Characterization of variable Besov-type
spaces by ball means of differences

Douadi Drihem

Abstract With the help of the maximal function characterizations of Besov-type spaces
with variable smoothness and integrability we prove the characterization by ball means
of differences for these function spaces.

1. Introduction

Function spaces with variable exponents have been intensively studied in recent
years by a significant number of authors. The motivation for the increasing inter-
est in such spaces comes not only from theoretical purposes, but also from appli-
cations to fluid dynamics [26], image restoration [2], and PDEs with nonstandard
growth conditions. A comprehensive overview on existence and regularity results
for PDEs in the variable exponent setting, including an extensive list of refer-
ences on this subject, is given in the recent survey [15]. In all these applications
the Lebesgue and Sobolev spaces with variable integrability, LP() and W*»()|
seem to appear in a natural way.

Lebesgue spaces with variable exponent have been explicitly studied in [27],
but the systematic study of the spaces LP() and W#P() started in [18]. Since then,
various other function spaces and classical operators of harmonic analysis have
been investigated in the variable exponent setting, notably after the boundedness
of the Hardy—Littlewood maximal operator was proved in [4]. We only refer to the
survey monograph [7] for further details and references on recent developments
in this field.

In recent years, there has been growing interest in generalizing classical
spaces such as Sobolev spaces, Besov spaces, and Triebel-Lizorkin spaces to the
case with either variable integrability or variable smoothness (see Triebel’s mono-
graphs [34] and [35] for the history of these function spaces).

Besov spaces of variable smoothness and integrability, B;((-.)),q(-)’ initially
appeared in the paper of A. Almeida and P. Hasto [1]. Several basic properties
were established, such as the Fourier analytical characterization. When p, ¢, a are
constants they coincide with the usual function spaces B, ;. Also Sobolev-type
embeddings and the characterization by approximations of these function spaces
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were obtained. Taking o € R and ¢ € (0,00] as constants we derive the spaces
BOL
p(-).q .
local means characterizations, atomic decomposition, and characterizations by
ball means of differences can be found in [9] and [16]. Variable Besov-type spaces

have been introduced in [13] and [12], where their basic properties are given, such

studied by Xu [37], [38]. Some properties of these function spaces such as

as the Sobolev-type embeddings and that under some conditions these spaces are
just the Besov spaces B%;Qj”“/“')*l/p(‘)). For constant exponents, these spaces
unify and generalize many classical function spaces including Besov spaces and
Besov—Morrey spaces (see, e.g., [43, Corollary 3.3]).

The main aim of this article is to prove the characterization by ball means

of differences for Besov-type spaces with variable smoothness and integrability.

2. Preliminaries

As usual, we denote by R™ the n-dimensional real Fuclidean space, N the col-
lection of all natural numbers, and Ny = N U {0}. The letter Z stands for the
set of all integer numbers. For a multi-index o = (ay,...,ay) € Nj, we write
la] = a1 + -+ 4+ a,. The Euclidean scalar product of = (x1,...,z,) and y =
(Y1,.--,yn) is given by -y =x1y1 + - + TpYn.

For x € R™ and r > 0 we denote by B(z,r) the open ball in R™ with center
z and radius r. By supp f we denote the support of the function f, that is, the
closure of its nonzero set. If E C R™ is a measurable set, then |E| stands for the
(Lebesgue) measure of F and xg denotes its characteristic function.

The symbol S(R™) is used in place of the set of all Schwartz functions ¢ on
R™ that is, ¢ is infinitely differentiable and

o k
k1= sup > [D¥p(@)|(1+ |z])" < o0
TER™
la| <!
for all k,1 € N. We denote by &’(R™) the dual space of all tempered distributions
on R™. We define the Fourier transform of a function f € S(R™) by

F(F)() = (2m) "2 / e~ i7€ £() .

n

Its inverse is denoted by F~'f. Both F and F~! are extended to the dual
Schwartz space 8'(R™) in the usual way.
The Hardy—Littlewood maximal operator M is defined on LllOC by

Mf(z) =sup

>0 |B(1‘7 T)‘ B(zx,r)

|f(y)] dy.

For v € Z and m = (my,...,my) € Z", let Q, m be the dyadic cube in R™, Q. m =
{(x1,...,2n) :m; <2%2; <m; +1,4=1,2,...,n}. For the collection of all such
cubes we use Q ={Qym :v € Z,m € Z"}. For each cube @, we denote by zq, ..
the lower left corner 27Ym of Q = @, and its side length by (Q). Furthermore,
we put vg = —log, I[(Q) and vg = max(vg,0).

By C we denote generic positive constants, which may have different values
at different occurrences. Although the exact values of the constants are usually
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irrelevant for our purposes, sometimes we emphasize their dependence on certain
parameters (e.g., C(p) means that C' depends on p). Further notation will be
properly introduced whenever needed.

The variable exponents that we consider are always measurable functions p
on R™ with range in [C, 00| for some C > 0. We denote the set of such functions
by Py. The subset of variable exponents with range [1,00[ is denoted by P. We
use the standard notation

+

p~ = ess-inf p(z), pT = ess-supp(x).
zERN CCR™

The variable exponent modular is defined by 0,.)(f) = [gn 0p) (1f(2)]) dz,
where g,(t) = t?. The variable exponent Lebesgue space LPO) consists of mea-
surable functions f on R™ such that g,.)(Af) < oo for some A > 0. We define
the Luxemburg (quasi-)norm on this space by the formula || f||,.) = inf{A >0:
Qp(.)(§) < 1}. A useful property is that || f[|,.y <1 if and only if g,(.)(f) <1 (see
[7, Lemma 3.2.4]).

Let p,q € Pyp. The mixed Lebesgue-sequence space ZQ(‘)(L”(')) is defined on
sequences of LP()-functions by the modular

Qpa()(Lr()) ((fv)fu) = Zinf{/\” >0: Op(") (%) < 1}.

v

The (quasi-)norm is defined from this as usual:
. 1
(2.1) ||(fv)v||gq<-)(m<->) = mf{# >0 0040 (Lr0)) (p(fv)v) < 1}-

If ¢ < oo, then we can replace (2.1) by the simpler expression g (1e(1)((fo)0) =
S £ol? oy . Furthermore, if p and g are constants, then ¢40)(LPC)) =
)

¢9(LP). The qéase p =00 can be included by replacing the last modular by
2ea) (1) ((fo)o) = 2 £ 7V loo-

It is known (cf. [1] and [17]) that £9¢)(LP()) is a norm if ¢(-) > 1 is constant
almost everywhere (a.e.) on R™ and p(-) > 1, or if ﬁ + ﬁ <1 a.e. on R", or
if 1 <g¢(x) <p(z) <oo a.e. onR"

We say that ¢g: R™ — R is locally log-Hélder continuous, abbreviated g €
C1°8 | if there exists ciog(g) > 0 such that

loc?

Clog(g)
2.2 g(r) —g(y)| <
22 92) = 90| < e 1w =D
for all z,y € R™. We say that g satisfies the log-Hélder decay condition if there

exists goo € R and a constant cjog > 0 such that

Clog
log(e + |x[)
for all x € R™. We say that ¢ is globally log-Hélder continuous, abbreviated
g € C"8_if it is locally log-Holder continuous and satisfies the log-Hélder decay
condition. The constants ciog (g9) and Clog are called the locally log-Holder con-

9(x) — goo| <

stant and the log-Holder decay constant, respectively. We note that all functions
g € C\°® always belong to L.
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We define the following class of variable exponents:
1
plos .— {p epP: 5 is globally log-Holder continuous},

which were introduced in [6, Section 2]. We define 1/p := lim|g|—o 1/p(z) and
we use the convention é = 0. Note that, although % is bounded, the variable
exponent p itself can be unbounded. It was shown in [7, Theorem 4.3.8] that
M : LPO) — [P0) is bounded if p € P8 and p~ > 1 (see also [6, Theorem 1.2]).
Also if p € P'°8, then the convolution with a radially decreasing L'-function is
bounded on LPO): [l f|l,) < Clliell1]| fllp()- We also refer to the papers [3] and
[4], where various results on maximal function in variable Lebesgue spaces were
obtained.

Very often we have to deal with the norm of characteristic functions on balls
(or cubes) when studying the behavior of various operators in harmonic analysis.
In classical LP-spaces the norm of such functions is easily calculated, but this is
not the case when we consider variable exponents. Nevertheless, it is known that
for p € P'°¢ we have

Ixsllpe)IxBlly ) = Bl
Also,

_1
(2.3) IxBllp) = |B|*@, xz€B,
for small balls B C R™ (|B| <2"), and
1
(2.4) IxBllpc) =~ |B|7=

for large balls (|B| > 1), with constants only depending on the log-Holder con-

stant of p (see, for example, [7, Section 4.5]), where f ~ g means Cy f < g < Csf.
Recall that 0, (z) = 2" (1 + 2Y|z|)~™, for any =z € R", v € Ny, and m > 0.

Note that 7, ,,, € L' when m >n and that ||7, 1 = Cp, is independent of v.

2.1. Some technical lemmas
In this section we present some results which are useful for us. The following
lemma is from [16, Lemma 19] (see also [5, Lemma 6.1]).

LEMMA 2.5
Let o € Cllgf, and let R > ciog(x), where ciog(x) is the constant from (2.2) for a.
Then

2va(z)771),m+R(-T - y) S CQ’U(X(y)nv,m(z - y)

with C > 0 independent of x,y € R™ and v,m € Ny.

The previous lemma allows us to treat the variable smoothness in many cases as
if it were not variable at all; namely, we can move the term inside the convolution
as follows:

Qva(x)nv,erR * f(l‘) < CT]’U,m * (2U<X()f)(x)
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LEMMA 2.6
Let r,R,N >0, let m >n, and let ,w € S(R™) with supp Fw C B(0,1). Then
there exists C = C(r,m,n) >0 such that, for all g € S'(R™), we have

Ny\™ .,
E) )(nN,m*|WN*g|T(.T))1/, x eR",

where Or(-) = R"0(R-), wn(-) = N"w(N-), and nn () = N"(1+ N|-[)7™.

’93 * WN *g(x)’ < Cmax(l, (

This lemma is a slight variant of [33, Chapter V, Theorem 5] (see also [5,
Lemma A.7], [12, Lemma 2.2]). The following lemma is from [13, Lemma 2.11].

LEMMA 2.7
Let T € P(I)Og and k € Z™. For any cubes P and Q such that P C Q, we have

QINY™ _ lIxell-¢) QY™
Cil 57 <t <00 ;

(|P\> Ixpllzc) <\P|>
where C1,C2 >0 are independent of |Q| and |P)|.

Let L? ((g be the collection of functions f € Lfo(g (R™) such that

fxp
19152t = su| <oc, prEP,

xpll-) H10(-)
where the supremum is taken over all dyadic cubes P with |P| > 1. Also, the
space LP() is defined to be the set of all functions f such that
1fll 55 =sup [[fxpllyc) <oo. pE€Po,

where the supremum is taken over all dyadic cubes P with |P| =1. Obviously
L? 8 — LP(). We introduce the abbreviations

_ fo
H(fv)UHZQ(')(Lig:;) = {Pezul-glgl}H ( |P|1/p() XP)UZ’UP

LXP)
Ixpllrey ™" /o>vk

2a() (LP))’

[1(£2)e

n(yy -— SU
|ET<‘),4<»>(LP<>) PEZH( a0 (Lp())

The following lemma is the £4() (Lig:;)(—ﬁ(')ﬂ(') (LP0)))-version of Lemma 4.7
from A. Almeida and P. Hésto [1]. (We use it, since the maximal operator is in
general not bounded on ¢9¢)(LP()) (see [1, Example 4.1])).

LEMMA 2.8
Let p € P% and q,7 € Py with 0 < ¢~ < ¢" < c0.
(i) For m>2n+ ciog(1/7T) + ciog(1/q), we have
[ (170,m. % fv)v”gr(-»q(-)(];p(-)) = CH(fv)v||er<-),q<-)(];p<->)v
where C > 0 is independent of { fu}ven, -
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(ii) For m > 2n+ ciog(1/p) + clog(1/q), we have
||(77v7m * fv)v“m(-)(qg;;) s CH(fv)v qu(-)(ng;;)v

where C' >0 is independent of { fu ven, -

The proof is given in [13, Lemma 2.12]. The next three lemmas are from [5] where
the first tells us that in most circumstances two convolutions are as good as one.

LEMMA 2.9

For vg,v1 € Ng and m > n, we have

Canin(vo,vl),m < Nvg,m * Nvy,m < Clnmin(vo,vl),ma

where C1,Cy > 0 depend only on m and n.

LEMMA 2.10

Leta € C’}Sf and p,q, 7 € Py® with 0 < q~ <qt <oo. Let { fi}ren, be a sequence
of measurable functions on R™. For allv €Ny, P € Q, and x € R™, let g,(z) =
ZZ:U; 2(k=v)d £, (). Then there exists a positive constant C' that is independent

of {fx}ren, such that

log

fo
) <) (i)
H(HXPHT() vzof llea) (L0 Ixpllre) ™ /o2l

zq(-)(Lp(-))

for any dyadic cube P and

fo )
< _Jv
H(|P|1/p( )vap a()(LP()) CH(lP‘l/p() xr v>vp
for any dyadic cube P with |P| <1.

ZQ(')(LP('))

The proof of Lemma 2.10 can be found in [12].

3. Variable Besov-type spaces

In this section we present the Fourier analytical definition of Besov-type spaces
of variable smoothness and integrability, and we recall their basic properties.
Let ¥ be a function in S(R™) satisfying 0 < ¥(z) <1 for all z, ¥(z) =1 for
|z| <1, and ¥(z) =0 for |z| > 2. We put Fpo(z) =V (z), Fo(r) =¥ () - V(z),
and Fo,(z) = Fp(27T1x) for v=1,2,3,.... Then {Fp, }ven, is a resolution of
unity, > o2 F,(z) =1 for all 2 € R™. Thus, we obtain the Littlewood-Paley
decomposition

(3.1) F=Y @urf
=0

of all f € S'(R™) (convergence in S'(R™)).
Now, we define the spaces under consideration.
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DEFINITION 3.2
Let {F o, }ven, be a resolution of unity, let «: R™ = R, and let p,q,7 € Py.

(i) The Besov-type space Eg((_'))ﬁ(,')) is the collection of all f € §’'(R™) such
that

< 00.

(3.3) 11 o). 79 7= SUD (L)

PeQ

|(str)
IPE/pC) AP ) s

(ii) The Besov-type space Bp(( ))7 (()) is the collection of all f € §'(R™) such
that
2ot d L) )
Ixpll-c v>vp ea) (Lp())

(3.4) /]

go().T() 1= Sup H(
p(-),a(-) PecQ

Since F¢, is smooth, Fy, - F f makes sense as a distribution in S’(R™). Because
of the compactness of the support of Fy, the famous Paley—Wiener—Schwartz
theorem (see [34, Theorem 1.2.1]) tells us that ¢, * f is an entire analytic function.
So the quasinorms in (3.3) and (3.4) make sense.

The definitions of the spaces Ba(( ))’p ((.)) and Ba(( )) T((.)) are independent of the

chosen resolution of unity (3.1) if a € C};’i P,q,T € 770 ,and 0 < g™ < oo, and
different choices yield equivalent quasinorms. Using the system {F,}yen, we
can define the norm

> a\1/a
171557 = sup e (2 299 (g = Pxe )
:’U;

for constants « and p, q € (0, 0c0]. The Besov-type space By consists of all distri-
butions f € §'(R™) for which || f|| ga,r < 0o. It is well known that these spaces do
not depend on the choice of the system {Fy,}ven, (up to equivalence of quasi-
norms). If 7 =0, then By?Y = BY . Further details on the classical theory of these
spaces can be found in [8] [10] [ ,], and [43] (see also [11] for recent develop-
ments). Variable Besov-type spaces B (( )) P() and B® () ’T(()) have been introduced
n [13] and [12], where their basic propertles are given, such as the Sobolev-type
embeddings. One recognizes immediately that if «, 7, p, and ¢ are constants,
then Ba(( ))’qp(()) BY/? and BA)0) = = BT . Besov-type space B;‘(')’;O(') consist

p(),q(-) ),
of all distributions f € &’'(R™) such that

9val)ip, 4 f
peomeutl IXPIn0) Hp(.) < oo
Also, we have
(3.5) (@@ +n(/7@) -1/ |5, x f(z)| < Cllfll gacy=c

and

2’[)0((93) |SOU * f($)| S O”f”é,a((,.))yp((..))
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for any = € R, a € C\°%, and p,q,7 € P8, where C > 0 is independent of

loc?

and v. In the definition of the spaces Bs((,'));;((f)) and E;((")),ﬁ(f)) if we replace dyadic
cubes P by arbitrary cubes P, then we obtain equivalent quasinorms.
Independently, D. Yang, C. Zhuo, and W. Yuan [42] studied the function
spaces Bg((.')),’;((f)) where several properties are obtained such as atomic decompo-
sition and the boundedness of the trace operator. The following results are given
in [13, Theorems 3.8, 4.7] where these results with fixed exponents are proved in

[41, Theorem 1] and [43, Proposition 2.6].

THEOREM 3.6
Let o€ C\%%, p,p1,pa, ¢, T € PiE, and 0 < ¢t < cc.

(i) Let 70 € (0,p7]. If (1/7—1/p)~ >0 or (1/7—1/p)~ >0 and q = o,
then

Ba

97() _ ga()+n(1/r()=1/p())
p(-)s 00,00 ’

q()
with equivalent norms.
(i) If (p2 —p1)* <0, then
a()+n/7(-)+n/p2(-)—n/p1(") a(),7()
Bpa().a0) = By
(iii) We have

B0 L gat)tn/r()=n/p()
p(a() 7 Pooieo '

Here Bz?((;))q(d is the Besov space of variable smoothness and integrability, and it
is the collection of all f € &'(R™) such that
||f||BS(<-.)),q(-) = H(2va(.)¢v * f)”ZOHZq(')(LP(')) < 00,

which was introduced and investigated in [1] (see [9] and [16] for further results).
We refer the reader to the recent paper [45] for further details, historical
remarks, and more references on embeddings of Besov-type spaces with fixed
exponents.

Let 0 < u < p < oco. The Morrey space M? is defined to be the set of all
u-locally Lebesgue-integrable functions f on R™ such that

w 1/u
I 0aag s=sup | B3 ([ @) o) " < oc,
B B

where the supremum is taken over all balls B in R"™. The spaces M? are quasi-
Banach spaces (Banach spaces for « > 1). They were introduced by Morrey in
[22] and belong to the wider class of Morrey—Campanato spaces (cf. [25]). They
can be considered as a complement to LP-spaces. As a matter of fact, M} = LP.
One can easily see that

MPs MP if 0 <u<w<oo.
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DEFINITION 3.7

Let {Fpytven, be a resolution of unity, a: R" - R, 0 < u < p < oo, and
0 < ¢ < co. The Besov—Morrey space Np ((JL is the collection of all f € S'(R™)
such that

= 1/q
g, = (12700 Flld ) < o0.
v=0

Besov—Morrey spaces with fixed exponents were introduced by Netrusov [23].
Kozono and Yamazaki [19] studied semilinear heat equations and Navier—Stokes
equations with initial data belonging to Besov—Morrey spaces. The investigations
were continued by Mazzucato [21], where one can find the wavelet decomposition
of Besov—Morrey spaces. On the other hand, the Besov—Morrey space J\/'pofq’u is a

proper subspace of the space ng_% with v < p and ¢ < oo (see [31]). Further
properties for these function spaces can be found in [28], [29], and [30].

Recently, Triebel [36] further introduced and studied some local versions of
these smoothness Morrey-type spaces and also considered their applications in
heat equations and Navier—Stokes equations. More recent results can be found
n [44], where they studied the relations between Triebel’s local spaces and the
Besov-type and Triebel-Lizorkin-type spaces and their associated uniform spaces.

D. Yang and W. Yuan [39], [40] introduced and investigated the homogeneous
Besov and Triebel-Lizorkin spaces, which generalize the homogeneous Besov and
Triebel-Lizorkin spaces.

The Besov—Morrey spaces with variable exponents were first introduced in
[14], which also introduced equivalent quasinorms of these new spaces, which are
formulated in terms of Peetre’s maximal functions. Also the authors obtained
the atomic, molecular, and wavelet decompositions of these new spaces.

In the next proposition we present the relations between variable Besov—
Morrey spaces and variable Besov-type spaces (see [13]).

PROPOSITION 3.8
Let o € C\%%, 0 < g <00, and 0 < p<u< oo.

loc”

(i) For 0 < g < oo we have the continuous embeddings
of- a(),(A=1)~!
Nu,E],)p — Bpgq

(ii) We have

a(),(:
NoO) :B,,,(oi(p

1y—1
75)

Following [9], we define, for a > 0, v € Np, o : R" =+ R, and f € §'(R™), the Peetre
maximal function

22W) |, x f(y)]

*,a0va(-) _ v

21200 f(z) = sup oS

()= s T 2oy
2”“(”@ «f(y)]

*a2va )f ,
() = S0 A= e
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where P is a dyadic cube. We now present a fundamental characterization of the
spaces under consideration.

THEOREM 3.9
Let o € Cllgf and p,q,7 € PYE. Let a > nteos(/T)¥ers(/a) g < qg- <

=
gt <oo. Then
)
'a(-)w(-) = supH( azw f P)
Bp(.)yq(.) PecQ ||XPHT ’UZ’U; @q(')(LP(‘))
a(),7(+)

is an equivalent quasinorm in B;o(~),q(') .

(3.10) /]

Proof
We divide the proof into two steps.
Step 1. Tt is easy to see that for any f € S'(R™) with ||f||j;a(_),,<.) < oo and
p(-),a()

any = € R™ we have

209 |y, x f(2)| < 9270 f(a).

This shows that the right-hand side in (3.4) is less than or equal to (3.10).
Step 2. We will prove in this step that there is a constant C' > 0 such that

a(),7(+)
for evernyB (o)

3.11 Yy <C al)er() -
(3.11) Hﬂ'Bp((,qu((,)) <Clfllgag =

2n+clog (1/T)+Clog(1/Q) > 2n+clog(1/7—)+clog (1/Q) By

We choose t > 0 such that a > 7 =

Lemmas 2.6 and 2.5 the estimates

27905, 5 £(y)] < C12°°0) (o 00 + 11 (3)) "

< C'2 (nv,mfclog(a) * <2va() ‘901) * f|)t(y))1/t

are true for any y € R", v € Ny, and any m > 0. Now divide both sides of (3.12)
by (1+2Y|x —y|)®. On the right-hand side we use the inequality

(3.12)

(1+2%z—y)) " <(1+2%z—2)) "(1+2°y—2|)" =z,y,2€R"
On the left-hand side take the supremum over y € R™ and get for all f € B;‘((")) ’qT((")),
any = € P, any v > v}, and any m > at + ¢og ()
* . t . t
(0320 f(2))" < Camp.ar % (22O gy * £1)" (),

where Cy > 0 is independent of z, v, and f. An application of Lemma 2.8(i) gives
that the left-hand side of (3.11) is bounded by

1/t

C sup
PeQ

<[V * Nollyrer.ae goery = Cllflgacyme-

H(nvat* (290, * f|)? )
el ol )

The proof is complete. O
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Notice that, for a >0, v € Ng, a: R* - R, f € S'(R"), and z € P, 2v*0)|gp, *
fl(z) < ¢l P2”O‘( ) f(x) < @*e2ve0) f(x). Therefore, we also have the following
maximal function characterizations.

THEOREM 3.13
Let a € Cllgcg and p,q,7 € PYE. Let a >
gt <oo. Then

2n+clog(1;7;)+clog(1/Q) and O < q7 S

a

(G )
P
Pl st

18 an equivalent quasinorm in B (()) qT(())

Hf”*a()r() sup
P

Y.a() PeQ £aC)(LP())

The following result is from [12].

LEMMA 3.14

Let a € C’llgf, p,q € Plog, and 0 < g7 < oo. A tempered distribution f belongs to

p(())(i() if and only if

< 0.

2va( Oy * f
1 7 : )
(3.15) Hf”B;‘{_'){’p(') v>vp 1020 (Lr0O))

= XP
20 {PteP\<1}H( |P|t/P()

Furthermore, the quasinorms Hf||]§a((.)),p((.)) and Hf||§a(_),p(_) are equivalent.
p()a( p()a0)

Using this lemma, we can easily prove that if o € C’llgf, P.q € Py

a()p() ., 3ol)w()
00, then By (70— By (5 i

By the same arguments used in the proof of Theorem 3.9, we have the fol-

lowing characterizations of the spaces B (( )) ’qp(( ))

8 and 0 < ¢t <

THEOREM 3.16

Let a € C\%8 and p,q € Py®. Let a> s (1211)+0105(1/q) and 0 < g~ <g¢* <oo.
Then
* a2va( )f
||f|| Be(): p(()) Sup H (WXP> o lea) (Lr0))

and
*,Q QW( )f
1% a()n 7= SUD H (pr)vzﬁ

are an equivalent quasinorm in Es((f))’qp((_')).

Z‘I(')(LP(’))

4. Characterization by ball means of differences

This section is devoted to the characterization of Besov-type spaces B (( ))q(()) and

Ep(('))’f((') by ball means of differences. In the case of constant indices p, g, a, and
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T, we refer especially to [10] and [43]. Let f be an arbitrary function on R™ and
x,h € R™. Then

Apfl@)=flx+h)—fz), AN f(2)=An(AN f)(z), MEeN.

These are the well-known differences of functions which play an important role
in the theory of function spaces. Using mathematical induction one can show the
explicit formula

M

AN f () Z ( ) (x+ (M = j)h),

Jj=

where (];/I ) are the binomial coefficients. By ball means of differences we mean
the quantity

M _4—n M M
dM f(z) = t /|h|< A f(z)| dh = /B\Ath ()| dh,

where B = {y € R": |h| <1} is the unit ball of R™, ¢ > 0 is a real number, and
M is a natural number. In the following we present some properties of the spaces
L5 and Lr0),

PROPOSITION 4.1

Let T, A € P8 and p € P8,

(1) If Too < Ao, then

LP( ) LPE

)
AG) )

(ii) We have

BO () (_)LP(

) /(N
o ()<—>LP( — S'(R™).

Proof

The property (i) follows from the estimates ||xpl|lx.) =~ |P[}/*> < |P|V/7™> ~
Ixpll-¢y for any P e Q, with |P|>1 (see (2.4)). By Holder’s inequality, we
see that for any ¢ € S(R™) and any M € N large enough

< [ r@llet] ds

> [ le@llee]as

mez"
< 1 X0 o 19X 0 el
meZ"
M
<Cillelaroll flizg D (1+1ml)

meZ™

< Callellaroll Sl o0
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which proves the embedding LPE)) < L0 s S'(R™). Let {Fytven, be a reso-

lution of unity. Then, for each dyadic cube P, f =30 ¢, * f in the sense of
LPO)(P). Thus, if |P| > 1, then

fxe | ZH ..,
XpP <\ po.r¢)
HHXPHT o0) ||xPHT < Il

v=0
follows. O

Before proving the characterization of these function spaces by ball means of
differences we present some technical lemmas.

LEMMA 4.2
Let R>0, 1,pe P8, 0<r<p~, and 0,w € S(R”) with supp Fw C B(0,1).

(i) For any f € S8'(R™), any m > 2n+ cio5(1)r, and any dyadic cube P with
|P| > 1, we have

0R *WR * f
ey e
Ixpll-) ()

such that the right-hand side is finite, where C' > 0 is independent of R, f, and
I(P).

(ii) For any f € S'(R™), any m > 2n, and any dyadic cube P with |P| =1,
we have

< C'max(1, (RZ(P))(n " /r)||wR * f||Lp< ‘)

[(0r % wr fxpl,, < Cmax(L, R"=™/7)wp * f]]
such that the right-hand side is finite, where C > 0 is independent of R and f.

LrC)

This lemma is from [12, Lemma 2.4]. Let us now introduce the (quasi-)norms,
which shall be the main subject of our study. We define

ka( dM
ST P e
Hf”Bp((_))’q((_)) HfHLP ) p ||XP||T XP k>vf leat) (L))
and
2ka( dM
4.3 rawe) =N fllmm + su H( ) :
(4.3) ||fHBp(<_)>:(<')) ”fHLp(-) {PeQ,\glgl} |p|1/p X k>vp lleaC) (Lp())

In view of [13, Lemma 3.6], the supremum in (4.3) can be taken with respect
to any dyadic cubes. The following technical lemma is just [10, Lemma 3.5] for
constant exponents.

LEMMA 4.4
Let o € C’llgf, with o~ >0, M €N, 7,q € Py, and p € P'8, with p~ > 1. Then

there is a constant C > 0 such that

I( ||>i7:|7< ) ( el Olds)xe)

Ol pacr-o0
va ()

£aC)(LpC >)

and



668 Douadi Drihem

2va(-) </
Mol AMv dy) XP)
(4.5) H ( Ixpllre) \y|>1’ )l vk
< C * a(-),r(-
<Ol s

ZQ()(LD(>)

for any dyadic cube P, any w € S(R™), and any function [ such that
11 ey < 00
Byl

Proof

We see that it suffices to prove the second estimate. We write for any z € P

2va(z)/| llAéV{vyf(x)w(yﬂdy
y|>

k=0

2k <|y|<2k+t
< 022(a(z)+n)v7Nk:/ |AMf ’dh
k=0 2k717<|h‘§2k717+1

= CZ 2_Nk&v,k(m)7

where

| AV f(a)|dh,
2k—ru<‘h|S2k'—'u+1
N >0 is at our disposal, and we have used the properties of the function w,
lw(z)| < C(1+]z|)~ for any z € R" and any N > 0. Fix 0 <7 <  min(p~,¢~,2).
Then the left-hand side of (4.5) is bounded by
o~k || Pok () " )I/T
C(kZOQ ’( £aC) (Lp())

Buil)
Ixpllzy™ /v

vp-1 1/r
(X2 )
k=0 k=v}

= (I + I, )"
P P

< 21/7“—1((11);)1/7“ + (IIU;)l/'r').

+
Here we put Z:io L= o0if v; =0, and Iﬂ; can be rewritten as (here, obviously
vp =uvp)
vlt—2 vlt—l
cy 0 Y =M+ M.
k=0

k:v}t—l
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vh— . . ]
Here we put Ekioz' =0 if v}, < 1. After a change of variable v — k — 1= j,
we get
2 210V @M £ (. ,
M, <C Z 2(a++n7N)rk: ’(7JXP)
k=0 Ixpllze) i —k—1llea) (L0
vE—2 ()dM 0 )
<C 2(a++n—N)rk ‘(71 : ) 7
a ];) ||XPHT(~) XQGp 2"+1 ) §>vh—k—11lgaC) (LP())

after using P C Q(xp,/n2817v7) (cube centered at the point zp with sides
parallel to coordinate axes and of length /n2**1=v7). This expression is bounded
by

U;SQ

C Z g(o 4n—Nin/r" A a(()r())) < C(||f||’l‘3a((‘.))l,,((‘.)))r,

k=0

where we used, by Lemma 2.7,

(4.6) IXa@r.vazirier)llr)  gniye
Ixpllrc)

for N large enough such that N > 2(a™ +n)+n/7~ and here C' > 0 is indepen-
dent of vp. Now Ms is bounded by

<2w< di £ () )
el oo

T

02(o¢+ +n—N)7‘v;§

2O (PO

Using the fact that xp < Xqup,va): IXQ@pr,vi)ll-() ® 1, and [[xpll-() =
C27vPn/T" | we obtain

My < CHT T (£ a.20) " S O i)
because N > a™ +n + n/7~. Therefore,
(Iv;)l/r S ClflGacy. -
p()a()
We estimate 11+ . For all (fo)ven, C LI (LPO) we set
(fv)’””P = (oo frgn 2 0,0,.0).

Since || - [[gac)(zp()y I8 a quasinorm in the ¢90) (LP())-spaces we obtain, for any
dyadic cube P, IT b is bounded by

022 Nrk

‘ (2<a< )+n)v

Ixpllrc)

k+v;§ r

(4.7) X (/|h<2kv+1’A¥f(~)|dh)XP)v ot

a0 (Le())
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‘ (2(0( )+n)v

+C Z 2—N7"k

Ixplic)

(ol

Using the embedding ¢ (LP()) < ¢90) (LP()) we estimate the first term by

¢y TM( Z H QII(;;IT)U </hé2kv$+1 A0 dh)x”HZo)r/q

k=v};

<CZMH% sl

HXP”T() |h|<2k—vp+t

T

£a() (L))

Recalling the definition of A} f, we obtain

M
[ ol

M1 )
< |f (@ + (M —m)h)|dh + C2*=5) | f(2)]
=0\ Jjpj<akrp
M1
- m /y |<(M—m)2*—v5+1 |f(y)|XQ($Pa(M+\/ﬁ)2"’“‘“P)(y) dy
m=0 —Z|> —m

+ C2n(k—v;5) ’f(a:)‘

< C2nk=vi) (’f(x)‘ + M(fXQ(xp,(M-‘r\/ﬁ)QkJrl*”P))(m))

for any x € P. Hence,

(] _lats0lan)e]

< 202 (| fxp o) + MU X Qe arsymze -

< c2nk=vi) (1 xpllpe) + ”fXQ(acp,(MJr\/H)Q’“*l*vP)Hp('))
n —’U+

<C2 ( P)”XQ(a:p,(MJr\/E)Q"‘*l*“P)||T(~)Hf”Lf_E'_;a

after using the fact that M : LP() — LP() is bounded. We use (4.6) with
Q(xp, (M + /n)2F+1=v#) in place of Q(zp,/n28T17vF) to estimate the last
expression as

02("+”/77)k||XPHT(-)IIfHLpgo) < C2("*"/F)kIIXPIIT(.>HfII*Ba(o)),r((-))-
i3 s

Then the first term in (4.7) is bounded by

(2at4+3n4+n/T7=N)r *
C E g2 Hndn/T =Nk £ p(><C(||fH a<>r<>),
)

+
k=vp
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where we use the fact that N > 2a™ + 3n +n/7~. The second term in (4.7) is
bounded by

C Z 2 —N+n)rk
k= vP

r

[

Ixpll-c HlleaC)(Lr())

o0
<C 2(a+—N+n)rk * - r
= Z (Hf”Bp((_)):q((_)))

k:v;
* T
< C(Hf”Ba(-w(-)) ;
p(),a(")
since N > a® + n. This finishes the proof of Lemma 4.4. O
LEMMA 4.8
Let a € C’l & witha™ >0, MeN, g€ Péog, and p € P8, with p~ > 1. Then

there is a constant C > 0 such that

gua(:) o
H<|P|1/P() (/|y|<1}A2“yf()‘ dy)X >U>'UP £aC) (LpC ))

va()
H(uz\l/p( (/y|>1|AM” |dy>xp>v>vp

for any dyadic cube P, with |P| <1, any w € S(R™), and any function f such
that || fll5ac) ey <00
p().a()

”.f” ”( ) p())

ClA 00

£aC) (Lp( ))

Proof

In view of the proof of Lemma 4.4, we need only to estimate the first term in
(4.7). (Observe that ||xp|l,) ~ |[P|P@, z € P, with |[P| <1 (see (2.3)).) For
any dyadic cube with |P| <1 and k > vp

1
xplhe AN f()| dh ‘
H||XP||p(.) (/|h<2kvp+1| h f()| )Xp

Lr()
< ognthn) (|| X Ixp HfXWP’?’““‘”‘”P) ), hmeN.
IxPllpey e¢) Ixpllpe) »()
gn (kthn —v) ) )
Observe that Q(xp, 2k Thn—vr) CUz Q= UZ 1 12 ; " Q. where the Qs

are dyadic cubes with side length 25t"»=v7 and the Q"!’s are dyadic cubes with
side length 1. Therefore,

H FXq@p 2t+mn—vr)
IxPllpc

p(+)

< C2™P P Fxgap 2tin—ve)lp()

on o(kt+hn—v)p

<C3mrr NN I fxges
1=1 =1

nk
() <C2Nfll 555
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where C' > 0 is independent of k. Now obviously,
H fxp

el

Then the first term in (4.7) is bounded by

<C2"™M || fll

Lp()"

a+ n-+n — T‘
D E G R e J
k=vp
where we use the fact that N > 2a+ + 3n + n/p~. This finishes the proof of
Lemma 4.8. 0

We set

Op,ri= nmin(O, (% — %)7)

Using the notation introduced above, we may now state the main result of this
article.

THEOREM 4.9
Let a € Cllscg, MeN, 7, g€ PYE, and p € P8, with p~ > 1 and 0 < ¢~ <
q < 00.

(i) Assume
0<a <at<M+56,,
Then || - |I* ety B8 an equivalent quasinorm on B (()) T(()).

Bpyiaey
(ii) Assume

0<a” <at <M.

e . . . Ha(),p()
Then || Hé,‘f((.'))_’f((.')) 18 an equivalent quasinorm on Bp(~),q(~) .

Proof
),7()

By similarity, we only consider B (() () where for Bp(( )) ()) we use the equiv-

alent norm (3.15), Theorem 3.16, and Lemma 4.8 in plac:]e( of Theorem 3.9 and
Lemma 4.4, respectively. Let P be any dyadic cube. We will do the proof in three
steps.

Step 1. Let {Fyy}ven, be the functions used in Section 3. We have, with
a” >0,

oo

<Z2_a ?j2e¢) e fll o
v=0

<COlfll gacr-o» L Cllfll gacrroy
p(+),00 p(-);q()

a(),7()
for any f € Bp(_)!q(_) .
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Step 2. For any k > vlﬁ and any x € P, we write

Qka(x) " i 2ka(;c) o
T ek f(2) £ ) e dymi (= f)(@)
erllz) 2" Slxelo ="
’U;—l k oo
Y Y e S
v=0 U:,U; v=k+1

=18 (v) + I (x) + III% (z).

Here we put I¥ =0 if v}, = 0. We estimate the first summand and we start with
estimates of the higher-order differences AM (¢, * f). Let 1,10 € S(R™) be two
functions such that Fi =1 and Fipg =1 on suppy and supp V¥, respectively.
Using the mean value theorem we obtain for any x € P, v € Ny, and |h| <27
that

| AL (0o * £)(@)] = [ AL (o * 90 * f)(2)]

<27%  sup Z | Dy * 00 % f(y)],
|lz—yl<d2=%) ) =4

with some positive constant d, independent of v and k, and ,(-) = 2(*=D" x
¥(2°71.) for v=1,2,.... By induction on M, we show that

|AN (0o # (@) < C27PM sup 1 v x [i0w * £I(Y),

lz—y|<d2~F
with N > 0 large enough. We use Lemma 2.5 to obtain for any y € B(z,d 27F)
and any k > v
gv(a(z)+n(1/7(x)—1/p(x)))
<C(1+2%z— y|)cwg<a+n<1/T*1/P>>2v<a<y>+n<1/r<y>71/p<y>>>
< C(1 + d2v—F)croslatn(l/7=1/p)) gu(a(y)+n(1/7(y)=1/p(y)))
< 02v(eW)+n(t/m(y)=1/p(v)

with some positive constant C' that is independent of v. Therefore,
gv(a(z)+n(1/7(x)—1/p(x))) |A£J(§0U * f)(:z:)|

< C2(v—k})M sup 211(04(3!)"1‘"(1/7'(3/)_1/p(y)))77,u71 Nk |§0,U * f|(y)
|z—y|<d2—F ’

<C20=MM gup No—1.N, * Qv(a(-)+n(1/f(-)—l/p(-)))|@v  f1(y),
le—y|<d2=F
again by Lemma 2.5, with N; > 0 large enough. The right-hand side may be
estimated as
C2=FM  qup @iva2v(a(~)+n(1/7(~)—l/p(~)))f(y)'

|z—y|<d2—F
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Then we obtain, for any z € P, |h| <27%, and any k > v, that
9o (@@ n (/@ =1/pe ) | AM (i,  )(2)]

can be estimated by

C20-RM g a0 (@O)+n1/T()=1/pO)) £ ()
Jo—y|<d2=k (14 2%z —y[)e

< 02(vfk)M%,a2v(a(~)+n(1/7(<)fl/p(-)))f(m) < CQ(U*k)MHfHBa(.),T(.),
p(-),a(*)

by (3.5). Then

v—k)(M—a(z))+v(n/p(z)—n/7(z))

Ixpllre)

171 BylYaty

v o
b (x)<C>
v=0

Vb ou(M+n/p(@)—a(s)—n/T(z))

< 20 1l e
Uz::() ||XPHT(') Bu(y,aty
v (M4n/p(z)—a(z)—n/7(z))
< Cote-in 2 1l gocr -
||XP||T(') p(-),a(-)

Therefore,

+ +_ —alz
pr (z) < C2vPn/p@)g(Wh—k)(M—a( ))Hf||3;f(<j));(§'))v z€P,

where we have used the fact that ||xp| ;) ~ 2-vEn/7(@) gince vl > 0. Taking the
¢90) (LP0))-(quasi-)norm we obtain

ISDE%H (prXP)kzv}t ||[q(-)([,p(-))

+ . Tk (M—af-
< C||f||B§((f>)f;((f>) JSDEZH(ZUPWP( )9 (vh—k) (M —a( ))Xp)kzv}t qu(-)(w«))‘

Let us prove that for any dyadic cube P

vhEN —k) (M-«
|(@ubn/p OB R0y ) <
By using the embedding ¢4 (LP()) < ¢4C)(LP()), the left-hand side is bounded
by

> T _ A\ Va~ + ) + .
O Y awE- =D )T arnlr Oy plly) < CI2 B Oxplly) < ©

—t
k=v}

where we used the fact that o™ < M and \\2”1tn/p(')xp||p(.) < C. The second term
Hffp (x) is bounded by

CZ

—at)

,aova()
—o e 2t (@),
HXPHT(
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where we choose a > 221518 (l/pT_HCl"g 1/9) . Applying Lemma 2.10, we have

glelgu (UﬁPXP)kzv; ||gq<~>(Lp<~>)

a2va 2
< C sup H( f P)
PeQ ||XPHT() v>vh lea) (LrO)

= C”fHB;(»‘)).';((-‘)) ’

where we have used Theorem 3.9. Recalling the definition of d}!, (¢, * f), we
have

2@ dyL, (o, * f)()

- /B 22| AM, | (o # f) ()| dh

M
M va(z) " T _ \o—k
Sj;)(j)/BQ |(po* f)(z+ (M —5)27"n)| dh.

We shall deal in detail only with the term with j =0,1,...,M — 1. The term
with 7 = M is much simpler to handle. (For that term, the integration over
h € B immediately disappears.) We use Lemma 2.6 with » =1 in the form

27 |(ipy # f) (4 (M = §)27Fh) | < C2° gy 5 % oy 5 f| (2 + (M = §)27 D).
We have

2W<$>/ No,2m * o * f|(x + (M — 5)27"h) dh
B

— (M — j) ngret@)thn / Moo # 00 % Fl(@ — £) dt
(M—j)2-+B

< C2ve(=) / No.2m * |90 % fI(2 — )1k, 2m () dt
RTI,

= C2°* ) o % 1 2m % v * f1()
< 02O o x|y + f()
< Cnpen * |29y, * f(),
where we have used Lemmas 2.9 and 2.5 with m > max(n, ciog(c)). Hence,
229G (% F)(2) < Clim 27O 0 % f] ()

and
2(k v)a(z)

= SCZ el
XPllr(

Tl e 12020, * f|(z)

=C #2000 o s ().
Z ”XP”T ) "
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Take the £40)(LPO))-(quasi-)norm, and use Lemma 2.8(i) to obtain (with m large
enough and 0 < 2r <min(p~,q~,2))

sup || HvaXP k>v) qu( )(LP()

T

20 o
<C§ 9- ira” SupH(nk, >k| Ph+ *f|XP)k>
vp

pard PeQ IxPll-() 3 IZIOIe ZB)!
211(1 )(P *f r
SC’supH( p) A A :C'Hf“;a(.),r(.).
peall\ Ixpll- v>vh leat) (Lr0)) (e

Step 3. Let ¥ be the function introduced in Section 3 that is, in addition,
radially symmetric. We make use of an observation made by Nikol’skij [24] (see
also [32] and [35, Section 3.3.2]). We put

W)= ( M“Z (Y )wetor -

The function ¢ satisfies ¥ (z) =1 for |z| < 1/M and ¢ (z) =0 for |z| > 3/2.
Then, taking ¢o(z) = ¥(z), ¢1(x) = ¥(2/2) - b(x), and @u(z) = 1 (2~"+12) for
v=2,3,..., we obtain that {y,} is a smooth dyadic resolution of unity. This
yields that

sup

|ort)
PeQ v>v)

Ixpll=) A IZISTeZI0))

is a quasinorm equivalent in B (( )) (()) Let us prove that

2O F o, x f
TR [T
(4.10) (e X s

CllA g0

ga( )(Lp( )
for any dyadic cube P of R™. First, the left-hand side contains F~1pg * f only
when |P| > 1. Then from Lemma 4.2

(4.11) HF pox

||fH (o)
||XP||T( ) H10( 9)
Moreover, it holds for z € R” and v=1,2,... that

Folpun fla)i= (1M [ AL 1) T) d

with W(-) = F~1W(-) — 27" F~1W(-/2) (see [10, Theorem 3.1]). Now, for v € N we
write

[t s@lFlay = [ (ki@ [¥)]a
R lyl<1

! ~/|y|>1 ‘Aé\{vy (@)]|¥(y)| dy.
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Then the estimate (4.10) is an obvious consequence of (4.11) and Lemma 4.4.
Therefore, || f|| o) < C||f||*Ba(_>,T(_>, which completes the proof of this
p(-).q(") p(),a(")

theorem. O
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