SOLUTION OF CERTAIN NONAUTONOMOUS DIFFERENTIAL
SYSTEMS BY SERIES OF EXPONENTIAL FUNCTIONS

BY
MicHAEL GOLOMB

1. Introduction

In a recent paper [1] Wasow investigated systems of differential equations
of the form

(1.1) "= f) + 2 gre .

Here y is an n-dimensional vector; ¥’ denotes the derivative of y with respect
to x; the g, are constant vectors; the w; are real, not necessarily rationally
independent numbers; the components of the vector f(y) are assumed to be
analytic functions of the components of y vanishing for ¥y = a and holomor-
phic in the neighborhood of a. The sum in (1.1) has m < o terms.

Wasow constructs a solution of (1.1) of the form

(1.2) y=a+ a e’

where the series converges uniformly and absolutely for — o < z < « pro-
vided the coefficients g, of (1.1) are sufficiently small. The numbers u,
are linear combinations of the w;, we, -+, w, With nonnegative integral
coefficients, and the a, are determined recursively by solving nt* order linear
systems of equations. The individual terms of series (1.2) represent the theo-
retically and experimentally well-known combination harmonics in the re-
sponse of system (1.1).

In this paper Wasow’s results will be extended in several directions. The
exponential polynomial of (1.1) will be replaced by a general exponential series

(1.3) S e g €5

which includes the general almost periodic function and the general periodic
function with absolutely convergent Fourier series. It will be shown that
(1.2) is a real solution provided (1.1) is a real system. The general system
(14) Y =g, v)

will be shown to have a solution of form (1.2) if the components of g(x, y)
are analytic functions of y, holomorphic for ||y — @ || < p, with coefficients
that are of the form (1.3).

In the next section it will be proved that if the linear homogeneous part of
(1.1) has a solution of the form

(15) a0 ei(#o/q)w,
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where ¢ is an integer =2, then (1.1) has infinitely many solutions of the form
(1.6) y = Qq —|— ao e’i("o/q)ﬁ _|_ Z ar ei(#r/q)ft’

with || ao || a prescribed arbitrary number sufficiently small. The a,. depend
on ao and are determined recursively by solving nt* order linear systems of
equations, and the u, are linear combinations of wo, qw;, gz, «++ with non-
negative integral coefficients. In particular if the forcing term Y gi e**
of (1.1) is a periodic function of period =, then there are infinitely many solu-
tions of period ¢r, including the so-called subharmonics.

Finally the question of the stability of the particular solution (1.2) is con-
sidered. It will be demonstrated that this solution is imbedded in a field of
solutions y(z, «) all of which have expansions like (1.2), but with exponents
that are linear combinations with nonnegative integral coefficients both of
the wy appearing in the forcing term of (1.1) and of the eigenvalues iy, , ivs,
«++, iy, of the matrix A which is the Jacobian of f(y) at y = a. The par-
ticular solution (1.2) is then proved to be stable. This is true on the interval
— o < x < « if the w; and v; are real. When =z is restricted to the interval
0 = x < «, then the w, and v; may be arbitrary complex numbers with non-
negative imaginary parts. If the imaginary parts of the v; are positive, the
solution (1.2) is proved to be asymptotically stable.

An essential condition for the convergence of the expansions presented in
this paper is that the eigenvalues 7v; of the matrix A have a positive distance
from the “compound spectrum” of heteronomous frequencies, that is, form
the set of linear combinations of the w, with nonnegative integral coefficients.
This condition (see (2.3), (4.11), (5.3), (6.9)) excludes the “small divisors”
which occur in some expansions of periodic solutions due to integration of
harmonics with small frequencies (for general reference see [4] with its ex-
tensive bibliography).

Two recent papers by G. I. Biryuk [2, 3] also deal with the existence of al-
most periodic solutions for systems of the form y' = Ay + ¢f(z, y) with a
small parameter ¢, f(x, y) being Lipschitzian in y. Although a few results of
this paper are implied by Biryuk’s results, the major part are not, and the
methods of approach are entirely different. The results of this article are also
instrumental in constructing solutions of the form (1.2) for equations like
(1.1) and (1.4) with nonanalytic f(y), g(z, ¥), as will be shown in a forthcoming
paper.

2. General forcing terms
We assume . gi ¢’* is an infinite series with > || gx || < ®©. The w;
are real numbers, rationally independent or not, arranged in an arbitrary

fashion. By putting v = y — a, system (1.1) takes the form
2.1) u = Zkgl Ok ™" + Au + h(w),

where A is a constant matrix and the components h; ( = 1,2, -+, n) of
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the vector h possess expansions in powers of u; , ¥z, + * - , U, Without constant
or linear terms, converging for

(2.2) ull <o

For any vector » with components u; , 4, - -+ , 4, the symbol || u || denotes
the norm max; || 4;|. For a matrix B with components b;; the symbol
| B| will denote the norm || B| = max; D j=1|bij|. Then-clearly

I Bull = [ Bl

Let tv; 6 =/—1,j =1, 2,---, n) denote the eigenvalues of 4 (not
necessarily distinet), M the set of numbers which are linear combinations of
w , we, +++ with nonnegative integral coefficients. We make the assumption
(2.3) o mf sl =58>0
This assumption is satisfied in the two cases considered by Wasow [1]:

(a) None of the »; is real.

(b) The w; are rationally dependent (i.e., there exists some real number
w such that wx, = myw (k = 1, 2, ---) where n; is an integer) and v; ¢ M
(.7 =12 ’n)~

Another special case is

(¢) The w, are positive, wy = w > 0, and v; e M (=1, 2, -+, n).

To construct a formal solution of (2.1) we arrange the set of all sequences
(ny, m2, - --) where the n; are nonnegative integers, only a finite number of
which are different from zero, as a sequence Ny, Ny, - - - in the following way.
For N = (ny, ng, -+-) put

(2.4) |N| = 2 km,

and let » < s if |N,| < |N,|. If |N,| = |N,|, then consider the first
component that is not the same for the two sequences N, , N, , and let » < s
if the component of N, is larger. Obviously, each sequence (n,, ns, - )
appears asone and only one N,. The particular sequences (1, 0, 0, --+),
,1,0,0,---),(0,0,1,0, ---), --- will have certain ordinals denoted as
1), (2), 3), - -+, so that

N(1)= (1,0)0707"')>
(2'5) N(2) = (O) 1; Oa 0) vt ’);
N(3) = (0’ 07 1’07)

N, + N, is defined in the obvious way, as is also kN, + IN,, where k, [
are nonnegative integers.

Let Q stand for the sequence (w; , ws , - - -) and N -@ for the symbol D ny w; .
Although this latter is a real number u and will finally be so identified, in the
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construction of the formal solution to (2.1) the w, are considered as inde-
pendent parameters, and Y 7 o is an element of the free additive semigroup
generated by the w;, we, --- . Multiplication of two exponential factors
e ¢™ % regults in another exponential factor

(26) eiN,--Qa:.eiN,~Qx — eiNt-Q::’

where N, = N, + N,. It follows readily from the ordering principle of the
N'sthatt = r + s.

We now construct a formal solution u of (2.1) of the form
(2.7) w = ngl ar eiN,uﬂa:

in the same way as in Wasow’s paper [1]. Inserting (2.7) into (2.1), expand-
ing and rearranging according to the exponential factors exp (¢N, -Qx) one
obtains a recursive system of equations for the vectors a,

(283:) (A - ’I:p,,. I)G,,. = —¢, if r= (’C)
(28b) (A — Ty I)a,. = hr(al LAz, e, ar-—l) if £ (k)
b= 1,203 r=1,2 .

The components of the vector functions h, are polynomials in the components

of a1, az, -+, a,_; without constant or linear terms. Because of assump-

tion (2.3), the matrices A — 4u, I are nonsingular, and as shown in [1]

(2.9) ¢ = suPuen || (A — i)™ || < o0,

Therefore,

(2.10a) la-ll Scllg-ll it r= (k)

(2.10b) la| < ¢l blar,as, -, a )| if s (k).
Let % be a function dominating the &, as defined in [1]. Then if

(2.11) v = D b e

is substituted in 4(v) and the resulting products are expanded and rearranged
as above, one obtains

(2.12) h(v) = ngl hr(bl , b2 , br—l)eiNT-QZ’
where
(213) Br(bl 3 b2 y Ty br—l) = ” hr(al s gy * 00y, ar-—l) ”, r = 1’ 2’ .

if by = Breoand B = ||axl] k=1,2,---, r—1). Here ¢ denotes the
vector

(2.14) e = (1,1, -, 1).
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Then the vector v = ve,, where v is defined by the equation

(2.15) v — ch(ve)) = ¢ a1 || g+ || e,
will be shown to dominate « in the sense that
(2.16) o1l =z [l e , r=1,2---.

To see this let (2.11) with b, = B, e, be substituted in (2.15). As before, one
obtains recursive equations for the g, :

B =cllg it r=(k),
(2.17) Br = chu(by, bs, ++ , bp) if = (k)
k=1,2 - r=1,2 -
Thus, by (2.10), (2.13), and (2.17)

(2.18) la < cllol =6 =1b] it r= ()
a || S cl| har,ae, -, @
oagy el S ol e l |
S cheby, bey o0y b)) = B = [ b1 || if 7 (k)

provided || bi || = || ax || for k = 1,2, .-+, r — 1. Thus, (2.16) follows by
induction.

To prove the convergence of the dominating series (2.11) consider (2.15)
as an equation for v in terms of

(2.19) C=2ollgllee, @ = e

As in [1] it is immediately seen that there is a positive number oo such that
(2.15) has a unique solution v holomorphic in ¢ for | ¢ | £ oo ; this inequality
will be satisfied if

(2.20) CZkgl lgell = o0.

Thus, v is representable as a uniformly and absolutely convergent power
series

(221) V= Crrgo.m 2 2, kK =1,2,-; mt =1
If the terms of series (2.21) are arranged according to the order of the se-
quences (ry, 72, -+, %, 0,0, - -+ ) introduced above, the expansion

(2.22) V=D By

is obtained. This proves the uniform and absolute convergence of series
(2.11) and, therefore, of the dominated series (2.7) whenever condition (2.20)
is satisfied.

It follows from (2.15) that there exists a positive number ¢; such that
[v| = pfor —o <2 < o if

(2.23) Czk_z_l lgrl S o1.
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Since |v| = ||v| and ||u || = || v], it follows that the constructed series
(2.7) satisfies equation (2.3) whenever conditions (2.20) and (2.23) are satis-
fied. From the construction it is then seen that (2.7) satisfies system (2.1).
Thus the following theorem has been proved.

Tueorem 2.1. Let the differential system
v =2k g€ + f(y)

on substitution of y = a + u take the form

W= D g € + Au + h(w),
where

h(u) = it Z+k s hk1k2,..k” ’Urllclu’;z‘ . 'u’:xny “ [ ” = P
1+ otk 2

and let condition (2.3) be satisfied. Then the system has a solution which ad-
mats an expansion of the form

y=a+2 10 6"
converging absolutely and uniformly for — o < x < o provided

Zkél “ g ” =7,

where v 18 a positive number that depends only on f. The numbers u, are linear
combinations of the numbers w, with nonnegative integral coefficients.

For the special case where the w; are multiples of some real w # 0 one
obtains

CoROLLARY 2.1. Let the differential system
Y =2 gr e + f(y)

on substitution of y = a + u take the form

W=D o gp e + Au + h(u),

where
h(u) = Z hklkz"'kn ullcluléz’ * _u’:‘n’ ” U “ é P
kit othpz2
and assume none of the eigenvalues of A equals thw (k = 0, £1, £2, --.).

Then the system has a solution which admats an absolutely converging Fourier
expansion .
y=0a+2 mware”
2o [ ge |l =,

where v 1s a positive number depending only on f.

provided

COROLLARY 2.2. With x restricted to the interval 0 = x < o, Theorem
2.1 holds for arbitrary complex o with Im w; = 0.

The proof is unchanged.
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3. Real systems

Let (1.1) and the equivalent (2.1) be real systems. By this we mean a
and A are real, h(u) has real coefficients, and for each w; there exists wyr = —wy
such that g = gi.. We prove that the particular solution (2.8) of a real
system constructed in Section 2 is real for — o < 2 < .

Let the oy be so arranged that

(3'1) Wog—1 = —Wak , k= 1, 2, -
Then, by assumption,
(3.2) Gok—1 = Jok k=12, ...

If N, is the sequence (n;, n2, N3, N4, - -+ ) where the ordinal r is determined
as in Section 2, let ' be the ordinal of the sequence (nz, 11, na, N3, *** ).
System (2.8a) now breaks up into

A — 'l.IJvrI Gr = Gr,
(3:3) i Dy = g r= ), k=12,
(A + i Dayr = g = §r,
where use is made of (3.1) and (3.2). It follows that
(3.4) o = G, r=(k), k=1,2.-
Similarly, (2.8b) breaks up into
4 — iﬂrI)ar = h,
(3.5) ( r=(k), k=1,2---.
(A + iﬂr I)ar’ = Nypr

Here h, is a polynomial with real coefficients inao, a1, - -+ , @;, wheres < r
and 8’ < r. Also it is easily seen that if

(3.68,) h, = hr(al y G2y 00y as))
then
(3.6b) hr’ = hr(al’ y Qory 00y as')'

Thus, it follows from (3.5) and (3.6) that if ay = dr fork = 1,2, .-+, s,
then also a,» = a@.. Using (3.4) and induction gives

3.7 Oy = Gy, r=12 ...
Thus it is proved that (2.8) is real for — o < 2 < .

TueoreEM 3.1. If the system (1.1) is real, then the solution (1.2) s real for
—o <z < o,

4, General systems
We consider next the general system

4.1) y = g(z, y).
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We assume g(z, y) is analytic in y for — o < 2 < o, holomorphic in some

neighborhood of ¥y = a. We put u = y — a as before and rewrite (4.1) in
terms of u as

(4.2) w = g(x) + A@)u + h(z, u).

Here the vector g(z) = g(z, a) is assumed to have an expansion

(4.3) g(x) = Zkgl gk 6““»

where the w; are real numbers, rationally independent or not, and

(4.4) 2zl < .

We also assume that the matrix A(x), which is the Jacobian of g(z, y) with
respect to ¥1, Y2, * -+ , Y €valuated at y = @, has an expansion

(4.5) A) = A + D ip1 Ar ™™™,

with

(4.6) 2oz || Ax] < .

The fact that the constant matrix A is separated from the other terms in
(4.5) does not rule out the possibility that one or more of the w; are equal
to 0 and that the corresponding terms A exp (tw; ) contribute to the con-
stant term (the mean value) of A (x).

The vector h(z, u) can be expanded in a series of powers of u, , Uz, - -+, Un
without constant or linear term. We put
(4.7) hz, u) = D kg @)ub b ulr
kyteotkpz2
and assume that the vectors Az, ...r,(z) possess expansions
(4:8) hkl]‘;2 . .kn(x) = Zkg]_ hklkz"'knk eimkz’
with
(4.9) Dozt || Py oo | = Mgty < @
and
(4:10) Z Nhykger by pkl+k2+“.+k” =9 < ©
Fike s Fha2 2

for some positive p.

These are the general assumptions which we assume to hold throughout
this section and which will be considered as part of the definition of g(z, ¥)
in (4.1), and of g(z), h(z), A(z, u) in (4.2). Besides, we impose the same
condition as in Section 2 on the eigenvalues of the matrix 4. If these are

w;(j=1,2,---,n) and M is the set of numbers which are linear combina-
tions of w;, wz, --- with nonnegative integral coefficients, we require that
(4.11) inf |y —ul=8>0.

j=1,-,nipeM
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We now construct a formal solution w of (4.2) of the form
(4.12) U= 106",

where N, , @ are as defined in Section 2. Inserting (4.12) into (4.2), expand-
ing and rearranging according to the exponential factors exp (¢N,-Qx), one
obtains a recursive system of equations for the vectors a,

(4:.133;) (A - iﬂr I)ar = —0r if r= (k)7
(4.13b) (A — tur Da, = he(ar, a2, <+, @r1) if r# (k),
k=1’2,’ r=]_’2’....

The numbers u, and ordinals (k) are also as defined in Section 2. The com-
ponents of the vector functions h, are polynomials in the components of
@, az, -+, G, without constant terms, with coefficients that are poly-
nomials in the components of Ax and 7x,..% - As in Section 2 we conclude
that equations (4.13) have a unique solution @, and that

(4.14) ¢ = SuPuenm [|(A — D)7 || < oo,
(4.15a) la ]| S cll gl it r= (k)
(4.15b) la |l = ¢l hlar,an, -, ai)l if r#= (k)

E=1,2--; r=12--.

In order to construct a dominating problem we introduce the scalar func-
tions

(4.16) a@) = 2z || A || €%,
(4.17) Pgig . (&) = Dz || Pty i | €%,
hz,w) = @) (m+ - + u)/n

A ki K k.
+ Z hklk,...kn(x)ulluzz Cee Uy
kit eetkpz2

(4.18)

By (4.10) the series in (4.18) converges in the domain || u || £ p, for
—w <z < o, It clearly dominates, for each z, each component of the
series of (4.7), which therefore also converges in the domain ||« | = p for
—w <z < «. Itfollows that the components of g(z, y) are holomorphic
in the region ||y — a || £ p,for —o <z < .

If
(4.19) v =2 o1 b e

is substituted in A(z, v) and the resulting products are expanded and rear-
ranged as in Section 2, one obtains

(420) iL(:L‘, v(x)) = 21;1 i‘l,,(bl REREIN br_l)efNr-ﬂz.
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If one recalls the definition of the A, in (4.13b), one finds

(4.21) by, bay + ooy b)) Z [ (a1, 02, -0, ard)|

if by = Breo =B, 1, -, Dand B = || || kF=1,2,:-,7r—1).
Now let ¥ = ve, where v = v(x) is defined by the equation

(4.22) v — ch(z, ve)) = ¢ st || g- || €77

If (4.19) with b, = B, e is substituted in (4.22), one obtains the recursive
equations

(4.23a) Br=cllgll if r=(k),
(4.23b) By = chp(by, by, -+, by) if = (k)
k=12 .-+ r=1,2, ..

Thus, by (4.15), (4.21), and (4.25)

(4.242) ” ar ” =ec ” gr “ =B = ” b, ” if r= (k)
(4.24D) larll = cllbrlar, a2, -+, ara)l
< by, b, oo b = 8= Bl i 7 ()

provided || by || = || ax || for k = 1,2, .-+, r — 1. It follows by induction
that

(4.25) ol = e, r=12--,

that is, »(z) dominates u(x).
To prove the convergence of series (4.19), consider (4.22) as an equation
for v in terms of the infinitely many variables

(4.26) % = e,
If we use (4.16), (4.17), (4.18), and (4.26), equation (4.22) becomes

=Z lola+ G4z

+ E (kg ” h’“lkr-'k,,k “ zk)vkl+kz+~- -+k,,.

Bite ka2 2

<

(4.27)

By (4.4), (4.6), and (4.10)

(4.28a) [ X llgellze] £ 20 gs ]l < 0,
k=1 k=1
(4.28b) AP EIED M PRI
k=1 k=1
(4.28c) 2 2 Bk e | S 007, rz 2
kyteeothp=r k21

If equation (4.27) is written as F(v) = 0, then F(0) = 0 and
(4.29) F'0) = ¢ — 2 [l 4i |l 2.
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Thus, if we impose the condition
(4.30) 2l il < 7

then, by (4.28b), F’(0) # 0. Using (4.28a) and (4.28¢) one concludes that
there exists a positive number o, such that (4.27) has a unique solution repre-
sentable as a uniformly and absolutely converging power series

— 1,72 ., 4Tm
(4.31) v - ”Z;;mzlcrlrzmrm 21 22 Zm
provided B
(4.32) ez llgnll = oo

If (4.26) is inserted in (4.31), products are expanded and the resulting terms
are rearranged according to the order principle of Section 2, the expansion

(4.33) V=2 s B e

defined by the recursive equations (4.23) is obtained. This proves the uni-
form and absolute convergence of series (4.19), hence also of the dominated
series (4.12), whenever conditions (4.30) and (4.32) are satisfied.

Furthermore, it follows from (4.27) that there exists a positive number
oy such that |v| £ pfor —0 <2 < o if

(4.34) D uzilgn] S 0.

Since |Jul|] = ||v] = |v]|, it follows that the constructed series (4.12)
satisfies equation (4.2) whenever conditions (4.30), (4.32), and (4.34) are
satisfied. Thus, the following theorem has been proved.

THEOREM 4.1. Let the differential system
¥ = 9@, y)
on substitution of y = a + u take the form
w =D e gk’ + Ax)u + h(z, u)

with A(x) end h(z, w) as in (4.5) and (4.7), and assume condition (4.14) is
satisfied. Then the system has a solution which admits an expansion of the
form

y=a+2 0 e
converging absolutely and uniformly for — o < x < o provided
2ozt | Ar || < supuen [|(4 = )™ 7
and
el £,
where v is a positive number depending only on A(x) and h(x, u). The num-

bers w, , which are the elements of the set M, are linear combinations of the num-
bers w, with nonnegative integral coefficients.
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For the special case where the w; are multiples of some real w £ 0 one
obtains
CoROLLARY 4.1. Let the differential system
Y =g, y)
on substitution of y = a + u take the form
u = Z;ﬂ;—w Ik eisz + A(x)u + h(x: U),

where
ad o
Al@) = A+ 2 Ape™@,
k=—o0
00
ik ki k k.
h(z,u) = o (k Pokgiogenroyic € ‘”‘) ur'us® c v U,
1t ﬂg ==—m00
o0
FoyHogte+ o+,
Bybe s kg2 (kﬂz I Bt H) i e p>0,
1T n=

and assume none of the eigenvalues of A equals thow (K = 0, =1, £2, ---),
Then the system has a solution which admits an absolutely convergent Fourier
exrpansion

y=a + Z?co——eo O eikwx
provided

i || Ai || < supe [[(A4 — dkoD)™ |7

2 [ e ]l = v,
where v s a posttive number depending only on A(x) and h(x, u).

and

CoOROLLARY 4.2. With x restricted to the interval 0 = x < o« Theorem 4.1
holds for arbitrary complex wr, , Im w, = 0.
5. Subharmonics

For simplicity we return to equation (1.1) for y and (2.1) for w. The
main assumption in this section is

(5.1) qro — po = 0’
where ¢ is an integer = 2, ¢v, is one of the eigenvalues of 4, and
po = No-Q = anwk

with at least one of the finite number of positive integers nq not divisible
by ¢. The solution will contain exponential terms of the form

exp (¢(N./q)-Qx).

However, of all the sequences N, (r = 1, 2, --- ) of Section 2, only those
will be used in the solution which are of the form

(5.2) N,=(ronf+r1q,rong+rzq,°--).
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The set of these N, with (ro, 71, 72, -+ ) # (1, 0, 0, - .- ) will be denoted
by M and the set of real numbers 4 = N,-Q, N, ¢N, will be denoted by IN.
Condition (2.3) is replaced by

(5.3) inf |v; — uw/q| =6>0.
J=1,s+¢,n;peM

We construct a solution of equation (2.1) which admits an expansion of
the form
(54) u=aeV0% L > g, N0

N,eR

If (5.4) is inserted in (2.1), products are expanded and the resulting terms
are rearranged according to the exponential terms exp (:(V./q)-Qx), one
obtains the following system of equations for the vectors ao, a, :

(5.5a) (A — (u/9)D)ao = 0,

(5.5b) A — iw/9I)ar = h(ao, a1, + -+, 1) + fr,

where

(5.6a) fe= —g if N.=¢Nw,
(5.6b) fr=0 if N,# qNw,

k=12 --; N,eR

The components of the vector functions h,. are polynomials in the com-
ponents of @, ai, + -+, a1 without constant or linear terms. Equation
(5.5a) results from the fact that No¢9. Because of assumption (5.1) this
equation has a solution ao with arbitrarily prescribed @ = || ao|. The re-
maining a, can be recursively determined from systems (5.5b), which are
nonsingular on account of assumption (5.3). As before one concludes that

(5.7) supuem [[(A — (u/D7 || = ¢ <

and

(5.8) lar |l = c(ll hn(ao, @1, -+ 5 @)l + 1 fr D
Let the function % be defined as in Section 2. Then if

(5.9) v = by ™ £ 3 by O

is substituted in A(v) and the resulting products are expanded and rear-
ranged as before, one obtains

(5.10) h) = 2w ho(bo, by, =y bpy)e™ V9%

where

(511) i‘r(bO ) bl » ", br——l) = “ hr(aﬂ y G100, ar—l)”
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if by = Breoand B = |||k =0,1,---,r — 1). We show that the
vector v = ve, with the scalar v defined by the equation

(5.12) v — ch(v) = ae™™P% + ¢ uo1 || i || €
dominates the vector u in the sense that
(5.13) [l Zzllaoll, lbllzlal, rz1

To see this let (5.9) with by = Bo ey, b, = B, € be substituted in (5.12). Pro-
ceeding as before, one obtains recursive equations for the 8o, 8-

Bo = a,
Br = Chr(b07 blr e 7bf—1) +c ”ff “ .
Thus, by (5.8), (5.11), and (5.14)

(5.14)

(5.15a) laol = a=Bo=[boll,
o < el helao, ary -+ 5 @)l + 1 £ )
(5.15b) < chi(bo, by, -+, bra) + ¢ || fr ||
=8 = b

provided || by || = || @ |[for k = 0, 1, --- , » — 1. Thus (5.13) is proved by
induction.

To prove the convergence of the dominating series (5.9) consider (5.12)
as an equation for v in terms of

(5.163,) 20 = ei(uo/q)x’

(5.16b) % = eiwkx — eiq(u(k)/q)z k=12 ---.

)

One concludes as before that there exists a positive number oo such that
(5.12) has a unique solution v representable as a uniformly and absolutely
converging power series

(5.17) v = > Crorpeenry 20°21° * +  Znl
1‘0+1‘1~1f;->' '1+rmg 1

provided

(5.18) ot e llgell £ oo

If (5.16) is inserted in (5.17), products are expanded and the resulting terms
are properly arranged, the expansion

(5.19) v = ei(No/Q)~ﬂx + EN,:&R Br ei(Nr/q%ﬂ:c

defined by the recursive relations (5.14) is obtained. This proves the uni-
form and absolute convergence of series (5.9), hence also of the dominated
series (5.4), whenever condition (5.18) is satisfied.
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Furthermore, it follows from (5.12) that there exists a positive number
orsuch that |v| = pfor —o <z < « if

(5.20) ated gl £ .

Thus, the constructed series (5.4) satisfies equation (2.1) whenever conditions

(5.18) and (5.20) are satisfied. The results are stated in the following the-
orem.

THEOREM 5.1. Let the differential system

Y = Dieigre™ + f(y)
on substitution of y = a + u take the form

u’ = Zkg]_ gk eiwkx + Au + h(u),

where h(u) is as in Theorem 2.1, and let conditions (5.1) and (5.3) be satisfied.
Then, for given a = 0, the system has a solution y which admits an expansion
of the form
y=a + ao ei(uo/q)x + ZNfe‘R ar ei(nf/q)z
with || ao || = «, converging absolutely and uniformly for — e < x < o« pro-
vided
a+culol S,

where v is a positive number that depends only on f. The numbers u. are linear
combinations of the numbers po, quwi, qus, + -+ with nonnegative integral co-
efficients.

In the special case where the w, are multiples of one real number w # 0,
conditions (5.1), (5.3) will be satisfied if some eigenvalue of 4 is 7(p/q)w
with p relatively prime to ¢ and if otherwise no eigenvalue is equal to
imp/q+ kKw (m=1,2,--+ ;k =0, 1, £2, --- ). This leads to

CoROLLARY 5.1, Let the differential system
Y =2 gie” + fy)
on substitution of y = a + u take the form
W= e gre + Au + h(w)

where h(u) s as in Theorem 2.1. Assume the matriz A has an eigenvalue
1(p/q)w with p relatively prime fo q and mo other eigenvalue of the form
imp/qg + k)o (m = 1,2, -+ ; k=0, 1, £2, -+ ). Then, for | a || = a
given, the system has a solution admitting a Fourier expansion

0
¥
y=a + ao ei(p/q)wx + Z Qiom 6i(mp/q+ ) wz

Jome—00
mz1
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with || ao || = «, converging absolutely and uniformly for — o < x < o« pro-
vided

atcXimwllal =,

where v 1s a number that depends only on f. Whereas the forcing term has the
period 2w/ w, the period of the solution is q¢-27/w.

6. Stability of solutions

In this section it will be proved that the particular solution found in Sec-
tions 2 and 4 is imbedded in a field of solutions each of which admits an ex-
pansion in an exponential series, and furthermore that the particular solu-
tion is uniformly stable.

Here we assume that x is restricted to the interval 0 = z < . For sim-
plicity the proofs are given for equation (1.1) rather than for equation (4.1).
With slightly changed notation equation (1.1) is written as

(6.1) y =fy) + Zk_>_.1 g €,

and we assume

(6.2) Repr 0, k=1,2,--+, Dusilgel < .
With the substitution y = ¢ + u equation (6.1) becomes

(6.3) W = Au + h(w) 4 iz g ™,

and it is also assumed that the eigenvalues A1, Az, --- , \» of A satisfy the
condition

(6.4) ReX; 20, ji=12 .-, n
To simplify notation we put

(6.5a) e = Mo, k=12 ---,n,

(6.5b) = Ph—n s k=n+1Ln+2---.

The sequences N, (r = 1, 2, --- ) are defined as in Section 2, likewise the
NwEk=1,2,---). <is to denote the sequence

(66) T = (Tl, T2, "')= (>‘17>‘27"',)\n:p17p27"')'

If N = (n,ng,--), then N-T = D ,.»1n 7., and the complex number
N,-T will be denoted as

(6.7) v, = N, &, r=12---
In particular,

(6.8a) vey = NayT = M, E=12,---,mn,
(6.8b) = Pk , E=n+1Ln+2 ---.

The set of numbers », (r = 1,2, --- ; r 5% (k), k£ < n) will be denoted as N;
it includes all the linear combinations of Ay , Ae, <=+ , Nu, p1, P2, *°-
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with nonnegative integral coefficients except the numbers A1, A2, -+, \n
themselves. Condition (2.3) is replaced by the more stringent condition

(6.9) inf [N —v»|=8>0.

J=1l,0 e, niveN
We seek a solution of equation (6.3) of the form
(6.10) U= a6

If we substitute (6.10) in (6.3) and proceed as in Section 2, we obtain the
following equations for the a,

(6.113/) (A e )\k I)ar = 0’ r = (k), k = 1’ 2’ CIIRY , n,
(6.11b) A= oDar = —gra, r=0), k=n+1,n+2---,
(6.11¢c) A - vDa = h(a,0, - ,0-), r#k), k=12 ---.

The components of the vector function k., are polynomials in the components
of ay, as, - -+, a,—; without constant or linear terms.
Equations (6.11a) are satisfied if agy (k = 1, 2, -+, n) is taken to be

(6.12) Ay = O €k k= 1, 2, cee, N,

where oy is an arbitrary number and e is an eigenvector of A belonging to
the eigenvalue i, | e || = 1. The systems (6.11b), (6.11c) are nonsingu-
lar on account of assumption (6.9). After aw, aw,  *+, @ have been
chosen, the remaining a, are determined recursively from equations (6.11b),
(6.11¢).

With the constant ¢ defined as in Section 2,

(6.13) ¢ = supyen |(A — vI)7' || < oo,

one obtains from (6.11)

(6.144) la-ll = ¢l ginll r=&), k=n+1n+2 -,
(6.14b) lar || = ¢l belar, @a, -+, ara)| r#= k), k=12,-.--
Exactly as in Section 2 it is seen that the series

(6.15) v =2 b e,

with » = ve; and v defined by the equation

(6.16) v = ch(v) =i | e | € + 2z | gi [l €,

dominates series (6.10) in the sense that

(6.17) la | < (0], r=1,2 -

Considering (6.16) as an equation for v in terms of

(6.18) 5 = ¢, r=1,2 -,
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one concludes as before that there exists a positive number ¢ such that

ny n
(6.19) v = E Cryings+ npy @1 b 22 ... Zm"
nyteeetng, 2l
mz1

and | v| £ p whenever

(6.20) il el S o

Thus, (6.15) and the dominated series (6.10) converge absolutely and um-
formly for 0 < 2 < « if condition (6.20) is satisfied. Moreover, (6.10)
represents a solution of equation (6.3).

Let the family of solutions (6.10) with the arbitrary parameters
i, oz, , a, be denoted as u(z, o). We show that these functions form
a field of solutions embedding the particular solution of Section 2. For
this purpose, we denote the particular solution by w* and write its expansion
in the form

(6.21) wr =3 iy e’
The coefficients a; are then defined by the recursive equations
(6.22a) af =0, r=(k), k=1,2,-,n

(622b) (A — g Daf = —grn, r=&), k=n4+1n+2-,
(622¢) (A — v, Da¥ = hfaf , a5, -,ar_y), r=k), k=12 ---.

From these equations it follows that w*(z) = u(z, 0). Equation (6.16) for
the dominating function v shows that the components of u(zx, «) are holo-
morphic functions of a;, a2, -+, a, in the domain defined by (6.20) with
coefficients that have expansions of the form (6.10) which converge ab-
solutely and uniformly for 0 < z < «. Thus

(6.23) u(z, @) = u*@) + 2j a; i) + w(z, o).

The components of w(x, a) can be expanded as power series in oy, ez, -
a, and without constant or linear terms. The w;(z) can be expanded as

(6.24) WiE) = Dora1 @jr €7,
and it follows from (6.11), (6.12), and (6.22) that

b

(6.25a) Qjr = Oji €k r=(k), k=12---,n
(6.25b) a; =0 r=(&), k=n+1,n+2-.--

where 8; is the Kronecker symbol. The remaining aj; (r £ (k), k = 1)
are polynomials in the variables gy, g2, * - - without constant terms. Thus,
by (6.24) and (6.25)

(6.26) wi(x) = ¢'i%; + zi(=, ),
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and, by again using equation (6.16) for the dominating function v, it is readily
seen that

(6'27) “ Zj((t, g)“ -0 as Z’%l ” Ik “ -0, i=L1L2 -, n
Substituting (6.26) in (6.23) and putting x = xo = 0 we have

(6.28) (@, @) — w (@) = g1 lej €77 + 2i(wo, P)les + w(xo , a).

We now make the additional assumption that the eigenvectorse;, ez, -+« , e
of A are linearly independent. Let « be the norm of the inverse of the matrix
whose rows are e; , e;, + -+, e,. By (6.27) one can find a positive number v
such that the vectors e;e'i™ 4+ z;(zo,9) (=1, 2, -+, n) are linearly
independent and such that the inverse of the matrix E(x,, g) formed with
these vectors as rows has a norm satisfying the inequality

(6.29) | E(mo, )" || S 2
provided
(6.30) 2z llgell = .
Let now the initial value u(xo, ) of the solution u(z, &) be given, say
(6.31) u(xo, @) — u*(@o) = 9o .
Then (6.28) becomes an equation for the vector & = (o, as, *++, an):
(6.32) E(xy, g)a + w(o, @) = %o .
Since the Jacobian of this equation with respect to @y, a2, -+, anat a = 0

is E(xo, g), which by (6.29) is bounded away from zero, it follows that there
exists a positive number 5 such that (6.32) has a unique solution « if

(6.33) oo ll =
Moreover ||a || — 0as ||y || = 0, and || & || — O implies, in its turn,
(6.34) SUPogz<o ” u(z, @) — u*(x) ” — 0,

as can be seen from (6.23). Thus, the solution w*(z) is stable. The results
are summarized in the following theorem.

THEOREM 6.1. Let the equation

¥ = f) + 21 g e™, zz 0,
take the form
w = Au + h(u) + Zkgl gr e™*
on substitution of y = a + w. Let h(u) be as in Theorem 2.1, and assume that

the numbers p;, and the eigenvalues N1, Nz, <+ , Au Of the matriz A have non-
positive real parts. Also assume that there are n linearly independent eigenvec-
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tors of A and that condition (6.9) is satisfied. Then there is a solution y* ad-
mithing an expansion

y*=a+ ngla;keﬂ'x

which converges absolutely and uniformly for 0 £ x < o« provided the condi-
ton

2oz llol S
s satisfied, where v is a positive number depending only on the function f. The
numbers u, are linear combinations of the p, with nonnegative real coefficients.

If ~ s chosen sufficiently small, then there exists a positive number o such that
for any xo, xo = 0 and arbitrary vector yo with

o — y*@) || =
there exists a solution y = y(x; &0, Yo) satisfying the initial condition
Y(@o 5 %o, Yo) = Yo
and admitting an expansion
y(@; To, Yyo) = a + ngl a, e

which converges absolutely and uniformly for 0 = x < «. The numbers v,
are linear combinations of the \; and py with nonnegative real coefficients. For
Yo = y*(xo) the solution y(x; xo, Yo) reduces to y*(x). Furthermore, the solu-
tion y*(x) is stable, and asymptotically stable if Re \; < 0 (j = 1,2, -+, n).

Proof of the asymptotic stability of y*(x). Let N* be the set of sequences N,

with the property that the first n components of N, are zero. Then it follows
from equations (6.22) that

(6.35) WHE) = Dpewe @y €7
Thus,
(6.36) w(@, @) — uH@) = Drewr tr €75
IfReN; <0(j=1,2,:--+,n), then Re (N,-T) < 0 for r ¢N. Therefore
(6.37) limg.» || u(z, @) — u*(z) || = 0.

It should be noted that if system (6.1) is real, that is, @ and f(y) are real,
and if for each index k there exists an integer k' such that g»» = §r and

pr = P , then all the solutions y(x; 2o, ¥o) With real initial values yo are real.
A theorem analogous to Theorem 6.1 also holds for the general system

y = g(z,y). The details are easily supplied by following the pattern of
Section 4.
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