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ORBITS OF AUTOMORPHISMS OF INTEGRAL DOMAINS

PRAMOD K. SHARMA

ABSTRACT. Let R be an integral domain. We study the struc-
ture of R under the condition that the orbit space R/Aut(R) is
finite. It is proved that if R is Noetherian, then |R/Aut(R)| = oo

unless R is a finite field (Theorem 15 and Corollary 16). Fur-
thermore, we give an example of an infinite integral domain with
|R/Aut(R)| < 0.

1. Introduction

All rings are commutative with identity # 0. Kiran Kedlaya and Bjorn
Poonen [3, Theorem 1.1] have proved if K is a field on which the number of
orbits of Aut(K) is finite, then K is finite. Furthermore, in [3, Remark 1.11],
it is stated that “we do not know whether there exists an infinite integral
domain R such that Awt(R) has finitely many orbits on R”. In this note,
we prove the existence of such an integral domain. In Section 2, we collect
some facts, essentially from [3], to be used freely in sequel. If R is an integral
domain, then orbit of any A € R is denoted by o()\).

In Section 3, we study orbit space of integral domains. Apart from other
results, we prove that if A is an integral domain such that |A/Aut(A)| < oo,
then elements of A with finite orbits form a subfield which is integrally closed
in A (Lemma 11). Moreover, if Aut(A) is torsion, then it is finite and A is a
finite field (Theorem 12).

In Section 4, we prove that for any Noetherian integral domain R if |R/
Aut(R)| < 00, R is a finite field (Corollary 16). We also give a characteriza-
tion of the structure of integral domains R having characteristic p > 2 and
|R/Aut(R)| < oo (Theorem 17). Finally, we give an example of an infinite
integral domain with finitely many orbits.
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2. Some basic facts

We shall collect here some basic facts, which either appear in [3] or are
immediate from results therein to be used freely in sequel. Throughout this
section, R is an integral domain, such that |R/Aut(R)| < co. Thus, char-
acteristic of R is p > 0. Let IF, be the prime subfield of R. Then FE, the
integral closure of F), in R, is a finite field. Thus, R contains finitely many
roots of unity. For any subset S, of a ring R and n > 1, we shall write
S™={a": a € S}. We now note the following:

(i) Let S be a subset of R invariant under the action of Aut(R). Then
S = SP. In particular R = RP.
As S is invariant under the action of Aut(R),

SHSPHS 5.8 5.

is a chain of Aut(R) invariant subsets of R. As |R/Aut(R)| < oo, there exists

n > 1, such that SP" = sp Therefore, for any A € S, there exists p € S
such that

n n+1

AP = P
= (A—p) =0
= A=pur.

Hence, S = SP, and the result follows.

(ii) If R is integrally closed and contains no primitive gth root of unity for
a prime ¢, then for any Aut(R) invariant subset S of R, S =59. Thus, in
particular, R = R1.

Proceeding as in (i), there exists n > 1, such that S9" = g4t Therefore,
for any A € S, there exists p € S such that

Aqn :qu+1
= (w9’ =1
= A=ul

Therefore S =57, and hence, R = R1.

Following almost verbatim the proof of [3, Theorem 1.1], we get that
R=E &I where I is the divisible submodule of the F,[X]-module R where
X : R— R is the Frobenius automorphism of R. Lemmas 1.7 and 1.8 in
[3] also hold for any integral domain R such that |R/Aut(R)| < oo. Unfortu-
nately, [3, Theorem 1.1] fails to hold for integral domains in general since the
last part of the proof needs x € R*, such that Tr(z) =0 and = € R*.

If we assume Char.R = p > 2, then by [3, Remark 1.9], I is an ideal. Hence,
we have the following.
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Let R be an integral domain of characteristic p > 2. If |R/Aut(R)| < oo,
then R=E® I, where I is the integral closure of I, in R and I is a maximal
ideal of R.

The ideal I is invariant under the action of Aut(R). Hence, I? = I. This
implies that the ideal I is equal to its pth power. Hence, I is an idempotent
ideal. Therefore, if R contains no idempotent ideal, then R is a field. This,
in particular, implies that if R is a Noetherian domain of characteristic p > 2
with |R/Aut(R)| < oo, then R is a field.

3. Overture

In this section, unless otherwise specified, (R, m) is a quasi-local domain
#(field), i.e., an integral domain with exactly one maximal ideal which is not
a field.

LEMMA 1. If each orbit of m under the action of Aut(R) is finite, then
each orbit of R under the action of Aut(R) is finite.

Proof. Let A € R. Choose a nonzero element x € m. Then for any o €

Aut(R),
o(Ax) =c(N)o(x)
= o(\)=c(\x)/o(z).

Hence, as x, \x € m, and each orbit of m under the action of Aut(R) is finite,
lo(A\)] is finite. O

LEMMA 2. (i) If |[R/Aut(R)| < oo, then |m/Aut(R)| < oo and also
((R/m)/ Aut(R/m)] < 0.
(ii) Assume |m/Aut(R)| < oo and |(R/m)/Aut(R/m)| < co. We have
(a) If characteristic of R is 0, then
|R/Aut(R)| < 0.
(b) If |[R/m|=t+1, and R has no nontrivial tth root of unity, then
|R/Aut(R)| < 0.

Proof. (i) As m is invariant under the action of Aut(R), the inclusion map
from m to R induces an injection

m/Aut(R) — R/ Aut(R).
Furthermore, the natural map from R to R/m induces a surjection
R/Aut(R) — ((R/m)/Aut(R/m)).
Hence, as |R/Aut(R)| < oo, the result follows.
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(ii) By assumption, |(R/m)/Aut(R/m)| < co. Hence, by [3, Theorem 1.1],
R/m is finite. Let the characteristic of R/m be p > 0. We now prove the
following.

(a) Multiplication by p induces the bijection

R/Aut(R) = pR/Aut(R).
Hence, as pR/Aut(R) C m/Aut(R) and |m/Aut(R)| < oo, the result follows.

(b) Since |m/Aut(R)| < oo, it suffices to prove the assertion that |(R —
m)/Aut(R)| < oo|. As |[R/m|=t+1, for any A\€ R—m, \' —1€m. Fur-
thermore, as R is an integral domain with no nontrivial ¢tth root of unity, the
map

R—m —m,
A= A1
is injective. This induces the injection
(R—m)/Aut(R) — m/Aut(R).
Therefore, |(R—m)/Aut(R)| < oo. O

LEMMA 3. If (R,m) is Noetherian domain such that |m/Aut(R)| < oo,
then R is a field.

Proof. Clearly, m® is closed under the action of Aut(R) for all i > 1. As
|m/Aut(R)| < oo, and

m3m23-~-3mi3mi+1

D...7

there exists n > 1, such that m™ = m™*!'. Hence, m = 0. Therefore, R is a
field. O

REMARK 4. (i) If (R,m) is Noetherian which is not a field, then |R/
Aut(R)| = oo.
(ii) Lemma is true even if R is not an integral domain, but m # Nil(R).

LEMMA 5. Let A be a ring such that |A/Aut(A)| < oo. If X is a nonzero
divisor in A such that |o(A\)| =1, then X is a unit.

Proof. Note that
ADMADNAD---DAN"AD -,

is a descending chain of orbit closed subsets of A. As |A/Aut(A)| < oo, there
exists m > 1, such that A™A = A1 A. Therefore, 1 = Aa for some a € A.
Hence, X\ is a unit. O

REMARKS 6. (i) If A is an integral domain, then
L= A2 — fx e Alo(\) = A for all o € Aut(A)}

is a finite subfield of A. Furthermore, the integral closure of L in A is a finite
field.
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(ii) Let A be an integral domain. If A € A and o(\) < oo, then A is in-
tegral over A4"(A) = [, since if o(\) = {\ = A1, Aa,..., \¢}, then X is root
of the polynomial p(X) = (X — A1)(X — A2)--- (X — A) € L[X]. Therefore,
{Ae A |o(N)| < oo} is the integral closure of L in A.

COROLLARY 7. Let A be a nonzero divisor in a ring A such that |A/
Aut(A)| < oco. If |o(N)] < oo, then A is a unit.

Proof. Let o(A\) = {A = A, Aa,...,A\¢}. Then = A - Ag--- Ay € AAUHA),
Hence p is unit. Therefore, A is a unit. O

COROLLARY 8. Let for a quasi-local domain (R,m), |R/Aut(R)| < oo.
Then for any x (#0) € m, |o(z)| = oo.

THEOREM 9. Let A be a Noetherian integral domain such that |A/
Aut(A)| < oo. Let J = J(A) be the Jacobson radical of A. Then J = (0).

Proof. Clearly, for any o € Aut(A),o(J) C J. Therefore, o(J™) C J™ for
all m>1. As |A/Aut(A)| < 00, and

JOJ*>- .o J o,

there exists m > 1, such that J™ = J™*!. Hence, J = (0). O

COROLLARY 10. If R is a Noetherian semi-local integral domain and |R/
Aut(R)| < oo, then R is a field.

LEMMA 11. Let A be an integral domain such that |A/Aut(A)| < co. Then
E={XeA:|o(N\)] < oo} is a finite subfield of A and is integrally closed in A.

Proof. By Corollary 7, nonzero elements in F are units in A. It is clear that
for any \,p € E,A+p € E, M € E and if A#0, then A=! € E. Therefore, E
is a finite subfield of A. Furthermore, let a € A be integral over E. Then since
for any o € Aut(A), o(F) C E,o(a) is integral over E. Thus, as |o(\)| < oo
for all A € E, |o(a)| < oo, and hence, a € E. Therefore, F is integrally closed
in A. O

THEOREM 12. Let A be an integral domain and |A/Aut(A)| < co. Then
Aut(A) is a torsion group if and only if the Frobenius automorphism of A is
of finite order. Moreover, in this case Aut(A) is finite and A is a finite field.

Proof. As |A/Aut(A)| < oo, from Section 2, A has characteristic p > 0 and
the Frobenius endomorphism 7 of A is an automorphism. Thus, if Aut(A) is
torsion 7 is of finite order. Conversely, if 7 has finite order, say n. Then every
element of A is root of the polynomial X?" — X. Hence, |A| < p™. Thus, A
being finite integral domain is a field, and Aut(A) is finite. O
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4. Main results

In this section, we shall prove that for any integral domain R which contains
a prime element, |R/Aut(R)| = co. We also show that if R is a Noetherian
integral domain, which is not a field, |R/Aut(R)| = oo (Theorem 15). Finally,
we give an example of an infinite integral domain which has finite number of
orbits under the action of its automorphism group.

THEOREM 13. Let R be an integral domain which contains a prime ele-
ment w. Then |R/Aut(R)| = oco.

Proof. Assume |R/Aut(R)| < co. Note that the set {#" : n > 1} is infinite.
Thus, there exist m >n and o € Aut(R) such that o(7™) = 7#™. Then o
induces the ring isomorphism:

R/(x") = R/(x™),
A=At (1) — o (V) + (1) =0 (V).

The element 7 in R/(7™) is nilpotent of degree m. Further, R/(7x™) has no
nilpotent element of degree m. Hence, the ring R/(7™) is not isomorphic to
the ring R/(m™) for m > n. Therefore, 7™ cannot be in o(7™) for m > n.
This implies |R/Aut(R)| = oo. O

REMARK 14. Theorem is true for any ring R having a prime element which
is not a zero divisor. Hence, if R is a ring which is not necessarily an integral
domain, then for the polynomial ring R[X] = A, |A/Aut(A)| = cc.

THEOREM 15. Let R be a Noetherian integral domain which is not a field.
Then |R/Aut(R)| = occ.

Proof. Let ¢ be a nonzero, nonunit element of R. Then for any m,n €
N,m #n,c™ # ¢". Assume |R/Aut(R)| < co. Then there exists m < n and
o € Aut(R), such that o(c") =¢™. Let I = Rc". Then I & o(I), and hence

];g([);...;g”([);...

is an infinite ascending chain of ideals in R. As R is Noetherian, this is not
possible. Thus, the result follows. ]

COROLLARY 16. Let R be a Noetherian integral domain. If |R/
Aut(R)| < o0, then R is a finite field.

Proof. By Theorem 15, R is a field. Hence, by [3, Theorem 1.11], R is a
finite. O

THEOREM 17. Let R be an integral domain of characteristic p > 2. Let E be
the integral closure in R of the prime subfield F,, of R. Then |R/Aut(R)| < oo
if and only if E is a finite field and R = E @& m where m is a maximal ideal
of R such that o(m)=m for every o € Aut(R) and |m/Aut(R)| < oo.
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Proof. If |R/Aut(R)| < 0o, then the result is noted in Section 2. Conversely,
let m=o(xz1)U---Uo(zg). For any A€ R, A\=b+y where be F and y €
m. Assume y € o(x1). Then there exists o € Aut(R) such that o(z1) =y.
Hence, as o(E) = E, we have a € E such that A =o(a+ x1). Therefore, |R/
Aut(R)| = oo.

We shall now give an infinite integral domain with finite number of orbits
under the action of its automorphism group.

We follow the following strategy.

Let (R,m) be a quasi-local integral domain of characteristic p > 0, which
is not a field and |m/Aut(R)| < co. Then A=F, +m is a local domain with
maximal ideal m. For any o € Aut(R),0(A) = A. Hence, |m/Aut(A)| < cc.
This implies |A/Aut(A)| < co. As m is infinite, A is the required example.
Thus, to complete the proof, it is sufficient to give a quasi-local integral do-
main (R, m) with the required properties. We shall do this below. O

ExaMPLES 18. Let (S,n) be a Noetherian, complete local integral domain
which is not a field. Assume S contains a field of characteristic p > 0. Let
K be the field of fractions of S and let R be the integral closure of S in the
algebraic closure K of K. As (S,n) is Henselian, R is quasi-local [5, (30.5)].
Let m be the maximal ideal of R. Then (R, m) is quasi-local integral domain
with field of fractions K. We claim the following below.

For any two nonzero elements x,y € m, there exists o € Aut(R), such that
o(x) =y. Thus, |m/Aut(R)| =2. We shall prove the claim in steps.

Step 1. S[z] is complete local integral domain.

We have S C S[z] C R, where each step is an integral ring extension. As
R is quasi-local, m N S[z] is the unique maximal ideal of S[z|. Thus, S[z] is
local. As z is integral over S, S[z] is a finitely generated S-module. Hence,
as (S,n) is complete local ring, the ring S[z] is complete with respect to the
ideal nS[z] [1, Proposition 10.13]. Now, as the radical of nS[z] is the unique
maximal ideal of S[z], S[x] is a complete local integral domain.

Step 2. The element x is part of a system of parameters of S[z]. Note
that € m N S[z]. Therefore, z is in the maximal ideal of S[z]. Since z # 0,
using [4, Chapter V, Proposition 4.11], we get that x is a part of a system of
parameters of the complete local ring S[z].

Step 3. |m/Aut(R)|=2.

Let dim.S = dim.S[z] = d. Then by Step 2, S[z] has a system of parame-
ters {x =x1,...,2q4}. If L is a coeflicient field of S, then it is also coefficient
field of S[z] and S[z] is finite module over L[[z1,...,24]] in a natural way
[5, Corollary 31.6]. Therefore, S[z] is integral over L[[z1,...,x4]] and so is R.
Consequently, K is algebraic closure of the field of fractions of L[[z1,...,z4]]
and R is the integral closure of L[[z1,...,74]] in K. Similarly, S[y] is a com-
plete local integral domain with a system of parameters {y =y1,...,yqa} with
coefficient field L. Moreover, L[y1,...,yq4)] C S[y] C R is a chain of integral
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extensions. Using [4, Chapter V, Corollary 4.19], we note that the map

Llfzy,..,zd)] == Lly1, - - -, yall,

p((z1,---,2a)) — p((y1, -, ya))
is an isomorphism such that o|L = id, and o(z;) =y; for all i > 1. As K is
algebraic closure of the field of fractions of L{[x1,...,z4]] (L[[y1,-..,yd]]), o
extends to an automorphism of K (not necessarily unique). Restriction of
this automorphism to R gives an automorphism of R which maps x to y since
R is the integral closure of L{[x1,...,24]] (L[[y1,...,y4]]) in K. Therefore,
|m/Aut(R)| = 2. In view of above, the quasi-local ring (R.m) is the required
quasi-local domain. Hence, the assertion follows.
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