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ON PAIRS OF DEFINABLE ORTHOGONAL FAMILIES

PANDELIS DODOS AND VASSILIS KANELLOPOULOS

Abstract. We introduce the notion of an M-family of infinite
subsets of N which is implicitly contained in the work of Mathias.

We study the structure of a pair of orthogonal hereditary families

A and B, where A is analytic and B is C-measurable and a M-
family.

1. Introduction

Two families A and B of infinite subsets of N are said to be orthogonal if
A ∩ B is finite for every A ∈ A and every B ∈ B. The study of the structure
of a pair (A, B) of orthogonal families is a classical topic [Hau] which has
found numerous applications (see, for instance, [DW] and [To4]). Among all
pairs (A, B) of orthogonal families of particular importance is the study of the
definable ones. Here the word definable refers to the descriptive set theoretic
complexity of A and B as subsets of P (N). A fundamental result in this
direction is the “perfect Lusin gap” theorem of Todorčević [To2] which deals
with a pair of analytic and orthogonal families.

In this paper, we study the structure of a pair (A, B) of hereditary and
orthogonal families where A is analytic and B is C-measurable1 and “large.”
Our notion of largeness is the following which is implicitly contained in the
work of Mathias [Ma].

Definition 1. We say that a hereditary family A of infinite subsets of N
is an M-family if for every sequence (An)n in A there exists A ∈ A whose all
but finitely many elements are in

⋃
i≥n Ai for every n ∈ N.

We should point out that there are several other notions appearing in the
literature, such as P-ideals (see [So], [To2]) or semi-selective coideals (see
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[Fa]), involving the existence of diagonal sequences. We should also point
out that the notion of a M-family is closely related to the weak diagonal
sequence property of topological spaces, and in fact, it can be considered as
its combinatorial analogue.

Using Ellentuck’s theorem [El], we show that the class of C-measurable M-
families possesses strong stability properties. It is closed, for instance, under
intersection and “diagonal” products. As a consequence, we prove that if
(X,τ1) and (Y, τ2) are two countable analytic spaces with the weak diagonal
sequence property, then the product (X × Y, τ1 × τ2) has the weak diagonal
sequence property. This answers Question 5.4 from [TU].

Our first result concerning the structure of a pair (A, B) as described above,
is the following (see Section 2 for the relevant definitions).

Theorem I. Let A and B be two hereditary, orthogonal families of infinite
subsets of N. Assume that A is analytic and that B is an M-family and C-
measurable. Then either:

(i) A is countably generated in B ⊥, or
(ii) there exists a perfect Lusin gap inside (A, B).

Theorem I shows that the assumption of being an M-family can successfully
replace analyticity in the perfect Lusin gap theorem of [To2]. We should point
out that the phenomenon of replacing analyticity by a structural property and
still getting the same conclusion as in Theorem I has already appeared in the
literature (see [To4] and [TU]). As a matter of fact, Theorem I was motivated
by these applications.

Our second result, concerning the structure of a pair (A, B) as in Theorem I,
extends a result of A. Krawczyk from [Kr]. To state it, it is useful to look at the
second orthogonal B ⊥ ⊥ of B. In a sense the family B ⊥ ⊥ is the “completion”
of B, as an infinite subset L of N belongs to B ⊥ ⊥ if (and only if) every infinite
subset of L contains an element of B. To proceed with our discussion, let

C be the family of all infinite chains of N<N (we recall that a subset of N<N

is called a chain if it is linearly ordered under the order of end-extension).
Let also Iwf be the ideal on N<N generated by the set WF of all downwards
closed, well-founded, infinite subtrees of N<N. The following theorem shows
that if A, B are as above and A is not countably generated in B ⊥, then the
pair (C, Iwf) “embeds” into the pair (A, B ⊥ ⊥) in a very canonical way.

Theorem II. Let A and B be two hereditary, orthogonal families of infinite
subsets of N. Assume that A is analytic and that B is an M-family and C-
measurable. Then either:

(i) A is countably generated in B ⊥, or
(ii) there exists a one-to-one map ψ : N<N → N, such that

C ⊆ {ψ−1(A) : A ∈ A } and Iwf ⊆ {ψ−1(B) : B ∈ B ⊥ ⊥ }.
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One of the main ingredients of the proofs of Theorem I and Theorem II is
the infinite dimensional extension of Hindman’s theorem [Hi], due to Milliken
[Mil]. It is used in a spirit similar as in [ADK].

The paper is organized as follows. In Section 2, we gather some prelimi-
naries needed in the rest of the paper. In Section 3, we study the connection
of M-families with other related notions and we give some examples. In Sec-
tion 4, we present some of their structural properties. The proof of Theorem I
is given in Section 5, while the proof of Theorem II is given in Section 6. Our
general notation and terminology is standard, as can be found in [Ke] and
[To3].

2. Preliminaries

It is a common fact that once one is willing to present some results about
trees, ideals, and related combinatorics, then one has to set up a rather large,
notational system. Below we gather all the conventions that we need, and
which are more or less standard. In what follows, X will be a countable
(infinite) set.

2.1. Ideals. By P ∞(X), we denote the set of all infinite subsets of X (which
is clearly a Polish subspace of 2X). A family A ⊆ P∞(X) is hereditary if for
every A ∈ A and every A′ ∈ P ∞(A) we have A′ ∈ A. A subfamily B of a family
A is cofinal in A if for every A ∈ A there exists B ∈ P∞(A) with B ∈ B.

Given A,B ∈ P∞(X), we write A ⊆∗ B if the set A \ B is finite, while we
write A ⊥ B if the set A ∩ B is finite. Two families A, B ⊆ P∞(X) are said to
be orthogonal, in symbols A ⊥ B, if A ⊥ B for every A ∈ A and every B ∈ B.
For every A ⊆ P ∞(X), we set A⊥ = {B ∈ P ∞(X) : B ⊥ A for all A ∈ A} and

A ∗ = {X \ A : A ∈ A}. The family A ⊥ is called the orthogonal of A. Notice
that A ⊥ is an ideal.

Two families A and B are countably separated if there exists a sequence
(Cn)n in P∞(X) such that for every A ∈ A and every B ∈ B there exists n ∈ N
with A ⊆ Cn and Cn ⊥ B. A family A is countably generated in a family B,
if there exists a sequence (Bn)n in B such that for every A ∈ A there exists
n ∈ N with A ⊆∗ Bn. An ideal I on X is said to be bisequential if for every
ultrafilter p on X with I ⊆ p∗ the family I is countably generated in p∗.

Given A ⊆ P ∞(X), we let

(1) co(A) = {B ∈ P∞(X) : ∃A ∈ A with B ∩ A infinite} = P ∞(X) \ A⊥.

Notice that co(A) is a coideal. We call co(A) as the coideal generated by
A. Observe that if A is hereditary, then co(A) = {B ∈ P∞(X) : ∃A ∈ A with
A ⊆ B}.

The following elementary, well-known fact provides the description of the
second orthogonal A ⊥ ⊥ of a hereditary family A.
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Fact 1. Let A ⊆ P∞(X) hereditary. Let also B ∈ P∞(X). Then B ∈ A ⊥ ⊥

if and only if for every C ∈ P∞(B) there exists A ∈ P ∞(C) with A ∈ A.

An ideal I is said to have the Fréchet property if I = I ⊥ ⊥. We notice that
if A is a hereditary family, then both A⊥ and A ⊥ ⊥ have the Fréchet property.
The following fact is also well known. We sketch its proof for completeness.

Fact 2. A bisequential ideal I on X has the Fréchet property.

Proof. In light of Fact 1, it is enough to show that for every A /∈ I there
exists C ∈ P ∞(A) with C ∈ I ⊥. So, let A /∈ I. The family {A \ L : L ∈ I } has
the finite intersection property. Hence, we may find p ∈ βX , nonprincipal,
with I ⊆ p∗ and A ∈ p. By the bisequentiality of I, there exists a sequence
(Bn)n in p∗ such that for every L ∈ I there exists n ∈ N with L ⊆∗ Bn. Clearly,
we may assume that the sequence (Bn)n is increasing. Let C be an infinite
diagonalization of the decreasing sequence (A \ Bn)n. Then C ∈ P ∞(A) and
C ∈ I ⊥. The proof is completed. �

2.2. Trees and block sequences. By X<N we shall denote the set of all
finite sequences in X . We view X<N as a tree under the (strict) partial order �
of end-extension. For every s, t ∈ X<N by s�t we denote their concatenation.
If T is a downwards closed subtree of X<N, then by [T ] we shall denote
its body (i.e., the set {σ ∈ XN : σ|n ∈ T ∀n ∈ N}). Two nodes s, t ∈ T are
said to be comparable if either t 	 s or s 	 t; otherwise they are said to be
incomparable. A subset of T consisting of pairwise comparable nodes is said
to be a chain, while a subset of T consisting of pairwise incomparable nodes
is said to be an antichain.

By Σ, we shall denote the downward closed subtree of N<N consisting of
all strictly increasing finite sequences. We view, however, every t ∈ Σ not
only as a finite increasing sequence, but also as finite subset of N. Given
s, t ∈ Σ \ {∅} we write s < t if maxs < min t. By convention, ∅ < t for every
t ∈ Σ with t 
= ∅. If s, t ∈ Σ with s < t, then we will frequently denote by s ∪ t
the concatenation of s and t.

By B, we shall denote the closed subset of ΣN (Σ equipped with the discrete
topology) consisting of all sequences (bn)n with bn 
= ∅ and bn < bn+1 for every
n ∈ N. We call a sequence b = (bn)n ∈ B a block sequence. For every block
sequence b = (bn)n, we set

〈b〉 =
{ ⋃

n∈F

bn : F ⊆ N finite
}

⊆ Σ and(2)

[b] = {(cn)n ∈ B : cn ∈ 〈b 〉 ∀n}.

We will need the following consequence of Milliken’s theorem [Mil].

Theorem 2. Let X be a C-measurable subset of B. Then there exists
b ∈ B such that either [b] ⊆ X or X ∩ [b] = ∅.
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We recall that the class of C-measurable sets is strictly bigger than the
σ-algebra generated by the analytic sets (see, for instance, [Ke]).

2.3. Lusin gaps and related results. Let A, B ⊆ P ∞(X). A perfect Lusin
gap inside (A, B) is a continuous, one-to-one map 2N � x �→ (Ax,Bx) ∈ A × B
such that the following are satisfied:
(a) For every x ∈ 2N, Ax ∩ Bx = ∅.
(b) For every x, y ∈ 2N with x 
= y, (Ax ∩ By) ∪ (Ay ∩ Bx) 
= ∅.
The notion of a perfect Lusin gap was introduced by Todorčević. We notice
that if there exists a perfect Lusin gap inside (A, B), then A and B are not
countably separated. The following result of Todorčević [To2] shows that this
is the only case for a pair of analytic and orthogonal families.

Theorem 3. Let A and B be two analytic, hereditary, and orthogonal
families of infinite subsets of N. Then either:
(i) A and B are countably separated, or
(ii) there exists a perfect Lusin gap inside (A, B).

Theorem 3 is a consequence of the Open Coloring Axiom for Σ1
1 sets (see

[Fe], [To1]). We should point out that it is the perfectness of the gap which
is essential in many applications. We refer the reader to [To2] and [To4] for
more information.

We will also need the following slight reformulation of [To2, Theorem 3].

Theorem 4. Let A, B ⊆ P∞(N) be two hereditary orthogonal families. As-
sume that A is analytic and not countably generated in B ⊥. Then there exists
a one-to-one map φ : Σ → N such that, setting

E = {φ−1(A) : A ∈ A } and H = {φ−1(B) : B ∈ B },

the following are satisfied.
(i) For every σ ∈ [Σ], the set {σ|n : n ∈ N} belongs to E .
(ii) For every t ∈ Σ, the set {t ∪ {n} : n ∈ N and t < {n}} of immediate suc-

cessors of t in Σ belongs to H.

Proof. Assume that A is analytic, hereditary, and not countably generated
in B ⊥. By [To2, Theorem 3], there exists a downwards closed subtree T of Σ
such that the following are satisfied.
(B1) For every σ ∈ [T ], {σ(n) : n ∈ N} ∈ A.
(B2) For every t ∈ T , the set {n ∈ N : t < {n} and t ∪ {n} ∈ T } is infinite and

is included in an element of B.
Recursively and using property (B2) above, we may select a downwards closed
subtree S of T such that the following hold.
(a) For all s ∈ S, the set {n ∈ N : s < {n} and s ∪ {n} ∈ S} is infinite.
(b) For all s,w ∈ S \ {∅} with s 
= w, we have max s 
= maxw.



186 P. DODOS AND V. KANELLOPOULOS

Fix m ∈ N such that (m) ∈ S and let Sm = {t ∈ Σ : (m)�t ∈ S}. By (a) above,
Sm is an infinitely splitting, downwards closed subtree of Σ. Hence, there
exists a bijection h : Σ → Sm such that, |t| = |h(t)| for all t ∈ Σ. Moreover,
s � t if and only if h(s) � h(t) for all s, t ∈ Σ. Now define φ : Σ → N as follows.
We set φ(∅) = m. For every t ∈ Σ with t 
= ∅, we set φ(t) = maxh(t). Notice
that by (b) above, the map φ is one-to-one. It is easy to check that φ is as
desired. �

3. Connections with related notions and examples

In this section, we present the relation between M-families and other no-
tions already studied in the literature. Let us start with the following fact
which provides characterizations of M-families. The proof is left to the inter-
ested reader.

Fact 3. Let X be a countable set and A ⊆ P∞(X) be a hereditary family.
Then the following are equivalent.
(i) The family A is a M-family.
(ii) For every decreasing sequence (Dn)n in co(A), there exists A ∈ A with

A ⊆∗ Dn for every n ∈ N.
(iii) For every sequence (An)n in A, there exists A ∈ A such that A ∩ An 
= ∅

for infinitely many n ∈ N.

The notion of a M-family is closely related to the notion of a selective
coideal due to Mathias. We recall that a coideal F on N is said to be selective,
or a happy family as it is called in [Ma], if for every decreasing sequence (Dn)n

in F there exists D ∈ F such that D \ {0, . . . , n} ⊆ Dn for all n ∈ D. We have
the following characterization of M-families which justifies our terminology.

Proposition 5. Let A be a hereditary family on N. Then A is a M-family
if and only if the coideal co(A) generated by A is selective.

Proof. First, assume that the coideal co(A) is selective. Let (Dn)n be
a decreasing sequence in co(A). By the selectivity of co(A), there exists
D ∈ co(A) with D \ {0, . . . , n} ⊆ Dn for all n ∈ D. Pick A ∈ A with A ⊆ D.
Then A ⊆∗ Dn for all n ∈ N. By Fact 3(ii), we see that A is a M-family.

Conversely, assume that A is a M-family. Let (Dn)n be a decreasing se-
quence in co(A). By Fact 3(ii), there exists A ∈ A with A ⊆∗ Dn for all n ∈ N.
Recursively, we select a strictly increasing sequence (mn)n in N such that
m0 = minA and mn+1 ∈ A ∩ Dmn for every n ∈ N. We set D = {mn : n ∈ N}.
Then D ⊆ A and D \ {0, . . . , n} ⊆ Dn for all n ∈ D. As A is hereditary we get
that D ∈ A ⊆ co(A). Hence, co(A) is selective and the proof is completed. �

The following proposition shows that the notion of a M-family is, in a sense,
the “dual” notion of bisequentiality.

Proposition 6. Let X be a countable set.
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(i) Let A ⊆ P ∞(X) be a hereditary family. If A⊥ is bisequential, then A is
a M-family.

(ii) Let I be an ideal on X. If I is bisequential, then I ⊥ is a M-family.

Proof. (i) By Fact 3(ii), it is enough to show that for every decreasing
sequence (Dn)n in co(A) there exists A ∈ A with A ⊆∗ Dn for every n ∈ N.
So, let (Dn)n be one. As A⊥ is an ideal, the family {Dn \ L : n ∈ N and L ∈

A ⊥ } has the finite intersection property. Hence, we may select p ∈ βX with
A⊥ ⊆ p∗ and Dn ∈ p for all n ∈ N. Notice that p is nonprincipal. By the
bisequentiality of A ⊥, there exists a sequence (Cn)n in p∗ such that for every
B ∈ A⊥ there exists n ∈ N with B ⊆∗ Cn. We may assume that the sequence
(Cn)n is increasing. Let Q ∈ P∞(X) be a diagonalization of the decreasing
sequence (Dn \ Cn)n. Then Q ⊆∗ Dn and Q ⊥ Cn for all n ∈ N. By the
properties of the sequence (Cn)n, we see that Q /∈ A⊥. As A is hereditary,
there exists A ⊆ Q with A ∈ A. Hence, A ⊆∗ Dn for all n ∈ N. Thus, A is a
M-family.

(ii) By Fact 2, the ideal I has the Fréchet property. Thus, I ⊥ ⊥ is bise-
quential and so the result follows by part (i). �

We notice that the converse of Proposition 6(i) is also true, provided that
the orthogonal A⊥ of A is analytic. Indeed, let A be an M-family such that

A ⊥ is Σ1
1. By Proposition 5, we see that the coideal co(A) generated by A is

selective. It follows that A⊥ is an analytic ideal whose complement, co(A), is
selective. By [To3, Exercise 12.3], we get that A⊥ is bisequential.

We proceed our discussion by presenting some examples of M-families.

Example 1. Let Ic be the ideal on N<N generated by the infinite chains
of N<N. That is

(3) Ic =

{
C ∈ P ∞(N<N) : ∃σ0, . . . , σk ∈ NN with C ⊆

k⋃
i=0

{σi|n : n ∈ N}
}

.

Notice that Ic has the Fréchet property. We set A = I ⊥
c . Namely, A consists of

all infinite subsets of N<N not containing an infinite chain. Then A is an ideal
and it is easy to see that it is Π1

1-complete. The family A is a M-family. We
will give a simple argument showing this. We will use Fact 3(ii). So, let (Dn)n

be a decreasing sequence in co(A). For every n ∈ N there exists an infinite
antichain An of N<N with An ⊆ Dn. Let An = (tnm)m be an enumeration of
An. By an application of Ramsey’s theorem, we may assume that |tnm| ≤ |tkl |
for all n < m < k < l. We set

I = {(n < m < k < l) ∈ [N]4 : tnm is incomparable with tkl }.

By Ramsey’s theorem again, there exists L ∈ P ∞(N) such that either [L]4 ⊆ I
or [L]4 ∩ I = ∅. Let L = {l0 < l1 < · · · } be the increasing enumeration of
L. We claim that [L]4 ⊆ I . If not, then tl0l1 is comparable with tl3l4 and as
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|tl0l1 | ≤ |tl3l4 |, we get that tl0l1 	 tl3l4 . Similarly, we get that tl0l2 	 tl3l4 . But, this
implies that the nodes tl0l1 and tl0l2 are comparable, contradicting the fact that
Al0 is an antichain. Thus, [L]4 ⊆ I . Now, set A = {tl2n

l2n+1
: n ∈ N}. Then A

is an infinite antichain, and so, A ∈ A. As A ⊆∗ Dn for all n ∈ N, this shows
that A is a M-family.

Example 2. We notice that if an ideal I has the Fréchet property, then I ⊥

is not necessarily a M-family. For instance, let Id be the ideal of all dominated
subsets of N<N, that is

(4) Id = {D ∈ P ∞(N<N) : ∃σ ∈ NN such that ∀t ∈ D ∀i < |t| t(i) < σ(i)}.

Let also

(5) Iwf = {W ∈ P ∞(N<N) : ∃T ∈ WF with W ⊆ T }
be the ideal on N<N generated by the set WF of all downwards closed, well-
founded, infinite subtrees of N<N. Clearly, Ic ⊆ Id. It is easy to see that
I ⊥

d = Iwf and I ⊥
wf = Id. Hence, the ideal Id has the Fréchet property. As

in the above example, we set A = I ⊥
d = Iwf . Again, we see that A is a Π1

1-
complete ideal. However, A is not a M-family. To see this, for every n ∈ N
let Dn = {t ∈ N<N : 0n+1 	 t}. Then (Dn)n is a decreasing sequence of sets in
co(A). It is easy to check that if A is any infinite subset of N<N with A ⊆ ∗ Dn

for all n ∈ N, then A must belong to Id.

Example 3. Let E be a Polish space and f = {fn}n be a pointwise bounded
sequence of real-valued Baire-1 functions on E. Assume that the closure K of
{fn}n in RE is a subset of the set of all Baire-1 functions on E, i.e., K is a
separable Rosenthal compact (see [Ro]). Let f ∈ K and set

(6) Lf = {L ∈ P ∞(N) : (fn)n∈L converges pointwise to f }.

The family Lf is a Π1
1 ideal. We also let

(7) If =
{
L ∈ P ∞(N) : f /∈ {fn}p

n∈L

}
.

It is easy to see that If is a Σ1
1 ideal. Both Lf and If are well studied in

the literature (see [ADK], [Do], [Kr], [To3], [To4]). By a result of Bourgain,
Fremlin, and Talagrand [BFT], we get that the orthogonal L ⊥

f of Lf is the
family If . An important fact concerning the structure of If is that it is
bisequential. This is due to R. Pol [Po], and it can also be derived by the
results of Debs in [De]. Hence, by Proposition 6(i), we see that Lf is a M-
family. Let also

(8) Ff =
{
L ∈ P ∞(N) : f ∈ {fn}p

n∈L

}
= P ∞(N) \ If .

The equality L ⊥
f = If yields that the coideal co(Lf ) generated by Lf is the

family Ff . By Proposition 5, it follows that Ff is a selective coideal, a fact
discovered by Todorčević in [To3].
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4. Properties of M-families

This section is devoted to the study of the structural properties of M-
families. We begin by noticing the following fact (the proof is left to the
reader).

Fact 4. Let X be a countable set.

(i) If A ⊆ P ∞(X) is a hereditary family and B is a hereditary subfamily of
A cofinal in A, then A is an M-family if and only if B is.

(ii) If A, B ⊆ P∞(X) are two M-families, then so is A ∪ B.

Most of the properties of M-families we will establish, are derived using an
infinite-dimensional Ramsey-type argument. To state it, we need to introduce
some pieces of notation. Let C = (Cn)n be a sequence in P ∞(N) such that
Cn ∩ Cm = ∅ for every n 
= m. For every n ∈ N let {xn

0 < xn
1 < · · · } be the

increasing enumeration of the set Cn. We define ΔC : P∞(N) → P∞(N) as
follows. If L ∈ P∞(N) with L = {l0 < l1 < · · · } its increasing enumeration, we
set

(9) ΔC(L) = {xl2n

l2n+1
: n ∈ N}.

Notice that the map ΔC is continuous.

Lemma 7. Let A ⊆ P∞(N) be an M-family and C = (Cn)n be a sequence in
A such that Cn ∩ Cm = ∅ for every n 
= m. Assume that A is C-measurable.
Then for every N ∈ P ∞(N) there exists L ∈ P∞(N), such that ΔC(M) ∈ A
for all M ∈ P∞(L).

Proof. Let
CA = {M ∈ P ∞(N) : ΔC(M) ∈ A}.

Then CA is C-measurable. By Ellentuck’s theorem [El], we find L ∈ P ∞(N)
such that either P∞(L) ⊆ CA or P ∞(L) ∩ CA = ∅. It is enough to show that
P ∞(L) ∩ CA 
= ∅. To this end we argue as follows. For every n ∈ L, we set

Hn = {xn
i : i ∈ L and i > n}.

Then Hn ⊆ Cn and so Hn ∈ A for all n ∈ L. By Fact 3(iii), there exists
A ∈ A such that A ∩ Hn 
= ∅ for infinitely many n ∈ L. We can easily select
M = {m0 < m1 < · · · } ∈ P∞(L) such that xm2n

m2n+1
∈ A ∩ Hm2n for all n ∈ N.

Then ΔC(M) ⊆ A. As A is hereditary, we see that ΔC(M) ∈ A. Hence,
P∞(L) ∩ CA 
= ∅ and the proof is completed. �

The following proposition is the first application of Lemma 7.

Proposition 8. Let X be a countable set and A, B ⊆ P ∞(X) be two M-
families. If A and B are C-measurable, then A ∩ B is a M-family.
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Proof. Clearly, we may assume that X = N. In order to show that A ∩ B
is an M-family we will use Fact 3(ii). So, let (Dn)n be a decreasing sequence
in co(A ∩ B). As the family A ∩ B is hereditary, there exists a sequence
C = (Cn)n in A ∩ B with Cn ⊆ Dn for all n ∈ N. Refining if necessary, we
may assume that Cn ∩ Cm = ∅ for all n 
= m. Applying Lemma 7 successively
two times, we find L ∈ P∞(N) such that, ΔC(M) ∈ A and ΔC(M) ∈ B for all
M ∈ P∞(L). Finally, observe that ΔC(M) ⊆∗ Dn for every n ∈ N and every
M ∈ P ∞(L). The proof is completed. �

Let A,B ∈ P ∞(N) with A = {x0 < x1 < · · · } and B = {y0 < y1 < · · · } their
increasing enumerations. We define the diagonal product A ⊗ B of A and B
by

(10) A ⊗ B = {(xn, yn) : n ∈ N} ∈ P ∞(N × N).

If A, B ⊆ P∞(N) are two hereditary families, then we let

(11) A ⊗ B = {A ⊗ B : A ∈ A and B ∈ B }.

Notice that A ⊗ B is a hereditary subfamily of P∞(N × N). We have the
following.

Proposition 9. Let A, B ⊆ P∞(N) be two M-families. If A and B are
C-measurable, then A ⊗ B is a M-family.

Proof. Let (Dn)n be a decreasing sequence in co(A ⊗ B). There exist
sequences A = (An)n and B = (Bn)n in A and B, respectively such that,
An ⊗ Bn ⊆ Dn for every n ∈ N. As the families A and B are hereditary, we
may assume that An ∩ Am = ∅ and Bn ∩ Bm = ∅ for all n 
= m. For every
n ∈ N let {xn

0 < xn
1 < · · · } and {yn

0 < yn
1 < · · · } be the increasing enumera-

tions of the sets An and Bn, respectively. Applying Lemma 7 successively
two times, we find L ∈ P∞(N) such that ΔA(M) ∈ A and ΔB(M) ∈ B for
every M ∈ P∞(L). We may select I = {i0 < i1 < · · · } ∈ P ∞(L) such that
xi2n

i2n+1
< xi2k

i2k+1
and yi2n

i2n+1
< yi2k

i2k+1
for all n < k. It follows that

ΔA(I) ⊗ ΔB(I) = {(xi2n
i2n+1

, yi2n
i2n+1

) : n ∈ N}.

Hence, ΔA(I) ⊗ ΔB(I) ⊆∗ Dn for every n ∈ N and ΔA(I) ⊗ ΔB(I) ∈ A ⊗ B.
By Fact 3(ii), we see that A ⊗ B is a M-family and the proof is completed. �

Proposition 9 has some topological implications which we are about to
describe. Let us recall, first, some definitions. Let (Y, τ) be a (Hausdorff)
topological space. A point y ∈ Y is said to have the weak diagonal sequence
property if for every doubly indexed sequence (yn

k )n,k in Y with limk yn
k = y

for all n ∈ N, there exists L ∈ P ∞(N) and for every n ∈ L a kn ∈ N such that
limn∈L yn

kn
= y. The space (Y, τ) has the weak diagonal sequence property

if every point y ∈ Y has it. Using Fact 3(iii), it is easy to see that if X
is a countable set, τ is a topology on X, and x ∈ X , then the point x has
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the weak diagonal sequence property in the space (X,τ) if and only if the
family Cx = {A ∈ P ∞(X) : A

τ→ x} is a M-family. The following corollary of
Proposition 9 yields a positive answer to Question 5.4 from [TU].

Corollary 10. Let X,Y be two countable sets and τ1, τ2 two analytic
topologies on X and Y, respectively. Assume that both (X,τ1) and (Y, τ2)
have the weak diagonal sequence property. Then (X × Y, τ1 × τ2) has the weak
diagonal sequence property.

Proof. Clearly, we may assume that X = Y = N. Let x, y ∈ N arbitrary. As
we have already remarked, it is enough to show that the family

C(x,y) = {C ∈ P ∞(N × N) : C
τ1×τ2−→ (x, y)}

is a M-family. By our assumptions on τ1 and τ2, we see that the families

Cx = {A ∈ P ∞(N) : A
τ1→ x} and Cy = {B ∈ P ∞(N) : B

τ2→ y}

are both coanalytic M-families on N. It follows by Proposition 9 that the
family Cx ⊗ Cy is a M-family. Notice that Cx ⊗ Cy ⊆ C(x,y). We let

Cx
(x,y) =

{
C ∈ C(x,y) : C ⊆ {x} × N

}
and Cy

(x,y) =
{
C ∈ C(x,y) : C ⊆ N × {y}

}
.

As Cy and Cx are M-families, it is easy to see that so are Cx
(x,y) and Cy

(x,y). It
follows by Fact 4(ii) that the family

B = Cx
(x,y) ∪ Cy

(x,y) ∪ (Cx ⊗ Cy)

is a M-family. Now observe that B is a hereditary subfamily of C(x,y) which
is cofinal in C(x,y). Hence, by Fact 4(i), we conclude that C(x,y) is a M-family
and the proof is completed. �

We notice that after a first draft of the paper, Todorčević informed us that
he was also aware of the fact that the weak diagonal sequence property is
productive within the class of countable analytic spaces.

We proceed by presenting another application of Lemma 7. To this end,
let us notice that by Fact 1, if A is a hereditary family, then A is cofinal in
A⊥ ⊥. Hence, by Fact 4(i), we see that if A is a M-family, then so is A⊥ ⊥. We
have the following strengthening of Fact 3(iii) for the family A⊥ ⊥, provided
that A is reasonably definable.

Proposition 11. Let X be a countable set and A ⊆ P∞(X) be a M-family
and C-measurable. Then for every sequence (An)n in A ⊥ ⊥, there exists A ∈

A ⊥ ⊥ such that A ∩ An is infinite for infinitely many n ∈ N.

Proof. Clearly, we may assume that X = N. Let (An)n be a sequence in
A⊥ ⊥. By Fact 1, we may select a sequence C = (Cn)n in A such that Cn ⊆ An

for every n ∈ N and Cn ∩ Cm = ∅ for all n 
= m. By Lemma 7, there exists
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L ∈ P ∞(N) such that ΔC(M) ∈ A for every M ∈ P∞(L). For every n ∈ N, let
{xn

0 < xn
1 < · · · } be the increasing enumeration of the set Cn. We set

A =
⋃

n∈L

{xn
i : i ∈ L and i > n}.

We claim that A is the desired set. First, we notice that A ∩ Cn is infinite for
every n ∈ L, and so, A ∩ An is infinite for infinitely many n ∈ N: what remains
is to show that A ∈ A ⊥ ⊥. To this end, let B ∈ P ∞(A) arbitrary. It is easy to
see that either there exists n ∈ L such that B ∩ Cn is infinite, or there exists
M ∈ P ∞(L) such that ΔC(M) ⊆ B. As A is hereditary and ΔC(M) ∈ A for
every M ∈ P∞(L), we see that B contains an element of A. Hence, by Fact 1,
we conclude that A ∈ A⊥ ⊥ and the result follows. �

The following corollary is simply a restatement of Proposition 11 in the
topological setting.

Corollary 12. Let X be a countable set and τ an analytic topology on X.
Assume that (X,τ) is Fréchet and has the weak diagonal sequence property.
Let x ∈ X and set Cx = {A ∈ P ∞(X) : A

τ→ x}. Then for every sequence (An)n

is Cx there exists A ∈ Cx such that A ∩ An is infinite for infinitely many n ∈ N.

Proof. As we have already seen in Corollary 10, the family Cx is a coanalytic
M-family. Moreover, the assumption that (X,τ) is a Fréchet space simply
reduces to the fact that C ⊥ ⊥

x = Cx. So, the result follows by Proposition 11. �

We close this section with the following result concerning the effect of the
notion of an M-family in the context of separation of families.

Proposition 13. Let X be a countable set and A, B ⊆ P ∞(X) be two
hereditary families. Assume that B is a M-family. Then the following are
equivalent.
(i) A and B are countably separated.
(ii) A is countably generated in B ⊥.

Proof. It is clear that (ii) implies (i). So, we only have to show the other
implication. Let us fix a sequence (Cn)n in P∞(X) which separates A from B.
For every F ⊆ N finite, we set CF =

⋂
n∈F Cn.

Claim 1. For every A ∈ A, there exists F ⊆ N finite such that A ⊆ CF and
CF ∈ B ⊥.

Proof. Assume not. Thus, there exists A0 ∈ A such that for every F ⊆ N
finite either A0 � CF or CF /∈ B ⊥. Let

L = {n ∈ N : A0 ⊆ Cn}.

We claim that L is infinite. Assume not. Then A0 ⊆ CL and so, by our
assumptions, we get that CL /∈ B ⊥. Hence, there exists BL ∈ B with BL ⊆ CL.
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It follows that for every n ∈ N either A0 � Cn (i.e., n /∈ L) or BL ⊆ CL ⊆ Cn.
This means that A0 and BL cannot be separated by the sequence (Cn)n,
a contradiction.

Now let L = {l0 < l1 < · · · } be the increasing enumeration of L. For every
k ∈ N, let Dk = Cl0 ∩ · · · ∩ Clk . Clearly, (Dk)k is a decreasing sequence. By
our assumptions, we see that Dk /∈ B ⊥, and so, Dk ∈ co(B) for all k ∈ N. As B
is an M-family, invoking Fact 3(ii) we see that there exists B0 ∈ B such that
B0 ⊆∗ Dk for every k ∈ N. It follows that B0 ⊆∗ Cn for all n ∈ L. But then,
for every n ∈ N we have that either A0 � Cn or B0 ⊆∗ Cn. That is, the sets
A0 and B0 cannot be separated by the sequence (Cn)n, a contradiction again.
The claim is proved. �

By the above claim, for every A ∈ A there exists FA ⊆ N finite with CFA
∈

B ⊥ and A ⊆ CFA
. The family {CFA

: A ∈ A } is clearly countable, and so, A
is countably generated in B ⊥. The proof is completed. �

5. Proof of Theorem I

This section is devoted to the proof of Theorem I stated in the Introduction.
So, let A, B ⊆ P∞(N) be a pair of hereditary orthogonal families such that A
is Σ1

1, B is C-measurable, and a M-family. Assume that (i) does not hold, i.e.,
A is not countably generated in B ⊥. We will find a perfect Lusin gap inside
(A, B).

By Theorem 4, there exists a one-to-one map φ : Σ → N, such that setting

E = {φ−1(A) : A ∈ A } and H = {φ−1(B) : B ∈ B },

properties (i) and (ii) of Theorem 4 are satisfied for E and H. In what follows,
we will work inside the tree Σ and with the families E and H. Denote by C
the family of all infinite chains of Σ. That is

C =
{
C ∈ P∞(Σ) : ∃σ ∈ [Σ] with C ⊆ {σ|n : n ∈ N}

}
.

Clearly C is a Π0
2 hereditary family. We notice the following properties of the

families E and H.
(P1) E and H are hereditary and orthogonal.
(P2) E is analytic and C ⊆ E .
(P3) H is C-measurable and a M-family.
(P4) For every t ∈ Σ, {t ∪ {n} : n ∈ N and t < {n}} ∈ H.
Properties (P1)–(P4) are rather straightforward consequences of the way the
families E and H are defined and of the fact that the map φ is one-to-one.

We are going to define a class of subsets of Σ which will play a decisive role
in the proof of Theorem I.

Definition 14. Let σ ∈ [Σ] and D ∈ P ∞(Σ). We say that D descends to
σ, in symbols D ↓ σ, if for every k ∈ N the set D is almost included in the set
{t ∈ Σ : σ|k 	 t}. We call such a set D, a descender.
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We also need to introduce some notations. Let B be the set of all block
sequences of Σ. For every b = (bn)n ∈ B, we set

(12) Σb = {t ∈ Σ : ∃b ∈ 〈b〉 with t 	 b} and σb =
⋃
n

bn,

where the set 〈b〉 was defined in Section 2.2. Clearly, Σb is a downwards
closed subtree of Σ. Notice that σb is just the leftmost branch of the tree Σb.
We also observe the following.
(O1) The set [Σb] of all branches of Σb is in one-to-one correspondence with

the subsequences of b = (bn)n. In particular, for every σ ∈ [Σb] there
exists a unique subsequence (bln)n of (bn)n, which we shall denote by
bσ , such that σ =

⋃
n bln . Moreover, the map [Σb] � σ �→ bσ ∈ [b] is

continuous.
(O2) If c ∈ [b], then Σc is a downwards closed subtree of Σb.
We define Δ : B → P∞(Σ) by

(13) Δ((bn)n) =

{
b0 ∪ {min b2}, . . . ,

3n⋃
i=0

bi ∪ {min b3n+2}, . . .

}
.

We notice the following.
(O3) The map Δ is continuous.
(O4) For every block sequence b = (bn)n, the set Δ(b) is a subset of the tree

Σb, is a descender and descends to the leftmost branch σb =
⋃

n bn of
Σb. Moreover, the sets {σb|n : n ∈ N} and Δ(b) are disjoint.

The following lemma is a consequence of Theorem 2 and of the fact that H
is a M-family. It can be considered as a parameterized version of Lemma 7.
We notice that the arguments in its proof follow similar lines as in [ADK,
Lemma 44].

Lemma 15. There exists b ∈ B such that Δ(c) ∈ H for all c ∈ [b].

Proof. We let
X = {c ∈ B : Δ(c) ∈ H }.

Then X is a C-measurable subset of [B]. By Theorem 2, there exists b =
(bn)n ∈ B, such that [b] is monochromatic. We claim that [b] ⊆ X . To this
end, we argue as follows. For every n ∈ N, we set tn =

⋃
k≤n bk ∈ Σ, and

An =
{
tn ∪ {min bi} : i > n + 1

}
∈ P∞(Σ).

The set An is a subset of the set {tn ∪ {m} : m ∈ N and tn < {m}} which, by
property (P4) above, belongs to H. As the family H is hereditary, we see that
An ∈ H for all n ∈ N. Invoking the fact that H is a M-family and Fact 3(iii),
we find A ∈ H such that A ∩ An 
= ∅ for infinitely many n ∈ N. We may select
L = {l0 < l1 < · · · },M = {i0 < i1 < · · · } ∈ P ∞(N) with ln + 1 < in < ln+1 and
such that tln ∪ {min bin } ∈ A ∩ Aln for all n ∈ N. We set sn = tln ∪ {min bin }
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for all n ∈ N. It follows that {sn : n ∈ N} ∈ H, as {sn : n ∈ N} ⊆ A ∈ H and
H is hereditary.

Now we define c = (cn)n ∈ [b] as follows. We set c0 =
⋃

k≤l0
bn (i.e., c0 =

tl0), c1 = bl0+1 ∪ · · · ∪ bi0−1 and c2 = bi0 . For every n ≥ 1, we let In = [in−1 +
1, ln] and Jn = [ln + 1, in − 1], and we set

c3n =
⋃

k∈In

bk, c3n+1 =
⋃

k∈Jn

bk and c3n+2 = bin .

Clearly, c ∈ [b] and it is easy to see that Δ(c) = {sn : n ∈ N}. Thus, Δ(c) ∈ H.
It follows that [b] ∩ X 
= ∅. Hence, [b] ⊆ X and the lemma is proved. �

Let b = (bn)n be the block sequence obtained by Lemma 15. We set

(14) F = {A ∈ P∞(Σ) : ∃(bln)n subsequence of (bn)n with A ⊆ Δ((bln)n)}.

By property (P1), the family H is hereditary. Hence, using the continuity of
the map Δ and the fact that Δ(c) ∈ H for every c ∈ [b] we see that:
(P5) F is a hereditary analytic subfamily of H.
Consider now, the tree Σb corresponding to b as it was defined in (12) above
and let σ ∈ [Σb] arbitrary. By (O1), there exists a subsequence bσ = (bln)n of
(bn)n such that σ =

⋃
n bln . By (O4) and (O2), we get that Δ((bln)n) ⊆ Σbσ ⊆

Σb. Moreover, the set Δ((bln)n) descends to σ and, by definition, belongs to
the family F . Hence, summarizing, we arrive to the the following property
of F .
(P6) For every σ ∈ [Σb] there exists D ∈ F with D ⊆ Σb and D ↓ σ.
We have the following lemma, which is essentially a consequence of property
(P6).

Lemma 16. The families C and F are not countably separated.

Proof. Assume toward a contradiction that there exists a sequence (Ck)k

in P ∞(Σ) such that for every C ∈ C and every B ∈ F there exists k ∈ N with
C ⊆ Ck and Ck ⊥ B. For every k, let

Fk =
{
σ ∈ [Σb] : {σ|n : n ∈ N} ⊆ Ck

}
.

Then each Fk is a closed subset of [Σb]. Moreover, [Σb] =
⋃

k Fk.
For every t ∈ Σb and every k ∈ N, there exists s ∈ Σb with t � s and such

that either Vs ∩ Fk = ∅ or Vs ⊆ Fk, where as usual by Vs we denote the
clopen subset {σ ∈ [Σb] : s � σ} of [Σb]. Let us say that such a node s decides
for (t, k). Observe that if s decides for (t, k) with Vs ⊆ Fk, then the set
{w ∈ Σb : s 	 w} is a subset of Ck.

Recursively, we select a sequence (sk)k in Σb such that s0 decides for (∅,0)
and sk+1 decides for (sk, k + 1) for all k ∈ N. Notice that sk � sk+1. Thus,
setting τ =

⋃
k sk, we see that τ ∈ [Σb]. By property (P6) above, there exists

B0 ∈ F with B0 ⊆ Σb and B0 ↓ τ . Now let m ∈ N with {τ |n : n ∈ N} ⊆ Cm.
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Then τ ∈ Fm. As sm � τ , we see that Vsm ∩ Fm 
= ∅. The node sm decides for
every m ∈ N, and so, Vsm ⊆ Fm. As we have already remarked, this implies
that {w ∈ Σb : sm 	 w} ⊆ Cm. As B0 descends to τ , B0 ⊆ Σb and sm � τ we
get

B0 ⊆∗ {w ∈ Σb : sm 	 w} ⊆ Cm.

Summarizing, we see that for all m ∈ N either {τ |n : n ∈ N} � Cm or B0 ⊆∗

Cm. That is, the sequence (Ck)k cannot separate the sets {τ |n : n ∈ N} and
B0 although {τ |n : n ∈ N} ∈ C and B0 ∈ F , a contradiction. The lemma is
proved. �

The families C and F are hereditary, analytic and orthogonal. Thus, ap-
plying Theorem 3 to the pair (C, F ) and by Lemma 16, we get that there
exists a perfect Lusin gap inside (C, F ). As C ⊆ E and F ⊆ H, we see that
there exists a perfect Lusin gap 2N � x �→ (Ax,Bx) inside (E , H). Now, recall
that the map φ : Σ → N obtained by Theorem 4 is one-to-one. It follows that
the map 2N � x �→ (φ(Ax), φ(Bx)) is a perfect Lusin gap inside (A, B). The
proof of Theorem I is completed.

Remark 1. We would like to point out that one can construct the perfect
Lusin gap inside (E , H) without invoking Theorem 3. This can be done as
follows. Let b = (bn)n be the block sequence obtained by Lemma 15. First
we construct, recursively, a family (ts)s∈2<N in Σb such that the following are
satisfied.
(C1) For every s, s′ ∈ 2<N we have s � s′ if and only if ts � ts′ .
(C2) For every s ∈ 2<N and every σ ∈ [Σb] with ts�0 � σ we have ts�1 ∈

Δ(bσ), where, as in (O1) above, by bσ we denote the unique subsequence
(bln)n of (bn)n such that σ =

⋃
n bln .

The construction proceeds as follows. We set t∅ = ∅. Assume that ts has
been defined for some s ∈ 2<N. We select τ ∈ Σb with ts � τ . Let bτ = (bln)n

be the unique subsequence of b with τ =
⋃

n bln . By (O4) in the proof of
Theorem I, the set Δ(bτ ) descends to τ . As ts � τ , there exists ts�1 ∈ Δ(bτ )
with ts � ts�1. The map [Σb] � σ �→ Δ(bσ) ∈ P∞(Σ) is continuous. So, we
may find a node ts�0 incomparable to ts�1 with ts � ts�0 � τ and such that
(C2) above is satisfied.

Having completed the construction, for every x ∈ 2N let σx =
⋃

n tx|n ∈ [Σb]
and define

Ax = {σx|n : n ∈ N} ∈ E and Bx = Δ(bσx) ∈ H.

The perfect Lusin gap inside (E , H) is the map 2N � x �→ (Ax,Bx). It is easy
to check that it is one-to-one, continuous, and Ax ∩ Bx = ∅ for all x ∈ 2N.
Finally, let x, y ∈ 2N with x 
= y. We may assume that x < y, where < stands
for the lexicographical ordering of 2N. There exists s ∈ 2<N with s�0 � x and
s�1 � y. Then ts�1 ∈ Ay . Moreover, we have ts�0 � σx. By (C2) above, we
see that ts�1 ∈ Δ(bσx). Thus, Ay ∩ Bx 
= ∅.
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Remark 2. Let A, B ⊆ P ∞(N) be two hereditary, orthogonal, analytic
families and assume that B is an M-family. We notice that, in this case, the
dichotomy in Theorem I can be derived directly by Theorem 3. To see this,
observe that if A is not countably generated in B ⊥, then, by Proposition 13,
the families A and B are not countably separated. Thus, part (ii) of Theorem 3
yields the existence of the gap inside (A, B).

Remark 3. As in Example 3, let E be a Polish space and f = {fn}n be a
pointwise bounded sequence of real-valued Baire-1 functions on E such that
the closure K of {fn}n in RE is a Rosenthal compact. We set

(15) Lf = {L ∈ P ∞(N) : (fn)n∈L is pointwise convergent}.

For every f ∈ K, let also Lf be as in (6). In [To4, Lemmas G.9 and G.10],
Todorčević proved that if f is any point of K, then either:
(A1) f is a Gδ point of K, or
(A2) there exists a perfect Lusin gap in (Lf \ Lf , Lf ).
Let us see how Theorem I yields the above dichotomy. So, fix a point f ∈ K.
First, we notice that as it was explained in [Do, Remark 1(2)], by Debs’
theorem [De] there exists a hereditary, Borel and cofinal subfamily F of Lf .
We set A = F \ Lf . Then A is an analytic, hereditary, and cofinal subfamily
of Lf \ Lf . Moreover, as we mentioned in Example 3, the family Lf is a
coanalytic M-family. Noticing that A and Lf are orthogonal, by Theorem I
we get that either:
(A3) A is countably generated in L⊥

f , or
(A4) there exists a perfect Lusin gap in (A, Lf ).
Clearly, we only have to check that (A3) implies (A1). Indeed, let (Lk)k be
a sequence in L ⊥

f that generates A. Set Vk = K \ {fn}p

n∈Lk
and notice that

f ∈ Vk for every k ∈ N. Taking into account that A is cofinal in Lf \ Lf and
using the Bourgain–Fremlin–Talagrand theorem [BFT], we see that {f } =⋂

k Vk; that is the point f is Gδ .

6. Proof of Theorem II

This section is devoted to the proof of Theorem II. Let A, B ⊆ P ∞(N)
be a pair of hereditary orthogonal families such that A is analytic, B is C-
measurable, and an M-family. Assume that A is not countably generated in
B ⊥. By Theorem 4, there exists a one-to-one map φ : Σ → N, such that setting
E = {φ−1(A) : A ∈ A} and H = {φ−1(B) : B ∈ B }, the following properties are
satisfied for E and H.
(P1) E and H are hereditary and orthogonal.
(P2) E is analytic and C ⊆ E .
(P3) H is C-measurable and a M-family.
(P4) For every t ∈ Σ, {t ∪ {n} : n ∈ N and t < {n}} ∈ H.
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As in the proof of Theorem I, we shall work inside the tree Σ and with the
families E and H.

We introduce the following class of subsets of Σ. It will be used in a similar
manner as the class of descenders was used in the proof of Theorem I.

Definition 17. An infinite subset F of Σ will be called a fan if F can
be enumerated as {tn : n ∈ N} and there exist s ∈ Σ and a strictly increasing
sequence (mn)n in N with s < {m0} and such that s ∪ {mn} 	 tn for all n ∈ N.

The following fact is essentially well known. We sketch a proof for com-
pleteness.

Fact 5. Let A ∈ P∞(Σ). Then either A is dominated, or A contains a fan.
In particular, if T is a downward closed, well founded, infinite subtree of Σ,
then every infinite subset A of T contains a fan.

Proof. Fix A ∈ P∞(Σ) and let Â = {t ∈ Σ : ∃s ∈ A with t 	 s} be the down-
ward closure of A. It is easy to see that if Â is finitely splitting, then A must
be dominated while if Â is not finitely splitting, then A must contain a fan.

For the second part, let T be a downward closed, well founded, infinite
subtree of Σ, and fix A ∈ P ∞(T ). If Â is finitely splitting, then by an appli-
cation of König’s lemma we see that [T ] 
= ∅, a contradiction. Thus, Â is not
finitely splitting, and so, A contains a fan. �

Notice that if b = (bn)n is a block sequence of Σ and s ∈ Σ with s < b0,
then the set {s ∪ bn : n ∈ N} is a fan. A fan F of this form will be called a
block fan. By FBlock, we denote the set of all block fans of Σ. We have the
following elementary fact.

Fact 6. Every fan contains a block fan.

We define Φ : B → P ∞(Σ) by

(16) Φ((bn)n) =
{
b0 ∪ b1 ∪ {min b2}, . . . , b0 ∪ b2n+1 ∪ {min b2n+2}, . . .

}
.

We observe the following.
(O1) The map Φ is continuous.
(O2) For every b ∈ B the set Φ(b) is a block fan.
We have the following analogue of Lemma 15.

Lemma 18. There exists b ∈ B such that Φ(c) ∈ H for all c ∈ [b].

Proof. We let
X = {c ∈ B : Φ(c) ∈ H }.

Then X is a C-measurable subset of B. Hence, by Theorem 2, there exists
b = (bn)n ∈ B such that [b] is monochromatic. We claim that [b] ⊆ X . Indeed,
for every n ≥ 1 let

An =
{
b0 ∪ bn ∪ {min bk } : k > n

}
∈ P∞(Σ).
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The set An is a subset of the set {b0 ∪ bn ∪ {m} : m ∈ N and bn < {m}}, which
by property (P4), belongs to H. Hence, by (P1), An ∈ H for all n ∈ N. As
H is a M-family, by Fact 3(iii), we may select L = {l0 < l1 < · · · },M = {m0 <
m1 < · · · } ∈ P ∞(N) with 1 ≤ ln < mn < ln+1 for all n ∈ N, and such that{

b0 ∪ bln ∪ {min bmn } : n ∈ N
}

∈ H.

We define c = (cn)n by c0 = b0 and c2n+1 = bln , c2n+2 = bmn for every n ∈ N.
Then c ∈ [b] and Φ(c) = {b0 ∪ bln ∪ {min bmn } : n ∈ N} ∈ H. Hence, [b] ∩ X 
=
∅ and the result follows. �

Let b = (bn)n be the block sequence obtained by Lemma 18. We are going
to select a subset of Σ by defining an appropriate endomorphism of Σ (the
desired subset will be the image of this endomorphism). In particular, we
define h : Σ → Σ as follows.

(a) We set h(∅) = ∅.
(b) If t = (n) with n ∈ N, we set h((n)) = b0 ∪ b2n+1 ∪ {min b2n+2}.
(c) If t = (n0 < · · · < nk) ∈ Σ with k ≥ 1, we set

h(t) = b0 ∪
(

k−1⋃
i=0

(b2ni+1 ∪ b2ni+2)

)
∪ b2nk+1 ∪ {min b2nk+2}.

It is easy to see that the map h is well defined and one-to-one. We also observe
the following.

(O3) For every s, t ∈ Σ we have s � t if and only if h(s) � h(t). Thus, if
C ∈ P∞(Σ), then C is a chain of Σ if and only if h(C) is.

The following fact shows the relation between the maps Φ and h.

Fact 7. Let F be a block fan of Σ. Then there exists c ∈ [b], such that
h(F ) = Φ(c).

Proof. Let (un)n be a block sequence of Σ and s ∈ Σ with s < u0 and such
that F = {s ∪ un : n ∈ N}. For every n ∈ N there exist sn ∈ Σ and ln ∈ N
with sn < {ln} and un = sn ∪ {ln} (notice that sn may be empty). We define
c = (cn)n ∈ B as follows. We let

c0 = b0 ∪
⋃
k∈s

(b2k+1 ∪ b2k+2)

with the convention that
⋃

k∈s(b2k+1 ∪ b2k+2) = ∅ if s = ∅. For every n ≥ 1,
we set

c2n+1 =
( ⋃

k∈sn

(b2k+1 ∪ b2k+2)
)

∪ b2ln+1 and c2n+2 = b2ln+2.

It is easy to see that c ∈ [b] and h(F ) = Φ(c), as desired. �
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Finally, we define ψ : Σ → N by ψ(s) = φ(h(s)) for all s ∈ Σ. Both φ
and h are one-to-one, and so, the map ψ is one-to-one too. As in Exam-
ple 2, let Iwf be the ideal on Σ generated by the set WF of all downwards
closed, well-founded, infinite subtrees of Σ. That is Iwf = {W ∈ P ∞(Σ) : ∃T ∈
WF with W ⊆ T }.

Lemma 19. The following hold.

(i) C ⊆ {ψ−1(A) : A ∈ A }.
(ii) FBlock ⊆ {ψ−1(B) : B ∈ B }.
(iii) Iwf ⊆ {ψ−1(B) : B ∈ B ⊥ ⊥ }.

Proof. Part (i) is an immediate consequence of property (P2) and observa-
tion (O3) above. Part (ii) follows by Lemma 18 and Fact 7. To see part (iii),
fix W ∈ Iwf . Let A ∈ P ∞(W ) arbitrary. By Facts 5 and 6, there exists a block
fan F with F ⊆ A. By part (ii), we see that ψ(F ) ∈ B. Hence, by Fact 1, we
conclude that ψ(W ) ∈ B ⊥ ⊥, as desired. �

The trees Σ and N<N are isomorphic, i.e., there exists a bijection e : N<N →
Σ with |e(t)| = |t| for all t ∈ N<N and such that t1 � t2 in N<N if and only if
e(t1) � e(t2). Hence, by Lemma 19, the proof of Theorem II is completed.

Remark 4. In [Kr], Krawczyk proved that if I is a bisequential analytic
ideal on N, then either:

(A1) I is countably generated in I, or
(A2) there exists a one-to-one map ψ : N<N → N, such that setting J =

{ψ−1(A) : A ∈ I }, we have that C ⊆ J ⊆ Id,

where C denotes the set of all infinite chains of N<N while Id denotes the
ideal of all infinite dominated subsets of N<N. Let us see how Theorem II
yields the above result. So, fix a bisequential analytic ideal I on N. We set

A = I and B = I ⊥. Clearly, A and B are hereditary and orthogonal families.
Moreover, A is Σ1

1 while B is Π1
1. By Proposition 6(ii), we see that B is a

M-family. By Fact 2, the ideal I has the Fréchet property, and so, B ⊥ = I
and B ⊥ ⊥ = I ⊥ = B. Thus, applying Theorem II, the result follows.

Remark 5. Let A and B be as in Theorem II and assume that A is not
countably generated in B ⊥. Let ψ : N<N → N be the one-to-one map obtained
by Theorem II. Notice that for every downwards closed, infinite subtree T
of N<N we have that T ∈ WF if and only if ψ(T ) ∈ B ⊥ ⊥, i.e., the set WF is
Wadge reducible to B ⊥ ⊥. Thus, if A is not countably generated in B ⊥, then
the family B ⊥ ⊥ is at least Π1

1-hard.
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