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BURKHOLDER’S SUBMARTINGALES FROM A
STOCHASTIC CALCULUS PERSPECTIVE

GIOVANNI PECCATI AND MARC YOR

Abstract. We provide a simple proof, as well as several gen-
eralizations, of a recent result by Davis and Suh, characterizing

a class of continuous submartingales and supermartingales that

can be expressed in terms of a squared Brownian motion and of

some appropriate powers of its maximum. Our techniques in-
volve elementary stochastic calculus, as well as the Doob–Meyer

decomposition of continuous submartingales. These results can

be used to obtain an explicit expression of the constants appear-
ing in the Burkholder–Davis–Gundy inequalities. A connection
with some balayage formulae is also established.

1. Introduction

Let W = {Wt : t ≥ 0} be a standard Brownian motion initialized at zero,
set W ∗

t = maxs≤t |Ws|, and write F W
t = σ{Wu : u ≤ t}, t ≥ 0. In [3], Davis

and Suh proved the following result.

Theorem 1 ([3] Theorem 1.1). For every p > 0 and every c ∈ R, set

Yt = Yt(c, p) = (W ∗
t )p−2[W 2

t − t] + c(W ∗
t )p, t > 0,(1)

Y0 = Y0(c, p) = 0.

(i) For every p ∈ (0,2], the process Yt is a F W
t -submartingale, if and only if,

c ≥ 2−p
p .

(ii) For every p ∈ [2,+∞), the process Yt is a F W
t -supermartingale, if and

only if, c ≤ 2−p
p .
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As the title of [3] clearly indicates, the results of Theorem 1 were discovered
mainly by Burkholder in [2], apart from the precise constant (2 − p)/p. How-
ever, the emphasis in [2] is to obtain certain best constants for all martingales,
whereas in [3] and in the present paper, the authors focus on continuous local
martingales, hence, due to the Dubins–Schwarz theorem, the emphasis is on
Brownian motion. Furthermore, as pointed out in [3, p. 314] and in Section 4
below, very simple derivations of explicit expressions of the best constants
appearing in the Burkholder–Davis–Gundy (BDG) inequalities (see [1], or [5,
Chapter IV, Section 4]) derived from Part (i) of Theorem 1. The proof of
Theorem 1 given in [3] uses several delicate estimates related to a class of
Brownian hitting times. Such an approach can be seen as a ramification of
the discrete time techniques developed in [2]. In particular, in [3], it is ob-
served that the submartingale (or supermartingale) characterization of Yt(c, p)
basically relies on the properties of the random subset of [0,+∞) consisting
of the instants t when |Wt| = W ∗

t . The aim of this note is to bring this last
connection into further light, by providing an elementary proof of Theorem 1,
based on a direct application of Itô formula and on an appropriate version of
the Doob–Meyer decomposition of submartingales. See also Theorem 4 below
for some generalizations.

The rest of the paper is organized as follows. In Section 2, we state and
prove a general result involving a class of stochastic processes that are func-
tions of a positive submartingale and of a monotone transformation of its
maximum. In Section 3, we focus once again on the Brownian setting, and
establish a generalization of Theorem 1. Section 4 deals with an application
of the previous results to (strong) BDG inequalities. Finally, in Section 5,
we provide an explicit connection with some classic balayage formulae for
continuous-time semimartingales (see e.g., [6]).

All the objects appearing in the subsequent sections are defined on a com-
mon probability space (Ω,A,P).

2. A general result

Throughout this section, F = { Ft : t ≥ 0} stands for a filtration satisfying
the usual conditions. We will write X = {Xt : t ≥ 0} to indicate a continu-
ous Ft-submartingale issued from zero and such that P{Xt ≥ 0, ∀t} = 1. We
will suppose that the Doob–Meyer decomposition of X (see for instance [4,
Theorem 1.4.14]) is of the type Xt = Mt + At, t ≥ 0, where M is a square-
integrable continuous Ft-martingale issued from zero, and A is an increas-
ing (integrable) natural process. We assume that A0 = M0 = 0; the sym-
bol 〈M 〉 = {〈M 〉t : t ≥ 0} stands for the quadratic variation of M . We note
X∗

t = maxs≤t Xs, and we also suppose that P{X∗
t > 0} = 1 for every t > 0.

The following result is an extension of Theorem 1.
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Theorem 2. Fix ε > 0.

(i) Suppose that the function φ : (0,+∞) 	→ R is of class C1, nonincreasing,
and such that

(2) E

[∫ T

ε

φ(X∗
s )2 d〈M 〉s

]
< +∞,

for every T > ε. For every x ≥ z > 0, we set

(3) Φ(x, z) = −
∫ x

z

yφ′(y)dy;

then for every α ≥ 1, the process

(4) Zε(φ,α; t) = φ(X∗
t )(Xt − At) + αΦ(X∗

t ,X∗
ε ), t ≥ ε,

is a Ft-submartingale on [ε,+∞).
(ii) Suppose that the function φ : (0,+∞) 	→ R is of class C1, nondecreas-

ing and such that (2) holds for every T > ε. Define Φ(·, ·) according
to (3), and Zε(φ,α; t) according to (4). Then for every α ≥ 1, the process
Zε(φ,α; t) is a Ft-supermartingale on [ε,+∞).

Remark 1. Note that the function φ(y) (and φ′(y)) need not be defined
at y = 0.

Remark 2. In Section 3, where we will focus on the Brownian setting,
we will exhibit specific examples where the condition α ≥ 1 is necessary and
sufficient to have that the process Zε(α,φ; t) is a submartingale (when φ is
nonincreasing) or a supermartingale (when φ is nondecreasing).

Proof. (Part (i)) Observe first that since Mt = Xt − At is a continuous
martingale, X∗ is nondecreasing and φ is differentiable, then a standard ap-
plication of Itô formula gives that

φ(X∗
t )(Xt − At) − φ(X∗

ε )(Xε − Aε)(5)
= φ(X∗

t )Mt − φ(X∗
ε )Mε

=
∫ t

ε

φ(X∗
s )dMs +

∫ t

ε

(Xs − As)φ′(X∗
s )dX∗

s .

The assumptions in the statement imply that the application

t 	→ M̃ε,t :=
∫ t

ε

φ(X∗
s )dMs

is a continuous square integrable Ft-martingale on [ε,+∞). Moreover, the
continuity of X implies that the support of the random measure dX∗

t (on
[0,+∞)) is contained in the (random) set {t ≥ 0 : Xt = X∗

t }, thus yielding
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that ∫ t

ε

(Xs − As)φ′(X∗
s )dX∗

s =
∫ t

ε

(X∗
s − As)φ′(X∗

s )dX∗
s

= −
∫ t

ε

Asφ
′(X∗

s )dX∗
s − Φ(X∗

t ,X∗
ε ),

where Φ is defined in (3). As a consequence,

(6) Zε(φ,α; t) = M̃ε,t +
∫ t

ε

(−Asφ
′(X∗

s ))dX∗
s + (α − 1)Φ(X∗

t ,X∗
ε ).

Now, observe that the application t 	→ Φ(X∗
t ,X∗

ε ) is nondecreasing (a.s.-P),
and also that by assumption, −Asφ

′(X∗
s ) ≥ 0 for every s > 0. This entails

immediately that Zε(φ,α; t) is a Ft-submartingale for every α ≥ 1.
(Part (ii)) By using exactly the same line of reasoning as in the proof of

Point (i), we obtain that

Zε(φ,α; t) =
∫ t

ε

φ(X∗
s )dMs(7)

+
∫ t

ε

(−Asφ
′(X∗

s ))dX∗
s + (α − 1)Φ(X∗

t ,X∗
ε ).

Since (2) is in order, we deduce that t 	→
∫ t

ε
φ(X∗

s )dMs is a continuous (square-
integrable) Ft-martingale on [ε,+∞). Moreover, −Asφ

′(X∗
s ) ≤ 0 for every

s > 0, and we also have that t 	→ Φ(X∗
t ,X∗

ε ) is a.s. decreasing. This implies
that Zε(φ,α; t) is a Ft-supermartingale for every α ≥ 1. �

The next result allows to characterize the nature of the process Z appearing
in (4) on the whole positive axis. Its proof can be immediately deduced from
formulae (6) (for Part (i)) and (7) (for Part (ii)).

Proposition 3. Let the assumptions and notation of this section prevail.
(i) Consider a decreasing function φ : (0,+∞) 	→ R verifying the assump-

tions of part (i) of Theorem 2, and such that

(8) Φ(x,0) := −
∫ x

0

yφ′(y)dy is finite ∀x > 0.

Assume moreover that

(9) E

[∫ T

0

φ(X∗
s )2 d〈M 〉s

]
< +∞,

and also

φ(X∗
ε )Mε = φ(X∗

ε )(Xε − Aε) converges to zero in L1(P), as ε ↓ 0,(10)
Φ(X∗

t ,0) ∈ L1(P).(11)
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Then for every α ≥ 1 the process

(12) Z(φ,α; t) =

{
0 for t = 0,
φ(X∗

t )(Xt − At) + αΦ(X∗
t ,0) for t > 0,

is a Ft-submartingale.
(ii) Consider an increasing function φ : (0,+∞) 	→ R as in part (ii) of The-

orem 2 and such that assumptions (8)–(11) are satisfied. Then for every
α ≥ 1 the process Z(φ,α; t) appearing in (12) is a Ft-supermartingale.

Remark 3. A direct application of the Cauchy–Schwarz inequality shows
that a sufficient condition to have (10) is the following:

(13) lim
ε↓0

E[φ(X∗
ε )2] × E[M2

ε ] = lim
ε↓0

E[φ(X∗
ε )2] × E[〈M 〉ε] = 0

(observe that limε↓0 E[M2
ε ] = 0, since M0 = 0 by assumption). In other words,

when (13) is verified the quantity E[M2
ε ] “takes care” of the possible explosion

of ε 	→ E[φ(X∗
ε )2] near zero.

Remark 4. Let φ be nonincreasing or nondecreasing on (0,+∞), and
suppose that φ satisfies the assumptions of Theorem 2 and Proposition 3.
Then the process t 	→

∫ t

0
φ(X∗

s )dMs is a continuous square-integrable F W
t -

martingale. Moreover, for any choice of α ∈ R, the process Z(φ,α; t), t ≥ 0,
defined in (12) is a semimartingale, with canonical decomposition given by

Z(φ,α; t) =
∫ t

0

φ(X∗
s )dMs +

∫ t

0

(
(α − 1)X∗

s − As

)
φ′(X∗

s )dX∗
s .

3. A generalization of Theorem 1

The forthcoming Theorem 4 is a generalization of Theorem 1. Recall the no-
tation: W is a standard Brownian motion issued from zero, W ∗

t = maxs≤t |Ws|
and F W

t = σ{Wu : u ≤ t}. We also set for every m ≥ 1, every p > 0, and every
c ∈ R:

Jt = Jt(m,c, p) = (W ∗
t )p−m[|Wt|m − Am,t] + c(W ∗

t )p, t > 0,(14)
J0 = J0(m,c, p) = 0,

where t 	→ Am,t is the increasing natural process in the Doob–Meyer decom-
position of the F W

t -submartingale t 	→ |Wt|m. Of course, Jt(2, c, p) = Yt(c, p),
as defined in (1).

Theorem 4. Under the above notation:
(i) For every p ∈ (0,m], the process Jt is a F W

t -submartingale, if and only
if, c ≥ m−p

p .
(ii) For every p ∈ [m,+∞), the process Jt is a F W

t -supermartingale, if and
only if, c ≤ m−p

p .
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Proof. Recall first the following two facts: (A) W ∗
t =law

√
tW ∗

1 (by scaling),
and (B) there exists η > 0 such that E[exp(η(W ∗

1 )−2)] < +∞ (this can be
deduced e.g., from [5, Chapter II, Exercice 3.10]), so that the random variable
(W ∗

1 )−1 has finite moments of all orders. Note also that the conclusions of
both part (i) and part (ii) are trivial in the case where p = m. In the rest of
the proof, we will therefore assume that p 
= m.

To prove part (i), we shall apply Theorem 2 and Proposition 3 in the
following framework: Xt = |Wt|m and φ(x) = x

p−m
m = x

p
m −1. In this case, the

martingale Mt = |Wt|m − Am,t is such that 〈M 〉t = m2
∫ t

0
W 2m−2

s ds, t ≥ 0,
and Φ(x, z) = −

∫ x

z
yφ′(y)dy = −( p

m − 1)
∫ x

z
y

p
m −1 dy = m−p

p (x
p
m − z

p
m ). Also,

for every T > ε > 0,

E

[∫ T

ε

φ(X∗
s )2 d〈M 〉s

]
(15)

= m2
E

[∫ T

ε

(W ∗
s )2p−2mW 2m−2

s ds

]
≤ m2

E

[∫ T

ε

(W ∗
s )2p−2 ds

]
= m2

E[(W ∗
1 )2p−2]

∫ T

ε

s
p
2 −1 ds,

so that φ verifies (2) and (9). Relations (8) and (11) are trivially satisfied. To
see that (10) holds, use the relations

E{|φ(X∗
ε )(Xε − Aε)| }

= E
{∣∣(W ∗

ε )p−m[|Wε|m − Am,ε]
∣∣}

= E{|(W ∗
ε )p−mMε| } ≤ E{(W ∗

ε )2p−2m}1/2
E{〈M 〉ε}1/2

= mE{W 2m−2
1 }1/2

E{(W ∗
1 )2p−2m}1/2ε

p
2 − m

2

(∫ ε

0

sm−1 ds

)1/2

→ 0, as ε ↓ 0.

From part (i) of Proposition 3, we therefore deduce that the process Z(t)
defined as Z(0) = 0 and, for t > 0,

Z(t) = φ((W ∗
t )m)[|Wt|m − Am,t] + αΦ((W ∗

t )m,0)(16)

= (W ∗
t )p−m[|Wt|m − Am,t] + α

m − p

p
(W ∗

t )p,(17)

is a F W
t -submartingale for every α ≥ 1. By writing c = αm−p

p in the previous
expression, and by using the fact that m−p

p ≥ 0 by assumption, we deduce
immediately that Jt(m,c;p) is a submartingale for every c ≥ m−p

p . Now,
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suppose c < m−p
p . One can use formulae (6), (16), and (17) to prove that

Jt(m,c;p) =
∫ t

0

φ(X∗
s )dMs +

∫ t

0

[−Am,sφ
′((W ∗

s )m)]d(W ∗
s )m

+ (α − 1)Φ((W ∗
t )m,0)

=
∫ t

0

(W ∗
s )p−m dMs

+
(

p

m
− 1

)∫ t

0

[(1 − α)(W ∗
s )m − Am,s](W ∗

s )p−2m d(W ∗
s )m,

where 1 − α = 1 − pc/(m − p) > 0. Note that
∫ t

0
(W ∗

s )p−m dMs is a square-
integrable martingale, due to (15). To conclude that in this case, Jt(m,c;p)
cannot be a submartingale (nor a supermartingale), it is sufficient to observe
that (for every m ≥ 1 and every α < 1) the paths of the finite variation process

t 	→
∫ t

0

[(1 − α)(W ∗
s )m − Am,s](W ∗

s )p−2m d(W ∗
s )m

are neither nondecreasing nor nonincreasing, with P-probability one.
To prove part (ii), one can argue in exactly the same way, and use part (ii)

of Proposition 3 to obtain that the process Z(t) defined as Z(0) = 0, and for
t > 0,

Z(t) = (W ∗
t )p−m[|Wt|m − Am,t] + α

m − p

p
(W ∗

t )p

is a F W
t -supermartingale for every α ≥ 1. By writing once again c = αm−p

p

in the previous expression, and since m−p
p ≤ 0, we immediately deduce that

Jt(m,c;p) is a supermartingale for every c ≤ m−p
p . One can show that Jt(m,

c;p) cannot be a supermartingale, whenever c > m−p
p by using arguments

analogous to those displayed in the last part of the proof of part (i). �

The following result is obtained by specializing Theorem 4 to the case m = 1
(via Tanaka’s formula).

Corollary 5. Denote by {�t : t ≥ 0} the local time at zero of the Brownian
motion W . Then the process

Jt(p) = (W ∗
t )p−1[|Wt| − �t] + c(W ∗

t )p, t > 0,

J0(p) = 0,

is such that: (i) for p ∈ (0,1], Jt(p) is a F W
t -submartingale, if and only if,

c ≥ 1/p − 1, and (ii) for p ∈ [1,+∞), Jt(p) is a F W
t -supermartingale, if and

only if, c ≤ 1/p − 1.
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4. Burkholder–Davis–Gundy (BDG) inequalities

We reproduce an argument taken from [3, p. 314], showing that the first
part of Theorem 4 can be used to obtain a strong version of the BDG inequal-
ities (see e.g., [5, Chapter IV, Section 4]).

Fix p ∈ (0,2) and define c = (2 − p)/p = 2/p − 1. Since, according to the
first part of Theorem 4, Yt = Yt(c, p) is a F W

t -submartingale starting from
zero, we deduce that, for every bounded and strictly positive F W

t -stopping
time τ , one has E(Yτ ) ≥ 0. In particular, this yields

(18) E

(
τ

(W ∗
τ )2−p

)
≤ 2

p
E((W ∗

τ )p).

Formula (18), combined with an appropriate use of Hölder’s inequality, entails
finally that for 0 < p < 2,

(19) E(τ
p
2 ) ≤

[
2
p

E((W ∗
τ )p)

] p
2

[E((W ∗
τ )p)]

2−p
2 =

[
2
p

] p
2

E((W ∗
τ )p).

Of course, relation (19) extends to general stopping times τ (not neces-
sarily bounded) by monotone convergence (via the increasing sequence {τ ∧
n : n ≥ 1}).

Remark 5. Let {An : n ≥ 0} be a discrete filtration of the reference σ-
field A, and consider a An-adapted sequence of measurable random elements
{fn : n ≥ 0} with values in a Banach space B. We assume that fn is a mar-
tingale, i.e., that for every n, E[fn − fn−1|An−1] = E[dn|An−1] = 0, where
dn := fn − fn−1. We note

Sn(f) =

√√√√ n∑
k=0

|dk |2 and f ∗
n = sup

0≤m≤n
|fm|,

and write S(f) and f ∗, respectively, to indicate the pointwise limits of Sn(f)
and f ∗

n , as n → +∞. In [2], Burkholder proved that

(20) E(S(f)) ≤
√

3E(f ∗),

where
√

3 is the best possible constant, in the sense that for every η ∈ (0,
√

3)
there exists a Banach space-valued martingale f(η), such that E(S(f(η))) >
ηE(f ∗

(η)). As observed in [3], Burkholder’s inequality (20) should be compared
with (19) for p = 1, which yields the relation E(τ1/2) ≤

√
2E(W ∗

τ ) for every
stopping time τ . This shows that in such a framework, involving uniquely
continuous martingales, the constant

√
3 is no longer optimal.

5. Balayage

Keeping the assumptions and notation of Section 2 and Theorem 2, fix ε > 0
and consider a finite variation function ψ : (0,+∞) 	→ R. In this section, we
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focus on the formula

ψ(X∗
t )(Xt − At) − ψ(X∗

ε )(Xε − Aε)

=
∫ t

ε

ψ(X∗
s )d(Xs − As) +

∫ t

ε

(X∗
s − As)dψ(X∗

s ),(21)

where ε > 0. Note that by choosing ψ = φ in (21), where φ ∈ C1 is monotone,
one recovers formula (6), which was crucial in the proof of Theorem 2. We
shall now show that (21) can be obtained by means of the balayage formulae
proved in [6].

To see this, let U = {Ut : t ≥ 0} be a continuous Ft-semimartingale issued
from zero. For every t > 0, we define the random time

(22) σ(t) = sup{s < t : Us = 0}.

The following result is a particular case of [6, Theorem 1].

Proposition 6 (Balayage formula). Consider a stochastic process
{Kt : t > 0} such that the restriction {Kt : t ≥ ε} is locally bounded and Ft-
predictable on [ε,+∞) for every ε > 0. Then for every fixed ε > 0, the process
Kσ(t), t ≥ ε, is locally bounded and Ft-predictable, and moreover

(23) UtKσ(t) = UεKσ(ε) +
∫ t

ε

Kσ(s) dUs.

To see how (21) can be recovered from (23), set Ut = Xt − X∗
t and Kt =

ψ(X∗
t ). Then Kt = Kσ(t) = ψ(X∗

σ(t)) by construction, where σ(t) is defined as
in (22). As a consequence, (23) gives

ψ(X∗
t )(Xt − X∗

t ) = ψ(X∗
ε )(Xε − X∗

ε ) +
∫ t

ε

ψ(X∗
s )d(Xs − X∗

s ).

Finally, a standard integration by parts applied to ψ(X∗
t )(X∗

t − At) yields

ψ(X∗
t )(Xt − At) = ψ(X∗

t )(Xt − X∗
t ) + ψ(X∗

t )(X∗
t − At)

= ψ(X∗
ε )(Xε − X∗

ε ) +
∫ t

ε

ψ(X∗
s )d(Xs − X∗

s )

+ ψ(X∗
ε )(X∗

ε − Aε) +
∫ t

ε

ψ(X∗
s )d(X∗

s − As)

+
∫ t

ε

(X∗
s − As)dψ(X∗

s ),

which is equivalent to (21).
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them to improve upon the above discussion following Theorem 1.
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Springer, New York, 1979, pp. 453–471. MR 0544815

Giovanni Peccati, Centre de Recherche Modal’X, Université Paris Ouest
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