
CLASSES OF PERIODIC SEQUENCES

BY

FINE

1. Introduction

In certain psychological experiments connected with the learning of periodic
sequences of symbols, it is reasonable to identify two sequences if we can get
one from the other by beginning at a different point, by permuting the sym-
bols, or by a combination of these operations. For example, if there are two
symbols, say 0 and 1, and if the period is 3, the following sequences are
equivalent"

(0), (10), (10), (100), (0.0), (001).

Also, (000) and (111) re equivalent. Thus, the eight possible sequences
fll into two equiwlence classes. It is of interest to determine how mny
classes there are for a given period n. Since a sequence of period n lso has
period kn, where k is any integer, there will be duplications as we run through.
all periods. For example, the class {(000), (1.11)} will already have been
counted for n 1 and n 2. We should therefore determine, for each n,
the number of classes of sequences which have period n but no smaller period;
that is, the number F(n) of classes with primitive period n. In our example,
F(1) 1, F(2) 1, F(3) 1, F(4) 2, and so forth. If F*(n) denotes
the total number of classes with period n, whether primitive or not, then

(1) F*(n) F(d),

where the summation is over all (positive) divisors d of n. This follows from
the fact that every class of period n has a primitive period d which divides n.

2. Formulation

Let A denote the set of all periodic sequences

a (... a_l a0, al, ...),
where the at may take any of the q values 1, 2, q. Let Q denote the
symmetric group on these q symbols, its elements being denoted generically
by r, the identity element by e. Let T be the infinite cyclic group generated
by the element r. We can make Q and T act on A by the following rules:
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It is easily verified that equivalent sequences have the snme periods, so it makes
sense to speak of a class with period n.
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(2) 7r(a) (-.-, 7r(al), 7r(a0), 7r(al),’’’),

(3) r(a) (-.- ,b_l,b0,bl, ...),

where b; a.+_. It is not difficult to see that r and r commute:
rrn(a) rnr(a) for all a e A. Furthermore, Q and T have only the identity
element in common, that is, r(a) rn(a) for all a e A implies r r e.
Therefore the group G of permutations of A generated by Q and T is their
direct product, and every element of G has a unique representation in the
form rrn.
For each a e A, there is a largest subgroup Ha of G under which a is in-

variant. That is,

(4) e Ha -+ (a) a.

If H Ha for some a e A, we shall say that a pertains to H, and we shall call
H a special subgroup of G. For each subgroup H of G, we define A, as the
set of all a e A which pertain to H, and we write f(H) for the number of ele-
ments in Az,. Clearly, f(H) > 0 if and only if H is special. Also, if H is
special, it contains r" for some n > 0, so every a which pertains to (or is
merely invariant under) H must have period n. Since there are at most q
such elements, f(H) is finite. Also, H is of finite index j(H) in G.
Let k(H’) denote the number of elements in A which are invariant under

the special subgroup H’. Every such element belongs to a unique A for
some H D H’. Conversely, if a e Air for some H D H’, then a is invariant
under H’. Hence

(5) k(H’) _, f(H).
HD H’

This is the first of two fundamental equations tha will lead to a solution of
our problem, the evaluation of F(n).
To derive the second equation, we digress for moment to count the

number of elements in a class C Ca containing a given element a e A,.
C, which is the orbit of a under G, consists of the set of all 3,(a) for
Let , %., - be a system of left coset representatives for H in G, so that

G 3H u .H u u/3.H,

where j j(H). If 3" e G, 3" flh for some i and for some h e H, so
3"(a) flh(a) fl(a). Thesej elements are all distinct, for if (a) =/e(a),
we have fiT, (a) a,/97,fl e H,/ e fie H, and finally i i’. Hence C
{fl(a), ,/(a)}, and C I, the number of elements in C, is equal to j(H).
Now, to determine F(n), we can count each element a of primitive period

n with frequency 1/ICa I. Hence
1 1 (,) 1F aZ(n Ca I-- aZ (n j Ha 1t [---) A

1,

(6) F(n) ,(,o f(H). j(H)’
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where the subscripts (n) indicate that we sum over those elements or sub-
groups with primitive period n. Thus, sufficient information about f(H)
and j(H) will yield a solution to our problem. Once we have analyzed the
structure of the special subgroups, j(H) will be easy to compute, as will
/c(H’) in equation (5). A further analysis of the conditions under which
H D H’ will enable us to combine (5) and (6) and to solve for F(n). The
method sketched above is fairly general and may be applied to many com-
binatorial problems.

3. The special subgroups
Let H Ha be a special subgroup of G, and let Qa Q n Ita. Define

p as the set of all i e {1, 2, q} such that r(i) i for all r

the set of all i which appear in a. Clearly pl c p. If 0 e Q leaves p pointwise
fixed, it does so to p, and therefore O(a) a, e Qa. Hence

Qa Q(p) =- o e Q o(i) i for all i e p}.

If the cardinality of p, say r(pl), is q or q 1, then Qa
and p {1, ..., q}. If r(p) -<_ q 2, then p p. For suppose that
i e p pl. There exists an i’ e p, i’ i. Let t be the transposition (ii’).
Then O(a) a, so 0 e Qa Q(p), and i’ 0(i) i. This contradiction
shows that p c pl, and since p c p, our assertion is proved. The possible
values of r(p) are 1, 2, q 2, q, and the correspondence between p and
Q(p) is one-to-one. Obviously Q(p) is isomorphic to the symmetric group on
q r(p) letters.
Now we shall prove that Qa is a direct factor in H. If e H, then

uniquely, where e Q. The set of all ), which arise in this way is a group
L Q, Q(p). If k e L, e Q(p), then t’ k-lOk e Q. But --loh
(r-)-0(r-’) fl-10fl e H. Hence 0’ e Q n H Q(p), and Q(p) is normal
in L. Next we show that every }, e L leaves p setwise invariant. For if
not, there exist an i e p and i’ e p such that k(i’) i for some k e L. For each

’ e Q(p), there is a e Q(p) for which ’ X-0X, and

Thus, every element of Q(p) leaves i’ fixed, contradicting the fact that i’ e p,
and our assertion is proved. Now the set of all elements in Q which leave p

invariant as a set is precisely Q(p) X Q(p*), where p* is the complement of
pifr(p) 1, andp*- {1,.-. ,q}ifr(p)- 1. ThereforeLQ(p) XQ(p*),
and every ), e L is representable uniquely as ), 0r, 0 e Q(p), r

follows that every fl e H is representable uniquely as fl Orr", 0 e Q(p),
e Q(p*). Let E be the subgroup of H consisting of all fl for which 0 e,

that is, fl rr with r e Q(p*). Then Q(p) commutes with E, the two to-
gether generate H, and Q(p) n E [e}. (If 0 vr, with 0 e Q(p), rr e E,
then 0 O.e e.rr’, so 0 e by the uniqueness of the representation.)
This proves that H Q(p) X E, as was asserted.
We shall now show that E is cyclic. Let M be the set of integers m for



288 N.J. FINE

which there is a e Q(p*) with rr e E. It is easy to see that M is a sub-
group of the integers, therefore cyclic, with generator i > 0. Since r eE
for some minimal positive n, > 0 and ln. Let r e Q(p*) be associated
with i(r e E), and let ’T be an arbitrary element of E, ’ e Q(p*) and
m e M. Then m k, and (’T)(r)-k r’r-k belongs to E and to Q,
hence toHnQ-- Q(p). ButQ(p) nE- {e},so’ rand’r (r).
This proves that E is cyclic, with generator rr. We remark that if the order

Sdof r is d d(), then n d. For (rr) r e H n T, which is the cyclic
group generated by rn. Hence n ld. On the other hand,

r eEnQ {e}.
Therefore n/ is a multiple of d, so d[n. Since rid and n are positive in-
tegers which divide each other, they are equal.
To summarize, every special subgroup H is of the form Q(p) ) H, where
H is the cyclic subgroup generated by r, e Q(p*), and tid() n is the
least positive integer for which r e H. Furthermore, p, , i are uniquely
determined by H. We may characterize n as the primitive period of any
aeAH.

4. Development of the fundamental equations
From the results of the last section, we may write equation (6) in the form

(7) F(n) _, f(Q(p) X H)
p,,,. j(Q(p) X U)"

d(’)----n

To compute the index j (G" H), we observe that

H c H Q X H G, H’ c H Q(p) X H G.
Hence

Also
(G’H:) (G’H) (H’H:) q!n.

since d(r) is the least positive integer for which (rr) T

of course.) Combining these results, we get

j(H) (G’H) q! n
(q r) d()

(8) q!nF(n) _, (q-- r)[d()f,(),
p, ,

d(’)n

where we have defined

(9) fo.,() f(Q(p) X H).
Let us now introduce the formal Dirichlet series

(G’H’) (G:H) (H’H) (H [7) (G:H) (q r)!d()
(Here r r(p),

(10) (s) q(S) _, nF(n)
n=l s
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No use will be made of convergence for these series, and we could equally
well permit the summations to run over some fixed, but arbitrary, range
1,---, N. The results obtained would be valid for n =< N. Since N is
arbitrary, they would hold for all n. However, it is more convenient to work
with the full formM series in order to avoid clumsy circumlocutions.
We multiply (8) by n and sum for all n _>_ 1, to get

Now if r(p) r(p’), there is a permutation of the symbols which carries p

into p’ and "f e Q(p*) into "f’e Q(p’*). Since such permutation does not
change the number of elements pertaining to Q(p) X H, we have Z, ,, (s)
Z,,(s). The inner sum therefore depends only on r. The number of p for
which r(p) r is clearly () q!/(q r)! r! Hence, foreach r 1,2,
q- 2, q we may select a normalized p {1,2,... ,r}. Q(p*) is then the
symmetric group on {1, 2,.-- r}, which we shall denote by S,. Also,
Z. will be written as Z, if p is normalized. Performing the indicated re-

ductions, we obtain
1

If we adopt the convention that Zq_,(s) 0, we may regard the summation
as running from r 1 to r q.
Now we turn to equation (5) and evaluate lc(H) directly. If a is to be

invariant under H Q(p) X H then a (i 1, 2, ti) can be chosen
rbitrarily frown p, and all others are determined by

ai+. (r(a))i (’f-(a))i "f-(a,),

for all i and m Hence

and equation (5) becomes
k(H) r,

t’
(14) r f(H).

HH

it holds, then

which implies that 8’ tint and "f’ 0"f. These necessary conditions are
easily seen to be sufficient, so H H is equivalent to

The relation H D H’ must
Q(p) H n Q H’ n Q Q(p’), so p c p’.

"fit
if’ O "fT m,

now be analyzed. If
Next, "f’r eQ(p) H, so



290 N. l. FINE

(i) p C p’,

(15) (ii) r’ e Q(p) for some m >-- 1,

(iii) ’ m.
If ’ snd re related by (ii), we write ’(p). Given p, ’, , nd ’,
with ’(p), there is s minimum m for which (ii) holds, sy , snd every
m (mod d()) for which m]’ is slso cceptsble. Thus (14) my be
written

r’’=(16) ’ ’() 1’
mp(modd(v))

We introduce the formal Dirichlet series

(17) K(s) r

=x (r q- 1).

Then, multiplying (16) by ’- snd summing over sll ’ 1, we get

pcp (p) ’=1
m(mod d ())

pCp ’ (p) mD(modd(v))

=E E E
pcp ’--r’ (p) m_/(modd(r))

Define

(18) H,.d(s) , m-.
mp(modd)

Then we have

(19) K,,(s)
c=

This holds for all p’ with r(p’) r’, all r’ e Q(p’*), and it is understood that
Q(p*).
We may normalize p’ {1, r’}, so that r’ e St,. If p, c p’, r(p)

r(p), there is a permutation which carries p into p, p’ into itself, and v’ into
’. For each e Q(p*), the image e Q(*), and if -- r’(p), then -- ’().Furthermore (, r’, p) /(, ’, p), d@) d(), H.()(s) H.()(s),
Z.-(s) Zp.(s). Thus the inner sum in (19) depends only on r(p). For
each r <= r’, there are (’) sets p p’ for which r(p) r. Hence

(20) K,(s)-- _, (’) _, U.()(s)Zr.,(s).
r r’ r)

’ and that r’ 1, 2,. q 2, q.It is understood that r e S, e S,, ..,
If we want (20) to hold for q l, we may complete the definition (17) by
putting Kq_l(8) O.
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5. Solution of the equations
A straightforward solution of (20) for Zr., followed by substitution in

(13), solves our problem in a sense, but we can make further progress towards
a more explicit result. We observe that we do not need to determine the
individual Zr. but only the particular combination appearing in (13). This
turns out to be possible.

Let us multiply (20) by an unspecified function Y(r’, r’) and sum over all
r’ and r’. The right side will yield a linear combination of the Z., with
coefficients depending on Y. If we equate these coefficients with those ap-
pearing in (13) we obtain Y as our sum. Our problem is then transformed
to finding Y. It is unimportant whether Y is unique, although this is prob-
ably true. We can make any a priori assumptions about Y that we please,
the end justifying the means. For example, we shall assume that Y de-
pends only on r’ and d(r’).

Carrying out the above-mentioned summation, we obtain

Y(r’, ’)K, (’)H.,() Z, Y(r’, ’)
r,, r,

Z,, (:’)U,.a()Y(r’, ’).
r, r er

’(r)

Referring to (13), we shall require that

1 d(v)_ (:,) U..a()Y(r’, ’).(21)

If (21) is satisfied, then

(22) (s)

Now, for fixed r, r’, and e St, the relations ’(r), ’ e S, are equivalent
toy’ "0, where 0eQ(r) Q({1, 2, r}). But 0 v’-" belongs to
S,,, since S, S,,. Hence 0 belongs to the symmetric group on

{r + 1, r’}. Conversely, if 0 e , then for every m, v0 belongs to the
group generated by S and S, which is contained in S,. The minimum
positive m (which we have denoted by g) will be one of the integers 1,
d(v). Hence (21) may be written

(23) ;- d()- (:’) H,a()Y(r’, 0).
r’ Ot =1

Now v" and 0 operate on the disjoint sets of symbols {1, ..-, r} and
{r + 1, r’}, so they commute, and d("O) is equal to the least common
multiple of d(") and d(O), denoted by [d("), d(0)]. Also, d(") d()
d()/v, where v is the greatest common divisor (g, d()). Recalling our
assumption on Y, the inner sum is expressible as
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Now

m-kv(mod lv) /(mod l)

Our inner sum (24) becomes

(25)

where

---1
(t,d

Then

vld(r)

k---1 k-----1
(,)=i (k,)=i

But it is easy to see, by expanding each factor in a geometric series, that

1 p- =1 -’
(,)=1

the product being over all primes p which do not divide . Hence

(26) M()= 1 1

# 1 p-*= (1 p-*). H p_= (s) (1 p-).
1-

Returning to (25), we replace v by its complementary divisor d()/v
to get

Y(r’, (’)/O) M() d(v) Y(r’,
81d() 81d()

Putting this back in (23), simplifying, and changing the order of summation,
we get

I d() ’M() (:’) Y(r’ ()/).r [d() r’ e

Observe that the order of ()O is [, d(0)], so the sum

(27) Y(r, ) (:’) Y(r’, ()/0)

depends only on r and . The equation

1
ld()
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has an obvious solution
SM()V(r, ti) (1/r!)(ti),

where denotes the Euler function

(ti) ti II (1 p-l),

since it is well known that

d (i).

Thus we have reduced our problem to

where V is given by (27).

V(r, ) q()-8/r! M(ti),

This is equivalent to
q

(2s)
q--1

r’ _, Y(r’
(r’ r)! ez

where we have defined

(29) g() (S)S-/M().

Observe that the condition r’ q 1 in (28) can be removed by requiring
that Y(q- 1, r’) O.
A few trial compututions suggest that Y, which has depended implicitly on

q, does so only as a function of q r. Therefore we make the following
change of notation"

(30) Y(r’, r’) y(q r’, d(r’))
r’! (q r’)

It will be seen later that the extra factors lead to a convenien symmetry
(28) becomes

E
,= -(-r-- r) (q r’)

y(q r’, [t, d(0)]).

Now we introduce j q r’, m r’ r, b q r, so thatj ad m are
nonnegative integers whose sum is b. Hence

(32) g(t)
-+,= j! m!

y(j, [ti, d(O)]).

Recall that is the symmetric group on the r’ r m symbols
[r - 1,..., r’}. The particular set is unimportant now, since only the
order of 0 is involved, so we my write

(33) g(ti)
+,= j. m----. . y(j’ IS, d(O)]).
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Again, a few trials indicate that we should try a solution in the forn

(34) y(j, lc) A.(r)g([/, d(r)]).

Putting this into (33) and observing that [[, d(0)], d(r)] [, d(O), d()],
we get

(35) ()
+= j ml

A(r)g([, d(O), d()]).
Oe e

This should be satisfied identically in g, so we collect the coefficient of g(k)
on the right, and require that it be equM to 1 if lc 1 and to 0 if lc > 1.
This coefficient is

(3) c() 2 1 2 A()
i+= j! m! 0,

where the inner sum is over all 0
If tc 1, this means that d(O) l and d(r) l that is, 0 eand e.
Thus we require that

(37) 1 Ai() 1.
+= j m s os

Although (37) is needed only for certain wlues of b nd
itforllb 0nd 1. It will then follow tht
s required. For if we sum C(b) over ll b]a, the inner sum in (36) is then
over ll O, for which [, d(O), d()] divides a. But this is equiwlent to
[a, d(O), d()] a, so

A() Ca()

by ssumpion. The result rhea follows from the MSbius inversion formula.
To solve (37), we define

) A(),
d()l d(0)l

() (, ) B()x
io m0

Then (37) is equivalent to

()x() B()
o m0

That is,

(39)

x B()L,()= x’- 1

bO i+m=b bO 1 X"

(i x)X()"



CLASSES OF PERIODIC SEQUENCES 295

It is known that

(40)

Hence

d

() exp x_
d"

() exp (--log (1 x)) exp

(41)

( x ) x__x, x,
d--1 d, d"

Either (41) or the equivalent

1
exp(42) ()

x

my be used, whichever is more convenient. We my therefore regard
B() s known.
To determine A(), we introduce the function

A().(43) X() -.
d(v)k

Clearly
X.(/) Bj().

By the M6bius inversion formula,

With X determined by (44), we can stisfy (43) in many wys, for example
by making Aj(r) depend only on d(r). This does not affect the vMue of
y(j, l). For, by (34),

y(j, ) A()g([k, d()])

g([, d]) A() j X(d)g([k, d]),
d i d

the last step following from (43).
Now, from (44), we have

We may write the inner sum in the form

E e(a[, ])

S. Cow, i. N. HESTEN, XD W. R. SCOTT, The solutions of 1 in symmetric
groups, Norske Vid. Selsk. Forh., Trondheim, vol. 25 (1952), pp. 29-31.
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For fixed /t and a, define

v() ,(c).
k,c ]...a[ k,

Then for arbitrary d,

(46) V(a)
ald

But , (c) if 1,

(c)= ()= Z (c).
eld[k,] el (d[/,, 1)

Oif > 1. Thus the sum in (46) is 0 unless
d[lc, a] a, that is, unless d 1 and / i, in which case it is equal to 1.
Defining x(ti) 1 if h li 0if/c / a, we have

V(a) x(a)t(a).
aid

By the M6bius irversion formula the summands must be equal, so

V(a)

Therefore the inner sum in (45) is

g(a[lc, ti])X(8)t(a) tt(a)g(a)x(),
a a

and (45) becomes, on putting vlc,

(47) y(j, k) B(vlc) t(a)g(avk).
j v>l a>l

We can now reduce the inner sum in (47). Writing vk, define
h(a) g(a)/g(). It is easily verified thut h(a) is u multiplicative function
of a, und so is (a). Hence

t(a)h(a) II ( + t(p)h(p) + (p)h(p) + ") II ( h(p)).
a>_l P P

Nowif P I,
II ( ’-’)g(P) ’(P) (P)-I-) ’’ l,’() () II (1 p (aja

h(p) (p 1)P-S
1 p-*

Therefore

That is, (a, b) 1 implies thut h(ab) h(a)h(b).

r() I[ (1
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Hence_, l(a)g(a) g() , l(a)h(a)
al al

’(s) I (l p-8) (s 1)

Putting this back in (47), we get

1(48)

We return now to the evaluation of if(s). From (22),
q q

(s) K, Y(r,) T(r)K,,
rl

T(r) _, y (j’ d(r)
.sr r! j!

say. By (30),

where we put j q r for brevity. Continuing,

(s- 1)"

sy. Recalling the definition of L(k) in (38), we see that

L(k) D,(d).

By the MObius inversion formula,

Hence

(49)

Now equation (48) may be written

(s 1) y(j’ k) _, x(a)B(a)q(a)a-.
al

Using this in (49), we have

(s -1)T(r) _, _, _xk(a)B(a)a-"q(a)l()L(d)
k>__:l dlk a>=l

.,Bi(a)(a)a >L(d)lx(a)(,).al d=:
k=>..1
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In the inner sum, we write lc md, to obtain

Hence

(50)

Therefore

’(s 1)T(r) _, Bi(a)Lr(a)q(a)a-.
al

8O

-(s- 1)5:(s) ((s- 1)T(r))Kr(s)
rl

q_, Bj(a)L(a)q(a)a-’K(s).
r-l a

F(d)
ds-1

>1 1

_
F(d) _, nF*(n)’(s 1)if(s) dl. .__>1 n’

Using Dirichlet multiplication on the right of (51), we get

> _1 _, Bi(a)L,(a)q(a)rl

and equating coefficients of n-,
(52) nF*(n) _, , Bj(a)L,(a)q(a)r"/a.

r=l a[

We recall that F*(n) is the total number of classes with period n, not neces-
sarily primitive, and that F(n) may be recovered from it by M:6bius inversion.

Equation (52) is not quite satisfactory, since it apparently requires a
knowledge of the coefficients B(a) nd L(a) for all values of a. It turns
out, however, that these coefficients are periodic in a. In fact, let z be the
least common multiple of the integers 1, 2,..., q, and suppose that
a ---- b (mod ). From (38) we see that the values of B(a) and L,(a) depend
only on the set of in S and S, for which d() divides a. But j =< q and
r _-< q, so d(r) always divides z, and d() ]a is equivalent to d() b. There-
fore the sets for a and b are identical, and B(a) B(b), L(a) L,(b).
By the same token, if every divisor of a and is also a divisor of b and ,
and conversely, then the coefficients have the same values. That is, if
(a, ) (b, ), then B(a) B(b), L(a) L(b). We may therefore write

q

(53) nF*q (n) _, , r(d)h* (d),
r-l
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where

(54) h*(d) nr((d, ))Bq_r((d, )).

Once we have computed F*(n), we have immediately

Another expression for F(n) my be derived s follows.
proved that

T(r) y(j’ k)
jk

Combining these, we get

y(j, k) _, X(d)g([k, d]).
j!

(56) T(r) _, W(b)g(b),

where

(57) W,(b)--- X(d)D(k).
k,d ]---.b

We have already

Recalling the definitions of X and D,, we see that to each pair d, lc con-
tributing to the sum (57), there corresponds a pair 0 e S- and v e S,, with
d(0) d and d() k. Since j q r, it follows that [d, l] divides z

(we may regard as acting on /r 1, q}, so that 0r e Sq and [d, /c]
d(O-)lo.). Hence W,(b) 0 unless b z, and the sum in (56) extends over
such b. We can evaluate W,.(b) in terms of Lr and B. In fact, we have., W(b) Xj(d)D,(k) ’ D,.(k) Xj(d) L.(c)Bj(c).

bit [k,dl [ k[

By the M6bius inversion formula,

(58)

:Now define

(59)
tb(m) t(m) if (m, b) 1,

--0 if (m,b)> 1.

We shall also adopt the convention that pb(y) 0 if y is not an integer.
Then

g(b) f(s) I[ (1 p_.)
q(b)b-" , t(m)m-" q(b) ,

Putting this back in (56), multiplying by K, and picking out the coefficient
n we find
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Summation over r yields

(6O)

where

(61)

q

nFq(n) _, _, r"h(d),
’=I din

and W(b) is given by (58).
Equations (53) and (60) constitute the solution to our problem. In any

numerical case they may be checked against each other by means of (55) or
().

6. Some special results

Suppose that (n, a) 1. Then, in (53), the only admissible value of a
is 1, so

nF*q (n) _, L(1)Bq_,(1) , (d)r"z
rl din

But
q--r

Bq_(1) (--1)t
t=0

Therefore

(--) k (--1)t ra () ’__1=o t=o r! t! el
52 (-t)’ (;) o,

rA-t=s

(62) nF*(n)= o (-) A*0e ((n,z) 1)

Similarly, if (n, ) 1, (60) becomes

nFq(n) L(1)Bq_,(1) u(d)r"/,
r=l din

which reduces in exactly the same way to

(63) nFq(n)
.=, , ((, ) ).

It may be worthwhile to work out the general case for q 2 nd q 3.
For this purpose we list the wlues of L,(a) and B.i(a) for r, j 0, 1, 2, 3
anda 1,2,3,4,5, 6.
For q 2, 2, nd (53) yields

(64)
2nF(n) (d)2 + 2 (d)2".

d odd d
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TABLE 1

L,.(a)

o

1 1
1 1
1 1
1 1
1 1
1 1

1/2 3

1 6

TABLE 2

Bi(a)

o

1
1
1
1
1
1

0
0
0
0
0
0

Similarly, by computing W2(1) 1/2, W(2) 1/2 from (58), we find that

h.(d) 1/2((d) + #2(4/2))
1/2t(d) (d odd),
0 (d even).

Therefore

(65) 2nF(n) _, (d)2"’a.
dn
d odd

For q 3, a 6, we compute h’(d) and h(d) (in general, h*q-l(d)
hq_(d) 0). We find that h’(d) 1/2 if d is odd, 0 if d is even, and that

h* (d) d --- 1, 5 {mod 6),-3 d - 2, 4 (rood 6),
(66)

d 3 (mod 6),

1 d-- 0 (mod6).
Now if is the largest odd divisor of n, we have

E (d) o(d) g.

d odd

Hence
(67) nF(n) (1/2)g -}- (d)h(d)3.
By referring to our tables and (58), we find that W(1) 1/2, W(2) --.-,
W(3) W(6) 0, so

h(d) 1/2(d) (d odd),

(d) (d even).
A little, computation shows tha

h(n) h(d) (n 1),

(6s) -+ > 0),

0,

(n 2,
otherwise.
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Again, we find that W3(1) , W(2) 1/2, W3(3) {, W3(6) 0, so

ha(d) -t(d) -1-- 1/2t2 () -t 2 () -h’(d)(d)

where

(69)

h’(d) 1 d - 1, 5 (mod 6),

-2 d 2, 4 (mod 6),

-3 d --- 3 (mod 6),

d - 0 (mod 6).=--6
Combining these results, we have

(70) nF(n) h(n) -+- -- _, t(d)h’(d)3"/.

Following is a table of F.(n), F’(n), F3(n), and F*(n), for n 1,
computed from (65), (64), (70), and (67), respectively.
was checked by (1).

.-, 10,
The numerical work

TABLE 3

n 4 6

9

8 9

F(n) 2 4 4 lO 20 30 56
F(n) 1 1 4 8 22 2 140 366 992
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