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Abstract LetR be a commutative Noetherian ring, let I be an ideal ofR, and letM ,N

be two finitely generated R-modules. The aim of this paper is to investigate the

I-cofiniteness of generalized local cohomology modules Hj
I (M,N) = lim−→n

ExtjR(M/

InM,N) ofM andN with respect to I. We first prove that if I is a principal ideal, then

Hj
I (M,N) is I-cofinite for all M , N and all j. Secondly, let t be a nonnegative integer

such thatdimSupp(Hj
I (M,N))≤ 1 for all j < t. ThenHj

I (M,N) is I-cofinite for all j < t

and Hom(R/I,Ht
I(M,N)) is finitely generated. Finally, we show that if dim(M)≤ 2 or

dim(N)≤ 2, thenHj
I (M,N) is I-cofinite for all j.

1. Introduction

Throughout this note the ring R is commutative Noetherian. Let N be finitely

generated R-modules, and let I be an ideal of R. In [15], A. Grothendieck con-

jectured that if I is an ideal of R and N is a finitely generated R-module, then

HomR(R/I,Hj
I (N)) is finitely generated for all j ≥ 0. R. Hartshorne provides

a counterexample to this conjecture in [16]. He also defined an R-module K to

be I-cofinite if SuppR(K)⊆ V (I) and ExtjR(R/I,K) is finitely generated for all

j ≥ 0, and he asked the following question.

QUESTION

For which rings R and ideals I are the modules Hj
I (N) is I-cofinite for all j and

all finitely generated modules N?

Hartshorne showed that if N is a finitely generated R-module, where R is a

complete regular local ring, then Hj
I (N) is I-cofinite in two cases:

(i) I is a principal ideal (see [16, Corollary 6.3]);

(ii) I is a prime ideal with dim(R/I) = 1 (see [16, Corollary 7.7]).

K. I. Kawasaki has proved that if I is a principal ideal in a commutative Noether-

ian ring, then Hj
I (N) are I-cofinite for all finitely generated R-modules N and

all j ≥ 0 (see [22, Theorem 1]). D. Delfino and T. Marley [12, Theorem 1] and

K. I. Yoshida [33, Theorem 1.1] refined result (ii) to more general situation that if
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N is a finitely generated module over a commutative Noetherian local ring R and

I is an ideal of R such that dim(R/I) = 1, then Hj
I (N) are I-cofinite for all j ≥ 0.

Recently, K. Bahmanpour and R. Naghipour have extended this result to the case

of nonlocal rings; more precisely, they showed that if t is a nonnegative integer

such that dimSupp(Hj
I (N))≤ 1 for all j < t, then H0

I (N),H1
I (N), . . . ,Ht−1

I (N)

are I-cofinite and Hom(R/I,Ht
I(N)) is finitely generated (see [2, Theorem 2.6]).

There are some generalizations of the theory of local cohomology modules.

The following generalization of local cohomology theory is given by J. Herzog

in [17]. Let j be a nonnegative integer, and let M be a finitely generated R-

module. Then the jth generalized local cohomology module of M and N with

respect to I is defined by

Hj
I (M,N) = lim−→n

ExtjR(M/InM,N).

These modules were studied further in many research papers such as [31], [32],

[3], [18], [20], [19], [10], [8], [7], and [4]. It is clear that Hj
I (R,N) is just the

ordinary local cohomology module Hj
I (N) (cf. [5], [6]).

The purpose of this paper is to investigate a question similar to the one

above for the theory of generalized local cohomology. Our first main result is the

following theorem.

THEOREM 1.1

If I is a principal ideal, then Hj
I (M,N) is I-cofinite for all finitely generated

R-modules M , N and all j.

As an immediate consequence of this theorem, we obtain again a theorem of

K. I. Kawasaki [22, Theorem 1] (see Corollary 3.2). Moreover, Theorem 1.1 is an

improvement of [14, Theorem 2.8], since we do not need the hypothesis that M

has finite projective dimension as in [14]. It should be noticed that the arguments

of local cohomology that are used in the proof of K. I. Kawasaki [22] cannot

apply to proving Theorem 1.1 because, for the case of local cohomology, if I is

a principal ideal, then Hj
I (N) = 0 for all j > 1. But this does not happen in the

theory of generalized local cohomology; that is, Hj
I (M,N) may not vanish for

j > 1 even if I is principal ideal. Therefore, we have to use a criterion on the

cofiniteness which was invented by L. Melkersson in [30]. Here we also give a

more elementary proof for this criterion (see Lemma 3.1). The next theorem is

our second main result in this paper.

THEOREM 1.2

Let t be a nonnegative integer such that dimSupp(Hj
I (M,N))≤ 1 for all j < t.

Then Hj
I (M,N) is I-cofinite for all j < t and Hom(R/I,Ht

I(M,N)) is finitely

generated.

This theorem is an extension for generalized local cohomology modules of a result

of K. Bahmanpour and R. Naghipour [2, Theorem 2.6]. In [2], they used a basic

property of local cohomology that Hj
I (N)∼=Hj

I (N/ΓI(N)) for all j > 0; then it
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is easy to reduce to the case of ΓI(N) = 0. But, it is not true that Hj
I (M,N)∼=

Hj
I (M,N/ΓIM (N)) for all j > 0 in general, where IM = annR(M/IM). Hence, we

need to establish Lemma 2.4, which says that if t and k are nonnegative integers

such that dimSupp(Hj
I (M,N))≤ k for all j < t, then so is Hj

I (M,N/ΓIM (N)).

Moreover, in order to prove Theorem 1.2, we also need some more auxiliary lem-

mas such as Lemmas 2.3 and 2.5 on minimax modules. Especially, by Lemma 4.2,

instead of studying the cofiniteness of Hj
I (M,N), we need only to prove the

cofiniteness of these modules with respect to IM . As a consequence of Theo-

rem 1.2, we prove that if dimSupp(Hj
I (M,N))≤ 1 for all j (this is the case, e.g.,

if dim(N/IMN) ≤ 1), then Hj
I (M,N) is I-cofinite for all j (see Corollary 4.3).

This is an improvement of [14, Theorem 2.9] and [23, Corollary 3], because our

theorem does not need the hypothesis that R is complete local, M is of finite

projective dimension, and I is prime ideal with dim(R/I) = 1. Another conse-

quence of Theorem 1.2 on the finiteness of Bass numbers is Corollary 4.4, which

is a stronger result than the main result of S. Kawakami and K. I. Kawasaki

in [20].

On the other hand, in the case of small dimension, the third author in [19,

Lemma 3.1] proved that if dim(N)≤ 2, then any quotient of Hj
I (M,N) has only

finitely many associated prime ideals for all finitely generated R-modules M and

all j ≥ 0. We can now prove a stronger result in the following theorem.

THEOREM 1.3

Assume that dim(M)≤ 2 or dim(N)≤ 2. Then Hj
I (M,N) is I-cofinite for all j.

As an immediate consequence of Theorem 1.3, we get a result on the cofiniteness

of local cohomology modules (see Corollary 5.2). Moreover, by application of

Theorems 1.2 and 1.3, we obtain a finiteness result on the set of associated prime

ideals of ExtiR(R/I,Hj
I (M,N)) for all i, j ≥ 0 when (R,m) is a Noetherian local

ring and dim(M)≤ 3 or dim(N)≤ 3 (Corollary 5.3).

The paper is divided into five sections. In Section 2, we prove some auxiliary

lemmas which will be used in the sequel. Sections 3, 4, and 5 are devoted to

proving three main results and their consequences.

2. Auxiliary lemmas

Let R be a commutative Noetherian ring, let I be an ideal of R, and let M ,

N be finitely generated R-modules. We always denote by IM the annihilator

of R-module M/IM , that is, IM = annR(M/IM). We first recall the following

lemmas.

LEMMA 2.1 (CF. [9, LEMMA 2.3], [10, LEMMA 2.1])

(i) If I ⊆ ann(M) or ΓI(N) = N , then Hj
I (M,N) ∼= ExtjR(M,N) for all

j ≥ 0.

(ii) Hj
I (M,N) is IM -torsion.
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In [34], H. Zöschinger introduced the class of minimax modules. An R-module

K is said to be a minimax module, if there is a finitely generated submodule T

of K, such that K/T is Artinian. Thus the class of minimax modules includes

all finitely generated and all Artinian modules.

LEMMA 2.2 (CF. [4, THEOREM 3.6], [1, THEOREM 2.3])

Let t be a nonnegative integer such that Hj
I (M,N) is minimax for all j < t. Then

HomR(R/I,Ht
I(M,N)) is finitely generated.

We next prove some auxiliary lemmas which will be used in the sequel.

LEMMA 2.3

Let t be a nonnegative integer such that Hj
I (M,N) is minimax for all j < t. Then

Hj
I (M,N) are I-cofinite for all j < t.

Proof

We proceed by induction on j. It is clear thatH0
I (M,N) is I-cofinite. Assume that

j > 0 and that the result holds true for smaller values than j. Thus we obtain that

H0
I (M,N), . . . ,Hj−1

I (M,N) are I-cofinite minimax by the inductive hypothesis

and by the hypothesis. It follows by Lemma 2.2 that Hom(R/I,Hj
I (M,N)) is

finitely generated, so that Hj
I (M,N) is I-cofinite by [30, Proposition 4.3] as

required. �

LEMMA 2.4

Let t and k be nonnegative integers. If dimSupp(Hj
I (M,N)) ≤ k for all j < t,

then so is Hj
I (M,N/ΓIM (N)).

Proof

From the short exact sequence 0→ ΓIM (N)→N →N/ΓIM (N)→ 0, we get the

long exact sequence

· · · → ExtjR
(
M,ΓIM (N)

)
→Hj

I (M,N)→Hj
I (M,N)

→ Extj+1
R

(
M,ΓIM (N)

)
→ · · · ,

for all j, where N = N/ΓIM (N). We assume that there exists an integer i < t

and p ∈ Supp(Hi
I(M,N)) such that dim(R/p)> k and p /∈ Supp(Hj

I (M,N)) for

all j < i. Then by the long exact sequence as above we obtain the exact sequence

· · · → ExtjR
(
M,ΓIM (N)

)
p
→Hj

I (M,N)p →Hj
I (M,N)p

→ Extj+1
R

(
M,ΓIM (N)

)
p
→ · · · .

Note that Hj
I (M,N)p = 0 for all j ≤ i, while Hj

I (M,N)p = 0 for all j < i, and

Hi
I(M,N)p �= 0. So, by the above exact sequence, we have ExtjR(M,ΓIM (N))p = 0

for all j ≤ i, and Exti+1
R (M,ΓIM (N))p �= 0. It implies that ΓIM (N)p �= 0 and

depth
(
ann(M)p,ΓIM (N)p

)
= i+ 1≥ 1.
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Hence ann(M)p � qRp for all qRp ∈AssRp
(ΓIM (N)p). This contradicts with the

fact that AssRp
(ΓIM (N)p) = AssRp

(Np)∩ V ((IM )p) and IM ⊇ ann(M). �

LEMMA 2.5

Let t be a nonnegative integer such that Supp(Hj
I (M,N))⊆Max(R) for all j < t.

Then Hj
I (M,N) is Artinian for all j < t.

Proof

We now prove the lemma by induction on t. If t= 1, then it is clear thatH0
I (M,N)

is Artinian. Assume that t ≥ 2 and the lemma holds true for t− 1. By the

inductive hypothesis, the R-modules Hj
I (M,N) are Artinian for all j < t − 1.

Therefore, by Lemma 2.2, Hom(R/I,Ht−1
I (M,N)) is finitely generated.

Thus, since Supp(Hom(R/I,Ht−1
I (M,N))) ⊆ Max(R), we obtain that

Hom(R/I,Ht−1
I (M,N)) is Artinian. On the other hand, as Ht−1

I (M,N) is I-

torsion, it follows by [27, Theorem 1.3] that Ht−1
I (M,N) is Artinian. �

3. Proof of Theorem 1.1

We first need the following lemma which has been proved in [30, Corollary 3.4]

by L. Melkersson. We give here an another proof for this result with elementary

arguments.

LEMMA 3.1

Let K be an R-module. Suppose x ∈ I and Supp(K) ⊂ V (I). If (0 : x)K and

K/xK are both I-cofinite, then K must be I-cofinite.

Proof

Let t be a nonnegative integer. We need only to claim that ExttR(R/I,K) is

finitely generated. By the commutative diagram

0→ (0 :K x)→K
x−→ xK → 0

x ↓ ↘ x

0→xK →K →K/xK → 0

we obtain the following commutative diagram of long exact sequences

· · · → ExttR
(
R/I, (0 :K x)

)
→ ExttR(R/I,K)

x(t)

−−→ ExttR(R/I,xK)→ · · ·

x(t) ↓ ↘ x

· · · → Extt−1
R (R/I,K/xK)→ ExttR(R/I,xK)

ft−→ ExttR(R/I,K)→ · · · ,

where x(t) = ExttR(R/I,x). Note that K/xK is I-cofinite by the hypothesis;

it implies that Extt−1
R (R/I,K/xK) is finitely generated. Thus Ker(ft)

is finitely generated. Moreover, the triangle is commutative, so that x(t)((0 :

x)ExttR(R/I,K))⊆Ker(ft). It follows that x
(t)((0 : x)ExttR(R/I,K)) is finitely gener-

ated. On the other hand, (0 : x)K is I-cofinite by the hypothesis, so we obtain
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that ExttR(R/I, (0 : x)K) is finitely generated. It implies that Ker(x(t)) is finitely

generated. Therefore, by the following exact sequence,

0→ Ker(x(t))∩ (0 : x)ExttR(R/I,K) → (0 : x)ExttR(R/I,K)

→ x(t)
(
(0 : x)ExttR(R/I,K)

)
→ 0,

we obtain that (0 : x)ExttR(R/I,K) is finitely generated. Finally, note that for x ∈ I ,

it yields that ExttR(R/I,K) = (0 : x)ExttR(R/I,K) is finitely generated as required.

�

We now are ready to prove Theorem 1.1.

Proof of Theorem 1.1

Assume that I =Rx is a principal ideal. From the short exact sequence

0→ ΓI(M)→M →M → 0,

where M =M/ΓI(M), we get by [18] the following exact sequence:

Hi−1
I

(
ΓI(M),N

)
→Hi

I(M,N)→Hi
I(M,N)→Hi

I

(
ΓI(M),N

)
for all i. Since ΓI(M) = (0 : Ik)M for some positive integer k, we get by Lemma 2.1

that

Hi
I

(
ΓI(M),N

)
=Hi

Ik

(
(0 : Ik)M ,N

) ∼=ExtiR
(
ΓI(M),N

)
for all i. Hence Hi

I(ΓI(M),N) is finitely generated for all i, and it follows by the

above exact sequence that Hi
I(M,N) is I-cofinite if and only if so is Hi

I(M,N).

Hence we may assume that ΓI(M) = 0, so that I � p for all p ∈Ass(M). It implies

that x /∈ p for all p ∈Ass(M). Thus we obtain an exact sequence

0→M
x−→M →M/xM → 0.

From this we have the following exact sequence:

0→Hi−1
I (M,N)/xHi−1

I (M,N)→Hi
I(M/xM,N)→ (0 : x)Hi

I(M,N) → 0

for all i. As I =Rx, we obtain by Lemma 2.1 that

Hi
I(M/xM,N)∼=ExtiR(M/xM,N)

for all i. Hence Hi
I(M/xM,N) is finitely generated for all i. Thus by the above

exact sequence we obtain that

(0 : x)Hi
I(M,N) and Hi

I(M,N)/xHi
I(M,N)

are finitely generated for all i. Therefore we get by Lemma 3.1 that Hi
I(M,N) is

I-cofinite for all i. �

By replacing M by R in Theorem 1.1 we obtain a theorem of K. I. Kawasaki on

the cofiniteness of local cohomology modules as follows.
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COROLLARY 3.2 ([22, THEOREM 1])

If I is a principal ideal, then Hj
I (N) is I-cofinite for all finitely generated R-

modules N and all j.

4. Proof of Theorem 1.2

Before proving Theorem 1.2, we need to recall some known facts on the theory

of secondary representation.

In [24], I. G. Macdonald has developed the theory of attached prime ideals

and secondary representation of a module, which is (in a certain sense) a dual

to the theory of associated prime ideals and primary decompositions. A nonzero

R-module K is called secondary if for each a ∈ R multiplication by a on K is

either surjective or nilpotent. Then p =
√
ann(K) is a prime ideal, and K is

called p-secondary. We say that K has a secondary representation if there is a

finite number of secondary submodules K1,K2, . . . ,Kn such that K =K1+K2+

· · ·+Kn. One may assume that the prime ideals pi =
√
ann(Ki), i= 1,2, . . . , n

are all distinct and, by omitting redundant summands, that the representation

is minimal. Then the set of prime ideals {p1, . . . ,pn} does not depend on the

representation, and it is called the set of attached prime ideals of K and denoted

by Att(K). Note that if A is an Artinian R-module, then A has a secondary

representation; moreover the set of minimal prime ideals of annR(A) is just the

set of minimal elements of AttR(A) (see [24]). The basic properties on the set

Att(A) of attached primes of A are referred in a paper by I. G. Macdonald [24].

If 0→A1 →A2 →A3 → 0 is an exact sequence of Artinian R-modules, then

Att(A3)⊆Att(A2)⊆Att(A1)∪Att(A3).

LEMMA 4.1

Let x be an element of R, let I be an ideal of R, and let A be an Artinian

R-module. Then the following statements are true.

(i) If x /∈ p for all p ∈Att(A) \Max(R), then �(A/xA)<∞.

(ii) If (0 : I)A is finitely generated, then I � p for all p ∈Att(A) \Max(R).

Proof

(i) Suppose that Att(A) \Max(R) = {p1, . . . ,pn}. Let A=A1 + · · ·+An +B1 +

· · ·+Bt be a minimal secondary representation of A, where Ai is pi-secondary

and Bj is mi-secondary for all i= 1, . . . , n and all j = 1, . . . , t (with mj ∈Max(R)

for all j = 1, . . . , t). Set B = B1 + · · · + Bt. Since x /∈ pi for all i = 1, . . . , n, we

have xAi =Ai for all i= 1, . . . , n. It follows that xA=A1 + · · ·+An + xB. Thus

A/xA∼=B/(B∩xA). Hence Att(A/xA)⊆Att(B) = {m1, . . . ,mt} ⊆Max(R). Fol-

lowing [24], the set of minimal prime ideals of annR(A/xA) is just the set of

minimal elements of AttR(A/xA). Hence dim(R/ann(A/xA)) = 0. Then we get

by [11, Proposition 2.4] that �(A/xA)<∞ as required.

(ii) We first claim that
√

ann(0 :A I) =
√

ann(0 :A In) for all n≥ 2. Consider

n = 2, it is clear that
√

ann(0 :A I) ⊇
√

ann(0 :A I2). Conversely, for any a ∈
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√
ann(0 :A I) there is an integer t > 0 such that at(0 :A I) = 0. We now prove that

a2t(0 :A I2) = 0 (and therefore a ∈
√

ann(0 :A I2)). Indeed, for any y ∈ (0 :A I2),

then I2y = 0. So that Iy ⊆ (0 :A I), thus at(Iy) = 0. Hence aty ∈ (0 :A I), and thus

at(aty) = 0. Therefore a2ty = 0. We now assume that n > 2 and the claim is true

for n− 1. Let a ∈
√
ann(0 :A I), then by induction assumption a ∈

√
(0 :A In−1).

Thus at(0 :A In−1) = 0 for some t > 0. For any y ∈ (0 :A In), then In−1Iy =

Iny = 0. Hence Iy ⊆ (0 :A In−1), so that I(aty) = at(Iy) = 0. It implies that

aty ∈ (0 :A I). On the other hand, since a ∈
√
ann(0 :A I), so does al(0 :A I) = 0

for some l > 0. Therefore at+ly = 0, and it yields that a ∈
√

(0 :A In). So we get

the claim. Finally for any p ∈ Att(A) \Max(R) we obtain that I � p. Indeed,

assume that I ⊆ p for some p ∈Att(A) \Max(R). Then there exists a submodule

U of A such that U is p-secondary. Thus there is an integer n such that pnU = 0.

Hence, I ⊆ p, so that InU = 0. Therefore U = (0 :U In) ⊆ (0 :A In). Hence by

combining �(0 :A I) <∞ with the above claim we get that (0 :A In) is of finite

length. It implies that �(U)<∞, so p ∈Max(R); this is a contradiction. �

LEMMA 4.2

Let t be a nonnegative integer. Then

(i) Ht
I(M,N) is I-cofinite if and only if Ht

I(M,N) is IM -cofinite, where

IM = annR(M/IM).

(ii) Hom(R/I,Ht
I(M,N)) is finitely generated if and only if so is Hom(R/IM ,

Ht
I(M,N)).

Proof

Set K =Ht
I(M,N). Note that Supp(K)⊆ Supp(R/IM )⊆ Supp(R/I).

(i) If K is I-cofinite, since I ⊆ IM , then we get that K is IM -cofinite by

[12, Proposition 1]. Conversely, assume that K is IM -cofinite. Thus, as
√
IM =√

I + ann(M), K is (I +ann(M))-cofinite by [12, Proposition 1]. Let x1, . . . , xt,

y1, . . . , ys be generators of I + ann(M) such that I = (x1, . . . , xt) and ann(M) =

(y1, . . . , ys). Then Koszul cohomology modules Hj(x, y1, . . . , ys;K) are finitely

generated R-modules for all j by [29, Theorem 1.1]. (Here we set x= x1, . . . , xt

for short.) We now claim by descending induction on l (with 0 ≤ l ≤ s) that

Hj(x, y1, . . . , yl;K) are finitely generated R-modules for all j, where we use the

convention that Hj(x;K) =Hj(x, y1, . . . , yl;K) if l = 0. If l = s, then the claim

is clear. Suppose that l < s and Hj(x, y1, . . . , yl+1;K) are finitely generated R-

modules for all j. We first consider the case j = 0. As yl+1 ∈ ann(K), so we get

that

H0(x, y1, . . . , yl;K) ∼=
(
0 :K (x, y1, . . . , yl)R

)
∼=

(
0 :K (x, y1, . . . , yl, yl+1)R

)
∼=H0(x, y1, . . . , yl, yl+1;K).
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Thus H0(x, y1, . . . , yl;K) is a finitely generated R-module. Assume that j ≥ 1.

We consider the following exact sequences (cf. [28, Section 5]):

Hj−1(x, y1, . . . , yl, yl+1;K)→Hj(x, y1, . . . , yl;K)
yl+1−−−→Hj(x, y1, . . . , yl;K)

for all j ≥ 1. Here yl+1 ∈ ann(K), so that yl+1H
j(x, y1, . . . , yl;K) = 0. Hence, the

above exact sequence implies that the sequence

Hj−1(x, y1, . . . , yl, yl+1;K)→Hj(x, y1, . . . , yl;K)→ 0

is exact for all j ≥ 1. From this we get by induction assumption that Hj(x, y1, . . . ,

yl;K) are finitely generated R-modules for all j ≥ 1. Thus the claim is proved.

In particular, Hj(x;K) are finitely generated R-modules for all j. Therefore, we

get by [29, Theorem 1.1] again that K is I-cofinite.

(ii) We note that Hom(R/I + ann(M),K) ∼= Hom(R/I,K), as ann(M) ⊆
ann(K). Hence, since

√
I + ann(M) =

√
IM , the result follows by [12, Proposi-

tion 1]. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2

By Lemma 4.2, we need only to claim that Hj
I (M,N) is IM -cofinite for all j < t

and Hom(R/IM ,Ht
I(M,N)) is finitely generated, provided dimSupp(Hj

I (M,

N))≤ 1 for all j < t (where t is a given integer).

We prove the claim by induction on t≥ 0. The case of t= 0 is trivial. If t= 1,

then it is clear that H0
I (M,N) is IM -cofinite; moreover we get by Lemma 2.2 that

Hom(R/IM ,H1
I (M,N)) is finitely generated. Assume that t > 1, and the result

holds true for the case t− 1. From the short exact sequence 0→ ΓIM (N)→N →
N → 0, we get the long exact sequence

ExtjR
(
M,ΓIM (N)

) fj−→Hj
I (M,N)

gj−→Hj
I (M,N)

hj−→ Extj+1
R

(
M,ΓIM (N)

)
,

where N =N/ΓIM (N). For each j ≥ 0 we split the above exact sequence into the

following two exact sequences:

0→ Imfj →Hj
I (M,N)→ Imgj → 0 and

0→ Imgj →Hj
I (M,N)→ Imhj → 0.

Note that Imfj and Imhj are finitely generated for all j ≥ 0. Then, for each

j < t, we obtain that Hj
I (M,N) is IM -cofinite if and only if so is Hj

I (M,N). On

the other hand, we get by Lemma 2.4 that dimSupp(Hj
I (M,N))≤ 1 for all j < t.

Therefore, in order to prove the theorem for the case of t > 1, we may assume

that ΓIM (N) = 0. Hence IM �
⋃

p∈AssR(N) p. Set

X =

t−1⋃
j=0

Supp
(
Hj

I (M,N)
)

and S =
{
p ∈X

∣∣ dim(R/p) = 1
}
.

Then S ⊆
⋃t−1

j=0Ass(Hj
I (M,N)). Note that Hj

I (M,N) is IM -cofinite for all j < t−
1 and Hom(R/IM ,Ht−1

I (M,N)) is finitely generated by the inductive hypothesis.
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It implies that
⋃t−1

j=0Ass(Hj
I (M,N)) is a finite set, and so S is a finite set. Assume

that S = {p1,p2, . . . ,pn}. Then it is clear that

SuppRpk

(
Hj

IRpk
(Mpk

,Npk
)
)
⊆Max(Rpk

)

for all j < t and all k = 1, . . . , n. From this, we get by Lemma 2.5 that

Hj
IRpk

(Mpk
,Npk

) is Artinian for all j < t and all k = 1, . . . , n. Note that V (IM )⊆
V (I). Hence, it implies by Lemma 2.2 and [21, Lemma 1] that Hom(Rpk

/(IM )Rpk
,

Hj
IRpk

(Mpk
,Npk

)) is finitely generated for all j < t and all k = 1, . . . , n. Therefore

it yields by Lemma 4.1(ii) that

V
(
(IM )Rpk

)
∩AttRpk

(
Hj

IRpk
(Mpk

,Npk
)
)
⊆Max(Rpk

)

for all j < t and all k = 1, . . . , n. Let

T =
t−1⋃
j=0

n⋃
k=1

{
q ∈ SpecR

∣∣ qRpk
∈AttRpk

(
Hj

IRpk
(Mpk

,Npk
)
)}

.

Then we have T ∩ V (IM )⊆ S. We now choose an element x ∈ IM such that

x /∈
( ⋃
p∈T\V (IM )

p

)
∪

( ⋃
p∈AssR(N)

p

)
.

Thus, we have the short exact sequence 0→ N
x−→ N → N/xN → 0. It implies

the following exact sequence:

Hj
I (M,N)

x−→Hj
I (M,N)→Hj

I (M,N/xN)→Hj+1
I (M,N)

for all j ≥ 0. Thus, we have an exact sequence

(1) 0→Hj
I (M,N)/xHj

I (M,N)
αj−→Hj

I (M,N/xN)
βj−→ (0 : x)Hj+1

I (M,N) → 0

for all j ≥ 0. Note that dimSupp(Hj
I (M,N/xN))≤ 1 for all j < t−1 by the above

exact sequence and by the hypothesis. So that, we get by the induction assump-

tion that H0
I (M,N/xN),H1

I (M,N/xN), . . . ,Ht−2
I (M,N/xN) are IM -cofinite

and Hom(R/IM ,Ht−1
I (M,N/xN)) is finitely generated. Moreover, also by the

induction assumption, we have that H0
I (M,N),H1

I (M,N), . . . ,Ht−2
I (M,N) are

IM -cofinite and Hom(R/IM ,Ht−1
I (M,N)) is finitely generated. For each j < t,

we set Lj =Hj
I (M,N)/xHj

I (M,N). By the choice of x and by Lemma 4.1, we

obtain that (Lj)pk
has finite length for all j < t and all k = 1, . . . , n. From this

by the Noetherianness of (Lj)pk
, there exists a finitely generated submodule

Ljk of Lj such that (Lj)pk
= (Ljk)pk

for any j < t and any k = 1, . . . , n. Let

L′
j = Lj1 + Lj2 + · · · + Ljn. Then L′

j is a finitely generated submodule of Lj

satisfying the following inclusion:

Supp(Lj/L
′
j)⊆X \ {p1,p2, . . . ,pn} ⊆Max(R)

for all j < t. For each j < t, we set Nj =Hj
I (M,N/xN) and N ′

j = αj(L
′
j). Then

N ′
j is a finitely generated submodule of Nj and the sequence

(2) 0→ Lj/L
′
j

α∗
j−−→Nj/N

′
j

β∗
j−→ (0 : x)Hj+1

I (M,N) → 0
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is exact. We now prove that Lj is minimax for all j < t. Look at the exact

sequence

Hom(R/IM ,Nj)→Hom(R/IM ,Nj/N
′
j)→ Ext1R(R/IM ,N ′

j).

For any j < t, since N ′
j is finitely generated and Hom(R/IM ,Nj) is finitely

generated, Hom(R/IM ,Nj/N
′
j) is finitely generated. Hence we obtain by the

sequence (2) that Hom(R/IM ,Lj/L
′
j) is finitely generated for all j < t. While

Supp(Lj/L
′
j) ⊆Max(R) and Lj/L

′
j is IM -torsion, so Lj/L

′
j is Artinian by [27,

Theorem 1.3] for all j < t. Thus Lj is minimax for all j < t. Consider again the

exact sequence (1), that is, the following sequence:

(1′) 0→ Lj
αj−→Nj

βj−→ (0 : x)Hj+1
I (M,N) → 0.

As Hom(R/IM ,Nj) is finitely generated for all j < t, so is Hom(R/IM ,Lj) for

all j < t. From this, we obtain by [30, Proposition 4.3] that Lj is IM -cofinite for

all j < t. Keep in mind that Nj is IM -cofinite for all j < t− 1. Thus, from the

sequence (1′), we have that (0 : x)Hj
I (M,N) is IM -cofinite for all j < t. In partic-

ular, (0 : x)Ht−1
I (M,N) and Ht−1

I (M,N)/xHt−1
I (M,N) = Lt−1 are IM -cofinite. It

implies that Ht−1
I (M,N) is IM -cofinite by Lemma 3.1. Thus Hj

I (M,N) is IM -

cofinite for all j < t. On the other hand, by the sequence (1′) when j = t− 1, we

have the following exact sequence:

Hom(R/IM ,Nt−1)→Hom
(
R/IM , (0 : x)Ht

I(M,N)

)
→ Ext1R(R/IM ,Lt−1).

Thus, since Hom(R/IM ,Nt−1) is finitely generated and Lt−1 is IM -cofinite, so it

yields that Hom(R/IM ,Ht
I(M,N)) = Hom(R/IM , (0 : x)Ht

I(M,N)) is finitely gen-

erated. Hence the claim is proved, and the proof of Theorem 1.2 is completed. �

Note that in [14, Theorem 2.9], K. Divaani-Aazar and R. Sazeedeh showed that

if p is a prime ideal in a complete local ring (R,m) with dim(R/p) = 1, then

Hj
p(M,N) is p-cofinite for all j ≥ 0 whenever M has finite projective dimension.

After that in [23, Corollary 3], K. I. Kawasaki proved that if (R,m) is a local

ring and I an ideal of R with dim(R/I) = 1 then, Hj
I (M,N) is I-cofinite for all

j ≥ 0 provided that M has finite projective dimension. Here, as an immediate

consequence of Theorem 1.2, we get the following corollary, which is better than

the above results.

COROLLARY 4.3

If dimSupp(Hj
I (M,N))≤ 1 for all j (this is the case, e.g., if dim(N/IMN)≤ 1),

then Hj
I (M,N) is I-cofinite for all j ≥ 0.

We now recall the notion of Bass numbers: let K be an R-module, let i be

an integer, and let p be a prime ideal; then the ith Bass number μi(p,K) of

K with respect to p was defined by μi(p,K) = dimk(p)(Ext
i
R(R/p,K)p). In [20],

S. Kawakami and K. I. Kawasaki proved that if M has finite projective dimension
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and dim(R/I) = 1, then μi(p,Hj
I (M,N)) is finite for all i, j ≥ 0 and all p ∈

Spec(R). The next corollary is a generalization of this result.

COROLLARY 4.4

Assume that dimSupp(Hj
I (M,N)) ≤ 1 for all j (this is the case, e.g., if

dim(N/IMN) ≤ 1). Then μi(p,Hj
I (M,N)) is finite for all i, j ≥ 0 and all p ∈

Spec(R).

Proof

If I � p, then μi(p,Hj
I (M,N)) = 0. If I ⊆ p, then Supp(R/p) ⊆ Supp(R/I), so

that ExtiR(R/p,Hj
I (M,N)) is finitely generated for all i, j by Corollary 4.3 and

[12, Proposition 1]. Therefore μi(p,Hj
I (M,N)) is finite for all i, j, as required. �

5. Proof of Theorem 1.3

Proof of Theorem 1.3

We first consider the case of dim(M) ≤ 2. By the short exact sequence 0 →
ΓI(M) → M → M → 0 where M = M/ΓI(M), we get the following exact

sequence:

Hj−1
I

(
ΓI(M),N

) fj−→Hj
I (M,N)

gj−→Hj
I (M,N)

hj−→Hj
I

(
ΓI(M),N

)
(following [18]). It implies the exact sequences

0→ Imfj →Hj
I (M,N)→ Imgj → 0

and

0→ Imgj →Hj
I (M,N)→ Imhj → 0.

Since ΓI(M) = (0 : Ik)M for some integer k, so that

Hj
I

(
ΓI(M),N

)
=Hj

Ik

(
(0 : Ik)M ,N

)
=ExtjR

(
ΓI(M),N

)
for all j by Lemma 2.1. Thus Imfj and Imhj are finitely generated for all j.

So by the above exact sequences we obtain that Hj
I (M,N) is I-cofinite if and

only if so is Hj
I (M,N). Therefore we may assume that ΓI(M) = 0. Then there

exists x ∈ I such that x is an M -regular element. From the short exact sequence

0→M
x−→M →M/xM → 0 we get the following exact sequence:

Hj
I (M/xM,N)→ (0 : x)Hj

I (M,N) → 0

since dim(M/xM)≤ 1, so that dimSupp((0 : x)Hj
I (M,N))≤ 1. Note thatHj

I (M,N)

is I-torsion and x ∈ I . Thus

dimSupp
(
Hj

I (M,N)
)
= dimSupp

(
(0 : x)Hj

I (M,N)

)
≤ 1

for all j. From this we obtain by Corollary 4.3 that Hj
I (M,N) is I-cofinite for

all j.
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For the rest of this proof, we consider the case of dim(N)≤ 2. By the short

exact sequence 0→ ΓI(N)→N →N → 0 where N =N/ΓI(N), we get the fol-

lowing exact sequence:

ExtjR
(
M,ΓI(N)

) uj−→Hj
I (M,N)

vj−→Hj
I (M,N)

wj−−→ Extj+1
R

(
M,ΓI(N)

)
.

It implies the exact sequences

0→ Imuj →Hj
I (M,N)→ Imvj → 0

and

0→ Imvj →Hj
I (M,N)→ Imwj → 0.

Thus Imuj and Imwj are finitely generated for all j. So by the above exact

sequences we obtain that Hj
I (M,N) is I-cofinite if and only if so is Hj

I (M,N).

Hence we may assume that ΓI(N) = 0. So we can take y ∈ I such that y is an

N -regular element. From the exact sequence 0→N
y−→N →N/yN → 0 we have

an exact sequence as follows:

Hj
I (M,N/yN)→ (0 : y)Hj+1

I (M,N) → 0

for all j. So that dimSupp(Hj
I (M,N)) = dimSupp((0 : y)Hj

I (M,N)) ≤ 1 for all

j ≥ 1. Note that H0
I (M,N) = Hom(M,ΓI(N)) = Hom(M,0) = 0. Thus

dimSupp(Hj
I (M,N)) ≤ 1 for all j. From this we get by Corollary 4.3 that

Hj
I (M,N) is I-cofinite for all j, and this finishes the proof of Theorem 1.3. �

As an immediate consequence of Theorem 1.3 we obtain the following results.

COROLLARY 5.1

If dim(R) ≤ 2, the Hj
I (M,N) is I-cofinite for all j and all finitely generated

R-modules M , N .

COROLLARY 5.2

If dim(N)≤ 2, the Hj
I (N) is I-cofinite for all j.

We next consider further a consequence of Theorems 1.2 and 1.3 on the finiteness

of associated primes of generalized local cohomology modules. We first recall

the notion of weakly Laskerian modules which was introduced in [13]: an R-

module K is called weakly Laskerian if any quotient module of K has finitely

many associated primes. Note that all Artinian modules, all finitely generated

modules, and all modules with finite support are weakly Laskerian. Moreover,

if 0→K1 →K2 →K3 → 0 is an exact sequence, then K2 is weakly Laskerian if

and only if K1 and K3 are both weakly Laskerian. Note that if R is a Noetherian

local ring and dim(N)≤ 3 then the third author proved in [19, Theorem 1.1] that

the modules Hj
I (M,N) have only finitely many associated prime ideals for all j.

In the following, we obtain a stronger result.
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COROLLARY 5.3

Assume that (R,m) is a Noetherian local ring. If dim(M) ≤ 3 or dim(N) ≤ 3,

then ExtiR(R/I,Hj
I (M,N)) is weakly Laskerian for all i, j ≥ 0. In particular,

AssR(H
j
I (M,N)) is a finite set for all j ≥ 0.

Proof

Assume that dim(M)≤ 3. By arguments similar to those in the proof of Theo-

rem 1.3, we obtain the following exact sequences:

0→ Imfj →Hj
I (M,N)→ Imgj → 0

and

0→ Imgj →Hj
I (M,N)→ Imhj → 0,

where M =M/ΓI(M). Thus we get the following exact sequences:

· · · → ExtiR(R/I, Imfj)→ ExtiR
(
R/I,Hj

I (M,N)
)
→ ExtiR(R/I, Imgj)→ · · ·

and

· · · → ExtiR(R/I, Imgj)→ ExtiR
(
R/I,Hj

I (M,N)
)
→ ExtiR(R/I, Imhj)→ · · · .

Moreover, note that Imfj and Imhj are finitely generated for all j. It follows

that ExtiR(R/I,Hj
I (M,N)) is weakly Laskerian if and only if so is the module

ExtiR(R/I,Hj
I (M,N)). Therefore we may assume that ΓI(M) = 0. Thus we get

an exact sequence 0→M
x−→M →M/xM → 0 where x ∈ I is a regular element

of M . It implies that Hj
I (M/xM,N)→ (0 : x)Hj

I (M,N) → 0 is an exact sequence.

Hence, as dim(M/xM)≤ 2, we obtain

dimSupp
(
Hj

I (M,N)
)
≤ 2 for all j ≥ 0.

For the case dim(N) ≤ 3, by similar arguments as in the proof of Theorem 1.3

we may reduce to the hypothesis that ΓI(N) = 0. Then by the exact sequence

Hj
I (M,N/yN)→ (0 : y)Hj+1

I (M,N) → 0

with y ∈ I is an N−regular element, we get that dimSupp(Hj
I (M,N)) ≤

dimSupp(N/yN)≤ 2 for all j ≥ 0.

Therefore, for the rest of this proof, we need only to claim the weakly Laske-

rianness of ExtuR(R/I,Hv
I (M,N)) for all u, v ≥ 0 provided that

dimSupp
(
Hj

I (M,N)
)
≤ 2 for all j ≥ 0.

Note that Hj
I (M,N)⊗R R̂∼=Hj

Î
(M̂, N̂). Therefore, in view of [25, Lemma 2.1],

we can assume that R is complete with m-adic topology. We now claim the weak

Laskerianness of ExtuR(R/I,Hv
I (M,N)) by way of contradiction. For any integers

u, v, we set K = ExtuR(R/I,Hv
I (M,N)). Assume that there exists a submodule

T of K such that Ass(K/T ) is an infinite set. Then there is a countably infinite

subset {pl}l∈N of Ass(K/T ) such that pl �=m for all l ∈ N. Let S =R \
⋃

l∈N
pl.

Then S is a multiplicative closed subset of R. Since {pl}l∈N ⊆ Ass(K/T ), we

have {S−1pl}l∈N ⊆ AssS−1R(S
−1K/S−1T ). Thus AssS−1R(S

−1K/S−1T ) is an
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infinite set. On the other hand, as m� pl for all l ∈N, we get by [26, Lemma 3.2]

that m�
⋃

l∈N
pl and so that m∩ S �= ∅. It implies that dimSupp(Hj

S−1I(S
−1M,

S−1N))≤ 1 for all j ≥ 0. From this, we obtain by Corollary 4.3 that

S−1K =ExtuS−1R

(
S−1R/S−1I,Hv

S−1I(S
−1M,S−1N)

)
is finitely generated. It implies that S−1K/S−1T is finitely generated. Hence

AssS−1R(S
−1K/S−1T ) is a finite set. On the other hand, by the hypothesis of T ,

the set AssS−1R(S
−1K/S−1T ) is infinite. Hence we obtain a contradiction, and

the claim follows. The last conclusion is clear. �
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