
Surfaces of general type with K2 = 2χ− 1

Caryn Werner

Abstract We classify minimal algebraic surfaces of general type having K2 = 2χ − 1

and χ≥ 7. Such surfaces are regular with canonical map of degree one or two. If pg ≥ 13,

then the surface is a genus-two fibration; otherwise we use the canonical map to describe

these surfaces as birational either to the canonical image or to a double cover of a rational

surface.

1. Introduction

By Noether’s inequality, minimal surfaces of general type satisfy K2 ≥ 2χ− 6.

Horikawa (see [6]–[9]) classified surfaces with 2χ−6≤K2 ≤ 2χ−4; surfaces with

K2 = 2χ− 3 have been studied in [11] while the case K2 = 2χ− 2 is classified

in [12].

In this note we consider the case K2 = 2χ − 1. Murakami (see [14], [15])

has studied such surfaces with nontrivial torsion for the case in which pg ≤ 5.

Here we will assume that pg ≥ 6; thus, our surfaces are torsion-free. Bombieri

[4, Lemma 14] showed that a surface with K2 = 2χ− 1 is regular; thus we have

K2 = 2pg + 1.

The main tool in the classification is the canonical map. The degree of the

canonical map is either one or two; using these two cases we will show the fol-

lowing classification.

THEOREM 1.1

Let S be a minimal surface of general type over C such that K2
S = 2χ− 1 and

pg ≥ 6. Then one of the following cases holds.

(a) The canonical map of S is birational, pg ≤ 8, and the canonical system

has at most one isolated base point.

(b) S is a genus-two fibration and its canonical map factors through an invo-

lution with five isolated fixed points.

(c) The canonical map of S factors through an involution with three isolated

fixed points and pg ≤ 7, and S is birational to a double cover of a weak del Pezzo

surface or a Hirzebruch surface.
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(d) The canonical map of S factors through an involution with one isolated

fixed point and S can be realized as the minimal resolution of a double cover of

a Hirzebruch surface; in this case, pg ≤ 12.

The paper is organized as follows. In Section 2 we show that the canonical map

is either birational or of degree two. In the case of a degree-two canonical map

the image is a rational surface and the canonical involution has 1, 3, or 5 isolated

fixed points; an overview of the general properties of the canonical involution

is given in Section 3. Sections 4–6 study the degree-two case according to the

number of isolated fixed points of the involution.

When the underlying surface is understood, we will write Hi(D) to denote

the ith cohomology of the line bundle associated to the divisor D, and hi(D)

for the corresponding dimension. The geometric genus is pg = h0(KS) and the

irregularity is q = h1(OS); as our surfaces are regular, q = 0 and the Euler char-

acteristic is χ= pg + 1.

We write ≡ to denote the linear equivalence of divisors and |D| for the

linear system associated to D. We will write Σn to denote the Hirzebruch surface

P(OP1 ⊕OP1(n)). We call a singularity of a curve infinitely near to include the

singularity in the proper transform of the curve after blowing up. In particular,

an infinitely near triple point is a triple point where all three tangent directions

coincide, so that after blowing up the surface at the point, the proper transform

of the curve has a triple point on the exceptional divisor.

2. The canonical map

Let S be a minimal surface of general type over C with K2
S = 2χ− 1 and pg ≥ 6.

As noted above, S is regular; thus, K2
S = 2pg + 1. Write ϕ : S → P

pg−1 for the

canonical map associated to the system |KS |. Horikawa [8, Theorem 1.1] showed

that the canonical system |KS | is not composed with a pencil; thus the image of

ϕ is a surface Σ ⊂ P
pg−1. We can bound the degree of the canonical map ϕ as

follows.

THEOREM 2.1

Let S be a regular surface with K2
S = 2pg + 1 and pg ≥ 6. Then the degree of the

canonical map is at most two.

Proof

We have that

K2
S = 2pg + 1≥ degϕdegΣ≥ degϕ(pg − 2);

thus ϕ must have degree at most three. Moreover, if the degree of ϕ is equal to

three, then we have that pg ≤ 7.

Suppose we are in this case, that is, suppose degϕ = 3 and 6 ≤ pg ≤ 7.

If pg = 6, then Σ is a degree-four surface in P5 and |KS | has a single base point;

in the case pg = 7, the system is base point free and Σ is a surface of degree
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five in P6. However, both of these cases contradict [13, Theorem 1.1]. Thus when

pg ≥ 6, the canonical map is either birational or of degree two. �

The surfaces with degree-two canonical map will be studied in the subsequent

sections. In the case where the canonical map is birational we have that K2
S ≥

3pg − 7 (see [7]). Then K2
S = 2pg +1 implies that pg ≤ 8. Thus we have the three

possibilities pg = 6,7,8 to consider.

First, when pg = 6 and K2
S = 13, K2

S = 3pg − 5. In this case, |KS | has no

fixed part and at most one base point by [12, Lemma 3.5].

If ϕ is birational and pg = 7, then K2
S = 15 and K2

S = 3pg − 6. In this case

Konno [10] has shown that |KS | is base point free.

The case in which pg = 8 and K2
S = 17, or K2

S = 3pg − 7, is described in [1],

where the system |KS | is also shown to be base point free. Thus we conclude the

first statement of Theorem 1.1: when the canonical map is birational, pg ≤ 8 and

the canonical system has at most one base point.

3. The canonical involution

We now turn to the case where the canonical map ϕ : S →Σ⊂ P
pg−1 has degree

two. Let σ denote the involution induced by ϕ, and let π : S → S/σ be the

quotient map.

The fixed locus of σ is the union of a smooth, possibly reducible, curve R

and k isolated points P1, . . . , Pk. Let Qi = π(Pi) be the image of an isolated fixed

point on the quotient surface. The k points Qi are ordinary double points on S/σ.

Let V → S/σ be the resolution of these double points, and write Ni for the

−2-curve over Qi on V . Let ε : S̃ → S be the blowup of S at the k points Pi.

Then σ induces an involution on S̃ with fixed locus equal to the union of R0, the

inverse image of R, and the k exceptional divisors Ei over the Pi’s. We have the

commutative diagram

S̃
ε−→ S

π̃ ↓ ↓ π
V −→ S/σ

The map π̃ : S̃ → V is a double cover of V branched along 2L=B+N1+ · · ·+Nk,

where π̃∗(B) = R0. By standard double cover formulae (see, e.g., [2], [5]) we

obtain the following.

LEMMA 3.1

Using the notation above, let k be the number of isolated fixed points of the

involution σ. We have the following.

(a) 2(KV +L)2 =K2
S̃
=K2

S − k.

(b) χ(OS̃) = χ(OS) = 2χ(OV ) +
1
2 (L

2 +L ·KV ).

(c) Hi(2KV +L) = 0 for i= 1,2.

(d) 2KV +B is nef and big and 2K2
S = (2KV +B)2.
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By Beauville [3], the surface V is ruled and therefore rational, since S is regular.

That the divisor 2KV +B is nef and big follows from π̃∗(2KV +B) = ε∗(2KS).

Combining the first three statements of the lemma we see that

k =K2
S − 2(KV +L)2

=K2
S + 6χ(OV )− 2χ(OS)− 2h0(2KV +L)

= 5− 2h0(2KV +L).

Thus the number of isolated fixed points of the involution σ can be k = 1, 3, or 5.

From the lemma we compute that

(1) B2 = 4k+ 4K2
V + 12pg − 18

and

(2) KV ·B = 5− k− 2pg − 2K2
V .

By the Riemann–Roch theorem and the above we have that

h0(2KV +L) =
5− k

2
.

Moreover, h0(3KV +B) = pg + (9− k)/2; thus, 3KV +B is effective.

As in [5] and [12] we see that by possibly contracting some −1-curves we

obtain a surface where the image of 3KV +B is numerically effective.

LEMMA 3.2 ([12, PROPOSITION 2.1])

There is a birational map f : V → Y from V onto a smooth rational surface Y

with canonical divisor KY such that B maps to a divisor BY on Y with 3KY +BY

being nef.

Proof

If 3KV +B is not nef, then there exists a curve E with E · (3KV +B)< 0 and

E2 < 0. Since 2KV +B is nef and big and

E · (KV + 2KV +B)< 0,

this implies that E ·KV < 0; thus, E is a −1-curve and E ·B = 2.

We next show that E does not meet the −2-curves Ni. Since 2L=B+
∑

Ni

and E ·B = 2, E ·
∑

Ni is even. For any Ni we have that (E+Ni) ·(2KV +B) = 0;

thus, (E +Ni)
2 =−3 + 2E ·Ni < 0, which implies that E ·Ni ≤ 1 for each i.

Thus E meets either two of the nodal curves or none. If E meets two of the

nodal curves, say, N1 and N2, then (2E +N1 +N2)
2 = 0 and (2E +N1 +N2) ·

(2KV +B) = 0, a contradiction. Thus E ·Ni = 0 for each i.

Let f : V → Y be the contraction of each such curve E. Since E ·B = 2 the

image BY of B has a double point at each contracted point. �

Thus the surface V is obtained from Y by blowing up double points of the

curve BY . As the nodal curves do not meet the exceptional locus, on Y the

images of these k nodal curves are still −2-curves. We will continue to write
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N1, . . . ,Nk for these curves and we have that BY +
∑

Ni is an even divisor

defining the branch locus of a double cover. Also f∗(2KY + BY ) = 2KV + B;

thus, 2KY +BY is still nef and big. In addition, the formulas (1) and (2) still

hold when we replace B and KV by BY and KY .

To classify the surfaces S with degree-two canonical map, we now consider

each of the three cases for k, the number of isolated fixed points of the canonical

involution.

4. The case k = 5

We first consider the case where the canonical involution σ has five isolated fixed

points. Then by Lemma 3.1, H0(2KY +L) = 0. This implies that the bicanonical

map of S factors through σ and is not birational. In this case S is a genus-two

fibration (see [16, Proposition 3]).

Moreover, we see that the fibration of genus-two curves on S is unique.

If |M1| and |M2| are distinct genus-two pencils, then by the index theorem

(M1 +M2)
2K2

S ≤ ((M1 +M2) ·KS)
2, which reduces to (M1 ·M2)

2K2
S ≤ 8, since

Mi ·KS = 2 and M2
1 = M2

2 = 0. As K2
S ≥ 13 this implies that M1 ·M2 = 0, a

contradiction. Thus the fibration on S is unique.

Examples of these surfaces can be constructed as double covers of Σ0 =

P
1 × P

1.

EXAMPLE 4.1

Let S be the minimal model of the double cover of P1 × P
1 branched along a

curve B of bidegree (6,2d) for d ≥ 4. Assume that B has five infinitely near

triple points and n ordinary order-four points. Then S is a surface of general

type with K2
S = 2pg + 1 where pg = 2d− 7− n. The pencil of rulings (0,1) on

P
1 × P

1 corresponds to the genus-two pencil on S.

5. The case k = 3

We will show that, when the canonical involution has three isolated fixed points,

the surface S can be realized as either a double cover of a del Pezzo or a Hirze-

bruch surface. These two cases depend on the two possible values of K2
Y .

LEMMA 5.1

Suppose the involution σ has k = 3 isolated fixed points. Then K2
Y = pg − 4 or

K2
Y = pg − 3.

Proof

When k = 3, from Lemma 3.1 we have KY · BY = 2 − 2pg − 2K2
Y and BY

2 =

12pg + 4K2
Y − 6. Since 3KY +BY is nef,

0 ≤ (2KY +L) · (3KY +BY )

= 6K2
Y + 7KY ·L+BY ·L
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= 6K2
Y + 7(1− pg −K2

Y ) + 6pg + 2K2
Y − 3

=K2
Y − pg + 4;

thus K2
Y ≥ pg − 4.

By the index theorem, K2
Y BY

2 ≤ (KY ·BY )
2 and we have that

K2
Y (12pg + 4K2

Y − 6)≤ (2− 2pg − 2K2
Y )

2,

which reduces to

K2
Y ≤ (pg − 1)2

pg + 1/2
.

This implies that K2
Y ≤ pg − 3. Thus we have two cases, K2

Y = pg − 4 or K2
Y =

pg − 3. �

We now turn to the divisor 4KY + BY , which is effective but may not be nef.

As in Lemma 3.2, by possibly contracting some curves we can map to a surface

where the image of 4KY +BY is numerically effective.

LEMMA 5.2

If 4KY + BY is not nef, then there exists a sequence of blowdowns ρ : Y → Z

such that 4KZ +BZ is nef.

Proof

By the Riemann–Roch theorem and Lemma 3.1 we have that h0(4KY +BY )> 0

when k = 3; thus 4KY +BY is effective. Suppose that 4KY +BY is not nef. Then

there exists a curve E with E · (4KY +B)< 0. Since 3KY +BY is nef, we have

that

E · (3KY +BY ) +E ·KY < 0

implies that E ·KY < 0 and E must be a −1-curve on Y . This implies E ·BY = 3.

Let N1,N2, and N3 be the −2-curves on Y corresponding to the resolution

of the nodes of S/σ. Since BY ≡ 2L −
∑3

1Ni and BY · E = 3, we have that

E ·
∑3

1Ni > 0 and odd.

For each i we have that (E + Ni) · (3KY + BY ) = 0, so that (E + Ni)
2 =

−3+2E ·Ni < 0 and E ·Ni ≤ 1. As (E+
∑3

1Ni) ·(3KY +BY ) = 0, (E+
∑3

1Ni)
2 =

−7 + 2E ·
∑3

1Ni < 0 and E ·
∑3

1Ni ≤ 3. Thus E meets either exactly one of the

Ni’s or all three. We now show that the latter cannot occur.

Suppose that E ·
∑3

1Ni = 3, and consider the divisor 2E+N1+N2. We have

that (2E+N1+N2) · (3KY +BY ) = 0 and (2E+N1+N2)
2 = 0, a contradiction,

since 3KY +BY is nef. Thus E meets exactly one of the Ni’s.

When we contract E we obtain a triple point on the image of the branch

curve BY , since E ·BY = 3. The image of the nodal curve Ni that meets E will

be a −1-curve passing through this triple point; contracting this results in an

infinitely near triple point on BZ , the image of BY . �
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Next we show that, in the case K2
Y = pg − 4, we will need to contract six such

curves E to ensure that 4KZ +BZ is nef. Suppose that ρ contracts l-curves. We

have that

KY ≡ ρ∗(KZ) +

l∑

1

Ei,

BY ≡ ρ∗(BZ)− 3

l∑

1

Ei;

thus

0≤ (2KZ +BZ) · (4KZ +BZ) = 6− l

and l≤ 6.

When K2
Y = pg − 4, we have that (4KY +B)2 =−6; thus we must contract

at least six curves to obtain a nef divisor. Therefore l = 6. We can now classify

the surfaces with K2
Y = pg − 4.

THEOREM 5.3

Let K2
Y = pg−4. Then pg ≤ 7 and S is the minimal resolution of the double cover

of a weak del Pezzo surface Z of degree pg +2 branched over a curve in |−4KZ |
with three infinitely near triple points.

Proof

Let ρ : Y → Z be the contraction of six −1-curves so that, on Z, 4KZ +BZ is

nef. As we saw in Lemma 5.2, the map ρ contracts three curves Ei, each of which

meets a corresponding Ni, so that the image of BY is the curve BZ with three

infinitely near triple points. We have that K2
Z =K2

Y + 6= pg + 2 and

(2KZ +BZ) · (4KZ +BZ) = 0.

Since 2KZ+BZ is nef and big and 4KZ+BZ is effective, we have that 2KZ+ 1
2BZ

is trivial and −KZ ≡KZ + 1
2BZ . Thus Z is a weak del Pezzo surface of degree

pg + 2 and pg ≤ 7. �

For example, we can explicitly construct such surfaces as double covers of the

plane.

EXAMPLE 5.4

Let B be a degree 12 plane curve with three infinitely near triple points and n

ordinary order-four points, with 0≤ n≤ 2. The minimal resolution of the double

cover of P2 branched along B will have pg = 7− n and K2
S = 15− 2n= 2pg + 1.

The three −2-curves correspond to the resolution of the three infinitely near

triple points. For n = 1 and 2, the pencil of lines in P
2 through an order-four

point of the branch curve corresponds to a genus-three pencil on S.
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To complete the classification for k = 3 isolated fixed points of the canonical

involution of S, we now suppose that K2
Y = pg − 3. In this case we can show that

the system |4KY +BY | gives a rational pencil.

A computation similar to that for the previous case shows that there is a

contraction ρ : Y → Z of two curves so that the divisor 4KZ + BZ is nef. By

Lemma 5.2 we can write one of these two curves as E while the other is one of

the three nodal curves, say, N1, where E is a −1-curve on Y with B · E = 3,

E ·N1 = 1, and E ·Ni = 0 for i= 2,3. Thus on Z, the image BZ of the branch

curve B has one infinitely near triple point.

By Lemma 3.1, h0(4KZ + BZ) = 2, (4KZ + BZ) · KZ = −2, and (4KZ +

BZ)
2 = 0; thus the system |4KZ + BZ | is a rational pencil. Moreover, (4KZ +

BZ) ·BZ = 8 and we see that S has a hyperelliptic pencil of genus three.

We also have h0(2KZ +L) = 1; as Ni · (2KZ +L) =−1 for each nodal curve

we can write 2KZ + L = A +N1 + N2 +N3 + E, where A is a −1-curve with

A ·B = 4, A ·N1 =A ·E = 0, and A ·N2 =A ·N3 = 1.

Let ρ1 : Z → Σn where we contract 8 −K2
Z = 9 − pg curves to obtain the

Hirzebruch surface Σn. Let S0 represent the preimage on Z of the −n-section of

Σn. Then

0≤ (2KZ +BZ) · S0 = (4KZ +BZ) · S0 − 2KZ · S0 = 5− 2n

since KZ · S0 = n− 2; thus n≤ 2.

Writing � for the preimage of the ruling on Σn and Ei for each curve con-

tracted by ρ1, we have that

KZ ≡ −2S0 + (−2− n)�+
∑

Ei,

BZ ≡ aS0 + b�−
∑

niEi,

4KZ +BZ ≡ (a− 8)S0 + (b− 8− 4n)�+
∑

(4− ni)Ei ≡ �.

Thus a = 8, b = 9 + 4n, and ni = 4 for each i. The branch curve of the double

cover can be written as BZ ≡ 8S0 + (9 + 4n)� −
∑

4Ei; the contracted curves

correspond to resolving order-four points of the branch curve.

We can choose to contract A and then N2 to obtain an infinitely near order-

four point on the image of BZ . The fiber corresponding to N3 is then tangent

at this point. As there are 8−K2
Z = 9− pg singularities of order four we have

9− pg ≥ 2; thus pg ≤ 7.

We have thus shown the following.

THEOREM 5.5

Let K2
Y = pg−3. Then pg ≤ 7 and S is the minimal resolution of the double cover

of a Hirzebruch surface Σn, n≤ 2.

In summary, examples of these surfaces can be constructed as follows.
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EXAMPLE 5.6

Let D ≡ 8S0 + (9 + 4n)� on Σn with 0 ≤ n ≤ 2. We impose one infinitely near

triple point and one infinitely near order-four point on D; moreover we place

the order-four point so that a fiber �0 is tangent to D at that point. We also

allow D to possibly have k additional order-four points. Then resolving these

singularities and taking the double cover branched along B, the union of D

and �0, we have that the minimal resolution is a surface S with pg = 7− k and

K2
S = 15− 2k = 2pg +1. Note that the pencil |4K +B| corresponds to the ruling

of Σn; as � ·B = 8 we see that this lifts to a genus-three pencil on S.

6. The case k = 1

Lastly we consider the case where the canonical involution has a single isolated

fixed point. Let N denote the nodal curve on Y corresponding to the one isolated

fixed point of σ; as before we work over Y so we may assume that 3KY +BY is

nef.

By the index theorem,K2
Y BY

2 ≤ (KY ·BY )
2 and we obtain thatK2

Y ≤ pg−4.

We have that

0≤ (2KY +L) · (3KY +B) =K2
Y − pg + 7;

thus K2
Y ≥ pg − 7. By Lemma 3.1, h0(4KY +BY ) = 8+K2

Y − pg and h0(2KY +

L) = 2. Since (2KY +L) ·N =−1, N is a fixed component of the pencil |2KY +L|
and h0(2KY +L−N) = 2 as well. As

2(2K +L−N) +N ≡ 4KY +B,

h0(2KY + L)≤ h0(4KY +B); thus 8 +K2
Y − pg ≥ 2 and K2

Y ≥ pg − 6. Thus we

have pg − 6 ≤ K2
Y ≤ pg − 4; we will show, in fact, that K2

Y = pg − 6 does not

occur. To do so, we next consider the moving part |M | of the system |2KY +L|.

LEMMA 6.1

The moving part |M | of |2KY +L| is a rational pencil.

Proof

The divisor 2KY +BY is big and nef and (2KY +L) · (2KY +BY ) = 5; thus by

the index theorem M2 = 0. We will next show that M ·KY =−2.

Since 3KY +BY is nef, we have that

0≤M · (3KY +B)≤ (2KY +L) · (3KY +B) =K2
Y − pg + 7≤ 3.

This implies that M ·KY ≤ 1. To see that M ·KY < 0, suppose not. If K2
Y > 0,

then M ·KY = 0 gives a contradiction. As we have that K2
Y ≥ pg−6, we have that

K2
Y > 0 unless pg = 6. However, pg = 6,K2

Y =KY ·M = 0 implies that M ·BY =

M ·N = 1, so that M would correspond to a rational pencil on S, a contradiction.

Thus we have that K2
Y > 0 and KY ·M =−2. The system |M | is a base point-free

rational pencil on Y . �
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We next refine the bound for K2
Y .

PROPOSITION 6.2

Suppose the involution σ has one isolated fixed point. Then K2
Y = pg−5 or K2

Y =

pg − 4.

Proof

As we have shown above, pg − 6≤K2
Y ≤ pg − 4. To complete the proof we will

show that K2
Y = pg − 6 does not occur.

Suppose that K2
Y = pg − 6. By Lemma 3.1, h0(4KY +BY ) ≥ 8 +K2

Y − pg .

Writing 2(2K+L−N)+N ≡ 4KY +B, we see that h0(2M)≤ h0(4KY +B) = 2.

However, |M | is a rational pencil; thus h0(2M)≥ 3 and we obtain a contradiction.

Thus we have two cases, K2
Y = pg − 4 or K2

Y = pg − 5. �

PROPOSITION 6.3

In the case K2
Y = pg − 4, 4KY +BY is nef and 2KY +L=M +N .

Proof

An argument similar to that following Lemma 5.2 shows that if K2
Y = pg−4, then

the effective divisor 4KY + BY is numerically effective. We write |2KY + L| =
|M |+N + F where M is the moving part of the pencil and F is the (possibly

empty) remaining fixed part. We will show that F = 0 when K2
Y = pg − 4.

As (2KY +L) · (4KY +B) = 1, M · (4KY +B) = 1 and M ·B = 9. Note that

2(2KY +L)−N = 4KY +BY ; thus 2(M + F ) +N = 4KY +BY . Since M2 = 0,

we have that 2M · F +M ·N = 1; thus M ·N = 1 and M · F = 0.

Writing (M + F )2 = (2K + L−N)2 = 0 we see that F 2 = 0; thus M · F =

F 2 = 0 and F is empty.

Therefore 2KY + L = M + N ; moreover, we have shown that the rational

pencil M on Y lifts to a hyperelliptic pencil of genus four on S. �

As Y contains the rational pencil |M |, there is a rational map ρ : Y →Σn which

contracts 8−K2
Y = 12− pg curves. Thus we have shown the following.

THEOREM 6.4

Suppose that k = 1 and K2
Y = pg − 4. Then pg ≤ 12, Y is birational to the Hirze-

bruch surface Σ2, and the rational pencil on Y lifts to a genus-four pencil on S.

Moreover, we can realize Y by considering the nodal curve N . As N ·M = 1 the

rational map ρ : Y →Σn does not contract N . Suppose N meets a −1-curve E.

As M ·E = 0, we compute E ·N = 1, E ·BY = 5, and there is a reducible fiber

A+E of the pencil |M | where A is another −1-curve with A ·E = 1, A ·BY = 4,

and A ·N = 0. Thus we can choose to contract A, which results in an order-four

point on the branch curve.
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We can choose to contract curves that do not meet N . Therefore Y maps to

Σ2 and N maps to the −2-section on the Hirzeburch surface.

Write BY = aS0+b�−
∑

niEi, where as before � is the preimage of the ruling

on Σ2 and S0 represents the −2-section, with S0 ≡N . The Ei’s correspond to

the exceptional curves contracted by ρ. Using KY = −2S0 − 4�+
∑

Ei we can

write

4KY +BY ≡ (a− 8)S0 + (b− 16)�+
∑

(ni − 4)Ei ≡ 2M +N ;

thus a= 9, b= 18, and each ni = 4. Thus S can be constructed as the minimal

model of the double cover of Σ2 branched along the union of S0 and a curve

equivalent to 9S0 + 18�, with 12− pg order-four points.

To complete the classification we turn to the case K2
Y = pg − 5.

PROPOSITION 6.5

In the case K2
Y = pg − 5, there is a rational map ρ : Y → Z contracting a −1-

curve E and the image of the nodal curve N so that 4KZ + BZ is nef and

2KY +L=M +N +E.

Proof

A similar argument as before shows that contracting two −1-curves results in

a nef divisor 4KZ + BZ . Moreover, if one of these −1-curves on Y is E, then

E ·N = 1, and if we contract E, then N results in the image BZ of the branch

curve BY having an infinitely near triple point.

As N ·L=−1 and E ·(2KY +L) = 0, we can write 2KY +L=M+N+E+F ,

where F is the remaining fixed part of the system. We will show that F is empty.

As (2KY +L−N −E) · (4KY +B) = 0, M · (4KY +B) = 0 and M ·B = 8.

As before, 2(2KY +L)−N = 4KY +BY ; thus, 2(M +E+F )+N = 4KY +BY .

Since M2 = 0, we have that 2M · E + 2M · F + M · N = 0; thus M · N = 0,

M ·E = 0, and M · F = 0.

Writing (M +F )2 = (2K+L−N −E)2 = 0 we see that F 2 = 0; thus M ·F =

F 2 = 0 and F is empty.

Therefore 2KY + L =M + E +N and the rational pencil |M | corresponds
to a hyperelliptic genus-three pencil on S. �

THEOREM 6.6

In the case k = 1 and K2
Y = pg − 5, pg ≤ 11 and S is birational to the double

cover of a Hirzebruch surface Σn, n≤ 3.

Proof

Let ρ : Y → Σn be the contraction of E, N , and m additional curves. As we

contract 8−K2
Y = 13− pg ≥ 2 curves we have pg ≤ 11.

As before, let S0 denote the preimage of the −n-section, and let � denote

that of the ruling on Σn. We can write BY = aS0 + b�− 3N − 6E −
∑

niEi and
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KY =−2S0 + (−2− n)�+N + 2E +
∑

Ei. Then

4KY +BY ≡ (a− 8)S0+(b− 8− 4n)�+N +2E+
∑

(4−ni)Ei ≡ 2M +2E+N ;

thus a= 8, b= 10+4n, and ni = 4 for each i. The branch curve of the double cover

is a member of the system |8S0 +(10+4n)�| with one infinitely near triple point

and at most m order-four points, where m= 11− pg . The pencil M corresponds

to the ruling �; as � · (8S0+(10+4n)�) = 8 this pencil lifts to a genus-three pencil

on the double cover.

As in the proof of Theorem 5.5 we can compute

0≤ (2KZ +BZ) · S0 = (4KZ +BZ) · S0 − 2KZ · S0 = 6− 3n

since KZ · S0 = n− 2 and (4KZ +BZ) · S0 = 2; thus n≤ 3. �
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