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1. Coddington [2] has obtained the expansion theorem for singular self-
adjoint ordinary linear differential operators with the most general type of
boundary condition that can be associated with a self-adjoint problem. His
proofs are elegant and are based on the Green’s function method he had
earlier introduced and on the boundary conditions he had shown to be appro-
priate to self-adjoint problems [1].
Here the inverse transform expansion will be proved. The method used

here combines the procedure used by the author [4, also 3, pp. 261-272] with
the boundary conditions as given by Coddington in [2] for the transform
expansion. In the course of proving the inverse transform expansion theorem,
the transform expansion result due to Coddington will also be proved.

Let L be the derential operator

(d) dn-I

L= po N + pk/ +" + p’

where the p are complex-valued functions of with n j continuous deriv-
atives on the open interval (a, b). The cases a , b , or both are al-
lowed. Let po(t) 0 on (a, b), and let L be identical vith its adjoint defined
by

(d) 1)u-i (d n-I

(--1) (P0- + (-- k] (P" +"" + (p" )"

Let denote the set of M1 measurable functions which have square inte-
grable magnitude on (a, b). Let denote the subset of 3e consisting of those
elements which are of class Cn_ on (a, b) with (n 1) derivative absolutely
continuous on every closed subinterval of (a, b) and such that any e satisfies
L
Lex andybein, and let a < tl < t: < b. Then Green’s formul is

(1..) (Lz xLy) dt [zy](t) -[zy](h),

where
[xy](t) =+=_ (-.)z()(t)(p_ )()(t).
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From Green’s formula it follows that

[xy](a)-- lira [xy](t), [xy](b) lira [xy](t2)
tl-a+O t2-)b--O

exist for x, y in . Let (xy} [xy](b) [xy](a).
It will be assumed that the equations Lx ix and Lx -ix ech have

exactly w linearly independent solutions which re in where 0 n.
Let , , be an orthonormal set of solutions of Lx ix in , and
6, ,setofLx -ixin. Let U (u),j,k 1, ,,be
unitary mtrix, nd let

(1.2) v %u 6, j 1, .
Let denote the subset of such that for ny x e v
(1.3) (xv) O, j 1,..., .
The equations (1.3) re in sense set of boundary conditions. (It is
shown in Coddington [1] that to any self-adjoint problem associated with
L on (a, b) there corresponds unique U and conversely. This fact is not
required in our proofs.)

Let be a complex valued prameter, nd let x(t, 1), lc 1, n, be
the solutions of Lx lx which t some c, a < c < b, stisfy

x )(c, l) ,, j, lc 1, n,

where 1 nd 0, j l. Clearly the x re independent solutions
of Lx lx.
The hermitian mtrix p (p(z)) is said to be nondecresing if

p(a) p(h) is positive semidefinite for a > .
TEOnEM 1. Corresponding to the conditions (1.3), there exists on (-

a unique hermitian, nondecreasing matrix, p(z), with elements of bounded varia-
tion on every finite interval. If f(t) e (a, b), then

.b

gJ() ./a f(t)(t, dt

ezists (in the sense of convergence in the mean in the norm of (1.6)), and

(1.5) f(t) x(t, z)g(z) dp(a)

(where again the integral converges in the mean). Moreover if

: g()O() dp()

is denoted by

(1.6) f-- (t o dp,
J_
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then

(1.7) If dt gO dp.

Further for any given l, gl O, there exists a unique F(t) in ) such that

(1.8) (L 1)F f.
Moreover

(1.9) F(t) f: xs(t, )g(z) dps(z) f xg
do.

,= -- z

THEOREM 2 (Inverse transform). Let the vector, g(z), j 1,
measurable with respect to p(r), and let

n, be

g (1 dp

Then there exists a unique f 2’(a, b) given by (1.5). Moreover gj is then given
by (1.4).

THEORE 3. Let the two functions F(1) and F(2) be in )cr. Then

dt O.(]?(2)LF(1)

2. The singular problem is handled as in [4] by firs using a closed interval
[a, fl] interior to (a, b) and then letting ti --* (a, b). However now the

boundary conditions associated with the nonsingular problem on must be
based on (1.3) exactly as was done in [2]. It will be assumed that a is near
enough to a and to b so that a _-< c -_< . The Gram-Sehmidt process is
now used to obtain the orthonormal functions 1,’", on ti from
41, . Similarly , are obtained from , . Here

where A(ti) (a.(ti)) and B(ti) (bi(ti)) are constant matrices and

(2.1) A(8) -- E, B() ---+ E, as ti -- (a, b),

where E is the unit matrix of o rows and columns. Let 4+1, be
chosen so that , form an orthonormal set of solutions of Lx ix
onti. Let,...,.beasimilarsetforLx -ix onti. Let Ubethe
matrix introduced in (1.2), and let U(ti) be the unitary matrix with elements

u.(ti) u’, j, k 1, ...,
’u.j(/t) 1, j 0 -t- 1, ..., n,

u.(ti) 0, all other j, l =< n.
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Let

These equations can also be written as

The nonsingular boundary value problem on a <_- =<
(2.3) Lx lx, {xv} O, j 1,..., n,

where (xv) [xv](B) [xv](a), is self-djoint as is shown in [1].
Thus (2.3) hs characteristic values and characteristic functions and an

expunsion theorem. As in [4, or 3] this expansion theorem cn be expressed
in terms of the mtrix p which has as its elements step functions. For any
f of () if

(2.4) g(a) f(t)2(t, ) dt, j 1,..., n,

then by the standard expansion theorem on [a, fl]

(.5)

and

(2.6)

f(t) f_ _, x(t, )g()

As is shown in [4, or 3, Chapter 10], the p(a) are uniformly of bounded
variation on any given closed interval as ti --+ (a, b), and hence by the Helly
selection theorem there is a sequence tis, j 1, 2, such that ls -- (a, b)
and p; converges as j --+ oo. Denote the limit matrix by p(z). (Later it will
be shown that p is unique, and hence it will follow that at any two points of
continuity X and a of p

(2.7) p() p,(X) --+ p() p(X) as ti -- (a, b).

But for now p() is defined by the use of the sequence tis .)
As was shown in [4, pp. 305-307, or 3, Chapter 10], once the existence of

p() is established, it follows easily from the Parseval equality in the non-
singular case that (1.4), (1.5), and (1.7) hold. These results will be used
here. Also required is the following lemma proved much as in [4, p. 307;
or 3, Chapter 10].

LEMMA 2.1 Let G(z), j 1, n, be measurable with respect to p, and let

GGdp < .
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Let
A

(t) fA
(t, )G() d().

Then 1.i.m.a= PA(t) P(t) exists, and

P(t) dt <= GG do.

3. To complete the proof of Theorem 1, p must be proved unique, and the
existence of a unique F in v satisfying (1.8) and (1.9) must be established.

Let f(t) be (a, b) and vanish outside of some finite closed subinterval of
(a, b). Assume i [a, /] is taken so that outside of [a, /], f(t) vanishes.
Let g be defined as in (l.4). Then by the expansion theorem for the non-
singular problem

(3.1) fA (t)

converges in the mean to f over 6 as A . Letl 0, andlet

f xg
dP."(3.2) F,(t)

The integrals in (3.1) or (3.2) re simply finite sums of several eigenfunctions
associated with (2.3). Since each eigenfunction stisfies the boundary con-
ditions of (2.3), it follows that

(3.3) <F v> 0, j , ..., n.

Also by differentiating (3.2) there follows

(3.4) (L t)E, f.
Now by Green’s formult

(3.5) <FA V> (0 LFa FA) dt.

By the definition of

(:.) / I t + J I . t 0 (a, ).

From the definition of v this implies for j 1, 2,

(3.7) ] Ivy-- vdtO as 6(a,b).
’a

Now by (2.6)

g 9 do, Ifl dr,
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and from the orthogonality of the characteristic functions

f: f rgO1 1 f(3.8) FAs 12 dt dps < dt,- Ifl
and similarly

j’ fof. 12dt <-- If dt.

By (3.4) the right side of (3.5) can be written as

(3.9) (Os(1F. -- f.) F4 -j) dt.

For j <= , Lv is fixed linear combination of and , j .
by (3.6)forj

(3.10) Lv Lva dt O as (a, b)

If (a, b) through the sequence described below (2.6), and if

A

(3.11) F(t) f x g
a

dp,

then

(3.12) FA(t) FA(t) -- 0

uniformly over any closed subinterval of (a, b).
fa (t), where

A

A(t) f x do
A

From (3.11) follows by differentiating

(3.13) (L l)Fa fa.
Leta < a < bl < b.

(3.14)

Hence

Similar results hold for

Then (3.9) can be written as

From (3.7), (3.10), and (3.12) as 8 -* (a, b) through the sequence 8s

(3.15) (Os(1F, -[- f4) F -ff) dt -- (Os(1Fa -t- f) Fa Lvs) dt.
al

Also by using (3.8)

i: /
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By using (3.7) the first term on the right tends to

s 8 -- (a, b), and this can be made as small as desired by choosing al near
enough to a. Similar results hold for the terms f fA fs dt and f FA Is dt and
for the interval (bl,
From (3.8) follows easily, by first using a fixed closed subinterval of (a, b),

that
.b

-Using this, (3.7), and (3.10) shows the right side of (3.15) can be made arbi-
trarily close to

(3.16) ((1F. q-.f.) Fa ) (it (F. v)

by choice of a and b.
(3.16) as t-- (a, b).

(3.17)
For any C > 0

All these remarks together show that (3.5) tends to
By (3.3), (3.5) is zero, and hence so is (3.16). Thus

(F,v} 0, j 1, 2,

C

C

By letting i --. (a, b) through the sequence
C

Next letting C --
(3.1_8) gO do <-_ If dt

When A --+ , it is the case that 1.i.m. f f by (1.5). If we let A --+

it follows from (3.11) md Lemma 2.1 that there exists F(t) in (a, b) such
that 1.i.m. F F. In (3.16) these lead readily to the fact that as --the left side of (3.16) converges to

[,.b

/ (Os(1 F -J- f) F /s) dt O,

since (3.16) was shown to be zero.
If Fa is represented as a solution of (L 1)FA fa by means of the varia-

tion of constants formula much as in [4], then it follows easily that F also
is representable by this formula and hence F is in , and moreover

(3.20) (L l)F f.
Using (3.20) in (3.19) gives

(3.21) <Fvj) O, j 1, oa.
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Itence F is in v and is given by

(:.22) F(t) 1.i.m. fAA- A
x ,o d()/( Z).

Finally the restriction that f vanishes outside of some closed subinterval of
(a, b) can be removed. Indeed any f of 2(a, b) can be approximated in
:(a, b) by a sequence of restricted functions fi, s 1, 2, which con-
verges to f in 2(a, b). Let the g. and F associated with fi be denoted by
g.. and F. Then an argument analogous to that used in proceeding from
.fA to f above nmv can be used to deal with fi, g,, and F, as s --+ , and
the result is the validity of (3.20), (3.21), and (3.22) for any f of (a, b).
This leaves only the demonstration of the uniqueness of F and p to complete
the proof of Theorem 1.

It will be shown next that if i then F as given by (3.22) is unique in
the sense that

(3.23) (L --i)F O, (Fv} O, j 1,..., %
has F 0 as its only solution in Dr.
To prove this, note that

e

Va

Hence

4) ip dt

(3.24) (.. .} 2i; (6 @o} O, j # k.

Similarly

(3.25)
From this follows easily

(3.26) (6 v.> 2i; < v.) 0, k # j.

Now mW solution of (L i)F 0 which is :(a, b) must be of the form

F 2r C,
where the C, are constants. By using (Fvi} 0 and (3.26) it follows that
all C are zero and hence F 0. A similar argument applies if L i is re-
placed by L -f- i in (3.23).
Now suppose for some 10, sll0 0, it is known that (L lo)F 0 has

F 0 as its only solution in ),. Then it will be proved that this is true
for (L 1)F 0 inside the circle I1 l0 < St/0 Indeed for some such
let (L 1)H 0, where H is not identically zero and is in y)rz. Let

G= fa H2idt.
Then

(:-.27) ,t,a H 12 dt GO do.
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Clearly

Hence by (3.22)

By Lemma 2.1

(L- lo)H (1- lo)H, (Hvi} O.

H(t) --l l-lo
xi Gk dpit:

lo G[ dp.

But
l0

Hence using this in (3.28) and using (3.27) yield

IHI dt < IH dt,

which proves that indeed H 0. Since uniqueness was shown for l0 :t=i,
the above argument extends this to the upper and lower halves of the/-plane.

There remains now only to show the uniqueness of o. Suppose there is
some with the properties of Theorem I which have been demonstrated for p.

(Note that need not necessarily arise from any limiting process with a se-
quence of p). Let gl > 0, and let f be 32(a, b). Then the unique solution of
(L 1)F f in )v is given by (3.22) with p replaced by . Subtracting
gives

(3.29)

Let

(3.30)

, xig d(p )j,.
(r

I’.(z, r) 2i(t, (r) dt.

Integrating (3.29) with respect to from c to r gives

f r (, r)g()d(o )/( -l) 0.
J_

As in [4, (4.1.0)] this leads readily to the identity of p and .
is analogous to that below (4.9) of the next section.

The argument

4. In proving Theorem 2 it suffices to restrict the g.(a) to be continuous
and zero outside of some closed interval since these are dense in 3(p). Denote
such a continuous vector vanishing outside of a finite interval by G.(a),
j= 1,...,n.

(4.)

and forgl 0

Then obviously one can define

f(t) [ r x.(t, o-)G(o-)dp((),

(4.2) F(t) f , x G doi/( l)
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exists, and

(4.3)

(4.4)

ttlld

(4.5)

the

(L 1)F f.

f f xi Gk dpm

(L OF J’,,
alld

(4.6) (Fa v.,}a 0, j 1, n,

since F as given by (4.5) is simply the sum of a finite number of character-
istic functions associated with the nonsingular self-adjoint boundary problem
on i [a, ]. By using the argument of (3.1)-(3.17) it follows that (4.6)
implies

(4.7) (Fv-} 0,
However the uniform bounds on

Since as (3 --+ (a, b)

GO dp ---> GO dp,

it follows that if is near enough to (a, b),

f dt <= 1 + GO do.
Similarly

I,’ ]2 dt l + f GO dp/(l) 2.

From Lemnm 2.1 follows

f fl dt GO

1" [ dt aO do/(O.
Wih these four inequalities ghe urgumeng leading to (a.17) now lends o (4.7).

which are required must now be derived differently. By using the Parseval
equality, (4.4) and (4.5), in terms of the orthogonal characteristic functions,
give
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Thus F is in 9 and is the solution of (4.3). Since f is in 22(a, b), it follows
from Theorem 1 that if the transform of f is defined by

then
/A

(4.8) F(t) 1.i.m. ] _,
xgk dp.k/((r 1).

J--A

Integrating (4.2) and (4.8) from c to r and subtrcting gives

(4.9) r (, )(G- g)dp/( -l) 0,

where F is given by (3.30). Since F nd (G g) are both 2(p), (4.9)
converges bsolutely by the Schwartz inequality. Writing (4.9) for i, and
letting u iv and subtracting the two cses gives

: v (G g) dp O.
( u) + v

Integrating with respect to u from Zl to , where fiX and a arc any two points
of continuity of p, and then letting v 0 yields

(, )(e, ) d 0.

Differentiating with respect to and replacing by gives

: x(t, )(G ) d, 0.E
Differentiating (s 1) times with respect to and then putting c, and

(’-) (c, ) 8 givesusing x
2

(4.1o) (G e) d, o, s , ..., n.

Replacing s by j and using the arbitrary character of z and z leads to
A

h(z) (G g) dp O, j 1,..., n
A

for uny continuous h(a) and any A. Summing on j, we have
A

(G ) g 0.
A

Since G g is in 2e(p), the arbitrary character of h implies that the left side
can be made arbitrarily close to

A

(G e)( ) d,
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and thus the above must be zero. Since this holds for all A,

I (G g)(G g) dp =0,

which proves Theorem 2.

5. Here Theorem 3 will be proved. From (1.7) follows easily that if
f(1) and f() are in 2(a, b) and have transforms g(i) and g(2) respectively, then

(5.1) J’a f()](2) dt g(1)0(2) dp.

In terms of F() and F(2) of Theorem 3, let f() and f() be defined by

(5.2) f(1) (L i)F(), f(2) (L -I- i)F().

Then if g(1) and g(2) are the transforms of f() and f(), it follows from Theorems
I and 2 that the transform of F(1) is g(i)//(q _[_ i) and of F(2), g()/(a i). Thus

fb f(1)(2) dt f_: g(1)0(2)dp/(ff -i),

P

/ F(1)] (2) at--- / g(1)0(2)dp/(o" + i),
Ja J-

and so

ji (f()[’() F(t)]()) dt O.

Using (5.2) with this yields

j.b (()LF() F()-()) dt O,

which proves Theorem 3.
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