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1. Introduction

In recent paper [1] Wsow investigated systems of differential equations
of the form

(1.1) y’ f(y) -t- _, g e’.
Here y is n n-dimensional vector; y’ denotes the derivative of y with respect
to x; the g re constant vectors; the re rel, not necessarily rtionlly
independent numbers; the components of the vector f(y) re ssumed to be
nlytic functions of the components of y vnishing for y a nd holomor-
phic in the neighborhood of a. The sum in (1.1) hs m < terms.
Wsow constructs solution of (1.1) of the form

(1.2) y a + a e’,
where the series converges uniformly nd absolutely for < x < pro-
vided the coefficients g of (1.1) re sufficiently smll. The numbers ,
re linear combinations of the , , with nonnegtive integral
coefficients, nd the a, re determined recursively by solving n order linear
systems of equations. The individual terms of series (1.2) represent the theo-
retically nd experimentally well-known combination hrmonics in the re-
sponse of system (1.1).

In this pper Wsow’s results will be extended in several directions. The
exponential polynomial of (1.1) will be replaced by general exponential series

(1.3) :g e

which includes the general almost periodic function and the general periic
function with absolutely convergent Fourier series. It will be shown that
(1.2) is a real solution prodded (1.1) is a real system. The general system

(1.4) y’ g(x, y)

will be shown to hve solution of form (1.2) if the components of g(x, y)
re nalytic functions of y, holomorphic for y a p, with coefficients
that re of the form (1.3).

In the next section it will be proved that if the linear homogeneous prt of
(1.1) hs solution of the form

(1.5) ao e(/q),
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where q is an integer >= 2, then (1.1) has infinitely many solutions of the form

(1.6) y a + a0 e(/q), + ar e(’/q),
with a0 II a prescribed arbitrary number sufficiently small. The ar depend
on a0 and are determined recursively by solving nth order linear systems of
equations, and the t are linear combinations of v0, qwl, q, with non-
negative integral coefficients. In particular if the forcing term gk e
of (1.1) is periodic function of period , then there are infinitely many solu-
tions of period qr, including the so-called subharmonics.

Finally the question of the stability of the particular solution (1.2) is con-
sidered. It will be demonstrated that this solution is imbedded in a field of
solutions y(x, a) all of which have expansions like (1.2), but with exponents
that are linear combinations with nonnegative integral coefficients both of
the wk appearing in the forcing term of (1.1) and of the eigenvalues iv1, ivy,

iv of the matrix A which is the Jacobian of f(y) t y a. The par-
ticular solution (1.2) is then proved to be stable. This is true on the interval

< x < if the and v are real. When x is restricted to the interval
0 -< x < , then the o and v. may be arbitrary complex numbers with non-
negative imaginary prts. If the imaginary parts of the v. are positive, the
solution (1.2) is proved to be asymptotically stable.
An essential condition for the convergence of the expansions presented in

this paper is that the eigenvalues ivy. of the matrix A have positive distance
from the "compound spectrum" of heteronomous frequencies, that is, form
the set of linear combinations of the 0 with nonnegative integral coefficients.
This condition (see (2.3), (4.11), (5.3), (6.9)) excludes the "small divisors"
which occur in some expansions of periodic solutions due to integration of
harmonics with small frequencies (for general reference see [4] with its ex-
tensive bibliography).
Two recent papers by G. I. Biryuk [2, 3] also deal with the existence of l-

most periodic solutions for systems of the form y’ Ay + el(x, y) with a
small parameter e, f(x, y) being Lipschitzian in y. Although a few results of
this paper are implied by Biryuk’s results, the maior part re not, and the
methods of approach are entirely different. The results of this article are also
instrumental in constructing solutions of the form (1.2) for equations like
(1.1) anti (1.4) with nonanalytic f(y), g(x, y), as will be shown in a forthcoming
paper.

2. General forcing terms

We assume ’ g e** is an infinite series with g, < oo. The ,
are real numbers, rationally independent or not, arranged in an arbitrary
fashion. By putting u y a, system (1.1) takes the form

(2.1) u’ ,_ g e -!- Au - h(u),

where A is a constant matrix and the components h (j 1, 2, n) of
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the vector h possess expansions in powers of Ul, uo.,
or linear terms, converging for

u without constant

For any vector u with components Ul, u, u, the symbol u denotes
the norm max us II. For a matrix B with components b the symbol
B will denote the norm B max 1 b 1. Then-clearly

Bu B If" u 11,
Let i (i %/-1, j 1, 2,..., n) denote the eigenvalues of A (not

necessarily distinct), M the set of numbers which are linear combinations of
ol, o2, with nonnegative integral coefficients. We make the assumption

inf I g > 0.(2.3)
=,...,.,M

This assumption is satisfied in the two cases considered by Wasow [1]:
(a) None of the is real.
(b) The 0k are rationally dependent (i.e., there exists some real number

o such that k no (k 1, 2, ...) wheren is an integer) and M
(j= 1,2,...,n).
Another special case is
(c) The are positive, ->_ o > 0, and . cM (j 1, 2,..-, n).
To construct a formal solution of (2.1) we arrange the set of all sequences

(n, n., ...) where the nk are nonnegative integers, only a finite number of
which are different from zero, as a sequence N, N2, in the following way.
For N (n, n, ...) put

(2.4) NI kn,,

and let r < s if IN, I<IN, I. If lN [= IN8 l, then consider the first
component that is not the same for the two sequences Nr, N,, and let r < s
if the component of Nr is larger. Obviously, each sequence (n, n, ...)
appears as one and only one N. The particular sequences (1, 0, 0,...),
(0, 1, 0, 0,-..), (0, 0, 1, 0,...), will have certain ordinals denoted as
(1), (2), (3), ..., so that

N(x) (1, 0, 0, 0,...),

(2.5) N() (0, 1, 0, 0,..-),

N(s) (0, O, 1, 0,...).

N A- N8 is defined in the obvious way, as is also kN, -t- 1N, where k,
are nonnegative integers.

Let t2 stand for the sequence (, 2, and N. t2 for the symbol n o.
Although this latter is a real number and will finally be so identified, in the
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construction of the formal solution to (2.1) the 0k are considered as inde-
pendent parameters, and nk o is an element of the free additive semigroup
generated by the ol, cos,.... M:ultiplication of two exponential factors
eNr’, ei8"u results in another exponential factor

(2.6) ei’.eN’’ e’,
where N Nr -t- Ns. It follows readily from the ordering principle of the
N’sthatt_>_ r s.
We now construct a formal solution u of (2.1) of the form

(2.7) u ’r>=i a,. eir’’ax

in the same way as in Wasow’s paper [1]. Inserting (2.7) into (2.1), expand-
ing and rearranging according to the exponential factors exp (iN .9,x) one
obtains a recursive system of equations for the vectors a,

(2.8a) (A i. I)a,. -gr if r (/)

(2.8b) (A i,. I)a,. h,(a, as ,..., a._) if r (/)

/c- 1,2,... r- 1,2,....

The components of the vector functions hr are polynomials in the components
of a, a., a,_ without constant or linear terms. Because of assump-
tion (2.3), the matrices A i, I are nonsingular, and as shown in [1]

(2.9)

Therefore,

c sup (A iI)- <

(2.10a) Ila,[l --< cllg, ll. if r- (/),

(2.10b) a,. <- c h,.(a a ,..., a,._) if r (k).

Let be a function dominating the h. as defined in [1]. Then if

(2.11) v >__ b e’u*

is substituted in (v) and the resulting products are expanded and rearranged
as above, one obtains

(2.12) (v) .>_ (b b. ,..., b._)evr’u,
where

(2.13) tr(b, b ,..., b,._) >- h,.(a, a ,..., a._) I],

if b eo and / _-> a (/ 1, 2, r- 1).
vector

(2.14) e0 (1, 1, ..., 1).

r-- 1,2,...

Here e0 denotes the
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Then the vector v veo, where v is defined by the equation

(2.15) v c](veo)
will be shown to dominate u in the sense that

(2.16) br >-- a. II, r 1, 2,....

To see this let (2.11) with br re0 be substituted in (2.15). As before, one
obtains recursive equations for the/

cg if r (k),

(2.17) c(b, b, b_) if r (),

1,2,... r 1,2,....

Thus, by (2.10), (2.13), and (2.17)

(2.18a) ar c g b if r (k)

a c h(a, a ,..., a_)][
(2.185)

Cr(b,b,...,b_) [b] if r (k)

provided b a for 1, 2, r 1. Thus, (2.16) follows by
induction.
To prove the convergence of the dominating series (2.11) consider (2.15)

as an equation for v in terms of

As in [1] it is immediately seen that there is a positive number a0 such that
(2.15) has a unique solution v holomorphic in for a0 this inequality
will be satisfied if

(e.eo)

Thus, v is representable as a uniformly and absolutely convergent power
series - 1,2,... rW Wr > 1.(2.21) v

If the terms of series (2.21) are arranged according to the order of the se-
quences (r r, r, 0, 0, introduced above, the expansion

(2.22) v e’’
is obtained. This proves the uniform and absolute convergence of series
(2.11) and, therefore, of the dominated series (2.7) whenever condition (2.20)
is satisfied.

It follows from (2.15)that there exists a positive number a such that
iv pfor- <x < if
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Since Iv and u - II, it follows that the constructed series
(2.7) satisfies equation (2.3) whenever conditions (2.20) and (2.23) are satis-
fied. From the construction it is then seen that (2.7) satisfies system (2.1).
Thus the following theorem has been proved.

THEOREM 2.1 Let the differential system

Y’ k_l gk ek "4- f(Y)

on substitution of y a + u take the form
u’

_
g e + Au + h(u),

where
h(u) hkl2. u’u"

and let condition (2.3) be satisfied. Then the system has a solution which ad-
mits an expansion of the form

y a-4-r_la, e

converging absolutely and uniformly for -oo < x < o provided

where , is a positive number that depends only on f. The numbers g, are linear
combinations of the numbers with nonnegative integral coecients.

For the special case where the w are multiples of some real w 0 one
obtains

COOLLARY 2.1.. Let the differential system

y’ _,g e= + f(y)

on substitution of y a + u take the form
u’ _. g e -t- Au A- h(u),

where
kl,, k2. knh(u) u p,

k+. "+kn

and assume none of the eigenvalues of A equals iko (k 0, 1, 2, ).
Then the system has a solution which admits an absolutely converging Fourier
expansion

y a +

_
a e

provided

where , is a positive number depending only on f.
COOLLAR 2.2. With x restricted to the interval 0

_
x <

2.1 holds for arbitrary complex o with Im ok >- 0.
Theorem

The proof is unchanged.
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3. Real systems
Let (1.1) and the equivalent (2,1) be real systems. By this we mean a

and A are real, h(u) has real coefficients, and for each there exists ,
such that gk, k. We prove that the particular solution (2.8) of a real
system constructed in Section 2 is real for - < x < .
Let the be so arranged that

(3.1) .-1 -0., k 1, 2, ....
Then, by assumption,

(3.2) g2k-1 2k, k 1, 2, ....
If Nr is the sequence (nl, n., n3, n4, where the ordinal r is determined
as in Section 2, let r’ be the ordinal of the sequence (n., nl, n4, n3, ).
System (2.8a) now breaks up into

(A itr l)a g
(3.3) r (/), k 1,2,...,

(A A- its, I)ar, g,

where use is made of (3.1) and (3.2). It follows that

(3.4) a,, ,, r (k), k-- 1,2,....
Similarly, (2.8b) breaks up into

(A i, I)a, h,
(3.5) r (/), k-- 1, 2,....

(A A-i, I)a,, h,,

Here h is a polynomial with real coefficients in a0, al,
and s’ < r. Also it is easily seen that if

h h,(a, a2 ,’’’, a,),(3.6a)

then

(3.6b)

a,, wheres < r

h, h,(a, a2, ,..., a,,).

Thus, it follows from (3.5) and (3.6) that if a, c for k 1, 2, s,
then also a,., d,. Using (3.4) and induction gives

(3.7) a,, , r 1, 2, ....
Thus it is proved that (2.8) is real for - < x < .
THEOREM 3.1. If the system (1.1) is real, then the solution (1.2) is real for-- <x< .

4. General systems
We consider next the general system

(4.1) y’ g(x, y).
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We assume g(x, y) is analytic in y for < x < , holomorphic in some
neighborhood of y a. We put u y a as before and rewrite (4.1) in
terms of u as

(4.2) u’ g(x) + A(x)u + h(x, u).

Here the vector g(x) g(x, a) is assumed to have an expansion

(4.3) g(x) _,_1 g e’k,
where the are real numbers, rationally independent or not, and

<
We also assume that the matrix A(x), which is the Jacobian of g(x, y) with
respect to yl, y2, y evaluated at y a, has an expansion

A (x) A + "_A ek,(4.5)
with

(4.6)

The fact that the constant matrix A is separated from the other terms in
(4.5) does not rule out the possibility that one or more of the are equal
to 0 and that the corresponding terms A exp (i x) contribute to the con-
stant term (the mean value) of A(x).
The vector h(x, u) can be expanded in a series of powers of u, u., u

without constant or linear term. We put

(4.7) h(x, u) hl....,(x)u u "u,
kl+" "’t"kn_

and assume that the vectors hk...k,(x) possess expansions

(4.8) hl...k,(x) _1 h,..., e’’,
with

(4.9)

(4.10) kl-k-k2+. ..-}-kn

k:+" "+kn >=
for some positive p.

These are the general assumptions which we assume to hold throughout
this section and which will be considered as part of the definition of g(x, y)
in (4.1), and of g(x), h(x), A(x, u) in (4.2). Besides, we impose the same
condition as in Section 2 on the eigenvalues of the matrix A. If these are

i (j 1, 2, n) and M is the set of numbers which are linear combina-
tions of 0, , with nonnegative integral coefficients, we require that

inf ,I > 0.(4.11)
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We now construct a formal solution u of (4.2) of the form

(4.12) u

where Nr, 2 are as defined in Section 2. Inserting (4.12) into (4.2), expand-
ing and rearranging according to the exponential factors exp (iN.x), one
obtains a recursive system of equations for the vectors ar

(4.13a) (A i I)a. -g. if r (),

(4.13b) (A i I)a h(a a ,..., a_) if r (),

1,2, r 1,2,....

The numbers and ordinals () are also as defined in Section 2. The com-
ponents of the vector functions h are polynomials in the components of
a, a, a_ without constant terms, with coefficients that are poly-
nomials in the components of A and .... As in Section 2 we conclude
that equations (4.13) have a unique solution a and that

(4.14) c

(4.15a) ]a] cg. if r (k),

(4.15b)

1,2,... r 1,2,....

In order to construct a dominating problem we introduce the scalar func-
tions

(4.16) (x) A e,
(4.17) 12 .(x)

h(x, u) a(x)(u+ + u)/n
k k2 kn(4.18) +

By (4.10) the series in (4.18) converges in the domain u p, for- < x < . It clearly dominutes, for each x, each component of the
series of (4.7), which therefore also converges in the domain [[ u p for- < x < . It follows that the components of g(x, y) are holomorphic
in the region

If

(4.19) v

is substituted in (x, v) and the resulting products are expanded and rear-
ranged as in Section 2, one obtains

(.2o) (x,
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If one recalls the definition of the hr in (4.13b), one finds

(4.21)

if b fl e0 fl(1, 1, ..., 1) and >_- a (]o 1, 2, ..., r 1).

Now let v veo where v v(x) is defined by the equation

(4.22) v C(X, I)e0) c Er_l [1 gr [[ e’.
If (4.19) with b r e0 is substituted in (4.22), one obtains the recursive
equations

(4.23a) ,. c g if r (k),

(4.23b) ch(bl, b. ,..., b,._) if r (/o),

/o 1,2,... r 1,2,....

Thus, by (4.15), (4.21), and (4.25)

(4.24a)

(4.245)
<- c(b, 52 ,..., b_)

provided ]lbl[ >= [la[] for/o 1,2,...,r 1. It follows by induction
that

(4.25) II b ar I], r 1, 2,

that is, v(x) dominates u(x).
To prove the convergence of series (4.19), consider (4.22) as an equation

for v in terms of the infinitely many variables

(4.26) z ei.

If we use (4.16), (4.17), (4.18), and (4.26), equation (4.22) becomes

+ E
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Thus, if we impose the condition

(4.30) ’ A < c-,
then, by (4.28b), F’(O) O. Using (4.28a) and (4.28c) one concludes that
there exists a positive number a0 such that (4.27) has a unique solution repre-
sentable as a uniformly and absolutely converging power series

(4.31) v Cr,r. .r, ZlZ Z"
rl+" *+rm_

m_l

provided

--<
If (4.26) is inserted in (4.31), products are expanded and the resulting terms
are rearranged according to the order principle of Section 2, the expansion

(4.33) v r_l eNr’x

defined by the recursive equations (4.23) is obtained. This proves the uni-
form and absolute convergence of series (4.19), hence also of the dominated
series (4.12), whenever conditions (4.30) and (4.32) are satisfied.

Furthermore, it follows from (4.27) that there exists a positive number
o1 such that v -< p for - < x < if

Since I] u =< v Iv I, it follows that the constructed series (4.12)
satisfies equation (4.2) whenever conditions (4.30), (4.32), and (4.34) are
satisfied. Thus, the following theorem has been proved.

THEOREM 4.1. Let the differential system

y’ g(x, y)

on substitution of y a u take the form
U! Ekl gk e "4- A (x)u "4- h(x, u)

with A(x) and h(x, u) as in (4.5) and (4.7), and assume condition (4.14) is
satisfied. Then the system has a solution which admits an expansion of the
form

y a "4- ’_ a e’
converging absolutely and uniformly for < x < provided

Ek_l A < sup,M [[(A it)- -and

where . is a positive number depending only on A (x) and h(x, u). The num-
bers o which are the elements of the set M, are linear combinations of the num-
bers o with nonnegative integral coecients.
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For the special cuse where the k ure multiples of some real 0 one
obtains

COrOLLArY 4.1. Let the differential system

y’ g(x, y)

on substitution of y a u tae the form
u’

_
g e + A(x)u + h(x, u),

where

A(x) A + Ae

h(x, u)
k /

and assume none of the eigenvalues of A equals i ( O, 1, 2, ).
Then the system has a solution which admits an absolutely convergent Fourier
expansion

y a +=_ a e
provided =_ [[ A ] < sup ][(d iI)-a

where is a positive number depending only on A(x) a h(x, u).

Coonv 4.2. With x restricted to the interval 0 x < Theorem 4.1
holds for arbitrary complex Im 0.

5. Subharmonics

For simplicity we return to equation (1.1) for y nd (2.1) for u. The
main assumption in this section is

(5.1) q0- 0 0,

where q is an integer 2, i0 is one of the eigenvalues of A, and
o

with at least one of the finite number of positive integers n not divisible
by q. The solution will contain exponential terms of the form

exp (i(Y/q).x).

However, of all the sequences N (r 1, 2,... of Section 2, only those
will be used in the solution which are of the form

(5.2) N (r0n + r q, r0n + r q, ).
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The set of these Nr with (ro, rl, r2, (1, 0, 0, ) will be denoted
by t and the set of real numbers # N., N e, will be denoted by .
Condition (2.3) is replaced by

(5.3) inf lJ- #/q > O.
/=1,.

We construct a solution of equation (2.1) which admits an expansion of
the form

(5.4) u=a0 + a

If (5.4) is inserted in (2.1), products are expanded and the resulting terms
are rearranged according to the exponential terms exp (i(N/q).x), one
obtains the following system of equations for the vectors a0, a"

(A i(#o/q)I)ao O,

(A i(#r/q)I)a,. h,.(ao, al ,..., a_l) -f- f,.,

(5.5a)

(5.55)

where

(5.6a)

(5.6b)

f, -g,. if N qN),

fr 0 if N qN),

/= 1,2,...

The components of the vector functions ha are polynomials in the com-
ponents of a0, a,..., a_ without constant or linear terms. Equation
(5.5a) results from the fact that No . Because of assumption (5.1) this
equation has a solution a0 with arbitrarily prescribed a a0 [[. The re-
maining a, can be recursively determined from systems (5.5b), which are
nonsingular on account of assumption (5.3). As before one concludes that

(5.7) sup, ]](A i(/q)I)

and

(5.8) a c(] h(ao, a,..., a_)]

Let the function be defined as in Section 2. Then if

(5.9) v bo e(q)’ + b e(q)’

is substituted in (v) and the resulting products are expanded and rear-
ranged as before, one obtains

(5.10) (v) h,(bo, b ,..., b,_)e’()’,
where

(5.11) ,(b0, b,..., b,._) h,(ao, a ,..., a,_)[[
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if bk /ke0 and/k _>-- Ilaii(/ o, 1,..., r 1). We show that the
vector v veo with the scalar v defined by the equation

(5.12) v h() ’") + II e
dominates the vector u in the sense that

(5.13) ][b0 ]]a0[[, [b,] [[ar], r 1.

To see this let (5.9) with b0 0 eo, b, , e0 be substituted in (5.12). Pro-
ceeding as before, one obtains recursive equations for the 0, ,
(5.14)

o a,

c(bo, b, b_,) + c f
Thus, by (5.8), (5.11), and (5.14)

(5.15a) il a0 II= 0 b0 II,
a,. c(ll h,(ao, a ,..., a,-)ll + f 11)

(5.15b) cA,(bo, b ,..., b,_) + f

p,odea b II a II for O, 1,..., r . Thu (5.3) i proved by
induction.
To prov the convergence of th domintin series (5.9) consider (5.12)

as an equation for v in terms of

(5.16a) zo e(/q),

eikx eiq(() Iq)x(5.16b) z, k 1, 2, ....
One concludes as before that there exists a positive number a0 such that
(5.12) has a unique solution v representable as a uniformly and absolutely
converging power series

(5.7) : c0,..., z z
ro+rl+" "’l-rm

m_l

provided

(5.8)

If (5.16) is inserted in (5.17), products are expanded and the resulting terms
are properly arranged, the expansion

(5.19)

deiined by the recursive relations (5.14) is obtained. This proves the uni-
form and absolute convergence of series (5.9), hence also of the dominated
series (5.4), whenever condition (5.18) is satisfied.
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Furthermore, it follows from (5.12) that there exists a positive number
a such that v =< p for -oo < x < oo if

+ c !I =<
Thus, the constructed series (5.4) satisfies equation (2.1) whenever conditions
(5.18) and (5.20) are satisfied. The results are stated in the following the-
orem.

EOREM 5.1. Let the differential system

y’ g e + f(y)

on substitution of y a u take the form
u’ g e + Au + h(u),

where h(u) is as in Theorem 2.1, and let conditions (5.1) and (5.3) be satisfied.
Then, for given a O, the system has a solution y which admits an expansi
of the form

y a + ao e + a e

with ao ] a, converging absolutely and uniformly for - < x < pro-
vided

where is a positive number that depends only on f. The numbers are linear
combinatis of the numbers o, q, q,’" with nonnegative integral
ecienls.

In the special case where the are multiples of one real number 0,
conditions (5.1), (5.3) will be satisfied if some eigenvalue of A is i(p/q)
with p relatively prime to q and if otherwise no eigenvalue is equal to
i(mp/q+k) (m 1,2,... ;k 0, 1, 2,...). This leadsto

COROLlaRY 5.1. Let the differential system

y’

_
g e + f(Y)

on substitution of y a + u take the form
u’

_
g e + Au + h(u)

where h(u) is as in Theorem 2.1. Assume the matrix A has an eigenvale
i(p/q) with p relatively prime to q and no other eigenvalue of the fo
i(mp/q + k) (m 1, 2, O, 1, 2, ). Then, for a0
given, the system has a solution admitting a Fourier expansion

e(p/q) ei(mpla+k)zy=a+ao + a.
ml
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with ao a, converging absolutely and uniformly for - < x < pro-
vided

where . is a number that depends only on f. Whereas the forcing term has the
period 2/, the period of the solution is q. 2r/o.

6. Stability of solutions

In this section it will be proved that the particular solution found ia Sec-
tions 2 and 4 is imbedded in a field of solutions each of which admits an ex-
pansion in an exponential series, and furthermore that the particular solu-
tion is uniformly stable.
Here we assume that x is restricted to the interval 0 -<_ x < . For sim-

plicity the proofs are givea for equation (1.1) rather than for equation (4.1).
With slightly changed notation equation (1.1) is written as

(6.1) y’ f(y) + k>=l gk ep,
and we assume

With the substitution y a u equation (6.1) becomes

(6.3) u’ Au + h(u) + >_ gk ep,
and it is also assumed that the eigenvalues h, h, h of A satisfy the
condition

(6.4) Re - -< 0, j 1, 2, n.

To simplify notation we put

(6.5a) rk ),, ]c 1, 2, n,

(6.5b) p_, n -t- 1, n 2,....

The sequences Nr (r 1, 2,... are defined as in Section 2, likewise the
N() (] 1, 2, ). is to denote the sequence

(6.6) (r, r,...) (X,X.,...,X,p,p.,...).

If N (ni, n., ), then N. r__>l n r, and the complex number
N-E will be denoted as

(6.7) Nr., r 1, 2, ....
In particular,

(6.8a) () N(). , / 1, 2, n,

(6.8b) p_, / n -{- 1, n - 2, ....
The set of numbers , (r 1, 2, r (/),/

_
n) will be denoted as ;

it includes all the linear combinations of hi h h p p
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with nonnegative integral coefficients except the numbers M, k,., --., .
themselves. Condition (2.3) is replaced by the more stringent condition

(6.9) inf I" > 0.
’----1,. .,n;

We seek a solution of equation (6.3) of the form

(6.10) u r_l ar eNr’z.
If we substitute (6.10) in (6.3) and proceed as in Section 2, we obtain the
following equations for the a

(6.11a) (A hk I)a,. O,

(6.11b) (A pk I)a,. -g_,

(6.11c) (A ,,. I)a,. h,.(al

r (k), k 1,2,-..,n,

r (k), k n+ 1, n+ 2,...,

,a_), r (k), k 1,2,....

The components of the vector function h are polynomials in the components
of al, a., a_l without constant or linear terms.

Equations (6.11a) are satisfied if a() (k 1, 2, n) is taken to be

(6.12) a() a ek, k 1, 2, n,

where a is an arbitrary number and e is an eigenvector of A belonging to
the eigenvalue h, e 1. The systems (6.11b), (6.11c) are nonsingu-
lar on account of assumption (6.9). After a(1), a(2), a) have been
chosen, the remaining a are determined recursively from equations (6.11b),
(6.11c).
With the constant c defined as in Section 2,

(6.13) c sup [[(A I)- < ,
one obtains from (6.11)

(6.14a) ar =< c g- I[, r (k),

(6.14b) a <-- c h(al, a2, a,._)l]

Exactly as in Section 2 it is seen that the series

(6.15) v _>i b e’,
with v veo and v defined by the equation

+
dominates series (6.10) in the sense that

Considering (6.16) as an equation for v in terms of

(6.18) z e,

]c n -}- 1, n + 2,

r(k), /= 1,2,....

r 1,2,--..

r= 1,2,..-:
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one concludes as before that there exists a positive number such that

(6.19) v c,,,,...., z’ z z
n+...+l

and henever

Thus, (6.15) and the dominated series (6.10) convere absolutely and um-
formly for 0 < if condition (6.20) is satisfied. oreover, (6.10)
represents a solution of equation (.3).

Let the amily of solutions (6.10) with the arbitrary parameters, , ..., be denoted as (, ). e sho that these functions form
a field of solutions embeddin the particular solution of Section 2. For
this purpose, we denote the particular solution by * and write its expansion
in. the form

The coefficients are then defined by the recursive equations

(O.2a) 0, r (), 1, , ..., n
(O.2b) (-=-_, r=(), =+1,+2...,

From te equations it follows tat *() (, 0). Equation (6.16) for
the dominating function u shows that the components of (, ) are holo-
morphic functions of , , in the domain defined by (6.20) with
coefficients that have expansions of the form (6.10) which convere ab-
solutely and uniformly for 0 < . Thus

The components of (, ) can be expanded as power series in , ,
and without constant or linear terms. The () can be expanded as

(6.24) w(x) a e’,
and it follows from (6.11), (6.12), and (6.22) that

(6.25a) a e r (k), k 1,2,..-,n

(6.25b) a 0 r (k), nW 1, n 2...

where is the Kronecker symbol. The remaining a (r (k), 1)
are polynomials in the variables g, g, without constant terms. Thus,
by (6.24) and (6.25)

(6.26) w(x) eXe + z(x, g),
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and, by again using equation (6.16) for the dominating function v, it is readily
seen that

(6.27) ]] z(x, g)[]--* 0 as k_l gk II-- o, j 1, 2, ..., n.

Substituting (6.26) in (6.23) and putting x Xo _-> 0 we have

(6.28) U(Xo, a) u*(xo) ’L1 [e. e - z(xo, g)]a. - W(Xo, ).

We now make the additional assumption that the eigenvectors e, e., e,
of A are linearly independent. Let K be the norm of the inverse of the matrix
whose rows are el, e., e,. By (6.27) one can find a positive number ,
such that the vectors ee z(xo, g) (j 1, 2,..., n) are linearly
independent and such that the inverse of the matrix E(xo, g) formed with
these vectors as rows has a norm satisfying the inequality

(6.29) l[ E(xo, g)- [I <- 2K

provided

Let now the initial value U(Xo, a) of the solution u(x, a) be given, say

(6.31) U(Xo, ) u*(xo) yo.

Then (6.28) becomes an equation for the vector a (a, as, ):

(6.32) E(xo, g)a + W(Xo, ) yo.

Since the Jacobian of this equation with respect to a, a, a. at a 0
is E(x0, g), which by (6.29) is bounded away from zero, it follows that there
exists a positive number such that (6.32) has a unique solution a if

(6.33) y0 =< 7.

Moreover ii a -- 0 as I! y0 --* o, and II a -- 0 implies, in its turn,

(6.34) sup0_x< u(x, a) u*(x) O,

as can be seen from (6.23). Thus, the solution u*(x) is stable.
are summarized in the following theorem.

THEOREM 6.1. Let the equation

y’ f(y) +

_
g ep,

take the form
u’ Au - h(u) - g e"

The results

x>=0,

on substitution of y a -- u. Let h(u) be as in Theorem 2.1, and assume that
the numbers pk and the eigenvalues M, , of the matrix A have non-
positive real parts. Also assume that there are n linearly independent eigenvec-
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tors of A and that condition (6.9) is satisfied. Then there is a solution y* ad-
mitting an expansion

which converges absolutely and uniformly for 0 <= x < provided the condi-
tion

is satisfied, where , is a positive number depending only on the function f. The
numbers tr are linear combinations of the pk with nonnegative real coecients.
If / is chosen suciently small, then there exists a positive number such that
for any Xo, Xo >= 0 and arbitrary vector yo with

uo- u*(x0)II --<,
there exists a solution y y(x; Xo, yo) satisfying the initial condition

y(xo ;x0, y0) y0

and admitting an expansion

y(x; xo, Yo) a +

_
a, e

which converges absolutely and uniformly for 0 <= x < . The numbers
are linear combinations of the and pk with nonnegative real coefficients. For
yo y*(xo) the solution y(x; Xo, yo) reduces to y*(x). Furthermore, the solu-
tion y*(x) is stable, and asymptotically stable if Re h. < 0 (j 1, 2, n).

Proof of the asymptotic stability of y*(x). Let * be the set of sequences N
with the property that the first n components of N are zero. Then it follows
from equations (6.22) that

(6.35) u*(x) . arev’z.
Thus,

(6.36) u(x, ) u*(x) . arev’z.
If Reh < 0(j 1, 2,...,n),thenRe (N.) < 0forr. Therefore

(6.37) lim,., u(x, a) u*(x) O.

It should be noted that if system (6.1) is real, that is, a and f(y) are real,
and if for each index / there exists an integer /’ such that g, and
p, , then ll the solutions y(x; xo, yo) with real initial values y0 are real.
A theorem analogous to Theorem 6.1 also holds for the general system

y’ g(x, y). The details are easily supplied by following the pattern of
Section 4.
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