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1. Introduction

eikOWith a function (0) e LI(0, 2r), (0) - ck is associated the semi-
infinite Toeplitz matrix T (c._k)0=<-.<. In case c < , T repre-
sents a bounded operator on the space l+ of bounded sequences

and in [1] a necessary and sufficient condition was found for the invertibility
of T (i.e., the existence of a bounded inverse for T), namely that q(0) 0
and A__<_0_<_ arg q(0) 0. If q(0) e L, T represents a bounded operator
on the space l+ of square-summable sequences, and in 3 of [1] sufficient con-
ditions were obtained for invertibility in this situation.
The purpose of the present paper is to obtain conditions which are neces-

sary as well as sufficient for invertibility of T as an operator on l+. That
the situation is quite different in the l+ and l+ cases can be seen, for instance,
from the fact that in the former, the set of for which T is invertible forms
a group, while in the latter we may have T invertible but T not (Corol-
lary 2 of Theorem IV).
As in all problems of Wiener-Hopf type, and this is one, the basic idea is

a certain type of factorization. In our case, the idea is that of writing T
as the product of triangular Toeplitz matrices (which amounts to a factori-
zation of ), the question of invertibility for these being simpler since any
two triangular Toeplitz matrices of the same type commute. Thus, roughly
speking, if q is sufficiently nice, we can factor T and then invert each factor,
thus obtaining the inverse of T. This gives rise to sufficient conditions for
invertibility, as in [1, 3]. Now in the l+ theory it turned out that the ’s
for which this could be carried out were exactly those giving rise to invertible
Toeplitz matrices; thus the invertibility of T implies the existence of
suitable factorization of . It is the content of Theorem I of the present
paper that this situation prevails also in the l+ case. From this result we
easily settle the invertibility question for triangular and self-adjoint Toeplitz
matrices.
For general Toeplitz matrices we have been unable to find a simple cri-

terion for invertibility; there is one however (Theorem IV) in case arg
is reasonably well-behaved.

Before proceeding, we introduce some notation. For f(O)eLp(O, 2v),
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eik1 < p < , f(0)

_
ak we shall say thatf L (resp. L) if a 0

for < 0 (resp. > 0). Thus f L means there exists an F(z) belonging
to H of the unit circle [3, Chapter 7] such that F(e) f(0) pp., and
f(0) L means f(O L.

For f L, Cf will denote the conjugate function of L

f() PV f(O) eo ( O) dO pp;

Mf will be ghe mean of f,

Mf f(O)

and the operator P is defined by

(1) Pf (f + Mf + i Cf).

If f e L with 1 < p < , then also Cf e L, and the Fourier series of Cf is
the conjugate series of the Fourier series of f [3, 7.21]. It follows that if

ikO ikf(0) a then Pf(O) 7 a e thus for i < p < , P projects
L onto L.

Throughout this paper (0) will be bounded, and T will be considered an
operator on l. Now l is imbedded in a natural way in the space l of
square-summable doubly infinite sequences X (... x_, x0, x, ...}. If
we define the isomorphism " l L in the obvious wy, then l L
andT-1 p. (Here P means, not P applied to , but the operator
consisting of multiplication by followed by P; mbiguities of this sort will
appear occasionally but should cause no difficulty.) The Toeplitz matrix

T and the operator P my therefore be discussed interchangeably.

2. A 9ener] Cheorem

THEOnEM I. A necessary and sucient condition for the invertibility of T
is the existence of functions +(0) and _(0), in L and L respectively, such
that

()

(b)

(c)

(0) +(0)_();

1/q+ e L+ and 1/q_ L;

for f L2, Sf c71P-1 f L2, and f --. Sf is a bounded operator on
L2.

We first prove the conditions sufficient for invertibility of T, or equiva-
lently that of P; in fuct we shall show that S, when restricted to L+ is just
(p)-i. LetfeL+. Then

(2) PSf p_pq-if pf P,_(I- p),-lf,

where I represents the identity operator. Now g q_(I P)-_if
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and Mg 0. It follows from this that Pg 0. For let a(0) be the Fej6r
means of g(O). Then clearly Pa 0 for all n. Since -- g (L), we have
Po-,--+Pg (L,) for anypin0 < p < 1 [3, 7.3 (ii)]. ThusPg 0, and

+(2) gives PSf Pf f since f L. Since PfS is a bounded operator,
we have PSf f for all f L, i.e., S is a right inverse for P. To show
that S is also a left inverse, again let f e L. We have

SPf 7 P+ f 71PX:(I P)f.

By an argument similar to the one above, we see the second term on the
right is zero; moreover since +f L}, we have P+f +f, and the first
term on the right is f. Consequently SPf f for f L, and so for f e L.
Thus S is a left inverse for P, and the sufficiency is proved.
To prove the conditions necessary, assume T is invertible, and denote the

inverse matrix by (s)0s.< Define

jk lmin(j,lc) 8j--l,O 80,k--1
we shall prove

(3) =0 c_ z s00 , h, j 0.

<  nOE =0 <
j, similar statements hold for a., so the left side of (3) converges absolutely.
We have

Now since (s) is the inverse of T (c_), we have

Thus if j h, the inner sum of the first term of (4) is always zero
for 0 j 1, so the entire first term is zero. Moreover the second
term is , s00. This proves (3) in case j h.
To obtain the result for j > h, we note that by (5)

SO

(6)

k=O Ch--j--k 8kO 800 k=0 8kO l=l Cl+h--j--k 801

ll 801 k-.O Cl+h--j--k 8kO

80l

j--1 Zk=O Ch--l--]c 8kO

_
l=h 80, j--1
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Now if j > h, we see from (5) that the outer summation in the first term
of (4) may begin with h, so we have just shown that the sum of the
two terms of (4) is zero, which verifies (3) in the case j > h. We must still,
however, justify the step leding to (6), this being not completely trivial.

ZLetI,(z) =0s0 for Izl < 1. Then

So r c+__ Jo T(re-ie)(O) ei(i--h)O e-ile dO.
kO

Since

(2)
1.i.m.r_l_ (re-iO)( O)ei(j-h) T(e-io)( O)ei(j-h)o

(note that I, (z) e H2 and e L), we have

]imr-.1- -’Z_--- ]E=o Sko C,+h-j-(r 1)I 0.

Consequently,

-o=1 So Zo So cz+__ limr_ Z= s0 Zo s0 c+__ r

r k=O 8kO =1 Clwh--j--k 80llimrol_ =0 s0 = c+__ s0

since the last series converges. This completes the justification of (6) and
therefore the proof of (3).

It follows from (3) and the invertibility of T that

(7) (T/j So0 s..
Next we show that Soo 0. Assume Soo 0; then by (7), (T- 0 for

all k, j. Assume so SO.n- SO S-,0 0. We shall
showso so 0. Fori_>_ n,

0 (Tin ---Ekn 8i--k,O 80,n--k 8i0 80n.

Ifso 0, we would have so 0fori >= n. Thus we would haveso 0
for all i, i.e., the first column of the invertible matrix T consists entirely of
zeros. Since this cannot be, we must have Son 0. A similar argument
shows So 0. But now we have proved by induction that So So 0
for all n, which again cannot be. Thus our assumption Soo 0 was incorrect.

Introduce the functions

+(0) 0 s0 e -_
(o) 0 s0 e

We have, for j 0,

+(O)P_(O)e +(O)g=o So

El=O 810 =0 80,j_k

E 0 k j;k 80,j--k 8n--k ,0

E. En=O ffnj 800 n=O 8nj

belonging to L+ and L-, respectively.

(8)
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by (7). But if S denotes the inverse of Pe as an operator on L+, we have

s, Se, e),
so Seij ..2=o s,. e’. Therefore by (8)

+(O)PC/_(O)e Soo Se, j >= O,

from which we conclude + P,_f Soo Sf for any trigonometric polynomial
f e L+. To prove this for an arbitrary f e L+, let {su} denote its sequence of
partial sums. Then since S is bounded operator

(2) (2)
(9) Soo Sf 1.i.m.N_(R) soo SsN 1.i.m._ b+ PC/- s.

Now since

_
e L2, we have

(1)
1.i.m._

_
s

_
f,

so that
(p)

1.i.m._.(R) P_ sN PC_ f
for any p < 1. (This follows easily from [3, Theorem 7.24 (i)].) There-
fore, for a suitable subsequence N’,

P_f lim,_ P_ s,

We obtain from (9) therefore that

(10) Soo Sf + Pg,_ f,

Setting f(O) 1 and applying Po to both sides of (10), we obtain
s00 P+ PC-. Since Pk- is a constant (nonzero since s00 0), so is
Pq/+. Thus

11 qb+ e L.
Now the adjoint of P is P (since that of T is T,), and that of
(which we know to be bounded by (10)) is

_
P+. Therefore

(P(o)(_ Pp+)f soof, f e L+
Setting f(O) 1 we see as above that P_ is a constunt, so

_
e L; hence

(12) b_e L.
Since

_
e L, (11) gives b+

_
e L-, and since + e L+, (12) gives

q+

_
e L+. Hence+

_
a, a constant. Since S 0, we have + 0

and

_
0, from which it follows that neither + nor b_ is zero on a set of

positive measure. (In fact L2+ implies log ll e L1 [2].) Since, more-
over, 0, we deduce a 0. Applying (10) to

f PbZ P(b_)-I a-lp,+,
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we obtain
800 O/--1+ /-t- P- p-1 k+.

Therefore a s00, and so

(13) + b_ s00.

Finally, set +(0) +(0)-1 and
_

(0) s00 - 0)-1. 11 )-(13) show
that +(0) and +(0)-1 are in L+, that _(0) and _(0) -1 are in L-, and that

+ _. Thus conditions (a) and (b) of the theorem are satisfied. As
for (c), we know from (10) that for some constant A we have

[[ q-lpq-lf I[. <-- A f 112, f e L+.
For general f e L,

_1p-1f -lpq-lpf + -lp-l i P)f -lpq-lpf

by the argument used in the proof of sufficiency. Thus

-lpzlf [I2 -lp-_lpf [12 <= A Pf [[2 =< A f ]]2,

and this completes the proof.

COROLLARY. If T is invertible, then 1/

Proof. It suffices, in view of Theorem I, to show the following- If 1,
2 e L2 are such that 1 Pb. represents a bounded operator on L., then

elk1 eL. LetfeL,b(0)f(0) ._ae Then forn > 0
--i Or)-- ik

e --w2(O)f(O)eiE -=_ ae e

--in einOso e P:(O)f(O) ---* 2(0)f(0) in L2 as n -- . By choosing a subse-
quence we have convergence pp. Then

,’l(0)1)2(O)f(O)e -- 1(0)(0)f(0) PP.
But

l(O)Pg,,2(O)f(O)e ll2 <- A f(0) A f 112
for an appropriate A.

=< A f 112.
It follows from Fatou’s lemma that 1 P.f e L. and
This holds for all f L, so 1, b. L.

LEMMA 1.

3. Special theorems

If either ql e L= or L+ we have T ql2

entry
Let Then T T has j, l

If either ae 0 for lc > 0 or be 0 for lc < 0, the summation may begin
withl -. Thus the j, lcentryof T,T,is

%- ai- b_ %_ ai__ b,

which is the (j /c) t Fourier coefficient of 1 ,2.
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THEOREM II. Let L+ (resp. L). Then T is invertible if and only if
1/ e L+ (resp. L-), in which case T- 7’.

If , 1/ e L (resp. L), then by Lemm 1 we have T / Ti/ T I,
so the sufficiency is proved. To prove necessity, we shall assume L, the
result for L following by taking adjoints. With +(0) and _(0) as in
Theorem I, we have + _. Since e L and leL, we have

--1 W --1
+ eL. Moreover

_
eL. Thus +

_
a, a nonzero constant.

--1 --1 --1Then a + eL. Since, by the corollary to Theorem I, - eL,
--1wehave eL.

THEOREM III. Assume is real, i.e., ’ is self-adjoint. Then 7’ is in-
vertible if and only if either ess sup 0 or ess inf > 0.

If, for example, ess inf m > 0, we hve for f e L,
(Pf, f) (f, f) m f ]

so that P9 is positive definite and therefore invertible.
Suppose now that T9 is invertible, and let 9+, 9- be as given by Theorem

I. Then since 9 is real, +9- +-, or _9+ -9+. The function
on the left belongs to L, and that on the right to LY. Thus each is a constant
a. Then

_
a+, so

_
+ a + Therefore either ess inf 0,

or ess sup 0. But since 1/9 L, equality cannot occur.
The following series of lemmas leads to invertibility criteria for T, in case
possesses a sufficiently well-behaved argument.

LEMMA2. If 6 e L# and e L then e, e- e L.
Proof. Let (z) in H2 of the unit circle be such that (eio) (). The

Poisson integral representation shows that (z) is bounded in z[ < 1, so
(z)e belongs to H, which yields the conclusion of the lemma.

LEMMA 3. Assume where , L and there may be de-
fined an arg (0) which belongs to L and whose conjugate function belongs to
L. Then T, and T, are equivalent, i.e., T, UT,2 V for invertible U, V.

Proof. Set log log]9] +iargg;

log ,, (0) %_ a e’.
A simple computation shows

2P log log C argg + a0,

so P log 9 is bounded. Since

(I P) log 9 log 9 P loggy,

this is Mso bounded. Set

+ exp ( log ),

_
exp (( )og ,1).
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It follows from Lemma 2 that + leL+ and b__, e LE. Since- 2 b+, Lemma 1 gives T T_ T2 TC+, and by Theorem II,
and %+ are invertible.

LEMMA 4. If 1/o L T, and 2’sgn o are equivalent.

Proof. We write o [lsgn, which is a faetorization satisfying the
conditions of Lemma 3 since we may take arg o - 0.

It follows from the lemma that we may restrict our attention to of abso-
lute value 1. We shall assume that arg (0) is smooth except for a finite
number of jumps. Next to a constant, the simplest such function is

J(o) o 2-[o/2-].

Thus J (0) 0 for 0 =< 0 < 2r and has period 2r; it is continuous except
for a jump of -2r at 0 0 (mod 2r).

LEMMA 5. Let 01,’", 0, be distinct (mod 2r),
m < 1/2 (It 1, n). Then if

(0) exp (i= o, J(0 0)),
T is invertible.

a, real with

Proof. Set

+(0) H ( e(-))" e-’(-))_(0) e-’’" (_
k----1 k----1

where the convention -r/2 < art (1 e) =< r/2 makes the powers un-
ambiguous. That (0) +(0)_(0) (except possibly for 0 01, 0)
is easily verified. Now +(0) is the boundary function of

q+ z [I (1 ze- z < 1,

and both +(z) and q)+(z) -1 belong to H2. Therefore q+(0), +(0)- L+.
Similarly _(0), _(0)-I e LY, so we have verified conditions (a) and (b) of

--1 --1Theorem I; (c) remains. Since +
_

e L., it suffices to show
is a bounded operator, or, by (1), that Ic+ is a bounded operator. For
almost all o

7C+f(o) o+(o)-1 1 f0 1PV 9+(O)f(O) cot (o 0) dO

1 fo (+(0_! ) 1(o- 0)dO + Cf(oo)2- \+(o)
1 f(O) cot

where in the last integral the PV has been dropped since the integrand is in
L. We know Cf I[-<-[If I[. (A norm without a subscript will mean
L-norm.) Moreover

f0
2r tf02rf0 2r (0) 12 0311/2+(0)

1 If(O) [dO < ’+ 1 dOd Ilfll.,+() ,+(,,)
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Therefore, since

cot(-0)- , 0 + +oa--O--2rr --04- 2r
is bounded for 0 < x, 0 < 2, it suffices to prove

I1(+(0) ) ( 1 1 1 )k( 1 f(O) 0 O-- 2 0 + 2... + + dO < A

which reduces to inequalities for three integrals. We consider the first, the
others being entirely analogous. The relevant inequality is implied by one
of the form

() d + 1 dO < A

holding for all nonnegaive f, L.
or any finite index se L we have

H(+=+ 2 H,
keL KL;KO

or, replacing by 1,

H-= E H(-I).
kcL KL;KO keK

In our situation L l, n, nd

so ig suees go prove, for each nonempgy K , an inequality of ghe form

g() d 1 o dO S A f [ll.

Split the interval (0, 2) into subintervals I with 0 in the interior of I
I I, I with 0 in the interior of I. Then it suffices tothen split I into -show that for each m, m’ e L, 1 , # 1,

Case 1. The intervals I, I’, are not adjacent. Then 1/[ 0[ is
bounded, and, (1 e(-))"1 e(-e)

1 All e(O-o) [-"’ 1 e(-’) -"’

SO

Q<-Afo
27rg(oo)

do fo f(O)
ei(O-Om) laml



INVERSION OF TOEPLITZ MATRICES II 97

Case 2. The intervals are adjacent but m’ m.
touches I u I, It follows that

In this case, no 0k

1 ei(-k)

1 e

is continuous on I X I, and is in fact 1 -t- 0(1 0[) there.
quently

(14) II ] 1 o(I 0 I)

onI, X I,,soQ N A [[f[[ [[g[[.

Conse-

Case 3. The intervals are adjacent and m’ m. If m eK, there is a
bound of the type of (14) on I I’,, and Q =< Allfll Ilgl[. We as-
sume therefore that n e K. Then

Q <= A f g(o) do f
2" 2r

1 ei(O-’)

1 e(-’))
(llei]--i

where we have set a am, and

ff(O --F Ore), 0 -t-- Om .Im,
fl(0)

k 0, otherwise,

1 f(O)

f(O) dO,

Now
1 e

u

1
1 e

for 0 < 0 < 2r, 0 < uo < 2r.

eiu
Thus

1 ei(u-1)

<=Alu-ll1 e

Therefore

1 forallu,=< (u-- 1)" foru__> 2.

By symmetry it is clear we may assume a > O. We next use a device sug-
gested by H. Pollard. We change variables:

o<<,
/

1 f(uo)g(o) doo.Q<A
[u-ll <<..

fg(o + o.), o + o,
gl(0)

0, otherwise.
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and similarly

< A f g
du

This completes the proof of Lemm 5.
Cll a periodic function f(O) nice if it is continuous nd either
(a) f(0) hs n bsolutely convergent Fourier series, or
(b) the modulus of continuity () of f(0) is such that ()/ is integra-

ble near 0.

THEOREM IV. Assume 1/ L and that there may be defined an rg (0)
which is continuous except for jumps at 01, O (mod 2r). Defining

a 1/2r) rg 0+) rg (0-)},

assume that the continuous function
n(o) rg(0) + J(O 0)

is nice. Write + where is an integer and - < .
A necessary condition that T be invertible is that each 7 < . If this holds,

then

0 implies T inertible

(ii) < 0 implies T is one-one with range a subspace of deficiency

(iii) # > 0 implies T is onto and has null space of dimension

By Lemma 4 we may ssume [ 1. Consider first the cse when ech
< . Wehave z,where

(0) eill(e) e-izkJ(O-O) e
By Lemma 3 (using the fact that H nice implies CH bounded) T is equiva-
lent to T2 . Since each is an integer, (J(O) O) is an integral multi-
ple of 2r for all O, so

2(0) e-ZOeao constant.e,
where we have set

Thus if we denote by en the function whose value at 0 is ea, T is equivalent
to 7’ . Lemma 5 tells us that T is invertible. Thus we have (i). If
n > 0, we have by Lemma 1

T T Ten 8 en
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the operator Te. being one-one with range of deficiency n.
gives

Te , Te T

Similarly n < 0

and T, is onto and has null space of dimension -n. Therefore (ii) and (iii)
are proved.
To show T is not invertible if some /k 1/2, we approximate by nonin-

vertible matrices. Assume first that k => 0, and for small positive set

so that
arg (0) arg (0) =1J(0

Denote by a the jumps of arg (0) with corresponding, /. Sincea > ak

we have __> k for all lc, and f > k if-,k 1/2. Therefore / > 0. Since,
for small enough , no , 1/2, we may apply (iii) to conclude that T, is not
invertible. Since q -- q uniformly as e -- 0, T, -- T, in norm, so T, is
not invertible. A similar argument takes care of the case ’k _--< 0.

COROLLARY 1. Assume ( 0) is nice and ( 0) O. Set

Then

(ii)

(iii)

Proof.

n 0 implies T invertible;

n > 0 implies T is one-one with range a subspace of deficiency n;

n 0 implies T is onto and has null space of dimension -n.

If arg (0) is continuous for 0 <: 0 2, it has a jump of -2rn
at0 0. Therefore, 0,/ -n, andH(0) arg(0),wherewehave
set (0) q(0)e-’. The result will follow from Theorem IV if arg
is nice, and so certainly if log (0) is nice. In case has an absolutely con-
vergent Fourier series, so does , and since A arg 0, log has an ub-
solutely convergent Fourier series (see [1], Lerama of 2) and so is nice.
If the modulus of continuity of is o(), then that of log is at most
Thus in either case nice implies log nice.

COROLLARY 2. There is a such that 7’ is invertible while T is not.

Proof. We need only takeq(0) e" (0 =< 0 < 2r) where < a < 1/2.
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