TRANSFORM AND INVERSE TRANSFORM EXPANSIONS FOR
SINGULAR SELF-ADJOINT DIFFERENTIAL OPERATORS'

BY
N. LevinsonN

1. Coddington [2] has obtained the expansion theorem for singular self-
adjoint ordinary linear differential operators with the most general type of
boundary condition that can be associated with a self-adjoint problem. His
proofs are elegant and are based on the Green’s function method he had
earlier introduced and on the boundary conditions he had shown to be appro-
priate to self-adjoint problems [1].

Here the inverse transform expansion will be proved. The method used
here combines the procedure used by the author [4, also 3, pp. 261-272] with
the boundary conditions as given by Coddington in [2] for the transform
expansion. In the course of proving the inverse transform expansion theorem,
the transform expansion result due to Coddington will also be proved.

Let L be the differential operator

d d n—1

where the p; are complex-valued functions of £ with n — j continuous deriv-
atives on the openinterval (a, b). Thecasesa = — «,b = «, or both are al-
lowed. Tetpo(f) £ 0 on (a, b), and let L be identical with its adjoint defined
by

0 (&) G 0+ (E) @ ok G,

Let 3¢ denote the set of all measurable functions which have square inte-
grable magnitude on (a, b). Let D denote the subset of 3¢ consisting of those
elements which are of class C,_1 on (a, b) with (n — 1)%t derivative absolutely
continuous on every closed subinterval of (a, b) and such that any ¢ « D satisfies
Lo € 3C.

Tet z and y be in ®, and let ¢ < # < f, < b. Then Green’s formula is

(1 [ e — T @t = @) — e,

31

where
j (K =\ (7
[29)(t) = 2omet 2ojsimmas (= 12D ) (o §) P 1)
Received July 29, 1957.
1 This paper was written in the course of research sponsored by the Office of Naval
Research.
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From Green’s formula it follows that

[eyl(@) = lim [ayl(t),  [aylb) = limo[xy](tz)

t1->a+0 to->b—

exist for @, y in ©. Let (xy) = [zy](b) — [2y](a).

It will be assumed that the equations Lz = dx and Lx = —ix each have
exactly o linearly independent solutions which are in D where 0 = w < =n.
Tet ¢1, ¢2, -+, ¢u be an orthonormal set of solutions of La = 42 in D, and
Vi, ,¥easetof Lo = —izin®D. Let U = (uy),j, k=1, -+, w bea
unitary matrix, and let
(1.2) v; = by — Dm U Vi J=1 o
Let ©y denote the subset of © such that for any « € Dy
(1.3) {xv;) = 0, j=1 -,

The equations (1.3) are in a sense a set of w boundary conditions. (It is
shown in Coddington [1] that to any self-adjoint problem associated with
L on (a, b) there corresponds a unique U and conversely. This fact is not
required in our proofs.)

Let I be a complex valued parameter, and let x,(¢, 1), & = 1, ---, n, be
the solutions of Lx = lx which at some ¢, a < ¢ < b, satisfy

Xl(cj_l)(c) l) = 01, j: k= 1: I (%)

where 6;; = 1 and 65, = 0,7 # k. Clearly the x; are independent solutions
of Lz = lz.

The hermitian matrix p = (p;(s)) is said to be nondecreasing if
p(e) — p(\) is positive semidefinite for ¢ > A.

TurorEM 1. Corresponding to the conditions (1.3), there exists on (— o, )
a unique hermatian, nondecreasing matrix, p(e), with elements of bounded varia-
tion on every finite interval. If f(1) ¢ £(a, b), then

b
(14) 0,(0) = [ SO, 0) di
exists (in the sense of convergence in the mean in the norm of (1.6)), and
(1.5) @ = f _;1 xi(t, 0)g(o) dpji(o)
|00 j,k=

(where again the integral converges in the mean). Moreover of

f ,;1 9i(0)gi() dpjr(o)
Lo f,k=
18 denoted by

(1.6) f g g dp,
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then
b 0
(17) [1sra= [ ggan
IFurther for any given l, 91 = 0, there exists a unique F(t) in Dy such that
(1.8) (L — DF = f.
Moreover
(1.9) Ft) = f Z Xj(t’ U)gk<0') dpjk(a') — f X9 dp.
Lo fib=1 o —1 Lwo — 1
Tuworem 2 (Inverse iransform). Let the vector, gi(a), j = 1,---, n, be

measurable with respect to p(a), and let

f ggdp < =.

Then there exists a unique f € £(a, b) given by (1.5). Moreover g; is then given
by (1.4).

TurorEM 3. Let the two functions F and F® be in ©y. Then

f ' (FPLF® — FOTF®) dt = 0.

2. The singular problem is handled as in [4] by first using a closed interval
6 = [, 8] interior to (a, b) and then letting & — (a, b). However now the
boundary conditions associated with the nonsingular problem on § must be
based on (1.3) exactly as was done in [2]. It will be assumed that « is near
enough to @ and 8 to b so that « £ ¢ £ 8. The Gram-Schmidt process is
now used to obtain the orthonormal functions ¢y, -, ¢ws on 6 from
P1,  , 00. Similarly g5, - - -, Yo are obtained from ¢y, -+, ¢, . Here

b = 2% an®de, Y = 2.1 (O,
where A(8) = (ai(8)) and B(6) = (b;(8)) are constant matrices and

(2.1) A(d) — K, B(§) — E, as & — (a, b),

where £ is the unit matrix of w rows and columns. Let ¢ui15, -+, ¢ns be

chosen so that ¢15, « - - , ¢s form an orthonormal set of solutions of Lz = iz

on d. Let Yus, - -, Yus be a similar set for L& = —ix on 6. Let U be the

matrix introduced in (1.2), and let U(8) be the unitary matrix with elements
uik(a)::ujk’ j,k=1,---,w,
IM’J’J’(6)=1: J=wo+1 - ,mn

up(8) = 0, all other 7,k = n.
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Let
Vis = is — Diomt Ui ¥is j=1,-,
vis = ¢js — ¥is, j=w+ 1, n
These equations can also be written as

Vs = bis — D= Uin(O)¥is .

The nonsingular boundary value problem on « £ ¢ £ 8

(2.3) La = Iz, {avjs)s = 0, j=1,-,n

where (wvjs)s = [2v5](8) — [avjs](a), is self-adjoint as is shown in [1].

Thus (2.3) has characteristic values and characteristic functions and an
expansion theorem. As in [4, or 3] this expansion theorem can be expressed
in terms of the matrix p; which has as its elements step functions. For any
f of £9) if

(2.2)

-8
(24) 0@ = [ 0%, i=Lem
then by the standard expansion theorem on [a, 3]
25) 50 = [ X %0 )0s(o) dows(o)
and ,
(26) [1sora= [ o de.

As is shown in [4, or 3, Chapter 10], the ps(¢) are uniformly of bounded
variation on any given closed interval as § — (a, b), and hence by the Helly
selection theorem there is a sequence 8;,j = 1, 2, - - -, such that §; — (a, b)
and ps; converges asj — . Denote the limit matrix by p(s). (Later it will
be shown that p is unique, and hence it will follow that at any two points of
continuity A and o of p

(2.7) pi(@) — ps(\) = p(o) — p(N) as & — (a, D).

But for now p(s) is defined by the use of the sequence §; .)

As was shown in [4, pp. 305-307, or 3, Chapter 10], once the existence of
p(e) is established, it follows easily from the Parseval equality in the non-
singular case that (1.4), (1.5), and (1.7) hold. These results will be used
here. Also required is the following lemma proved much as in [4, p. 307;
or 3, Chapter 10].

LemMA 2.1 Let Gi(o),7 = 1, - - -, n, be measurable with respect to p, and let

f GG dp < .
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Let .
P = [ 2 x(t 0)Gx(o) dpalo).

Then 1im. .o P4(t) = P(1) extsts, and

f:|P(t)|2dt < [:G(idp‘

3. To complete the proof of Theorem 1, p must be proved unique, and the
existence of a unique F in Dy satisfying (1.8) and (1.9) must be established.

Let f(¢) be £%(a, b) and vanish outside of some finite closed subinterval of
(a, b). Assume & = [a, 8] is taken so that outside of [, 8], f({) vanishes.
Let g be defined as in (1.4). Then by the expansion theorem for the non-
singular problem

A
(3.1) fas(t) = fA 2= X9 dpjus(o)
converges in the mean to f over 6 as A — «. Let gl ## 0, and let
A
(32) FAb(t) = f Z X gk dpjk,s.
4 (¢ =1

The integrals in (3.1) or (3.2) are simply finite sums of several eigenfunctions
associated with (2.3). Since each eigenfunction satisfies the boundary con-
ditions of (2.3), it follows that

(3.3) (Fas vjs)s = 0, j=1 -, n
Also by differentiating (3.2) there follows
(3.4) ([1 - l)FAa = fAB .
Now by Green’s formula
B _
(3.5) (Fas055)5 = f @js LEF 45 — I 45 Lvjs) dt.
By the definition of ¢ , ¥ it follows that forj = 1,2, -+ | w

b b
(3.6) f | b; — ¢is|” dt +f i — ¢is|*dt —0 as & — (a, b).
I'rom the definition of v;; this implies for j = 1,2, -+ | @

b

(3.7) [ |v; — v |°dt -0 as & — (a,b).

Now by (2.6) ,
[oaam=[ 151
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and from the orthogonality of the characteristic functions

(38) f: | Fas [2dt = f_

and similarly

A

- b
9d < 1 f 2
_llzdp5 = lgl|2 . lf| dt’

aleo

-8 b
IREACENNNRS
By (3.4) the right side of (3.5) can be written as
ﬂ —
(3.9) f (17ja(l Fus 4 fas) — Fas Lvjs) di.

For j £ w, Lvj is a fixed linear combination of ¢; and ¢, 7 = w. Hence
by (8.6) forj = w

b
(3.10) f | Lv; — Lv;s |dt —0 as &— (a,b).
If 6 — (a, b) through the sequence §; described below (2.6), and if
A
(3.11) Fa() = f PIEELE
L4 o —1
then
(3.12) Fas(t) — Fat) >0

uniformly over any closed subinterval of (a, b). Similar results hold for
fa(?), where

fat) = [,4 > x5 9k dpj -

From (3.11) follows by differentiating

Let a < a1 < by < b. Then (3.9) can be written as
B ay b1 B
(3.14) [=[+[+].
a a ay 1

From (3.7), (3.10), and (3.12) as 6 — (a, b) through the sequence §;
by . by —
(3~15) / (77j6(l Fa + fAB) — Fys ijs) dt — f (@'(l Fi+ .fA) -, ij) dt.
a ay

Also by using (3.8)

ay ay 1/2 b 1/2
[rosratas ([“roara) ([150a) /1.
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By using (3.7) the first term on the right tends to

ay . 1/2
l vjl dt

as § — (a, b), and this can be made as small as desired by choosing a; near
enough to a. Similar results hold for the terms [ f.s9; df and [ F 4 Lvjs dt and
for the interval (b, B).

From (3.8) follows easily, by first using a fixed closed subinterval of (a, b),
that

b b .
[Nrapas [ rransp.

Using this, (3.7), and (3.10) shows the right side of (3.15) can be made arbi-
trarily close to

b

(3.16) [ @r 10 = iy dt = (o)

by choice of a; and b, . All these remarks together show that (3.5) tends to
(3.16) as 6 — (a, b). By (3.3), (3.5) is zero, and hence so is (3.16). Thus
(3.17) Favj;) = 0, i=14L2 - w
Forany C > 0

¢ b
[ oans s [ 151a

By letting § — (a, b) through the sequence §;

(o] b
[oars [ 150a
Next letting C — «

© b
(3.18) [ gdo < [ | di.

When A — o, it is the case that Lim. .« f4 = f by (1.5). If we let A — «,
it follows from (3.11) and Lemma 2.1 that there exists F(¢) in £°(a, b) such
that Lim. .o Fq = F. In(3.16) these lead readily to the fact that as ¢t — «
the left side of (3.16) converges to

b
(3.19) [ GUF +f) — Fin)di =0,

since (3.16) was shown to be zero.

If I, is represented as a solution of (I, — I)F', = f4 by means of the varia-
tion of constants formula much as in [4], then it follows easily that F also
is representable by this formula and hence F is in ©, and moreover

(3.20) (L — DF = {.
Using (3.20) in (3.19) gives
(3.21) (Fv;) = 0, j=1, .
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Henee Fis in Oy and is given by
A
(3.22) F() = lim. / > x5 e dpj(0)/(a —= 1) .
A->o00 — A

Finally the restriction that f vanishes outside of some closed subinterval of
(a, b) can be removed. Indeed any f of £2(a, ) can be approximated in
£%(a, b) by a sequence of restricted functions f,, s = 1, 2, --- , which con-
verges to f in £°(a, b). Let the g; and F associated with f, be denoted by
gs; and F;. Then an argument analogous to that used in proceeding from
f4 to f above now can be used to deal with f,, ¢.;, and F; as s — o, and
the result is the validity of (3.20), (3.21), and (3.22) for any f of £%(a, b).
This leaves only the demonstration of the uniqueness of ¥ and p to complete
the proof of Theorem 1.

It will be shown next that if [ = 7 then I as given by (3.22) is unique in
the sense that
(3.23) (L — 9)F = 0, (Fv;y = 0, i=1 -0,
has ¥ = 0 as its only solution in Dy .

To prove this, note that

b
(¢; ¢1) = [a (1 Lopj — ¢; L) dt = 2i f: ¢; i dt.
Hence

(3.24) @id;) =20 (o) =0, jF k.

Similarly

(3.25)  {divw) =0;  ivi) = —2i; W) =0, j#EL
IF'rom this follows easily

(3.26) (v = 21, (prvyy =0, k=37

Now any solution of (I, — ¢)F = 0 which is £(a, b) must be of the form
F = Z;" Ck‘ ¢Ic 5

where the € are constants. By using (Fv;) = 0 and (3.26) it follows that
all ), are zero and hence /' = 0. A similar argument applies if . — 7 is re-
placed by L + 7 in (3.23).

Now suppose for some Iy, 9l # 0, it is known that (I — [p)I" = 0 has
I’ = 0 as its only solution in ©,,. Then it will be proved that this is true
for (I, — I)F = 0 inside the circle |l — | < |9l |. Indeed for some such [
let (I, — )H = 0, where H is not identically zero and is in D, . Let

3
G]’ = / H)-(] dt.
Then

b 0
(3.27) / |H|2dt=f GG dp.
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Clearly
(L — H = (I — WH,  (Hv;) = 0.
Hence by (3.22)

“1—1
H(t) = f ”“*;" 2 xiGudpj.
o0 0 = o
By Lemma 2.1
b © l_l 2 _
(3.28) [ |H|*dt < f 2| GG dp.
Ja o0 | O — l()
But
L—b| _ L=l
e I E =L

Hence using this in (3.28) and using (3.27) yield
b b
[mpa< [ 1mpa,

which proves that indeed H = 0. Since uniqueness was shown for [y = 47,
the above argument extends this to the upper and lower halves of the [-plane.

There remains now only to show the uniqueness of p. Suppose there is
some p with the properties of Theorem I which have been demonstrated for p.
(Note that p need not necessarily arise from any limiting process with a se-
quence of p;). Let gl > 0, andlet f be £'(a, b). Then the unique solution of
(L — DF = fin Dy is given by (3.22) with p replaced by p. Subtracting
gives

A
(3.29) 0 = Lim. f X0 e — B).
A->0 -4 ag — l
Let
(3.30) (o, 7) = / xi(t, o) dt.

Integrating (3.29) with respect to ¢ from ¢ to 7 gives
[ Z (o, Do)l = /(e = 1) = 0.

As in [4, (4.10)] this leads readily to the identity of p and p. The argument
is analogous to that below (4.9) of the next section.

4. In proving Theorem 2 it suffices to restrict the g;(¢) to be continuous
and zero outside of some closed interval since these are dense in £°(p). Denote
such a continuous vector vanishing outside of a finite interval by G;(s),
j=1,---,n. Then obviously one can define

(@) 50 = [ 2 %0 0)is(o) dolo),
and for g/ % 0
(42) @) = [ 3 Gudea/to = 1)
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exists, and

(4.3) L= DF = f.
If
(4.4) fi = / Z x; G, dpjrs
and
(4.5) F; = f Z x; G dpjks/(o' - 1),
then
(L, — DF; = [,
and
(46) <F¢$ vj&)é = Oy j = 1) N,

since I7; as given by (4.5) is simply the sum of a finite number of character-
istic functions associated with the nonsingular self-adjoint boundary problem
on § = [a, B]. By using the argument of (3.1)-(3.17) it follows that (4.6)
implies

(47) (va> =0, .] =1,
However the uniform bounds on

f; el dt, ffw dt

which are required must now be derived differently. By using the Parseval
equality, (4.4) and (4.5), in terms of the orthogonal characteristic functions,
give

B ©
f P dt = f GG dps.
Since as 6§ — (a, b)
f GG dpg—ﬁj GG dp,
it follows that if é is near enough to (a, b),
B ©
f IfsPdt <1 +f GG dp.
Similarly
B o
f |FsPdt <1 + f GG dp/(9l)".

From Lemma 2.1 follows

[ 150

b ©
[ (PPacs [ GG dp/Ga)

IIA

f GG dp,

With these four inequalities the argument leading to (3.17) now leads to (4.7).
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Thus F is in Dy and is the solution of (4.3). Since fis in £°(a, b), it follows
from Theorem 1 that if the transform of f is defined by

5@ = [ 10 %, 0 at
then

(48) #@) = tim. [ 00 doa/o — 1)

A->

Integrating (4.2) and (4.8) from ¢ to = and subtracting gives
(49) [ Z To, DG = g0 dow/(a = ) =0,
where T'; is given by (3.30). Since I'; and (Gx — ¢i) are both £(p), (4.9)

converges absolutely by the Schwartz inequality. Writing (4.9) for I, and
letting I = w 4 % and subtracting the two cases gives

[ (a—u)2+ ZZP(Gk—gk)delc=0.

Integrating with respect to u from o1 to o2 , where o1 and o, are any two points
of continuity of p, and then letting » — 0 yields

gy _
f Z I‘j(U) (G — gk) dpy = 0.
51
Differentiating with respect to 7 and replacing = by ¢ gives
oy
[7 2 %6 )@~ g dos = 0.
o1

Differentiating (s — 1) times with respect to ¢ and then putting ¢{ = ¢, and
using xS (¢, ¢) = b, gives

(4.10) [ 2. (G — gi) dpa. = 0, s=1,,n.

vop k=1

Replacing s by 7 and using the arbitrary character of ¢; and o2 leads to
[ 3 G =g ds =0, =1,
for any continuous h;(s) and any A. Summing on j, we have
f_: 2= hi(Gr — gi) dpji = 0.

Since @ — g is in £%(p), the arbitrary character of & implies that the left side
can be made arbitrarily close to

[ @ o@=pan
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and thus the above must be zero. Since this holds for all 4,
[[G-p@=pa =0,
which proves Theorem 2.

5. Here Theorem 3 will be proved. From (1.7) follows easily that if

% and f® are in £%(a, b) and have transforms ¢*” and ¢ respectively, then
b )

(5.1) / FOFO gy = f dP7% dp.

In terms of F*V and F® of Theorem 3, let f* and f® be defined by

(5.2) O =@ =-0F®, [P =L+,

Then if ¢ and ¢® are the transforms of £ and £, it follows from Theorems
1 and 2 that the transform of F is ¢® /(s + ¢) and of F®,g® /(¢ — 3). Thus

b o
f FOR® gy — f dP5% do/(o + 9),

b o
[P0 a= [ 49 do/o + 9,

and so

fb (FOFD — FOJOY g = o,
Using (5.2) with this yields
/b (FOLFY — FOLF®) df = 0,

which proves Theorem 3.
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