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Abstract Let R be a commutative Noetherian ring, let I be an ideal of R, and let M, N
be two finitely generated R-modules. The aim of this paper is to investigate the
I-cofiniteness of generalized local cohomology modules H} (M,N) = h_n;n Extﬁ(M /
I™"M,N) of M and N with respect to I. We first prove that if I is a principal ideal, then
H }(M ,N) is I-cofinite for all M, N and all j. Secondly, let ¢ be a nonnegative integer
such that dim Supp(H{ (M,N)) <1forallj <t.Then H} (M, N) is I-cofinite forall j < ¢
and Hom(R/I, H}(M, N)) is finitely generated. Finally, we show that if dim(M) < 2 or
dim (V) < 2, then H}(M, N) is I-cofinite for all 5.

1. Introduction

Throughout this note the ring R is commutative Noetherian. Let N be finitely
generated R-modules, and let I be an ideal of R. In [15], A. Grothendieck con-
jectured that if I is an ideal of R and N is a finitely generated R-module, then
Homp(R/I, H}(N )) is finitely generated for all j > 0. R. Hartshorne provides
a counterexample to this conjecture in [16]. He also defined an R-module K to
be I-cofinite if Suppr(K) C V(I) and Ext{;c(R/I, K) is finitely generated for all
j >0, and he asked the following question.

QUESTION
For which rings R and ideals I are the modules H}(N) is I-cofinite for all j and
all finitely generated modules N7

Hartshorne showed that if N is a finitely generated R-module, where R is a
complete regular local ring, then HY(N) is I-cofinite in two cases:

(i) I is a principal ideal (see [16, Corollary 6.3]);
(ii) I is a prime ideal with dim(R/I)=1 (see [16, Corollary 7.7]).

K. I. Kawasaki has proved that if I is a principal ideal in a commutative Noether-
ian ring, then H }(N ) are I-cofinite for all finitely generated R-modules N and
all j >0 (see [22, Theorem 1]). D. Delfino and T. Marley [12, Theorem 1] and
K. I. Yoshida [33, Theorem 1.1] refined result (ii) to more general situation that if

Kyoto Journal of Mathematics, Vol. 55, No. 1 (2015), 169-185

DOI 10.1215/21562261-2848151, © 2015 by Kyoto University

Received August 28, 2013. Revised January 14, 2014. Accepted January 24, 2014.
2010 Mathematics Subject Classification: 13D45, 13E99, 18G60.


http://dx.doi.org/10.1215/21562261-2848151
http://www.ams.org/msc/

170 Cuong, Goto, and Hoang

N is a finitely generated module over a commutative Noetherian local ring R and
I is an ideal of R such that dim(R/I) =1, then Hﬁ(N) are I-cofinite for all j > 0.
Recently, K. Bahmanpour and R. Naghipour have extended this result to the case
of nonlocal rings; more precisely, they showed that if ¢ is a nonnegative integer
such that dim Supp(Hj (N)) <1 for all j <t, then HY(N), H}(N),..., H:"}(N)
are [-cofinite and Hom(R/I, H}(N)) is finitely generated (see [2, Theorem 2.6]).

There are some generalizations of the theory of local cohomology modules.
The following generalization of local cohomology theory is given by J. Herzog
n [17]. Let j be a nonnegative integer, and let M be a finitely generated R-
module. Then the jth generalized local cohomology module of M and N with
respect to I is defined by

Hj(M,N) =lim Extj(M/I"M,N).

These modules were studied further in many research papers such as [31], [32],
3], [18], [20], [19], [10], [8], [7], and [4]. Tt is clear that HJ(R,N) is just the
ordinary local cohomology module H7(N) (cf. [5], [6]).

The purpose of this paper is to investigate a question similar to the one
above for the theory of generalized local cohomology. Our first main result is the
following theorem.

THEOREM 1.1
If T is a principal ideal, then H}(M, N) is I-cofinite for all finitely generated
R-modules M, N and all j.

As an immediate consequence of this theorem, we obtain again a theorem of
K. I. Kawasaki [22, Theorem 1] (see Corollary 3.2). Moreover, Theorem 1.1 is an
improvement of [14, Theorem 2.8], since we do not need the hypothesis that M
has finite projective dimension as in [14]. It should be noticed that the arguments
of local cohomology that are used in the proof of K. I. Kawasaki [22] cannot
apply to proving Theorem 1.1 because, for the case of local cohomology, if I is
a principal ideal, then H} (N)=0 for all j > 1. But this does not happen in the
theory of generalized local cohomology; that is, Hf (M, N) may not vanish for
7 > 1 even if I is principal ideal. Therefore, we have to use a criterion on the
cofiniteness which was invented by L. Melkersson in [30]. Here we also give a
more elementary proof for this criterion (see Lemma 3.1). The next theorem is
our second main result in this paper.

THEOREM 1.2
Let t be a nonnegative integer such that dim Supp(H}(M, N)) <1 forall j <t.
Then H(M,N) is I-cofinite for all j <t and Hom(R/I, HX(M,N)) is finitely
generated.

This theorem is an extension for generalized local cohomology modules of a result
of K. Bahmanpour and R. Naghipour [2, Theorem 2.6]. In [2], they used a basic
property of local cohomology that H{(N)= H}(N/I';(N)) for all j > 0; then it
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is casy to reduce to the case of T'7(N) =0. But, it is not true that HJ(M,N) =
H}(M, N/Tp,,(N)) for all j > 0 in general, where Iy = anng(M/IM). Hence, we
need to establish Lemma 2.4, which says that if ¢ and k are nonnegative integers
such that dim Supp(H7}(M,N)) <k for all j <t, then so is HJ (M, N/Tr,, (N)).
Moreover, in order to prove Theorem 1.2, we also need some more auxiliary lem-
mas such as Lemmas 2.3 and 2.5 on minimax modules. Especially, by Lemma 4.2,
instead of studying the cofiniteness of H}(M ,IN), we need only to prove the
cofiniteness of these modules with respect to Ip;. As a consequence of Theo-
rem 1.2, we prove that if dim Supp(H}‘(M7 N)) <1 for all j (this is the case, e.g.,
if dim(N/Iy;N) < 1), then Hj(M,N) is I-cofinite for all j (see Corollary 4.3).
This is an improvement of [14, Theorem 2.9] and [23, Corollary 3], because our
theorem does not need the hypothesis that R is complete local, M is of finite
projective dimension, and [ is prime ideal with dim(R/I) =1. Another conse-
quence of Theorem 1.2 on the finiteness of Bass numbers is Corollary 4.4, which
is a stronger result than the main result of S. Kawakami and K. I. Kawasaki
in [20].

On the other hand, in the case of small dimension, the third author in [19,
Lemma 3.1] proved that if dim(N) <2, then any quotient of H} (M, N) has only
finitely many associated prime ideals for all finitely generated R-modules M and
all j > 0. We can now prove a stronger result in the following theorem.

THEOREM 1.3
Assume that dim(M) <2 or dim(N) <2. Then H} (M, N) is I-cofinite for all j.

As an immediate consequence of Theorem 1.3, we get a result on the cofiniteness
of local cohomology modules (see Corollary 5.2). Moreover, by application of
Theorems 1.2 and 1.3, we obtain a finiteness result on the set of associated prime
ideals of Exty(R/I, H}(M,N)) for all i,j >0 when (R,m) is a Noetherian local
ring and dim(M) < 3 or dim(N) <3 (Corollary 5.3).

The paper is divided into five sections. In Section 2, we prove some auxiliary
lemmas which will be used in the sequel. Sections 3, 4, and 5 are devoted to
proving three main results and their consequences.

2. Auxiliary lemmas

Let R be a commutative Noetherian ring, let I be an ideal of R, and let M,
N be finitely generated R-modules. We always denote by Ip; the annihilator
of R-module M/IM, that is, In; = anng(M/IM). We first recall the following
lemmas.

LEMMA 2.1 (CF. [9, LEMMA 2.3], [10, LEMMA 2.1])

(i) If I Cann(M) or T'y(N) = N, then H}(M,N) = Ext,(M,N) for all
J=0. _

(i) H}(M,N) is Iy -torsion.
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In [34], H. Zoschinger introduced the class of minimax modules. An R-module
K is said to be a minimax module, if there is a finitely generated submodule T’
of K, such that K/T is Artinian. Thus the class of minimax modules includes
all finitely generated and all Artinian modules.

LEMMA 2.2 (CF. [4, THEOREM 3.6], [1, THEOREM 2.3])

Let t be a nonnegative integer such that Hf(M, N) is minimaz for all j <t. Then
Hompg(R/I,HY(M,N)) is finitely generated.

We next prove some auxiliary lemmas which will be used in the sequel.

LEMMA 2.3

Let t be a nonnegative integer such that H}(M7 N) is minimax for all j <t. Then
H}(M,N) are I-cofinite for all j <t.

Proof

We proceed by induction on j. It is clear that H?(M, N) is I-cofinite. Assume that
7 >0 and that the result holds true for smaller values than j. Thus we obtain that
HY(M,N),..., H}'_l(M7 N) are I-cofinite minimax by the inductive hypothesis
and by the hypothesis. It follows by Lemma 2.2 that Hom(R/I,H{(M, N)) is
finitely generated, so that Hj(M,N) is I-cofinite by [30, Proposition 4.3] as
required. 0

LEMMA 2.4
Let t and k _be nonnegative integers. If dim Supp(H} (M,N)) <k forall j<t,
then so is H{(M,N/T'1,,(N)).

Proof
From the short exact sequence 0 —T'y,, (N) = N — N/T';,,(N) — 0, we get the
long exact sequence

-+ = Exth (M, T1,, (N)) — H}(M,N) — H}(M,N)
— Exty (M, Tr,, (N)) — -,

for all j, where N = N/T,,(N). We assume that there exists an integer i <t
and p € Supp(Hi(M, N)) such that dim(R/p) > k and p ¢ Supp(Hj (M, N)) for
all j <. Then by the long exact sequence as above we obtain the exact sequence

- = Exty (M, T, (N)), = Hf (M, N)y = H{ (M, N),
— Exti " (M, T, (N)), = -
Note that Hj(M,N), =0 for all j < i, while Hj(M,N), =0 for all j <i, and
Hi(M,N), #0. So, by the above exact sequence, we have Exth (M, T, (N))p =0
for all j <4, and Ext'y" (M, T'r,,(N)), # 0. It implies that T'r,, (N), # 0 and

depth(ann(M),, Ty, (N)y) =i+ 1>1.
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Hence ann(M), € qR,, for all qR,, € Assg, (I'r,, (IN),). This contradicts with the
fact that Assg, (I'r,;(N)p) = Assg, (Np) NV ((Inr)p) and Iny D ann(M). O

LEMMA 2.5
Let t be a nonnegative integer such that Supp(H} (M, N)) C Max(R) for all j < t.
Then H{(M,N) is Artinian for all j <t.

Proof

We now prove the lemma by induction on ¢. If t = 1, then it is clear that H?(M, N)
is Artinian. Assume that ¢t > 2 and the lemma holds true for ¢ — 1. By the
inductive hypothesis, the R-modules H;(M7 N) are Artinian for all j <t — 1.
Therefore, by Lemma 2.2, Hom(R/I, H}fl(M, N)) is finitely generated.
Thus, since Supp(Hom(R/I, Hf_l(M, N))) € Max(R), we obtain that
Hom(R/I,H: ' (M, N)) is Artinian. On the other hand, as H: (M, N) is I-
torsion, it follows by [27, Theorem 1.3] that Hi™' (M, N) is Artinian. O

3. Proof of Theorem 1.1

We first need the following lemma which has been proved in [30, Corollary 3.4]
by L. Melkersson. We give here an another proof for this result with elementary
arguments.

LEMMA 3.1
Let K be an R-module. Suppose x € I and Supp(K) C V(I). If (0:z)kx and
K/xK are both I-cofinite, then K must be I-cofinite.

Proof
Let ¢ be a nonnegative integer. We need only to claim that Exth(R/I,K) is
finitely generated. By the commutative diagram

0= (0:gz) K5 aK =0
Tl \yx
022K > K—>K/z2K—0

we obtain the following commutative diagram of long exact sequences
O]
- = Extly (R/1,(0:x x)) — Extly(R/I, K) = Extly(R/I,2K) — - -
z® ] Nz
co o Extl YR/ K /oK) — Exthy(R/1L oK) L5 Exthy(R/IK) = -+ |

where () = Ext',(R/I,x). Note that K/xK is I-cofinite by the hypothesis;
it implies that Extly!'(R/I,K/xK) is finitely generated. Thus Ker(f;)
is finitely generated. Moreover, the triangle is commutative, so that z® ((0 :
T)exet, (r/1,K)) © Ker(fi). It follows that z®((0: T)Bxtt, (R/1,K)) 18 finitely gener-
ated. On the other hand, (0: )k is I-cofinite by the hypothesis, so we obtain
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that Ext’%(R/I,(0: x)x) is finitely generated. It implies that Ker(z(®) is finitely
generated. Therefore, by the following exact sequence,

0 — Ker(2™) N (0: 2) et (ry1,50) — (01 )t (r/1,1)

=z ((0: ) Exity (r)1,K)) — 0,

we obtain that (0: x)Ext’R(R/I,K) is finitely generated. Finally, note that for x € I,
it yields that Extl(R/I, K)=(0: T)Exet, (R/1,K) 18 finitely generated as required.
(|

We now are ready to prove Theorem 1.1.
Proof of Theorem 1.1
Assume that I = Rx is a principal ideal. From the short exact sequence
0T (M)—M-—M—0,
where M = M/T';
Ty

(M), we get by [18] the following exact sequence:
(M),N)— Hj(M,N)— Hj(M,N)— Hj(I';(M),N)
for all i. Since 'y (M) = (0 : I¥) s for some positive integer k, we get by Lemma 2.1
that
H} (01 (M), N) = Hiy (0 1), N) & Bty (I (M), N)

for all i. Hence H(I';(M), N) is finitely generated for all 4, and it follows by the
above exact sequence that Hi(M, N) is I-cofinite if and only if so is H:(M,N).
Hence we may assume that I'; (M) = 0, so that I ¢ p for all p € Ass(M). It implies
that « ¢ p for all p € Ass(M). Thus we obtain an exact sequence

0— M5 M— M/xM — 0.
From this we have the following exact sequence:
0— H; '(M,N)/zH; " (M,N) = Hj(M/xM,N) = (0: &) i (p1,5) — 0
for all i. As I = Rz, we obtain by Lemma 2.1 that
Hi{(M/xM,N) = Exty(M/zM,N)

for all i. Hence H{(M/xM, N) is finitely generated for all i. Thus by the above
exact sequence we obtain that

(0:2) miar,n) and Hi(M,N)/xH;(M,N)
are finitely generated for all i. Therefore we get by Lemma 3.1 that Hi(M,N) is
I-cofinite for all i. |

By replacing M by R in Theorem 1.1 we obtain a theorem of K. I. Kawasaki on
the cofiniteness of local cohomology modules as follows.
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COROLLARY 3.2 ([22, THEOREM 11)
If I is a principal ideal, then H}(N) is I-cofinite for all finitely generated R-
modules N and all j.

4. Proof of Theorem 1.2

Before proving Theorem 1.2, we need to recall some known facts on the theory
of secondary representation.

In [24], I. G. Macdonald has developed the theory of attached prime ideals
and secondary representation of a module, which is (in a certain sense) a dual
to the theory of associated prime ideals and primary decompositions. A nonzero
R-module K is called secondary if for each a € R multiplication by a on K is
either surjective or nilpotent. Then p = /ann(K) is a prime ideal, and K is
called p-secondary. We say that K has a secondary representation if there is a
finite number of secondary submodules K1, Ko, ..., K, such that K = K; + K5 +
---+ K,. One may assume that the prime ideals p; = y/ann(K;), i=1,2,...,n
are all distinct and, by omitting redundant summands, that the representation
is minimal. Then the set of prime ideals {p1,...,p,} does not depend on the
representation, and it is called the set of attached prime ideals of K and denoted
by Att(K). Note that if A is an Artinian R-module, then A has a secondary
representation; moreover the set of minimal prime ideals of anng(A) is just the
set of minimal elements of Attr(A) (see [24]). The basic properties on the set
Att(A) of attached primes of A are referred in a paper by I. G. Macdonald [24].
If0— Ay — Ay — A3 — 0 is an exact sequence of Artinian R-modules, then

Att(As) C Att(As) C Att(Ar) U Att(As).

LEMMA 4.1
Let x be an element of R, let I be an ideal of R, and let A be an Artinian
R-module. Then the following statements are true.

(i) Ifxé¢p for all p € Att(A) \ Max(R), then £(A/zA) < co.
(ii) If (0:1)4 is finitely generated, then I Z p for all p € Att(A) \ Max(R).

Proof
(i) Suppose that Att(A) \ Max(R) = {p1,...,pn}. Let A=A1+---+ A, + B; +
-+-+ By be a minimal secondary representation of A, where A; is p;-secondary
and Bj is m;-secondary for all i=1,...,n and all j =1,...,t (with m; € Max(R)
for all j=1,...,t). Set B=By+---+ B;. Since z ¢ p; for all i =1,...,n, we
have xA; = A; for all i =1,...,n. It follows that tA=A; +---+ A, +xB. Thus
Aj/rA= B/(BNxA). Hence Att(A/zA) C Att(B) = {my,...,m;} C Max(R). Fol-
lowing [24], the set of minimal prime ideals of anng(A/zA) is just the set of
minimal elements of Attg(A/zA). Hence dim(R/ann(A/zA)) = 0. Then we get
by [11, Proposition 2.4] that ¢(A/xA) < oo as required.

(ii) We first claim that \/ann(O al)= \/ann(O :4 I™) for all n > 2. Consider
n =2, it is clear that \/ann(0:4 I) D y/ann(0:4 I2?). Conversely, for any a €
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/ann(0:4 1) there is an integer ¢ > 0 such that a’(0:4 I) = 0. We now prove that
a®'(0:4 I?) =0 (and therefore a € y/ann(0:4 I2)). Indeed, for any y € (0:4 I?),
then I?y = 0. So that Iy C (0:4 I), thus a’(Iy) = 0. Hence a'y € (0:4 I), and thus
a'(a'y) = 0. Therefore a?'y = 0. We now assume that n > 2 and the claim is true
for n —1. Let a € y/ann(0:4 I), then by induction assumption a € 1/(0:4 I"~1).
Thus af(0:4 I"" 1) =0 for some t > 0. For any y € (0:4 I™), then I" 1[Iy =
Iy =0. Hence Iy C (0:4 I™1), so that I(aly) = a’(Iy) = 0. It implies that
aly € (0:4 I). On the other hand, since a € \/ann(0:4 I), so does a'(0:4 I) =0
for some [ > 0. Therefore a’*'y =0, and it yields that a € \/(0:4 I"). So we get
the claim. Finally for any p € Att(A4) \ Max(R) we obtain that I ¢ p. Indeed,
assume that I C p for some p € Att(A) \ Max(R). Then there exists a submodule
U of A such that U is p-secondary. Thus there is an integer n such that p"U = 0.
Hence, I Cp, so that I"U = 0. Therefore U = (0:y I™) C (0:4 I™). Hence by
combining £(0:4 I) < co with the above claim we get that (0:4 I™) is of finite
length. It implies that £(U) < oo, so p € Max(R); this is a contradiction. O

LEMMA 4.2
Let t be a nonnegative integer. Then

(i) HY(M,N) is I-cofinite if and only if Ht(M,N) is Ip-cofinite, where
Ing =anng(M/IM).

(i) Hom(R/I,H!(M,N)) is finitely generated if and only if so is Hom(R/Ipy,
HY(M,N)).

Proof
Set K = HY(M, N). Note that Supp(K) C Supp(R/In) C Supp(R/I).

(i) If K is I-cofinite, since I C Iy, then we get that K is Ips-cofinite by
[12, Proposition 1]. Conversely, assume that K is Ij/-cofinite. Thus, as /Ips =
VI+ann(M), K is (I 4+ ann(M))-cofinite by [12, Proposition 1]. Let x1,..., 2,
Y1,--.,Ys be generators of I + ann(M) such that I = (z1,...,2¢) and ann(M) =
(y1,---,Ys). Then Koszul cohomology modules H7(z,y1,...,ys; K) are finitely
generated R-modules for all j by [29, Theorem 1.1]. (Here we set = x1,...,x;
for short.) We now claim by descending induction on [ (with 0 <1 < s) that
H'(z,y1,...,y;; K) are finitely generated R-modules for all j, where we use the
convention that H?(x; K) = H’(z,y1,...,y;; K) if [ =0. If [ = s, then the claim
is clear. Suppose that | < s and H’(z,y1,...,y+1; K) are finitely generated R-
modules for all j. We first consider the case j =0. As y; 41 € ann(K), so we get
that

HO(Evylaw'ayl;K) = (0 'K (g,yl,...,yl)R)
= (0 ‘K (gvyla"wylvyl%»l)R)
g}IO(£7yIa"'ayhyl-‘rl;l()-
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Thus H®(z,y1,...,y;K) is a finitely generated R-module. Assume that j > 1.
We consider the following exact sequences (cf. [28, Section 5]):

HI ™ g,y K) = H (21, K) 255 H (2,0, g K)

for all j > 1. Here ;1 € ann(K), so that y;.1 H7 (2,91, ..., y; K) = 0. Hence, the
above exact sequence implies that the sequence

H ™Yz, yn, -y K) = H (2,1, g K) — 0

is exact for all j > 1. From this we get by induction assumption that H (z,y1, ...,
yi; K) are finitely generated R-modules for all 7 > 1. Thus the claim is proved.
In particular, H7(z; K) are finitely generated R-modules for all j. Therefore, we
get by [29, Theorem 1.1] again that K is I-cofinite.

(ii) We note that Hom(R/I + ann(M) K) = Hom(R/I,K), as ann(M) C
ann(K). Hence, since /I +ann(M) = /Ty, the result follows by [12, Proposi-
tion 1]. (Il

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2

By Lemma 4.2, we need only to claim that H}(M7 N) is Ips-cofinite for all j <t
and Hom(R/Ip, HY(M,N)) is finitely generated, provided dim Supp(H? (M,
N)) <1 for all j <t (where t is a given integer).

We prove the claim by induction on ¢ > 0. The case of t =0 is trivial. If t =1,
then it is clear that HY(M, N) is I5s-cofinite; moreover we get by Lemma 2.2 that
Hom(R/In, H (M, N)) is finitely generated. Assume that ¢ > 1, and the result
holds true for the case ¢t — 1. From the short exact sequence 0 —I'y,,(N) - N —
N — 0, we get the long exact sequence

Ext} (M, Ty, (N)) s HI(M,N) Zs Hi(M,N) L, Ext)™ (M,T'7,,(N)),

where N = N/T';,,(N). For each j > 0 we split the above exact sequence into the
following two exact sequences:

0—TImf; — H}(M,N) —TImg; -0  and
0 — Img; — HJ(M,N) — Imh; — 0.
Note that Im f; and Imh; are finitely generated for all j > 0. Then, for each
j <t, we obtain that HJ(M,N) is Ip/-cofinite if and only if so is H7 (M, N). On
the other hand, we get by Lemma 2.4 that dim Supp(H7 (M, N))<1forallj<t.
Therefore, in order to prove the theorem for the case of ¢ > 1, we may assume
that I'z,, (N) =0. Hence Iy ¢ UpeASSR(N)p. Set
t—1
X =JSupp(H{(M,N)) and  S={peX|dim(R/p)=1}.
j=0
Then S C Ut : ASS(HJ (M, N)). Note that H} (M, N) is Ips-cofinite for all j < ¢—
1 and Hom(R/Ips, Hi (M, N)) is finitely generated by the inductive hypothesis.
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It implies that Ut : ASS(H] (M, N)) is a finite set, and so S is a finite set. Assume
that S = {p1,p2,. ..,pn} Then it is clear that

Suppg,, (HgRM (My,,Np,)) € Max(R,,)

for all j <t and all k= 1,...,n. From this, we get by Lemma 2.5 that
H?Rpk (My,, Ny, ) is Artinian for all j <t and all k =1,...,n. Note that V() C
V(I). Hence, it implies by Lemma 2.2 and [21, Lemma 1] that Hom(R,, /(Irr) Ry, ,
H}Rpk (My,, Ny,)) is finitely generated for all j <t and all K =1,...,n. Therefore
it yields by Lemma 4.1(ii) that

V((IM)RM) N AttRpk (H;R% (MpkaPk)) Q MaX(RPk)
forall j<tandall k=1,...,n. Let

t—1 n

T={J (J{a€eSpecR | aRy, € Attr,, (Hip, (Mp,,Np,))}.
7J=0k=1

Then we have TNV (I . We now choose an element x € I; such that

)C S
z ¢ ( p) u ( U p).
pET\V(Inm) pEAssr(N)

Thus, we have the short exact sequence 0 - N = N — N /xN — 0. It implies
the following exact sequence:

H}(M,N) % H}(M,N) — H}(M,N/zN) — H} " (M, N)
for all 7 > 0. Thus, we have an exact sequence
(1)  0— HI(M,N)/xHi(M,N) =% HI(M, N/zN) 25 (0 ) g+ (g, vy 0

for all j > 0. Note that dim Supp(H? (M, N/zN)) < 1 for all j < t—1 by the above
exact sequence and by the hypothesis. So that, we get by the induction assump-
tion that HY(M,N/xzN),H}(M,N/xN),...,H:"*(M,N/zN) are I -cofinite
and Hom(R/Iy, H: '(M,N/xN)) is finitely generated. Moreover, also by the
induction assumption, we have that HY(M,N), H}(M,N),...,Hi">(M,N) are
Ins-cofinite and Hom(R/Ips, Hi™' (M, N)) is finitely generated. For each j < t,
we set Lj = Hij(M,N)/xHj(M,N). By the choice of 2 and by Lemma 4.1, we
obtain that (Lj)p, has finite length for all j <t and all k=1,...,n. From this
by the Noetherianness of (L,)y,, there exists a finitely generated submodule
Lji of L; such that (L;)p, = (Ljk)p, for any j <t and any k=1,...,n. Let
L= Lji1+ Lja+ -+ Ljn. Then L’ is a finitely generated submodule of L;
satisfying the following inclusion:

Supp(L'/L/') g X \ {plvp%" . 7pn} g MaX(R)

for all j <t. For each j <t, we set N;j = HJ(M,N/xN) and N} =a;(L}). Then
N is a finitely generated submodule of N; and the sequence

*

- B
(2) 0—>Lj/L;-a—J>Nj/NJ/-—J>(03$)H§+1(M,N)_>O
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is exact. We now prove that L; is minimax for all j <¢. Look at the exact
sequence

Hom(R/In, N;) — Hom(R/IM,Nj/NJ{) — Ext}%(R/IM,NJ’-).

For any j <t, since N; is finitely generated and Hom(R/Ins, N;) is finitely
generated, Hom(R/Inr, Nj/N7) is finitely generated. Hence we obtain by the
sequence (2) that Hom(R/In, Lj/L%) is finitely generated for all j <¢. While
Supp(L;/L}) € Max(R) and L;/L’; is Ip-torsion, so L;/L} is Artinian by [27,
Theorem 1.3] for all j < ¢. Thus L; is minimax for all j < ¢. Consider again the
exact sequence (1), that is, the following sequence:

(1) 0 L; 2% Ny 25 (0:2) s 4y — 0.

As Hom(R/Ip, N;) is finitely generated for all j < t, so is Hom(R/Iys, L;) for
all j < t. From this, we obtain by [30, Proposition 4.3] that L; is Ips-cofinite for
all j <t. Keep in mind that N; is Ips-cofinite for all j <t — 1. Thus, from the
sequence (1’), we have that (0: :c)H}-(MyN) is Ips-cofinite for all j < ¢. In partic-
ular, (0:2) -1y yy and HY(M,N)/a2HE (M, N) = Ly, are Ip-cofinite. Tt
implies that Hi ' (M, N) is Ip/-cofinite by Lemma 3.1. Thus H}(M, N) is Ipy-
cofinite for all j < ¢. On the other hand, by the sequence (1) when j =t —1, we
have the following exact sequence:

Hom(R/Ins, Ny—1) = Hom(R/Ins, (0 @) e ar,vy) — Exti(R/Iag, Li—1).

Thus, since Hom(R/Ips, Ni—1) is finitely generated and L;_; is Ips-cofinite, so it
yields that Hom(R/Inr, Hj(M,N)) = Hom(R/Inr, (0: ) gt (ar,ny) s finitely gen-
erated. Hence the claim is proved, and the proof of Theorem 1.2 is completed. [

Note that in [14, Theorem 2.9], K. Divaani-Aazar and R. Sazeedeh showed that
if p is a prime ideal in a complete local ring (R,m) with dim(R/p) = 1, then
H g (M, N) is p-cofinite for all j >0 whenever M has finite projective dimension.
After that in [23, Corollary 3], K. I. Kawasaki proved that if (R,m) is a local
ring and I an ideal of R with dim(R/I) =1 then, H}(M,N) is I-cofinite for all
j >0 provided that M has finite projective dimension. Here, as an immediate
consequence of Theorem 1.2, we get the following corollary, which is better than
the above results.

COROLLARY 4.3
IfdimSppp(H}(M, N)) <1 forall j (this is the case, e.g., if dim(N/IyyN) <1),
then H{(M,N) is I-cofinite for all j > 0.

We now recall the notion of Bass numbers: let K be an R-module, let ¢ be
an integer, and let p be a prime ideal; then the ith Bass number pi(p,K) of
K with respect to p was defined by pi(p, K) = dimy, ) (Ext(R/p, K),). In [20],
S. Kawakami and K. I. Kawasaki proved that if M has finite projective dimension
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and dim(R/I) = 1, then u’(p, HJ(M,N)) is finite for all 4,5 >0 and all p €
Spec(R). The next corollary is a generalization of this result.

COROLLARY 4.4

Assume that dimSupp(HJ(M,N)) < 1 for all j (this is the case, e.g., if
dim(N/IyN) <1). Then ui(p,H}(M,N)) is finite for all i,7 >0 and all p €
Spec(R).

Proof

If I ¢ p, then ui(p, H)(M,N))=0. If I Cp, then Supp(R/p) C Supp(R/I), so
that Exth(R/p, H} (M, N)) is finitely generated for all i, j by Corollary 4.3 and
[12, Proposition 1]. Therefore u'(p, H7 (M, N)) is finite for all 7, j, as required. [

5. Proof of Theorem 1.3

Proof of Theorem 1.3
We first consider the case of dim(M) < 2. By the short exact sequence 0 —
/(M) — M — M — 0 where M = M/T (M), we get the following exact
sequence:
TN (M), N) L 16, N) 2 5 (M, N) 225 57(0, (M), N)

(following [18]). It implies the exact sequences

0— Im f; — H}(M,N) —Tmg; — 0
and

0—TImg; — H}(M,N) — Imh; — 0.
Since 'y (M) = (0: I*); for some integer k, so that

H}(Cr(M),N) =HJ,((0: %), N) = Ext} (T'1(M), N)

for all j by Lemma 2.1. Thus Im f; and Imh; are finitely generated for all j.
So by the above exact sequences we obtain that Hi(M,N) is I-cofinite if and
only if so is H}(M,N). Therefore we may assume that I';(M) = 0. Then there

exists x € I such that = is an M-regular element. From the short exact sequence
0—MZM—M /xM — 0 we get the following exact sequence:

H{(M/2M,N) = (0:2) 3 1y xy = 0
since dim(M /xzM) < 1, so that dim Supp((0 : a:)H}-(M’N)) < 1. Note that H} (M, N)
is I-torsion and x € I. Thus

dimSupp(H}(M, N)) :dimSupp((O : :r)H_If(MW)) <1

for all j. From this we obtain by Corollary 4.3 that H} (M, N) is I-cofinite for
all j.
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For the rest of this proof, we consider the case of dim(N) < 2. By the short
exact sequence 0 — I';(N) = N — N — 0 where N = N/T';(N), we get the fol-
lowing exact sequence:

Ext),(M,T1(N)) % H}(M,N) =% H}(M,N) = Ext};" (M,T[(N)).
It implies the exact sequences
0 — Imu; — H}(M,N) —Imv; =0
and
0 — Imv; — H}(M,N) = Imw; — 0.

Thus Imu; and Imw; are finitely generated for all j. So by the above exact
sequences we obtain that H7(M,N) is I-cofinite if and only if so is HJ (M, N).
Hence we may assume that I';(N) =0. So we can take y € I such that y is an
N-regular element. From the exact sequence 0 — N LN N /yN — 0 we have
an exact sequence as follows:

Hj(M,N/yN) = (0:9) g1 (g ny — 0

for all j. So that dimSupp(H}(M, N)) = dim Supp((0 : y)H;(M,N)) <1 for all
j>1. Note that H?(M,N) = Hom(M,T;(N)) = Hom(M,0) = 0. Thus
dirnSupp(H?(M7 N)) <1 for all j. From this we get by Corollary 4.3 that
HJ(M,N) is I-cofinite for all j, and this finishes the proof of Theorem 1.3. [

As an immediate consequence of Theorem 1.3 we obtain the following results.

COROLLARY 5.1
If dim(R) < 2, the H}(M, N) is I-cofinite for all j and all finitely generated
R-modules M, N.

COROLLARY 5.2
If dim(N) <2, the H}(N) is I-cofinite for all 7.

We next consider further a consequence of Theorems 1.2 and 1.3 on the finiteness
of associated primes of generalized local cohomology modules. We first recall
the notion of weakly Laskerian modules which was introduced in [13]: an R-
module K is called weakly Laskerian if any quotient module of K has finitely
many associated primes. Note that all Artinian modules, all finitely generated
modules, and all modules with finite support are weakly Laskerian. Moreover,
if 0 » K1 — K3 — K3 — 0 is an exact sequence, then K, is weakly Laskerian if
and only if K; and K3 are both weakly Laskerian. Note that if R is a Noetherian
local ring and dim(N') < 3 then the third author proved in [19, Theorem 1.1] that
the modules H f (M, N) have only finitely many associated prime ideals for all j.
In the following, we obtain a stronger result.
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COROLLARY 5.3
Assume that (R,m) is a Noetherian local ring. If dim(M) <3 or dim(N) <3,

then Exthy(R/I,H}(M,N)) is weakly Laskerian for all i,j > 0. In particular,
Assp(HY(M,N)) is a finite set for all j > 0.

Proof
Assume that dim(M) < 3. By arguments similar to those in the proof of Theo-
rem 1.3, we obtain the following exact sequences:

0 Tm f; — H}(M,N) —Tmg; —0
and
0—TImg; — H}(M,N) —Imh; — 0,
where M = M /T';(M). Thus we get the following exact sequences:
- = Exth(R/I,Tm f;) — Exty (R/I, H{ (M, N)) — Ext%(R/I,Tm g;) — - -
and
- = Exth(R/I,Tmg;) — Extly (R/I, H (M,N)) — Exty(R/I,Tmhj) — - .

Moreover, note that Im f; and Imh; are finitely generated for all j. It follows
that Exth(R/I, H}(M, N)) is weakly Laskerian if and only if so is the module
Ext’(R/I, H)(M,N)). Therefore we may assume that T';(M)=0. Thus we get
an exact sequence 0 — M = M — M /xM — 0 where x € I is a regular element
of M. It implies that H} (M/zM,N)—(0: x)H;(MyN) — 0 is an exact sequence.
Hence, as dim(M/xzM) < 2, we obtain

dimSupp(H}(M,N)) <2 forall j>0.

For the case dim(N) < 3, by similar arguments as in the proof of Theorem 1.3
we may reduce to the hypothesis that T';(IN) = 0. Then by the exact sequence

H{(M,N/yN) — O:9) i+ (arny =0

with y € I is an N-—regular element, we get that dim Supp(H{(]\J7 N)) <
dim Supp(N/yN) <2 for all j >0.

Therefore, for the rest of this proof, we need only to claim the weakly Laske-
rianness of Extw(R/I, Hy (M, N)) for all u,v > 0 provided that

dim Supp(Hj (M,N)) <2 for all j > 0.

Note that Hf(M7 N)®r R~ H%(J\//j, J/\f) Therefore, in view of [25, Lemma 2.1],
we can assume that R is complete with m-adic topology. We now claim the weak
Laskerianness of Exty(R/I, H} (M, N)) by way of contradiction. For any integers
u, v, we set K =Extp(R/I,H}(M,N)). Assume that there exists a submodule
T of K such that Ass(K/T) is an infinite set. Then there is a countably infinite
subset {p;}ien of Ass(K/T) such that p; #m for all I € N. Let S = R\ [,y b1
Then S is a multiplicative closed subset of R. Since {p;};en C Ass(K/T), we
have {S™1p;}ien € Assg-1xr(ST1K/S™IT). Thus Assg-1z(S71K/S™IT) is an
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infinite set. On the other hand, as m ¢ p; for all I € N, we get by [26, Lemma 3.2]
that m & (J,c bi and so that m NS # (). It implies that dim Supp(H%_, (S~ M,
S7IN)) <1 for all j > 0. From this, we obtain by Corollary 4.3 that

ST'K =Exté 1z (S™'R/ST L HY (ST M,S7'N))

is finitely generated. It implies that S~'K/S~IT is finitely generated. Hence
Assg-1r(STIK/S™IT) is a finite set. On the other hand, by the hypothesis of T,
the set Assg-15(S™1K/S™IT) is infinite. Hence we obtain a contradiction, and

the claim follows. The last conclusion is clear. O
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