-} f
\end{aligned}
$$

for any $p<1$. (This follows easily from [3, Theorem 7.24 (i)].) Therefore, for a suitable subsequence N^{\prime},

$$
P \psi_{-} f=\lim _{N^{\prime} \rightarrow \infty} P \psi_{-} s_{N^{\prime}}
$$

We obtain from (9) therefore that

$$
\begin{equation*}
s_{00} S f=\psi_{+} P \psi_{-} f, \quad f \in L_{2}^{+} \tag{10}
\end{equation*}
$$

Setting $f(\theta) \equiv 1$ and applying $P \varphi$ to both sides of (10), we obtain $s_{00}=P \varphi \psi_{+} P \psi_{-}$. Since $P \psi_{-}$is a constant (nonzero since $s_{00} \neq 0$), so is $P \varphi \psi_{+}$. Thus

$$
\begin{equation*}
\varphi \psi_{+} \in L_{2}^{-} \tag{11}
\end{equation*}
$$

Now the adjoint of $P \varphi$ is $P_{\bar{\varphi}}$ (since that of T_{φ} is $T_{\bar{\varphi}}$), and that of $\psi_{+} P \psi_{-}$ (which we know to be bounded by (10)) is $\bar{\psi}_{-} P \bar{\psi}_{+}$. Therefore

$$
(P \bar{\varphi})\left(\bar{\psi}_{-} P \bar{\psi}_{+}\right) f=s_{00} f, \quad f \in L_{2}^{+}
$$

Setting $f(\theta) \equiv 1$ we see as above that $P \bar{\varphi} \bar{\psi}_{-}$is a constant, so $\bar{\varphi} \bar{\psi}_{-} \epsilon L_{2}^{-}$; hence

$$
\begin{equation*}
\varphi \psi_{-} \in L_{2}^{+} . \tag{12}
\end{equation*}
$$

Since $\psi_{-} \epsilon L_{2}^{-}$, (11) gives $\varphi \psi_{+} \psi_{-} \epsilon L_{1}^{-}$, and since $\psi_{+} \epsilon L_{2}^{+}$, (12) gives $\varphi \psi_{+} \psi_{-} \epsilon L_{1}^{+}$. Hence $\varphi \psi_{+} \psi_{-}=\alpha$, a constant. Since $S \neq 0$, we have $\psi_{+} \not \equiv 0$ and $\psi_{-} \not \equiv 0$, from which it follows that neither ψ_{+}nor ψ_{-}is zero on a set of positive measure. (In fact $\psi \in L_{2}^{+}$implies $\log |\psi| \epsilon L_{1}$ [2].) Since, moreover, $\varphi \not \equiv 0$, we deduce $\alpha \neq 0$. Applying (10) to

$$
f=P \psi_{-}^{-1}=P \varphi\left(\varphi \psi_{-}\right)^{-1}=\alpha^{-1} P \varphi \psi_{+}
$$

we obtain

$$
s_{00} \alpha^{-1} \psi_{+}=\psi_{+} P \psi_{-} P \psi_{-}^{-1}=\psi_{+} .
$$

Therefore $\alpha=s_{00}$, and so

$$
\begin{equation*}
\varphi \psi_{+} \psi_{-}=s_{00} \tag{13}
\end{equation*}
$$

Finally, set $\varphi_{+}(\theta)=\psi_{+}(\theta)^{-1}$ and $\varphi_{-}(\theta)=s_{00} \psi_{-}(\theta)^{-1}$. (11)-(13) show that $\varphi_{+}(\theta)$ and $\varphi_{+}(\theta)^{-1}$ are in L_{2}^{+}, that $\varphi_{-}(\theta)$ and $\varphi_{-}(\theta)^{-1}$ are in L_{2}^{-}, and that $\varphi=\varphi_{+} \varphi_{-}$. Thus conditions (a) and (b) of the theorem are satisfied. As for (c), we know from (10) that for some constant A we have

$$
\left\|\varphi_{+}^{-1} P \varphi_{-}^{-1} f\right\|_{2} \leqq A\|f\|_{2}, \quad f \in L_{2}^{+}
$$

For general $f \in L_{2}$,

$$
\varphi_{+}^{-1} P \varphi_{-}^{-1} f=\varphi_{+}^{-1} P \varphi_{-}^{-1} P f+\varphi_{+}^{-1} P \varphi_{-}^{-1}(I-P) f=\varphi_{+}^{-1} P \varphi_{-}^{-1} P f
$$

by the argument used in the proof of sufficiency. Thus

$$
\left\|\varphi_{+}^{-1} P \varphi_{-}^{-1} f\right\|_{2}=\left\|\varphi_{+}^{-1} P \varphi_{-}^{-1} P f\right\|_{2} \leqq A\|P f\|_{2} \leqq A\|f\|_{2}
$$

and this completes the proof.
Corollary. If T_{φ} is invertible, then $1 / \varphi \in L_{\infty}$.
Proof. It suffices, in view of Theorem I, to show the following: If ψ_{1}, $\psi_{2} \in L_{2}$ are such that $\psi_{1} P \psi_{2}$ represents a bounded operator on L_{2}, then $\psi_{1}, \psi_{2} \in L_{\infty}$. Let $f \in L_{\infty}, \psi_{2}(\theta) f(\theta) \sim \sum_{-\infty}^{\infty} a_{k} e^{i k \theta}$. Then for $n>0$

$$
e^{-i n \theta} P \psi_{2}(\theta) f(\theta) e^{i n \theta} \sim \sum_{k=-n}^{\infty} a_{k} e^{i k \theta}
$$

so $e^{-i n \theta} P \psi_{2}(\theta) f(\theta) e^{i n \theta} \rightarrow \psi_{2}(\theta) f(\theta)$ in L_{2} as $n \rightarrow \infty$. By choosing a subsequence we have convergence pp. Then

$$
\left|\psi_{1}(\theta) P \psi_{2}(\theta) f(\theta) e^{i n \theta}\right| \rightarrow\left|\psi_{1}(\theta) \psi_{2}(\theta) f(\theta)\right|
$$

pp.
But

$$
\left\|\psi_{1}(\theta) P \psi_{2}(\theta) f(\theta) e^{i n \theta}\right\|_{2} \leqq A\left\|f(\theta) e^{i n \theta}\right\|_{2}=A\|f\|_{2}
$$

for an appropriate A. It follows from Fatou's lemma that $\psi_{1} \psi_{2} f \in L_{2}$ and $\left\|\psi_{1} \psi_{2} f\right\|_{2} \leqq A\|f\|_{2}$. This holds for all $f \in L_{\infty}$, so $\psi_{1}, \psi_{2} \in L_{\infty}$.

3. Special theorems

Lemma 1. If either $\varphi_{1} \in L_{\infty}^{-}$or $\varphi_{2} \in L_{\infty}^{+}$, we have $T_{\varphi_{1}} T_{\varphi_{2}}=T_{\varphi_{1} \varphi_{2}}$.
Proof. Let $\varphi_{1}(\theta) \sim \sum a_{k} e^{i k \theta}, \varphi_{2}(\theta) \sim \sum b_{k} e^{i k \theta}$. Then $T_{\varphi_{1}} T_{\varphi_{2}}$ has j, k entry

$$
\sum_{l=0}^{\infty} a_{j-l} b_{l-k}
$$

If either $a_{k}=0$ for $k>0$ or $b_{k}=0$ for $k<0$, the summation may begin with $l=-\infty$. Thus the j, k entry of $T_{\varphi_{1}} T_{\varphi_{2}}$ is

$$
\sum_{l=-\infty}^{\infty} a_{j-l} b_{l-k}=\sum_{l=-\infty}^{\infty} a_{j-k-l} b_{l},
$$

which is the $(j-k)^{\text {th }}$ Fourier coefficient of $\varphi_{1} \varphi_{2}$.

Theorem II. Let $\varphi \in L_{\infty}^{+}$(resp. $\left.L_{\infty}^{-}\right)$. Then T_{φ} is invertible if and only if $1 / \varphi \in L_{\infty}^{+}\left(\right.$resp. $\left.L_{\infty}^{-}\right)$, in which case $T_{\varphi}^{-1}=T_{1 / \varphi}$.

If $\varphi, 1 / \varphi \in L_{\infty}^{+}\left(\operatorname{resp} . L_{\infty}^{-}\right)$, then by Lemma 1 we have $T_{\varphi} T_{1 / \varphi}=T_{1 / \varphi} T_{\varphi}=I$, so the sufficiency is proved. To prove necessity, we shall assume $\varphi \epsilon L_{\infty}^{+}$, the result for L_{∞}^{-}following by taking adjoints. With $\varphi_{+}(\theta)$ and $\varphi_{-}(\theta)$ as in Theorem I, we have $\varphi \varphi_{+}^{-1}=\varphi_{-}$. Since $\varphi \in L_{\infty}^{+}$and $\varphi_{+}^{-1} \epsilon L_{2}^{+}$, we have $\varphi \varphi_{+}^{-1} \epsilon L_{2}^{+}$. Moreover $\varphi_{-} \epsilon L_{2}^{-}$. Thus $\varphi \varphi_{+}^{-1}=\varphi_{-}=\alpha$, a nonzero constant. Then $\varphi^{-1}=\alpha^{-1} \varphi_{+}^{-1} \epsilon L_{2}^{+}$. Since, by the corollary to Theorem I, $\varphi^{-1} \in L_{\infty}$, we have $\varphi^{-1} \epsilon L_{\infty}^{+}$.

Theorem III. Assume φ is real, i.e., T_{φ} is self-adjoint. Then T_{φ} is invertible if and only if either ess sup $\varphi<0$ or $\operatorname{ess} \inf \varphi>0$.

If, for example, ess $\inf \varphi=m>0$, we have for $f \epsilon L_{2}^{+}$,

$$
(P \varphi f, f)=(\varphi f, f) \geqq m\|f\|_{2}^{2}
$$

so that $P \varphi$ is positive definite and therefore invertible.
Suppose now that $T \varphi$ is invertible, and let φ_{+}, φ_{-}be as given by Theorem I. Then since φ is real, $\varphi_{+} \varphi_{-}=\bar{\varphi}_{+} \bar{\varphi}_{-}$, or $\bar{\varphi}_{-} \varphi_{+}^{-1}=\varphi_{-} \bar{\varphi}_{+}^{-1}$. The function on the left belongs to L_{1}^{+}, and that on the right to L_{1}^{-}. Thus each is a constant α. Then $\varphi_{-}=\alpha \bar{\varphi}_{+}$, so $\varphi=\varphi_{-} \varphi_{+}=\alpha\left|\varphi_{+}\right|^{2}$. Therefore either ess $\inf \varphi \geqq 0$, or ess $\sup \varphi \leqq 0$. But since $1 / \varphi \in L_{\infty}$, equality cannot occur.

The following series of lemmas leads to invertibility criteria for T_{φ} in case φ possesses a sufficiently well-behaved argument.

Lemma 2. If $\psi \in L_{2}^{+}$and $\Re \psi \in L_{\infty}$, then $e^{\psi}, e^{-\psi} \in L_{\infty}^{+}$.
Proof. Let $\Psi(z)$ in H_{2} of the unit circle be such that $\Psi\left(e^{i \theta}\right)=\psi(\theta)$. The Poisson integral representation shows that $\mathscr{R} \Psi(z)$ is bounded in $|z|<1$, so $e^{ \pm \Psi(z)}$ belongs to H_{∞}, which yields the conclusion of the lemma.

Lemma 3. Assume $\varphi=\varphi_{1} \varphi_{2}$, where $\varphi_{1}, \varphi_{1}^{-1}, \varphi_{2} \in L_{\infty}$, and there may be defined an $\arg \varphi_{1}(\theta)$ which belongs to L_{2} and whose conjugate function belongs to L_{∞}. Then T_{φ} and $T_{\varphi_{2}}$ are equivalent, i.e., $T_{\varphi}=U T_{\varphi_{2}} V$ for invertible U, V.

Proof. Set $\log \varphi_{1}=\log \left|\varphi_{1}\right|+i \arg \varphi_{1} ;$

$$
\log \varphi_{1}(\theta) \sim \sum_{k=-\infty}^{\infty} a_{k} e^{i k \theta}
$$

A simple computation shows

$$
2 尺 P \log \varphi_{1}=\log \left|\varphi_{1}\right|-C \arg \varphi_{1}+\Re a_{0}
$$

so $\Omega P \log \varphi_{1}$ is bounded. Since

$$
\mathfrak{R}(I-P) \log \varphi_{1}=\log \left|\varphi_{1}\right|-\mathscr{R} P \log \varphi_{1}
$$

this is also bounded. Set

$$
\psi_{+}=\exp \left(P \log \varphi_{1}\right), \quad \psi_{-}=\exp \left((I-P) \log \varphi_{1}\right)
$$

It follows from Lemma 2 that $\psi_{+}, \psi_{+}^{-1} \epsilon L_{\infty}^{+}$and $\psi_{-}, \psi_{-}^{-1} \epsilon L_{\infty}^{-}$. Since $\varphi=\psi_{-} \varphi_{2} \psi_{+}$, Lemma 1 gives $T_{\varphi}=T_{\psi_{-}} T_{\varphi_{2}} T_{\psi_{+}}$, and by Theorem II, $T_{\psi_{-}}$ and $T_{\psi_{+}}$are invertible.

Lemma 4. If $1 / \varphi \in L_{\infty}, T_{\varphi}$ and $T_{\operatorname{sgn} \varphi}$ are equivalent.
Proof. We write $\varphi=|\varphi| \operatorname{sgn} \varphi$, which is a factorization satisfying the conditions of Lemma 3 since we may take $\arg |\varphi| \equiv 0$.

It follows from the lemma that we may restrict our attention to φ of absolute value 1 . We shall assume that $\arg \varphi(\theta)$ is smooth except for a finite number of jumps. Next to a constant, the simplest such function is

$$
J(\theta)=\theta-2 \pi[\theta / 2 \pi] .
$$

Thus $J(\theta)=\theta$ for $0 \leqq \theta<2 \pi$ and has period 2π; it is continuous except for a jump of -2π at $\theta=0(\bmod 2 \pi)$.

Lemma 5. Let $\theta_{1}, \cdots, \theta_{n}$ be distinct $(\bmod 2 \pi), \alpha_{1}, \cdots, \alpha_{n}$ real with $\left|\alpha_{k}\right|<\frac{1}{2}(k=1, \cdots, n)$. Then if

$$
\varphi(\theta)=\exp \left(i \sum_{k=1}^{n} \alpha_{k} J\left(\theta-\theta_{k}\right)\right)
$$

T_{φ} is invertible.
Proof. Set

$$
\varphi_{+}(\theta)=\prod_{k=1}^{n}\left(1-e^{i\left(\theta-\theta_{k}\right)}\right)^{\alpha_{k}}, \quad \varphi_{-}(\theta)=e^{-i \pi \sum \alpha_{k}} \prod_{k=1}^{n}\left(1-e^{-i\left(\theta-\theta_{k}\right)}\right)^{-\alpha_{k}}
$$

where the convention $-\pi / 2<\arg \left(1-e^{i \theta}\right) \leqq \pi / 2$ makes the powers unambiguous. That $\varphi(\theta)=\varphi_{+}(\theta) \varphi_{-}(\theta)$ (except possibly for $\theta=\theta_{1}, \cdots, \theta_{n}$) is easily verified. Now $\varphi_{+}(\theta)$ is the boundary function of

$$
\Phi_{+}(z)=\prod_{k=1}^{n}\left(1-z e^{-i \theta_{k}}\right)^{\alpha_{k}}, \quad|z|<1
$$

and both $\Phi_{+}(z)$ and $\Phi_{+}(z)^{-1}$ belong to H_{2}. Therefore $\varphi_{+}(\theta), \varphi_{+}(\theta)^{-1} \epsilon L_{2}^{+}$. Similarly $\varphi_{-}(\theta), \varphi_{-}(\theta)^{-1} \in L_{2}^{-}$, so we have verified conditions (a) and (b) of Theorem I; (c) remains. Since $\varphi_{+}^{-1} \varphi_{-}^{-1}=\varphi^{-1} \epsilon L_{\infty}$, it suffices to show $\varphi_{+}^{-1} P \varphi_{+}$ is a bounded operator, or, by (1), that $\varphi_{+}^{-1} C \varphi_{+}$is a bounded operator. For almost all ω

$$
\begin{aligned}
\varphi_{+}^{-1} C \varphi_{+} f(\omega) & =\varphi_{+}(\omega)^{-1} \frac{1}{2 \pi} \mathrm{PV} \int_{0}^{2 \pi} \varphi_{+}(\theta) f(\theta) \cot \frac{1}{2}(\omega-\theta) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{\varphi_{+}(\theta)}{\varphi_{+}(\omega)}-1\right) f(\theta) \cot \frac{1}{2}(\omega-\theta) d \theta+C f(\omega),
\end{aligned}
$$

where in the last integral the PV has been dropped since the integrand is in L_{1}. We know $\|C f\| \leqq\|f\|$. (A norm without a subscript will mean L_{2}-norm.) Moreover

$$
\left\|\int_{0}^{2 \pi}\left|\frac{\varphi_{+}(\theta)}{\varphi_{+}(\omega)}-1\right||f(\theta)| d \theta\right\| \leqq\left\{\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\frac{\varphi_{+}(\theta)}{\varphi_{+}(\omega)}-1\right|^{2} d \theta d \omega\right\}^{1 / 2}\|f\|
$$

Therefore, since

$$
\cot \frac{1}{2}(\omega-\theta)-\left(\frac{2}{\omega-\theta}+\frac{2}{\omega-\theta-2 \pi}+\frac{2}{\omega-\theta+2 \pi}\right)
$$

is bounded for $0<\omega, \theta<2 \pi$, it suffices to prove
$\left\|\int_{0}^{2 \pi}\left(\frac{\varphi_{+}(\theta)}{\varphi_{+}(\omega)}-1\right) f(\theta)\left(\frac{1}{\omega-\theta}+\frac{1}{\omega-\theta-2 \pi}+\frac{1}{\omega-\theta+2 \pi}\right) d \theta\right\| \leqq A\|f\|$,
which reduces to inequalities for three integrals. We consider the first, the others being entirely analogous. The relevant inequality is implied by one of the form

$$
\int_{0}^{2 \pi} g(\omega) d \omega \int_{0}^{2 \pi}\left|\frac{\varphi_{+}(\theta)}{\varphi_{+}(\omega)}-1\right| \frac{f(\theta)}{|\omega-\theta|} d \theta \leqq A\|f\|\|g\|
$$

holding for all nonnegative $f, g \in L_{2}$.
For any finite index set L we have

$$
\prod_{k \in L}\left(\xi_{k}+1\right)=1+\sum_{K \subset L ; K \neq 0} \prod_{k \in K} \xi_{k}
$$

or, replacing ξ_{k} by $\xi_{k}-1$,

$$
\prod_{k \in L} \xi_{k}-1=\sum_{K \subset L ; K \neq 0} \prod_{k \in K}\left(\xi_{k}-1\right)
$$

In our situation $L=1, \cdots, n$, and

$$
\xi_{k}=\left(\frac{1-e^{i\left(\theta-\theta_{k}\right)}}{1-e^{i\left(\omega-\theta_{k}\right)}}\right)^{\alpha_{k}}
$$

so it suffices to prove, for each nonempty $K \subset L$, an inequality of the form

$$
\int_{0}^{2 \pi} g(\omega) d \omega \int_{0}^{2 \pi} \prod_{k \in K}\left|\left(\frac{1-e^{i\left(\theta-\theta_{k}\right)}}{1-e^{i\left(\omega-\theta_{k}\right)}}\right)^{\alpha_{k}}-1\right| \frac{f(\theta)}{|\omega-\theta|} d \theta \leqq A\|f\| \quad\|g\|
$$

Split the interval $(0,2 \pi)$ into subintervals I_{k} with θ_{k} in the interior of I_{k}; then split I_{k} into $I_{k}^{-1}, I_{k}^{0}, I_{k}^{1}$ with θ_{k} in the interior of I_{k}^{0}. Then it suffices to show that for each $m, m^{\prime} \in L,-1 \leqq \varepsilon, \varepsilon^{\prime} \leqq 1$,
$Q=\int_{I_{m^{\prime}}^{\varepsilon}} g(\omega) d \omega \int_{I_{m}^{\varepsilon}} \prod_{k \in K}\left|\left(\frac{1-e^{i\left(\theta-\theta_{k}\right)}}{1-e^{i\left(\omega-\theta_{k}\right)}}\right)^{\alpha_{k}}-1\right| \frac{f(\theta)}{|\omega-\theta|} d \theta \leqq A\|f\|\|g\|$,
Case 1. The intervals $I_{m}^{\varepsilon}, I_{m^{\prime}}^{\varepsilon^{\prime}}$ are not adjacent. Then $1 /|\omega-\theta|$ is bounded, and

$$
\prod_{k \in K}\left|\left(\frac{1-e^{i\left(\theta-\theta_{k}\right)}}{1-e^{i\left(\omega-\theta_{k}\right)}}\right)^{\alpha_{k}}-1\right| \leqq A\left|1-e^{i\left(\theta-\theta_{m}\right)}\right|^{-\left|\alpha_{m}\right|}\left|1-e^{i\left(\omega-\theta_{m}\right)}\right|^{-\left|\alpha_{m}\right|}
$$

so

$$
Q \leqq A \int_{0}^{2 \pi} \frac{g(\omega)}{\left|1-e^{i\left(\omega-\theta_{m}^{\prime}\right)}\right|^{\left|\alpha_{m^{\prime}}\right|}} d \omega \int_{0}^{2 \pi} \frac{f(\theta)}{\left|1-e^{i\left(\theta-\theta_{m}\right)}\right|^{\left|\alpha_{m}\right|}} d \theta \leqq A\|g\|\|f\|
$$

Case 2. The intervals are adjacent but $m^{\prime} \neq m$. In this case, no θ_{k} touches $I_{m}^{\varepsilon} \cup I_{m^{\prime}}^{\varepsilon^{\prime}}$. It follows that

$$
\frac{1-e^{i\left(\theta-\theta_{k}\right)}}{1-e^{i\left(\omega-\theta_{k}\right)}}
$$

is continuous on $I_{m}^{\varepsilon} \times I_{m}^{\varepsilon^{\prime}}$ and is in fact $1+O(|\omega-\theta|)$ there. Consequently

$$
\begin{equation*}
\prod_{k \in K}\left|\left(\frac{1-e^{i\left(\theta-\theta_{k}\right)}}{1-e^{i\left(\omega-\theta_{k}\right)}}\right)^{\alpha_{k}}-1\right|=O(|\omega-\theta|) \tag{14}
\end{equation*}
$$

on $I_{m}^{\varepsilon} \times I_{m^{\prime}}^{\varepsilon^{\prime}}$, so $Q \leqq A\|f\|\|g\|$.
Case 3. The intervals are adjacent and $m^{\prime}=m$. If $m \notin K$, there is a bound of the type of (14) on $I_{m}^{\varepsilon} \times I_{m^{\prime}}^{\varepsilon^{\prime}}$, and $Q \leqq A\|f\|\|g\|$. We assume therefore that $m \in K$. Then

$$
\begin{aligned}
Q & \leqq A \int_{I_{m}} g(\omega) d \omega \int_{I_{m}}\left|\left(\frac{1-e^{i\left(\theta-\theta_{m}\right)}}{1-e^{i\left(\omega-\theta_{m}\right)}}\right)^{\alpha_{m}}-1\right| \frac{f(\theta)}{|\omega-\theta|} d \theta \\
& =A \int_{0}^{2 \pi} g_{1}(\omega) d \omega \int_{0}^{2 \pi}\left|\left(\frac{1-e^{i \theta}}{1-e^{i \omega}}\right)^{\alpha}-1\right| \frac{f_{1}(\theta)}{|\omega-\theta|} d \theta
\end{aligned}
$$

where we have set $\alpha=\alpha_{m}$, and
$f_{1}(\theta)=\left\{\begin{array}{cl}f\left(\theta+\theta_{m}\right), & \theta+\theta_{m} \in I_{m}, \\ 0, & \text { otherwise, }\end{array} \quad g_{1}(\theta)=\left\{\begin{array}{cl}g\left(\theta+\theta_{m}\right), & \theta+\theta_{m} \in I_{m}, \\ 0, & \text { otherwise. }\end{array}\right.\right.$
By symmetry it is clear we may assume $\alpha>0$. We next use a device suggested by H. Pollard. We change variables:

$$
Q \leqq A \int_{0}^{\infty} \frac{d u}{|u-1|} \int_{\substack{0<\omega<2 \pi \\ 0<u \omega<2 \pi}}\left|\left(\frac{1-e^{i u \omega}}{1-e^{i \omega}}\right)^{\alpha}-1\right| f_{1}(u \omega) g_{1}(\omega) d \omega
$$

Now

$$
\left|\frac{1-e^{i u \omega}}{1-e^{i \omega}}-1\right|=\left|\frac{1-e^{i(u-1) \omega}}{1-e^{i \omega}}\right| \leqq A|u-1|
$$

for $0<\omega<2 \pi, 0<u \omega<2 \pi$. Therefore

$$
\left|\left(\frac{1-e^{i u \omega}}{1-e^{i \omega}}\right)^{\alpha}-1\right| \leqq \begin{cases}A|u-1|^{\alpha} & \text { for all } u \\ A(u-1)^{\alpha} & \text { for } u \geqq 2\end{cases}
$$

Thus

$$
\begin{aligned}
& \int_{0}^{2} \frac{d u}{|u-1|} \int_{\substack{0<\omega<u \omega<2 \pi}}\left|\left(\frac{1-e^{i u \omega}}{1-e^{i \omega}}\right)^{\alpha}-1\right| f_{1}(u \omega) g_{1}(\omega) d \omega \\
& \leqq A \int_{0}^{2} d u \int_{\substack{0<\omega \omega<2 \pi \\
0<u \omega<2 \pi}} f_{1}(u \omega) g_{1}(\omega) d \omega \\
& \\
& \leqq A \int_{0}^{2} d u\left\{\int_{0<u \omega<2 \pi} f_{1}(u \omega)^{2} d \omega\right\}^{1 / 2}\left\{\int_{0<\omega<2 \pi} g_{1}(\omega)^{2} d \omega\right\}^{1 / 2} \\
& \quad=A\|f\|\|g\| \int_{0}^{2} u^{-1 / 2} d u=A\|f\|\|g\|
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& \int_{2}^{\infty} \frac{2}{u-1} \int_{\substack{0<\omega<2 \pi \\
0<u \omega<2 \pi}}\left|\left(\frac{1-e^{i u \omega}}{1-e^{i \omega}}\right)^{\alpha}-1\right| f_{1}(u \omega) g_{1}(\omega) d \omega \\
& \leqq A\|f\|\|g\| \int_{2}^{\infty} \frac{d u}{u^{1 / 2}(u-1)^{1-\alpha}}=A\|f\|\|g\|
\end{aligned}
$$

This completes the proof of Lemma 5.
Call a periodic function $f(\theta)$ nice if it is continuous and either
(a) $f(\theta)$ has an absolutely convergent Fourier series, or
(b) the modulus of continuity $\omega(\delta)$ of $f(\theta)$ is such that $\omega(\delta) / \delta$ is integrable near $\delta=0$.

Theorem IV. Assume $1 / \varphi \in L_{\infty}$ and that there may be defined an $\arg \varphi(\theta)$ which is continuous except for jumps at $\theta_{1}, \cdots, \theta_{m}(\bmod 2 \pi)$. Defining

$$
\alpha_{k}=(1 / 2 \pi)\left\{\arg \varphi\left(\theta_{k}+\right)-\arg \varphi\left(\theta_{k^{-}}\right)\right\},
$$

assume that the continuous function

$$
H(\theta)=\arg \varphi(\theta)+\sum_{k=1}^{m} \alpha_{k} J\left(\theta-\theta_{k}\right)
$$

is nice. Write $\alpha_{k}=\beta_{k}+\gamma_{k}$, where β_{k} is an integer and $-\frac{1}{2}<\gamma_{k} \leqq \frac{1}{2}$.
A necessary condition that T_{φ} be invertible is that each $\gamma_{k}<\frac{1}{2}$. If this holds, then
(i) $\quad \sum \beta_{k}=0$ implies T_{φ} invertible;
(ii) $\sum \beta_{k}<0$ implies T_{φ} is one-one with range a subspace of deficiency $-\sum \beta_{k}$;
(iii) $\sum \beta_{k}>0$ implies T_{φ} is onto and has null space of dimension $\sum \beta_{k}$.

By Lemma 4 we may assume $|\varphi| \equiv 1$. Consider first the case when each $\gamma_{k}<\frac{1}{2}$. We have $\varphi=\varphi_{1} \varphi_{2} \varphi_{3}$, where

$$
\varphi_{1}(\theta)=e^{i H(\theta)}, \quad \varphi_{2}(\theta)=e^{-i \Sigma \beta_{k} J\left(\theta-\theta_{k}\right)}, \quad \varphi_{3}(\theta)=e^{-\Sigma \gamma_{k} J\left(\theta-\theta_{k}\right)}
$$

By Lemma 3 (using the fact that H nice implies $C H$ bounded) T_{φ} is equivalent to $T_{\varphi_{2} \varphi_{3}}$. Since each β_{k} is an integer, $\beta_{k}(J(\theta)-\theta)$ is an integral multiple of 2π for all θ, so

$$
\varphi_{2}(\theta)=e^{-i \Sigma \beta_{k} \theta} e^{i \Sigma \beta_{k} \theta_{k}}=\text { constant } \cdot e^{i n \theta}
$$

where we have set

$$
n=-\sum \beta_{k} .
$$

Thus if we denote by e_{n} the function whose value at θ is $e^{i n \theta}, T_{\varphi}$ is equivalent to $T_{e_{n} \varphi_{3}}$. Lemma 5 tells us that $T_{\varphi_{3}}$ is invertible. Thus we have (i). If $n>0$, we have by Lemma 1

$$
T_{e_{n} \varphi_{3}}=T_{\varphi_{3}} T_{e_{n}}
$$

the operator $T_{e_{n}}$ being one-one with range of deficiency n. Similarly $n<0$ gives

$$
T_{e_{n} \varphi_{n}}=T_{e_{n}} T_{\varphi_{3}}
$$

and $T_{e_{n}}$ is onto and has null space of dimension $-n$. Therefore (ii) and (iii) are proved.

To show T_{φ} is not invertible if some $\gamma_{k}=\frac{1}{2}$, we approximate by noninvertible matrices. Assume first that $\sum \beta_{k} \geqq 0$, and for small positive ε set

$$
\varphi_{\varepsilon}(\theta)=\exp \left(i\left[\arg \varphi(\theta)-\varepsilon \sum_{k=1}^{m} J\left(\theta-\theta_{k}\right)\right]\right)
$$

so that

$$
\arg \varphi_{\varepsilon}(\theta)=\arg \varphi(\theta)-\varepsilon \sum_{k=1}^{m} J\left(\theta-\theta_{k}\right) .
$$

Denote by α_{k}^{ε} the jumps of $\arg \varphi_{\varepsilon}(\theta)$ with corresponding $\beta_{k}^{\varepsilon}, \gamma_{k}^{\varepsilon}$. Since $\alpha_{k}^{\varepsilon}>\alpha_{k}$ we have $\beta_{k}^{\varepsilon} \geqq \beta_{k}$ for all k, and $\beta_{k}^{\varepsilon}>\beta_{k}$ if $\gamma_{k}=\frac{1}{2}$. Therefore $\sum \beta_{k}^{e}>0$. Since, for small enough ε, no $\gamma_{k}^{\varepsilon}=\frac{1}{2}$, we may apply (iii) to conclude that $T_{\varphi_{\varepsilon}}$ is not invertible. Since $\varphi_{\varepsilon} \rightarrow \varphi$ uniformly as $\varepsilon \rightarrow 0, T_{\varphi_{\varepsilon}} \rightarrow T_{\varphi}$ in norm, so T_{φ} is not invertible. A similar argument takes care of the case $\sum \beta_{k} \leqq 0$.

Corollary 1. Assume $\varphi(\theta)$ is nice and $\varphi(\theta) \neq 0$. Set

$$
n=(1 / 2 \pi) \Delta_{0 \leqq \theta \leqq 2 \pi} \arg \varphi(\theta)
$$

Then
(i) $n=0$ implies T_{φ} invertible;
(ii) $n>0$ implies T_{φ} is one-one with range a subspace of deficiency n;
(iii) $n<0$ implies T_{φ} is onto and has null space of dimension $-n$.

Proof. If $\arg \varphi(\theta)$ is continuous for $0<\theta<2 \pi$, it has a jump of $-2 \pi n$ at $\theta=0$. Therefore $\gamma=0, \beta=-n$, and $H(\theta)=\arg \psi(\theta)$, where we have set $\psi(\theta)=\varphi(\theta) e^{-i n \theta}$. The result will follow from Theorem IV if $\arg \psi(\theta)$ is nice, and so certainly if $\log \psi(\theta)$ is nice. In case φ has an absolutely convergent Fourier series, so does ψ, and since $\Delta \arg \psi=0, \log \psi$ has an absolutely convergent Fourier series (see [1], Lemma of §2) and so is nice. If the modulus of continuity of φ is $\omega(\delta)$, then that of $\log \psi$ is at most $A \omega(\delta)$. Thus in either case φ nice implies $\log \psi$ nice.

Corollary 2. There is a such that T_{φ} is invertible while $T_{\varphi^{2}}$ is not.
Proof. We need only take $\varphi(\theta)=e^{i \alpha \theta}(0 \leqq \theta<2 \pi)$ where $\frac{1}{4}<\alpha<\frac{1}{2}$.

References

1. A. Calderón, F. Spitzer, and H. Widom, Inversion of Toeplitz matrices, Illinois J. Math., vol. 3 (1959), pp. 490-498.
2. G. Szegö, Über die Randwerte einer analytischen Funktion, Math. Ann., vol. 84 (1921), pp. 232-244.
3. A. Zygmund, Trigonometrical series, New York, 1955.

[^0]: Received August 28, 1958.
 ${ }^{1}$ This work was supported by a grant from the National Science Foundation.

