
INEQUALITIES FOR ASYMMETRIC ENTIRE FUNCTIONS
By R. P. BoAs, JR.

Let p. (z) be a polynomial of degree n such that P (z) -< 1 in the unit
disk zl __< 1. The following results are well known.

THEOREM A.

THEOREM B.
ForJzl-R> 1,1p(z)] R.
For z 1, P (z) <- n.

Theorem A is a simple deduction from the maximum principle (see [11],
p. 346, or [10], vol. 1, p. 137, problem III 269). Theorem B is n immediate
consequence of S. Bernstein’s theorem on the derivative of a trigonometric
polynomial (for references see [12], or [2], pp. 206, 231).
When p (z) has no zeros in zl < 1, more precise statements can be made"

THEOREM C.

THEOREM D.
ForJzl R> 1, Ip. (z) 1/2(1

o I , P’ (z) -<_ .
Theorem D was conjectured by Erd6s and proved by Lax [8]; for another

proof see [4]. Theorem G was deduced from Theorem D by Ankeny and
Rivlin [1 ].

Since p, (eiz) is an entire function of exponential type, these theorems sug-
gest generalizations to such functions. Let f(z) be an entire function of ex-
ponential type r, with If(x) <- 1 for real x.

THEOREM /k’. For all y, f(x iy) <= eIyl.

THEOREM B’. For all real x, f’(x) <-- r.

Theorem A’ is a simple consequence of the Phragmn-LindelSf principle
(for references see [2], p. 82; see also [11], pp. 346-347). Theorem B’ is
Bernstein’s generalization of Theorem B (see references on Theorem B).

In this note I obtain theorems for entire functions which generalize Theo-
rems C and D. To see what to expect, note that p (eiz) is an entire function
f(z) of exponential type of a special kind: if h(0) is its indicator, we have
h(--/2) n, but h(r/2) > -n unless pn (Z) CZ. If p (Z) has no zeros in
z < 1, f(z) has no zeros in y > 0, and moreover (since p(0) 0) h(r/2) 0.
Let us consider, then, entire functions f(z) of exponential type r with

If(x) =< 1 for real x, h(/2) 0 (hence necessarily h(-r/2) ), and
f(z) O for y > 0.

THEOREM 1. For y < O, f(x + iy) <- 1/2(e*lYl + 1).

THEOREM 2. For all real x, f’(x) <= 1/2’.
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Theorems 1 and 2 include Theorems C and D, so that we have new proofs
of these theorems.
We can vary the form of Theorems 1 and 2 to a certain extent by reducing

the asymmetry of the indicator diagram and applying the theorens as they
stand to e-f(z) with a suitable .
To illustrate Theorems 1 and 2, consider functions of the form

(1) f(z) et da(t), da(t) < .
If a(t) is not constant in any interval 0 -<_ =< a, a > 0, we have ([2], p. 108)
h(r/2) 0 and h(-r/2) -<_ r. Theorems 1 and 2 then apply to this f(z) if
(in particular) da(t) q,(t)dt and (t) is positive and decreasing, since [9]
f(z) then has all its zeros in the lower half plane. (If we take x 0 in this
special case we find the inequality 1 t(t) dt <- 1/2r 1 q(t) dt which is a special
case of Chebyshev’s inequality ([7], p. 168).) However, it is clear that if all
the derivatives of f(z) satisfied the conditions of Theorems 1 and 2, we should
obtain a contradiction by repeated applications of Theorem 2. Unless 0
is an isolated discontinuity of a(t) (as it is when f(z) p (e)), all the deriva-
tives of f(z) have the same indicator as f(z); hence not all the derivatives of
f(z) can be free of zeros in the upper half plane. Similar reasoning leads to
the following more general result.

TIEOREM 3. If f(z) is an entire function of exponential type r, such that
h(r/2) 0 for f(z) and all its derivatives, and f(z) is bounded on the real axis,
then every half plane y a >= 0 contains zeros of infinitely many derivatives
off(z).

If f(z) has the form (1) with d(t) (t) dt and q() positive and increasing,
all the zeros of f(z) and its derivatives are in y _>_ 0 [9]. If d(t) (t)dt
and (t) is an integral, the zeros are always asymptotic to the real axis [5];
Theorem 3 shows, however, that the zeros of the derivatives of f(z) cannot be
uniformly asymptotic to the real axis.
The condition h(/2) 0 in Theorem 3 will hold for all the derivatives of

f(z) unless 0 is a pole of the Borel transform of f(z).
We deduce Theorem 1 from the following theorem.

THEOREM 4. If g(z) is an entire function of exponential type r, if
g(x) M four all real x, and if

(2) g(z) <- g() y < O,

then
(3) g(x + iY) <= M cosh y, y < 0.

This is ostensibly a generalization of a theorem of Duffin and Schaeffer [6],
in which g(z) is real on the real axis, so that g(z) ]g() but it is actu-
ally a corollary of the Duffin-Schaeffer theorem.
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To prove Theorem 4, let (z) be the conjugate of g(z), and consider G(z)
g(z)(z), an entire function of exponential type 2r. We have G(x)[ <= M
for real x; and G(x) is real and non-negative on the real axis. Hence G(z) 1/2M
is real on the real axis, with absolute value bounded by 21-M2. By the Duffin-
Schaeffe theorem,

G(z) 1/2M2I <= 1/2M cosh 2ry,

g(z)Y(z) <= 1/2M (cosh 2ry -+- 1) M cosh ry.

Since Ig(z) =< (z) g() for y < 0, the conclusion follows.
The same reasoning shows (as A. C. Schaeffer has pointed out) that, whether

or not (2) holds, at least one of g(x -ff iy), g(x iy) satisfies (3). (For an-
other proof of this, see [3].)
To prove Theorem 1, put g(z) f(z)e-1/2i. Then Ig(x) -< 1 and g(z) is

of exponential type v/2; moreover, the indicator h of g satisfies hg (-r/2) <__
h (r/2). Since g(z) has no zeros for y > 0, by a theorem of B. Levin (see
[2], p. 129) we have g(z) _-< g() for y < 0. Hence, by Theorem 4

If(z) _-< e1[ cosh 1/2vy (el11 + 1)
for y < 0.
To prove Theorem 2, consider the same function g(z). By another theo-

rem of Levin (see [2], p. 226, 11.7.5), the function g’(z) (a + ifl)g(z) also
hus no zeros for y > 0if => 0. That is, ify > 0and > 0,

(4) f’(z) (1/2iv q- o q- i)f(z) O.

Since If(x) -< 1 for real x and h(-/2) <= O, we have f(x q- iy)[<- 1 for
y >= 0. Thus if h is any complex number of modulus greater than 1, f(z)
satisfies the same hypotheses as f(z). Hence we also have, for y > 0 and
fl => 0, andallwith[ > 1,

(5) f’(z) {/(z) X l(1/2iv + a + ifl) # O.

We now show that (4) and (5), with If(z) -< 1, imply If’(z) <_ 1/2v; since
this is true for all y > 0 it is also true for y 0.
To simplify the notation, put if’(z) w, f(z) , 1/2v io + a + ib,

with a -> 1/2v. Then (4) and (5) become

(6) w (a + ib) # O,

(7) w ( + X)(a + ib) O,

where " --< 1, and the inequalities hold for all , with {, > 1, all a >_-
and all real b. There is no loss in generality from taking 1/2v 1. If " 0,
(7) witha 1 andb 0saysthatw # andso wl <__ 1. If" #0, we
may assume that " is real and positive (otherwise consider we- instead of w).
Then let " sin h, 0 < 6 -< r/2.
The points w u + iv with [wl > 1 may be divided into three sets"

(i) The set of points with Iv[ -<_ cos 6 and u =< 0;
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(ii) The set of points with Iv[ -< cos and u > 0;
(iii) The set of points with Iv > cos .

We proceed to show that each of these sets is excluded by (6) or (7). (The
reasoning is most easily followed on a figure.)

Set (i) is a subset of the set (iv) of points with wl > 1 and u =< 0. In
set (iv), w 1 >-- wl > 1, a.nd so, for anyw in (iv), w -t- (w )
/" q- X, Xl > 1, contradicting (7) with a 1, b 0.

Set (ii) is a subset of the set (v) of points with wl > 1 and u > f, since
f u v v -.u > if q- > 1 and _-< 1 In set (v), 9(w/f) > 1 and this

contradicts (6).
For w in set (iii), consider (for definiteness) the ease when v > cos . If

f < 1, takeX (lq- e)ieos- f, withe > 0;thenlX > land

9
lq-e

provided e is small enough, contradicting (7). If f 1, take X -1 q-
and then

( w) =v/e>l+X
if v is small enough, again contradicting (7).
We see that (6) and (7) actually restrict f’(z) to a proper subset of the

unit disk.
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