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1. Introduction

Klingenberg has carried out studies of Desarguesian and Pascalian Hielm-
slev planes [4, 5]. In the present investigation we consider bstrct H]elmslev
planes, abbreviated here s H-planes. Prticulr emphasis is placed on
finite H-planes.
An H-plane r’ is defined s collection of points nd lines together with n

incidence relation subiect to the following rules:

I. For ech pir of distinct points there exists t least one line that psses
through them.

II. For ech pir of distinct lines there exists t least one point of inter-
section.

A pir of lines will be sid to be neighbor in cse they intersect in more
thn one point, nd nonneighbor otherwise. This will be denoted by 10 m
and m, respectively. A similar definition nd notation will be used for
points.

III. If k, l, m, re concurrent lines such that k O nd m, then

IV. If k O nd m, then km 0 lm, where km denotes an arbitrary
point of intersection of the lines k nd m.

V. IfP O QndQR, thenPR 0 QR.

VI. There exist points P, P, P, P such that P P. and P P D" P P
whenever i, j, k re ll different.

Klingenberg hs shown that with each ’ is ssocited proiective plane
s follows: The relation of neighbor is first shown to be an equivalence rela-

tion. The equivalence classes become the points nd lines of r. A class of
points is defined s incident on class of lines if nd only if there exists
a point P in nd line 1 in such that P is incident on k.
For ech finite H-plane r’ we introduce two invrints s nd t. Select ny

line k in r’ nd ny point P on k, nd suppose that there re s points on k
not neighbor to P nd points on neighbor to P. It turns out that s,
do not depend on the choice of P nd/c, that divides s, nd that s -_< t.
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The total number of points, and also that of lines, is s - st + 2. A finite
H-plane is called uniform in case there exists a line whose average number of
intersections with all lines neighbor to it but distinct from it is an integer.
In a uniform H-plane this number turns out to be independent of the choice
of line. In fact it forces any pair of distinct neighbor lines to intersect in the
maximum possible number of points, namely t, and also implies s 2. The
incidence matrix of a uniform .H-plane is a group-divisible, regular design
with two associate classes. Some results on the nonexistence of finite H-planes
are obtained. Finally a question raised by Klingenberg is answered: Namely
there exist finite Desarguesian H-planes which are not Pascalian.

2. Invariants

We begin with the following"

THEOREM 1. Let r’ be a finite H-plane, k any line of -’, and P any point
on It, s the number of nonneighbor points of P on lc, and the number of neighbor
points of P on l. Then s, are independent of the choice of P and k, ii the
total number of points and also that of lines is s st , (iii) divides s,
(iv) r has order s/t, and (v) if " r’, s <-_ .

Proof. The proof of part (i) is somewhat more complicated than the cor-
responding proof for projective planes, but nevertheless quite routine, and
will be left to the reader. To establish (ii) we show first that the number
of neighbor points of P in r’ is . There are of them on/. Select R on
such that R 2f P. If Q is any neighbor point of P not on/, then PR C) QR,
because of III, so that any neighbor point of P lies on a neighbor line of k
through R. There are neighbor lines of k through R, and they all intersect
in neighbor points of R, which are then nonneighbor points of P. Thus to
get the total number of neighbor points of P, we just add up all the ones
which lie on neighbor lines of/c through R. Let m be such a line, m
Then let S be any point which is not neighbor to any of the points on m and
k. Then SP intersects m in a unique point T. Since m C) /c and k SPT,
we have P C) T because of IV. Therefore m carries at least one neighbor
point of P and consequently neighbor points. It is now apparent that
there are neighbor points of P in r’. To count up all the points, consider
the s + lines of ’ which pass through P. Each of them contributes s non-
neighbor points of P, and there is no duplication. Thus there is a total of
(s + t)s s -4- st + points in r’. Because of duality the number
of lines is the same. This establishes (ii). (iii) is a consequence of dividing
up the s points on a line into equivalence classes of neighbor points.
Each class has points, so that divides s + t. This also shows that r has
sit d- 1 points on a line and hence has order sit. This establishes (iv).
With each line/ we associate the number }, (/), which is defined as the
average number of points of intersection between / and all of its neighbor
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lines distinct from k. Adding up the number of intersections between
and all lines of r’ we obtain the equation

s A- + h(t 1) A- s(s A- t) (s zr- t)(s "4- t).

If r v’, then 1. Solving (1) for X one obtains

(2) X (s -4- t)/(t -f- 1).

Two lines intersect in at most points, so that }, __< t. But this inequality is
equivalent to (v). This completes the proof of the theorem.

DEFINITION. A finite H-plane r’ will be called uniform in case there exists
a line k in r’ for which X(k) is an integer and r is not a projective plane.

THEOREM 2. Let ’ be a finite, uniform H-plane. Then is independent
of k. In fact t, ii s , and iii the incidence matrix A of ’ is
a group-divisible, regular design with two associate classes and parameters
v A- -t- ,n ,m A" -f- 1, r A- t,k- -- t,X 1,
X1 .

Proof. SinceX (s - t)/(t + 1) is an integer ands + t(s/t + 1),
we must have -t- 1 dividing sit 1, since and + 1 are relatively prime.
But then I -<_ sit + 1, so that -< s. This together with Theorem 1-
(v) implies s , and consequently ), t. This makes it obvious that every
pair of neighbor lines intersects in the maximum number of points possible,
namely t. This establishes (i) and (ii). The incidence matrix A of r’ may
be formed by writing points horizontally, lines vertically, listing neighbor
points consecutively and neighbor lines consecutively. Whenever a line k
passes through the point P., label a. I. otherwise a. 0. Then A is a
square matrix of dimension + . Also B AA r ArA has square
blocks of dimension along its main diagonal, each block having +
along its main diagonal and elsewhere, whereas the remainder of B consists
entirely of ones. This suffices to establish (iii). For definitions and notation
concerning group-divisible, regular designs, see for example [2]. This com-
pletes the proof.

In general, finite H-planes are not uniform. Some of the coordinate systems
for Desarguesian H-planes introduced in Section 3, as well as some of the
Pascalian H-planes of Klingenberg [4], serve to illustrate this point. The
incidence matrix of such a plane has more than two associate classes.

3. Existence questions

One of the natural questions that comes up is, for what values of s and
do there exist H-planes? In all the known examples both s and are powers
of a fixed prime p. Since r is a projective plane of order s/t, then sit must
satisfy the Bruck-Ryser condition [3]. In addition we have of course the
restrictions imposed by Theorem 1. In this section we give a special argument
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that rules out a few more values of s and t. However, much remains un-
answered. Let us consider what happens if 3. Because of Theorem 1,
either s 6, or s 9. The latter is actually possible, as will be seen in the
next part where examples are given. However we can show that s 6
is impossible. Since such an H-plane is not uniform, there must exist two
neighbor lines ] and m which intersect in exactly two points P and Q. Let
R be the remaining point on k which is neighbor to P. Let S be a point on
m not neighbor to P. Then RS is a neighbor line of 1 and m. However since
RS and m intersect in S, P and Q cannot lie on RS, since they are not neighbor
to S. Hence RS and/c intersect in a single point, namely R. But this is
clearly a contradiction, since RS and k are neighbor lines. A similar argument
may be advanced to show that if is larger than 2, then no lines can intersect
in 1 points. We have shown that no H-plane with 3 and s 6 is
possible. On the other hand there certainly exists a projective plane of
order 2. Another case which can be disposed of easily is the one where s
is prime. For then must equal 1, and we have just the projective planes of
prime order, which are known to exist. If s 6, then because of Theorem 1-
(iii) and (v), either 1, or 3. We showed before that 3 is impos-
sible, whereas the Bruck-Ryser condition rules out 1. Thus s 6 is
altogether impossible, no matter what is. If s 8, then either 1 or

4, and examples of both exist. Note that for s 8 and 4 we have
2.4. Neighbor lines can not intersect in 3 points, hence they intersect

in either 2 or 4. Let a fixed line ] intersect x neighbor lines in 2 points
and y neighbor lines in 4 points. Then 2x -[- 4y 36 and x y 15.
Solving we obtain x 12 and y 3.
We turn our attention now to some new examples of finite H-planes. In

this connection we are able to answer a question raised by Klingenberg.

THEOREM 3. There exist finite Desarguesian H-planes which are not
Pascalian.

W.e refer the reader for the definitions of Desarguesian and Pascalian to
[4]. Actually this question is equivalent to a purely ring-theoretic one.
Namely Klingenberg has shown that Desarguesian H-planes have coordinates
from associative rings H, in which the .divisors of zero form an ideal N, such
that H/N is a division ring, and such that, for each n, n’ in N, either there
exists an element w in N such that n wn’, or there exists an element x in
N such that xn n’; and either there exists an element y in N such that
n n’y, or there exists an element z in N such that nz n’. We call such
rings Desarguesian H-rings. Therefore the ring-theoretic equivalent of the
original question is, do there exist finite Desarguesian H-rings which are not
commutative? We answer this question in the affirmative by means of the
following construction"

Let F be any Galois field, having pn elements, and a any automorphism of
F. We define H as the set of all couples (a, b), where a and b are elements
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of F. Addition and multiplication are defined by

(a, b) - (c, d) (a + c, b - d),

(a, b). (c, d) (ac, ad + bc),

where c denotes the image of c under a. It is routine to verify that indeed
H coordinatizes a Desarguesian H-plane. We note that H is a commutative
ring if and only if a is the identity automorphism. Moreover the H-planes
thus obtained are all uniform with pn and s pn. It is easy to generalize
this construction to Desarguesian H-rings which give rise to nonuniform
planes. One uses triples, quadruples, etc. of elements in place of couples. In
the case of triples we would have s p3 and p2. The smallest incidence
matrix of a uniform H-plane would correspond to the case s 4, 2.
The symmetric, group-divisible design this gives rise to is already in the
literature [1]. It is coordinatized by the above H-ring with p 2, n l.
The next largest would be s 9, 3, which gives rise to an incidence
matrix of dimension 117.
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