INEQUALITIES FOR ASYMMETRIC ENTIRE FUNCTIONS'

BY R. P. Boas, Jr.

Let p. (2) be a polynomial of degree n such that | p, (2) | < 1 in the unit
disk | z| = 1. The following results are well known.

THEOREM A. For |z| =R > 1,|p.(?) | £ R".
TaroreM B. For |z | = 1,|p» (2) | £ n.

Theorem A is a simple deduction from the maximum principle (see [11],
p. 346, or [10], vol. 1, p. 137, problem III 269). Theorem B is an immediate
consequence of S. Bernstein’s theorem on the derivative of a trigonometric
polynomial (for references see [12], or [2], pp. 206, 231).

When p, (2) has no zeros in | 2 | < 1, more precise statements can be made:

Taeorem C. For|z| =R > 1,|p.(?) | = 31 + R").
TuporeM D. For |z| = 1,|p» )| £ in.

Theorem D was conjectured by Erdos and proved by Lax [8]; for another
proof see [4]. Theorem C was deduced from Theorem D by Ankeny and
Rivlin [1].

Since p, (¢”) is an entire function of exponential type, these theorems sug-
gest generalizations to such functions. Let f(2) be an entire function of ex-
ponential type 7, with | f(z) | £ 1 for real .

Taeorem A’. For all y, | flx + y) | < ¢\
TaeoreMm B’.  For all real z, | f'(x) | £ .

Theorem A’ is a simple consequence of the Phragmén-Lindel6f principle
(for references see [2], p. 82; see also [11], pp. 346-347). Theorem B’ is
Bernstein’s generalization of Theorem B (see references on Theorem B).

In this note I obtain theorems for entire functions which generalize Theo-
rems C and D. To see what to expect, note that p, (¢*) is an entire function
f(2) of exponential type of a special kind: if h(6) is its indicator, we have
h(—=/2) = n, but h(x/2) > —n unless p, (2) = c2". If p. (2) has no zeros in
| 2| < 1, f(z) has no zeros in y > 0, and moreover (since p,(0) = 0) h(w/2) = 0.

Let us consider, then, entire functions f(z) of exponential type 7 with
|f(x)| = 1 for real z, h(w/2) = O (hence necessarily h(—=/2) = ), and
f(@) #£ 0 fory > 0.

TuroreM 1. Fory < 0, |f(x + 4y) | = 3™ + 1).
TuaeoreEM 2. For all real z, | f'(2) | £ 37.
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Theorems 1 and 2 include Theorems C and D, so that we have new proofs
of these theorems.

We can vary the form of Theorems 1 and 2 to a certain extent by reducing
the asymmetry of the indicator diagram and applying the theorems as they
stand to ¢ *f(z) with a suitable o.

To illustrate Theorems 1 and 2, consider functions of the form

1) 1@ = [ a0, ["1dat)] < =.

If «(t) is not constant in any interval 0 = ¢ < a, a > 0, we have ({2], p. 108)
h(x/2) = 0 and h(—=n/2) = r. Theorems 1 and 2 then apply to this f(z) if
(in particular) da(t) = ¢(t) dt and ¢(t) is positive and decreasing, since [9]
f(2) then has all its zeros in the lower half plane. (If we take x = 0 in this
special case we find the inequality [g to(t) dt < 37 [o¢(f) dt which is a special
case of Chebyshev’s inequality ([7], p. 168).) However, it is clear that if all
the derivatives of f(z) satisfied the conditions of Theorems 1 and 2, we should
obtain a contradiction by repeated applications of Theorem 2. Unlesst = 0
is an isolated discontinuity of a(f) (as it is when f(z) = p. (¢7)), all the deriva-
tives of f(z) have the same indicator as f(z); hence not all the derivatives of
f(2) can be free of zeros in the upper half plane. Similar reasoning leads to
the following more general result.

TuvoreMm 3. If f(2) s an entire function of exponential type v, such that
h(w/2) = 0 for f(2) and all its derivatives, and f(2) is bounded on the real axis,
then every half plane y > a = 0 contains zeros of infinitely many derivatives

of f(2).

If f(2) has the form (1) with da(t) = ¢(t) dt and ¢(2) positive and increasing,
all the zeros of f(z) and its derivatives are in y = 0 [9]. If da(t) = ¢(t) dt
and ¢(t) is an integral, the zeros are always asymptotic to the real axis [5];
Theorem 3 shows, however, that the zeros of the derivatives of f(z) cannot be
uniformly asymptotic to the real axis.

The condition h(7/2) = 0 in Theorem 3 will hold for all the derivatives of
f(2) unless 0 is a pole of the Borel transform of f(z).

We deduce Theorem 1 from the following theorem.

TuaeoreM 4. If ¢(2) is an entire function of exponential type r, if
lg(x)| = M for all real x, and of

(2) lg@ | = 9@ |, y <o

then

3) lg(x + dy) | £ M cosh 7y, y <0.
This is ostensibly a generalization of a theorem of Duffin and Schaeffer [6],

in which g¢(z) is real on the real axis, so that | g(z) | = | ¢(2) | ; but it is actu-

ally a corollary of the Duffin-Schaeffer theorem.
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To prove Theorem 4, let §(z) be the conjugate of g(z), and consider G(z) =
9(2)3(2), an entire function of exponential type 27. We have |G(z) | < M®
forreal z; and G(z) isreal and non-negative on the real axis. Hence G(z) — 3M*
is real on the real axis, with absolute value bounded by 1M*. By the Duffin-
Schaeffer theorem,

| G(z) — tM*| < 1M cosh 27y,

| 9(2)d(2) | < $M* (cosh 27y + 1) = M* cosh’® ry.

Since | g(2) | £ | d() | = | g(&) | for y < 0, the conclusion follows.

The same reasoning shows (as A. C. Schaeffer has pointed out) that, whether
or not (2) holds, at least one of g(z + 2y), g(x — 7y) satisfies (3). (For an-
other proof of this, see [3].)

To prove Theorem 1, put g(z) = f(z)e Then | g(z) | £ 1 and g(z) is
of exponential type r/2; moreover, the indicator h, of ¢ satisfies b, (—w/2) <
hy (w/2). Since g(z) has no zeros for y > 0, by a theorem of B. Levin (see
[2], p. 129) we have | g(2) | = | g(8) | for y < 0. Hence, by Theorem 4

/@) | = 7" cosh jry = (' + 1)

—%irz

fory < 0.

To prove Theorem 2, consider the same function g(2). By another theo-
rem of Levin (see [2], p. 226, 11.7.5), the function ¢’(z) — (a + ¥8)g(z) also
has no zeros for y > 0if 8 = 0. Thatis,if y > Oand 8 = 0,

(4) f'@) — Gir + a + B)f(z) # 0.

Since | f(z) | £ 1 for real z and h(w/2) £ 0, we have | f(x + ) |< 1 for
y 2 0. Thus if A is any complex number of modulus greater than 1, f(z) — A
satisfies the same hypotheses as f(z). Hence we also have, for y > 0 and
B = 0,and all X with | A | > 1,

(5) @) — {f(z) — M@Gir + a + 18) = 0.
We now show that (4) and (5), with | f(z) | £ 1, imply | f’(z) | = %7; since
this is true for all ¥ > 0 it is also true for y = 0.

To simplify the notation, put ¢f’'(z) = w, f(2) = ¢, 37 — ta + 8 = a + b,
with @ = 37. Then (4) and (5) become

(6) w — {(a + 1b) # 0,
Q) w— (§ + N+ b)) #0,

where | { | £ 1, and the inequalities hold for all A with [A | > 1, all @ = 37,
and all real b. There is no loss in generality from taking 3 = 1. If ¢ = 0,
(7) with @ = 1 and b = 0 says that w ¢ Aandso |w| £ 1. If ¢ = 0, we
may assume that ¢ is real and positive (otherwise consider we™* instead of w).
Thenlet §{ = siny, 0 < ¢ = =/2.

The points w = u + @ with | w | > 1 may be divided into three sets:

(i) The set of points with [v | < cos¢ and u £ 0;
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(ii) The set of points with |v | < cosy and u > 0;
(ili) The set of points with | v | > cos ¢.

We proceed to show that each of these sets is excluded by (6) or (7). (The
reasoning is most easily followed on a figure.)

Set (i) is a subset of the set (iv) of points with |[w| > 1 and v = 0. In
set (iv), |[w — ¢| = |w| > 1, and so, foranyw in (iv), w = ¢ + (w — ) =
¢+ N\ |A| > 1, contradicting (7) witha = 1,b = 0.

Set (ii) is a subset of the set (v) of points with |w | > 1 and w > ¢, since
w>Zid +F0P>Tand o' £ 1 — & Inset (v), R(w/¢) > 1 and this
contradicts (6).

For w in set (iii), consider (for definiteness) the case when » > cosy. If
¢ <1,takeX = (1 + €)icosy — ¢, with e > 0;then | A | > 1 and

w _vsecy
m(f+>\>_1+e > 1

provided ¢ is small enough, contradicting (7). If ¢ = 1, take N = —1 + 1g,

and then
w _

if ¢ is small enough, again contradicting (7).
We see that (6) and (7) actually restrict f’(z) to a proper subset of the
unit disk.
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