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Fourier–Mukai transforms on surfaces, I

Kōta Yoshioka

Abstract We study perverse coherent sheaves on the resolution of rational double

points. As examples, we consider rational double points on 2-dimensional moduli spaces

of stable sheaves on K3 and elliptic surfaces. Then we show that perverse coherent

sheaves appear in the theory of Fourier–Mukai transforms. As an application, we gen-

eralize the Fourier–Mukai duality forK3 surfaces to our situation.
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0. Introduction

Let π :X → Y be a birational map such that dimπ−1(y)≤ 1, y ∈ Y . Bridgeland

[Br3] introduced the abelian category pPer(X/Y )(⊂ D(X)) of perverse coher-

ent sheaves in order to show that flops of smooth 3-folds preserve the derived

categories of coherent sheaves. By using the moduli of perverse coherent sheaves

on X , Bridgeland constructed the flop X ′ → Y of X → Y . Then the Fourier–

Mukai transform by the universal family induces an equivalence D(X)∼=D(X ′).

In [VB], Van den Bergh showed that pPer(X/Y ) is Morita equivalent to the

category CohA(Y ) of A-modules on Y and gave a different proof of Bridgeland’s

result, where A is a sheaf of (noncommutative) algebras over Y . Although the

main examples of the birational contraction are small contractions of 3-folds,

2-dimensional cases seem to be still interesting. In [NY1], [NY2], and [NY3],

Nakajima and Yoshioka studied perverse coherent sheaves for the blowup X → Y

of a smooth surface Y at a point. In this case, by analyzing wall-crossing phe-

nomena, we related the moduli of stable perverse coherent sheaves to the moduli

of usual stable sheaves. The next example is the minimal resolution of a ratio-

nal double point. Let G be a finite subgroup of SU(2) acting on C2, and set
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Y :=C2/G. Let π :X → Y be the resolution of Y . Then the relation between the

perverse coherent sheaves and the usual coherent sheaves on X was discussed by

Nakajima. Their moduli spaces are constructed as Nakajima’s quiver varieties in

[N1], and their differences are described by the wall-crossing phenomena in [N2].

Toda [T] also treated special cases. In this and a subsequent paper (see [Y7]), we

are interested in the global case. Thus we consider the minimal resolution π :X →
Y of a normal projective surface Y with rational double points as singularities.

The main example of global case comes from Fourier–Mukai transforms on

K3 and elliptic surfaces. Let (X,H) be a pair of a K3 surface X and an ample

divisor H on X . We take a locally free sheaf G on X . Replacing the usual Hilbert

polynomial χ(E(nH)) of E by χ(G∨ ⊗E(nH)), we have a notion of G-twisted

semistability and the coarse moduli space M
G

H(v), where v ∈ H∗(X,Z) is the

Mukai vector of G-twisted semistable sheaves. Since the G-twisted semistability

depends only on c1(G)/ rkG, we may write M
G

H(v) = M
w

H(v), where w is the

Mukai vector of G. As in the usual Gieseker–Maruyama semistability, it is a

refinement of the slope semistability due to Mumford and Takemoto. Assume that

M
w

H(v) contains a w-twisted stable sheaf and dimM
w

H(v) = 2. For the moduli

space M
w

H(v), we can associate a natural Q-divisor Ĥ which also appears in the

theory of Donaldson invariants. This Ĥ is nef and big and defines a morphism

whose image is contained in the differential geometric compactification (i.e., the

Uhlenbeck compactification) of the moduli of slope stable vector bundles. For

w = v, Ĥ is ample and M
v

H(v) is a normal K3 surface (see [OY, Propositions 1.3,

2.16]). Thus M
v

H(v) is a natural object if we focus on the divisor Ĥ .

If H is a general polarization, then Y ′ :=M
v

H(v) consists of v-twisted stable

sheaves and is a smooth K3 surface. Moreover, if there is a universal family E on

X × Y ′, then we have a Fourier–Mukai transform ΦE∨

X→Y ′ :D(X)→D(Y ′) (see

[Br2], [O]). Even if there is no universal family, we still have a universal family E
as a twisted sheaf and get a Fourier–Mukai transform ΦE∨

X→Y ′ :D(X)→Dα(Y ′),

where α is a representative of a torsion element [α] ∈H2(Y ′,O×
Y ′) and Dα(Y ′)

is the bounded derived category of the category of coherent α-twisted sheaves

Cohα(Y ′). By choosing a locally free twisted sheaf G on Y ′, the Morita equiv-

alence Cohα(Y ′) → CohA(Y
′) induces an equivalence D(X) → DA(Y

′), where

A=G∨ ⊗G is a sheaf of OY ′ -algebras. We would like to generalize these kinds

of equivalences to the case where Y ′ has singularities. In this case, we shall

construct a sheaf of OY ′ -algebras A and get an equivalence D(X)→DA(Y
′).

Let us briefly explain our construction of the equivalence. We take a minimal

resolution X ′ → Y ′. For a sufficiently small ξ ∈ NS(X) ⊗ Q, we set w = veξ.

Then there is a projective morphism π′ :M
w

H(v)→M
v

H(v) which gives a min-

imal resolution of Y ′. So we set X ′ :=M
w

H(v). Then we have a Fourier–Mukai

transform ΦE∨

X→X′ :D(X)→Dα(X ′). For a suitable locally free α-twisted sheaf

G, A := π′
∗(G

∨ ⊗ G) is a sheaf of OY ′ -algebras, and we have an equivalence

Dα(X ′)→DA(Y
′) via the Morita equivalence (E �→Rπ′

∗(E⊗G∨)). In this way,

we have an equivalence (see [Y7, Proposition 2.3.6])

(0.1) D(X)→Dα(X ′)→DA(Y
′).
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In our previous papers [Y1] and [Y2], we studied the relation of Gieseker–

Maruyama stability and the Fourier–Mukai transforms if Y ′ is smooth, that is,

X ′ → Y ′ is isomorphic. In these papers, we assumed that the universal family E on

X×X ′ satisfies that E|{x}×X′ is stable for all x ∈X and X is the moduli space of

stable sheaves on X ′. As in the abelian variety and its dual, these properties mean

that we can regard X ′ as the dual of X . We call these properties the Fourier–

Mukai duality [Mu1]. A nontrivial example of Fourier–Mukai duality was first

constructed by Bartocci, Bruzzo, and Hernández Ruipérez [BBH]. For a general

member (X,H) of the moduli space of polarized K3 surfaces, Mukai [Mu3], Orlov

[O] and Bridgeland [Br2] showed the Fourier–Mukai duality. Moreover, a recent

paper by Huybrechts [H] showed the Fourier–Mukai duality if M
v

H(v) consists of

slope stable vector bundles. This was achieved in his study of Bridgeland’s work

[Br4] on the stability conditions for K3 surfaces. Bridgeland’s stability condition

(A,Z) consists of an abelian subcategory A of D(X) and a stability function Z :

D(X)→C satisfying some properties. As examples, Bridgeland constructed sta-

bility conditions (Aβ ,Z(β,ω)) associated to (β,ω) ∈NS(X)Q ×Amp(X)R, where

Aβ is independent of ω and Z(β,ω)(•) = 〈eβ+
√
−1ω, v(•)〉. Bridgeland characterized

these kinds of stability conditions. Then Huybrechts realized that the Fourier–

Mukai transform induces an equivalence

(0.2) Φ
E∨[1]
X→X′ :Aβ →Aβ′ ,

where β = c1(E|X×{x′})/ rkE|X×{x′} and β′ = −c1(E|{x}×X′)/ rkE|{x}×X′ (see

[H, Proposition 4.2]). Combining this equivalence with a classification of irre-

ducible objects of Aβ (in his terminology, irreducible objects mean minimal

objects; see [H, Theorem 0.2]), the Fourier–Mukai duality is easily deduced. Then

inspired by [H], we showed the stability of ΦE∨

X→X′(E(nH)) (E ∈MH(u)) for suf-

ficiently large n depending on H,v,u (see [Y5, Theorem 1.7]) if M
v

H(v) consists

of slope stable vector bundles. Actually we first gave more direct proofs of the

Fourier–Mukai duality and the equivalence (0.2) under the same conditions as

in [H]. Then by using (0.2), we got the above asymptotic result on the stability

of ΦE∨

X→X′(E(nH)). We would like to remark that results in [Y1] and [Y2] can

be easily derived by using (0.2) or its variant, although we did not state them in

[Y5] (cf. [H, Section 6]).

In this paper, we establish the Fourier–Mukai duality for X and X ′ without

any assumption on X ′, and generalize all results in [Y5] to our situation (see [Y7,

Theorem 2.5.9, Proposition 2.7.2]). In particular, if Y ′ is singular, then we show

that X is a moduli space of stable perverse coherent sheaves with respect to Ĥ .

Let (X,H) be a pair of a smooth K3 surface X and H a nef and big divisor on

X which gives a birational contraction π :X → Y to the normal K3 surface Y .

For the Fourier–Mukai duality, the roles of X and X ′ are the same. This means

that it is natural to formulate the Fourier–Mukai duality as a relation between

π :X → Y and π′ :X ′ → Y ′. Thus we also consider the Fourier–Mukai transforms

associated to the moduli spaces of perverse coherent sheaves on X .
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For an elliptic surface X → C with a section and reducible singular fibers,

the Weierstrass model Y → C is a normal surface whose singularities are ratio-

nal double points. Hence the category of perverse coherent sheaves associated to

X → Y naturally appears. For the elliptic surface X →C, there are many stable

sheaves E with E ⊗KX
∼=E. Let Y ′ be the moduli space of semistable sheaves

containing E. If Y ′ is smooth, then the universal family induces a Fourier–

Mukai transform D(X)→Dα(Y ′). In general, Y ′ is singular. For example, let

Y ′ := MH(0, f,0) be the moduli space of semistable 1-dimensional sheaves E

with c1(E) = f and χ(E) = 0, where H is an ample divisor on X . Then Y ′ is

a compactified relative Picard scheme Pic
0

X/C → C, and it is the Weierstrass

model of an elliptic surface X ′ → C. Moreover, X ′ is constructed as a moduli

space M
G

H(0, f,0) of G-twisted semistable sheaves, where G ∈K(X)Q. Then we

have an equivalence (0.1). Thus we can show similar results to those for a K3

surface. In particular, we can formulate the Fourier–Mukai duality by using per-

verse coherent sheaves and study the preservation of Gieseker semistability under

Fourier–Mukai transforms.

Let G be a finite group acting on a projective surface X . Assume that KX is

the pullback of a line bundle on Y :=X/G. Then the McKay correspondence (see

[VB]) implies that CohG(X) is equivalent to −1Per(X ′/Y ), where X ′ → Y is the

minimal resolution of Y . The equivalence is given by a Fourier–Mukai transform

associated to a moduli space of stable G-sheaves of dimension zero. If X is a K3

surface or an abelian surface, then we have many 2-dimensional moduli spaces

of stable G-sheaves. We also treat the Fourier–Mukai transform induced by the

moduli of G-sheaves.

Let us explain the content of the first half part. In Section 1, we consider an

abelian subcategory C of D(X) which is Morita equivalent to CohA(Y ), where

π :X → Y is a birational contraction from a smooth variety X and A is a sheaf

of (noncommutative) algebras over Y . We call an object of C a perverse coherent

sheaf. Since −1Per(X/Y ) is Morita equivalent to CohA(Y ) for an algebra A
(see [VB]), our definition is compatible with Bridgeland’s definition. We also

study irreducible objects and local projective generators of C. As examples, we

shall give generalizations of pPer(X/Y ), p=−1,0. We next explain families of

perverse coherent sheaves and the relative version of Morita equivalence. Then we

can use Simpson’s [S] moduli spaces of stable A-modules to construct the moduli

spaces of stable perverse coherent sheaves. Since Simpson’s stability is not good

enough for the zero-dimensionional objects, we also introduce a refinement of the

stability and construct the moduli space, which is close to King’s [K] stability.

Finally we explain how to modify our arguments in Section 1 to be applicable

to the category of twisted sheaves. This is necessary for applications of Fourier–

Mukai transforms, as we have explained in this introduction.

In Section 2, we study perverse coherent sheaves on the resolution of ratio-

nal double points. We first introduce two kind of categories Per(X/Y,b1, . . . ,bn)

and Per(X/Y,b1, . . . ,bn)
∗ associated to a sequence of line bundles on the excep-

tional curves of the resolution of rational singularities and show that they are
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the category of perverse coherent sheaves in the sense in Section 1. They are

generalizations of −1Per(X/Y ) and 0Per(X/Y ), respectively.

We next study the moduli of zero-dimensional objects on the resolution of

rational double points. We introduce the wall and the chamber structure and

study the Fourier–Mukai transforms induced by the moduli spaces. Under a suit-

able stability condition for Cx, x ∈ X , we show that the category of perverse

coherent sheaves is equivalent to −1Per(X/Y ) (cf. Proposition 2.3.27). We also

construct local projective generators under suitable conditions.

Examples of the categories of perverse coherent sheaves and the relation with

the Fourier–Mukai transforms will be treated in the second part (see [Y7]).

NOTATION
(i) For a scheme X , Coh(X) denotes the category of coherent sheaves on X

and D(X) denotes the bounded derived category of Coh(X). We denote the

Grothendieck group of X by K(X).

(ii) Let A be a sheaf of OX -algebras on a scheme X which is coherent as an

OX -module. Let CohA(X) be the category of coherent A-modules on X ,

and let DA(X) be the bounded derived category of CohA(X).

(iii) Assume that X is a smooth projective variety. Let E be an object of D(X).

Let E∨ :=RHomOX
(E,OX) denote the dual of E. We denote the rank of

E by rkE.

(iv) G-twisted semistability. Let X be a smooth projective variety, and let L

be an ample divisor on X . For G ∈K(X), rkG> 0, and a coherent sheaf E

on X , we define ai(E) by

(0.3) χ(G,E ⊗L⊗n) =
∑
i

ai(E)

(
n+ i

i

)
.

A d-dimensional coherent sheaf E is G-twisted semistable with respect to L

if

(0.4) χ(G∨ ⊗ F ⊗L⊗n)≤ ad(F )

ad(E)
χ(G∨ ⊗E ⊗L⊗n), n� 0,

for all subsheaves F of E. If E is 1-dimensional, then the condition is

(0.5) χ(G,F )≤ (c1(L), chdimX−1(F ))

(c1(L), chdimX−1(E))
χ(G,E)

for all subsheaves F of E. In particular if χ(G,E) = 0, then the condition is

(0.6) χ(G,F )≤ 0 for all subsheaves F of E.

Thus the condition does not depend on the choice of L. If G=OX , then G-

twisted semistability is the usual semistability of Gieseker, Maruyama, and

Simpson.

(v) Integral functor. For two schemes X , Y and an object E ∈ D(X × Y ),

ΦE
X→Y :D(X)→D(Y ) is the integral functor

(0.7) ΦE
X→Y (E) :=RpY ∗

(
E

L
⊗ p∗X(E)

)
, E ∈D(X),
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where pX :X × Y →X and pY :X × Y → Y are projections. If ΦE
X→Y is an

equivalence, it is said to be the Fourier–Mukai transform.

(vi) D(X)op denotes the opposite category of D(X). We have a functor

DX :D(X)→D(X)op,

E �→ E∨.

(vii) Assume that X is a smooth projective surface.

(a) We set Hev(X,Z) :=
⊕2

i=0H
2i(X,Z). In order to describe the element

x of Hev(X,Z), we use two kinds of expressions: x = (x0, x1, x2) = x0 +

x1 + x2�X , where x0 ∈ Z, x1 ∈ H2(X,Z), x2 ∈ Z, and
∫
X
�X = 1. For x =

(x0, x1, x2), we set rkx := x0 and c1(x) = x1.

(b) We define a homomorphism

γ :K(X)→ Z⊕NS(X)⊕Z,
(0.8)

E �→
(
rkE,c1(E), χ(E)

)
and set K(X)top :=K(X)/kerγ. We denote E mod kerγ by τ(E). K(X)top
has a bilinear form χ( , ).

(c) Mukai lattice [Mu2]. We define a lattice structure 〈 , 〉 on Hev(X,Z) by

〈x, y〉 := −
∫
X

x∨ ∪ y

(0.9)
= (x1, y1)− (x0y2 + x2y0),

where x= (x0, x1, x2) (resp., y = (y0, y1, y2)) and x∨ = (x0,−x1, x2). It is now

called the Mukai lattice. The Mukai lattice has a weight 2 Hodge structure

such that the (p, q)-part is
⊕

iH
p+i,q+i(X). We set

Hev(X,Z)alg =H1,1
(
Hev(X,C)

)
∩Hev(X,Z)

(0.10)
∼= Z⊕NS(X)⊕Z.

Let E be an object of D(X). If X is a K3 surface or rkE = 0, we define the

Mukai vector of E as

(0.11) v(E) := rk(E) + c1(E) +
(
χ(E)− rk(E)

)
�X ∈Hev(X,Z).

Then for E,F ∈D(X) such that the Mukai vectors are well defined, we have

(0.12) χ(E,F ) =−
〈
v(E), v(F )

〉
.

1. Perverse coherent sheaves and their moduli spaces

1.1. Tilting and Morita equivalence
Let X be a smooth projective variety, and let π :X → Y be a birational map. Let

OY (1) be an ample line bundle on Y , and let OX(1) := π∗(OY (1)). In Sections 1.1

and 1.2, we impose the following assumption.
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ASSUMPTION 1.1.1

(1) Take dimπ−1(y)≤ 1 for all y ∈ Y , and set

(1.1) Yπ :=
{
y ∈ Y

∣∣ dimπ−1(y) = 1
}
.

(2) We have Rπ∗(OX) =OY ; that is, π∗(OX) =OY and R1π∗(OX) = 0.

More precisely, we impose Assumption 1.1.1(1) from Definition 1.1.10.

Lemma 1.1.11(2) and Proposition 1.1.13 will explain that Assumption 1.1.1(2)

is a reasonable assumption. Then we impose Assumption 1.1.1(2) after Proposi-

tion 1.1.13.

REMARK 1.1.2

Since π :X → Y is birational, π∗(OX) =OY means that Y is normal.

We are interested in the following type of abelian categories.

DEFINITION 1.1.3
(1) A subcategory C of D(X) is a category of perverse coherent sheaves if the

following conditions are satisfied.

(i) C is the heart of a bounded t-structure of D(X).

(ii) There is an object G ∈ C such that

(a) Rπ∗RHomOX
(G,E) ∈Coh(Y ) for all E ∈ C and

(b) Rπ∗RHomOX
(G,E) = 0, E ∈ C if and only if E = 0.

(2) We say G is a a local projective generator of C if it satisfies (a) and (b).

(3) A perverse coherent sheaf E is an object of C.
(4) For E ∈ D(X), pHi(E) ∈ C denotes the ith cohomology object of E with

respect to the t-structure.

By these properties, we get

(1.2) C =
{
E ∈D(X)

∣∣Rπ∗RHomOX
(G,E) ∈Coh(Y )

}
.

Indeed for E ∈D(X), (a) implies Hi(Rπ∗(RHomOX
(G, pHj(E)))) = 0 for i �= 0.

Hence the spectral sequence

Ei,j
2 =Hi

(
Rπ∗
(
RHomOX

(
G, pHj(E)

)))
(1.3)

=⇒Ei+j
∞ =Hi+j

(
Rπ∗
(
RHomOX

(G,E)
))

degenerates, and (b) implies (1.2).

REMARK 1.1.4

(1) C in Definition 1.1.3 is not determined by π, unlike in [Br4] and [VB],

and does depend on G.

(2) Our definition of a local projective generator is in the global nature of

Coh(X). So it is different from the one in [VB]. Under Assumptions 1.1.1 and



268 Kōta Yoshioka

1.1.6, we can show that G|π−1(U) is a local projective generator of a local category

(1.4)
{
E ∈D

(
π−1(U)

) ∣∣Rπ∗RHomOπ−1(U)
(G|π−1(U),E) ∈Coh(U)

}
in Corollary 1.1.18, where U is an open subset of Y . This is the link of two

notions of local projective generators.

As we shall see in Section 1.4, the existence of G in Definition 1.1.3 or the

Morita equivalence (Proposition 1.1.7 below) which follows from the existence of

G is essential for the construction of moduli spaces of stable objects. This is our

motivation to require a local projective generator G in Definition 1.1.3. Then it

is desirable to know what kind of categories G has in Definition 1.1.3. We shall

discuss this problem in Section 1.1.2.

The following is an easy consequence of the properties (a) and (b) of G. For

the sake of convenience, we give a proof.

LEMMA 1.1.5

Let G be a local projective generator of C.

(1) For E ∈ C, there is a locally free sheaf V on Y and a surjective morphism

(1.5) φ : π∗(V )⊗G→E

in C. In particular, we have a resolution

(1.6) · · · → π∗(V−1)⊗G→ π∗(V0)⊗G→E → 0

of E such that Vi, i≤ 0, are locally free sheaves on Y .

(2) Let G′ ∈ C be a local projective object of C: Rπ∗RHomOX
(G′,E) ∈

Coh(Y ) for all E ∈ C. If G is a locally free sheaf, then so is G′.

Proof

(1) By property (a) of G (see Definition 1.1.3), we can take a morphism ϕ :

V →Rπ∗RHomOX
(G,E) in D(Y ) such that V →H0(Rπ∗RHomOX

(G,E)) is

surjective in Coh(Y ). Since

Hom
(
Lπ∗(Rπ∗RHomOX

(G,E)
)
⊗G,E

)
=Hom

(
Lπ∗(Rπ∗RHomOX

(G,E)
)
,RHomOX

(G,E)
)

(1.7)

= Hom
(
Rπ∗RHomOX

(G,E),Rπ∗RHomOX
(G,E)

)
,

we have a morphism φ : π∗(V )⊗G→E such that the induced morphism

V →Rπ∗RHomOX

(
G,π∗(V )⊗G

)
→Rπ∗RHomOX

(G,E)

is ϕ. Then cokerφ ∈ C satisfies Rπ∗RHomOX
(G, cokerφ) = 0. By our assumption

on G, cokerφ= 0. Thus φ is surjective in C.
(2) We take a surjective homomorphism (1.5) for G′. Let U be an affine open

subset of Y . We note that
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Hom
(
G′

|π−1(U),kerφ|π−1(U)[1]
)

(1.8)
=H1

(
U,Rπ∗RHomOX

(G′
|π−1(U),kerφ|π−1(U))

)
= 0.

Hence

(1.9) Hom
(
G′

|π−1(U), π
∗(V )⊗G|π−1(U)

)
→Hom(G′

|π−1(U),G
′
|π−1(U))

is surjective. Therefore G′
|π−1(U) is a direct summand of π∗(V )⊗G|π−1(U). �

ASSUMPTION 1.1.6

From now on, we add the following equivalent conditions for the definition of our

category of perverse coherent sheaves C in Definition 1.1.3.

(1) There is a local projective generator which is a locally free sheaf.

(2) Every local projective generator is a locally free sheaf.

By this assumption, a local projective generator G satisfies Riπ∗(G
∨ ⊗G) = 0

for i > 0 by Definition 1.1.3(a).

PROPOSITION 1.1.7 ([VB, LEMMA 3.2, COROLLARY 3.2.8])

For a local projective generator G of C, we set A := π∗(G
∨ ⊗G). Then we have

an equivalence

C → CohA(Y ),
(1.10)

E �→Rπ∗(G
∨ ⊗E)

whose inverse is F �→ π−1(F )
L
⊗π−1(A) G. Moreover, this equivalence induces an

equivalence D(X)→DA(Y ).

For the convenience of the reader, let us briefly explain the correspondence (1.10).

For F ∈ CohA(Y ), we have a surjective morphism H0(Y,F (n)) ⊗ A(−n) → F ,

n� 0. Hence we have a resolution V • → F by locally free A-modules V i. If V i
|U

∼=
A⊕n

U on an open subset of Y , then (π−1(V i)⊗π−1(A) G)|π−1(U)
∼=G⊕n

|π−1(U). Thus

π−1(F )
L
⊗π−1(A) G is isomorphic to π−1(V •)⊗π−1(A) G. Then π−1(V •)⊗π−1(A)

G ∈ C follows from the next lemma.

LEMMA 1.1.8

(1) For a morphism V
ψ→ W of locally free A-modules on Y , we have a

morphism π−1(V ) ⊗π−1(A) G
ψ′

→ π−1(W ) ⊗π−1(A) G. Then Rπ∗(G
∨ ⊗ kerψ′) =

kerψ and Rπ∗(G
∨ ⊗ imψ′) = imψ.

(2) Let U
φ→ V

ψ→W be an exact sequence of locally free A-modules on Y .

Then π−1(U)⊗π−1(A)G
φ′

→ π−1(V )⊗π−1(A)G
ψ′

→ π−1(W )⊗π−1(A)G is exact in C.
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Proof

(1) We have exact sequences in C,

0→ imψ′ → π−1(W )⊗π−1(A) G→ cokerψ′ → 0,
(1.11)

0→ kerψ′ → π−1(V )⊗π−1(A) G→ imψ′ → 0.

Applying Rπ∗(G
∨ ⊗ •) to these sequences, we have exact sequences

0→Rπ∗(G
∨ ⊗ imψ′)→W →Rπ∗(G

∨ ⊗ cokerψ′)→ 0,
(1.12)

0→Rπ∗(G
∨ ⊗ kerψ′)→ V →Rπ∗(G

∨ ⊗ imψ′)→ 0

by Definition 1.1.3(a). Thus claim (1) holds.

(2) We have an exact sequence

0→Rπ∗(G
∨ ⊗ imφ′)

(1.13)
→Rπ∗(G

∨ ⊗ kerψ′)→Rπ∗(G
∨ ⊗ kerψ′/ imφ′)→ 0.

Hence (2) follows from (1) and Definition 1.1.3(b). �

Finally, by using Lemma 1.1.5 and the construction of π−1(F )
L
⊗π−1(A) G, the

equivalence (1.10) follows.

REMARK 1.1.9

(1) For E• ∈D(X), there is a bounded complex E•
1 such that E• ∼= E•

1 in

D(X) and Ei
1 ∈Coh(X)∩ C (see the proof of Lemma 1.3.6 below).

(2) By taking a local projective resolution π∗(V•) ⊗ G of E ∈ C in Lem-

ma 1.1.5, we have

HomD(X)

(
E,F [q]

)
∼=HomD(X)

(
π∗(V•)⊗G,F [q]

)
∼=HomD(Y )

(
V•,Rπ∗(G

∨ ⊗ F )[q]
)

(1.14)
∼=HomD(A)

(
V• ⊗A,Rπ∗(G

∨ ⊗ F )[q]
)

∼=HomD(A)

(
Rπ∗
(
G∨ ⊗

(
π∗(V•)⊗G

))
,Rπ∗(G

∨ ⊗ F )[q]
)

∼=HomD(A)

(
Rπ∗(G

∨ ⊗E),Rπ∗(G
∨ ⊗ F )[q]

)
,

where we put suffixes D(X),D(Y ),D(A) for Hom in order to clarify the cate-

gories. In particular, we have an isomorphism of the space of morphisms

(1.15) Hom(E,F )∼=HomA
(
Rπ∗(G

∨ ⊗E),Rπ∗(G
∨ ⊗ F )

)
for E,F ∈ C.

(3) We can also explain (1.15) as follows. We take a local projective pre-

sentation π∗(W−1) ⊗ G
φ→ π∗(W0) ⊗ G → F → 0 of F ∈ C. For F ′ ∈ C and a

locally free sheaf V on Y , Serre’s vanishing theorem says that Hom(π∗(V (−n))⊗
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G,F ′[q]) = 0 for q �= 0 and n� 0. Hence we can take a local projective presenta-

tion π∗(V−1)⊗G
ψ→ π∗(V0)⊗G→E → 0 of E ∈ C such that

Hom
(
π∗(Vi)⊗G,π∗(Wj)⊗G[q]

)
= Hom

(
π∗(Vi)⊗G, imφ[q]

)
(1.16)

= Hom
(
π∗(Vi)⊗G,F [q]

)
= 0

for q �= 0. Then Hom(E,F ) is the zeroth cohomology group of the complex

Hom(π∗(V•)⊗G,π∗(W•)⊗G), which is isomorphic to HomA(V• ⊗A,W• ⊗A).

Since V•⊗A, W•⊗A give locally free presentations of Rπ∗(G
∨⊗E), Rπ∗(G

∨⊗
F ) in CohA(Y ) and similar properties to (1.16) hold, we see that Rπ∗(G

∨ ⊗ •)
induces (1.15).

As we explained, we assume Assumption 1.1.1(1) from now on.

DEFINITION 1.1.10

For a locally free sheaf G on X , we set

T (G) :=
{
E ∈Coh(X)

∣∣R1π∗(G
∨ ⊗E) = 0

}
,

S(G) :=
{
E ∈Coh(X)

∣∣ π∗(G
∨ ⊗E) = 0

}
,(1.17)

S0(G) :=
{
E ∈Coh(X)

∣∣Rπ∗(G
∨ ⊗E) = 0

}
= T (G)∩ S(G).

If (T (G), S(G)) is a torsion pair of Coh(X), then

C(G) :=
{
E ∈D(X)

∣∣H−1(E) ∈ S(G),H0(E) ∈ T (G),Hi(E) = 0,
(1.18)

i �=−1,0
}

denotes the tilted category.

LEMMA 1.1.11

Let G be a locally free sheaf on X.

(1) (T (G), S(G)) is a torsion pair of Coh(X) such that G ∈ T (G) if and only if

R1π∗(G
∨ ⊗G) = 0 and S0(G) = 0.

(2) Assume that (T (G), S(G)) is a torsion pair such that G ∈ T (G). Then the

following assertions hold:

(a) R1π∗(OX) = 0;

(b) G is a local projective generator of C(G);

(c) if (T,S) is a torsion pair of Coh(X) such that G ∈ T and S(G)∩ T = 0,

then (T,S) = (T (G), S(G)).

Proof

(1) The only if part is obvious. So we only prove the if part. For E ∈Coh(X), let

φ : π∗(π∗(G
∨ ⊗E))⊗G→E be the evaluation map. Then we see that π∗(G

∨ ⊗
cokerφ) = 0, R1π∗(G

∨ ⊗ imφ) = 0, and R1π∗(G
∨ ⊗ E) ∼= R1π∗(G

∨ ⊗ cokerφ).
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Hence we have a desired decomposition

(1.19) 0→E1 →E →E2 → 0,

where E1 := imφ ∈ T (G) and E2 := cokerφ ∈ S(G).

(2) (a) Since the trace map G∨ ⊗G→OX is surjective, we have a surjective

homomorphism R1π∗(G
∨ ⊗G)→R1π∗(OX). Then (1) implies the claim.

(b) For E ∈ C(G), we have an exact sequence

(1.20) 0→R1π∗
(
G∨ ⊗H−1(E)

)
→Rπ∗(G

∨ ⊗E)→ π∗
(
G∨ ⊗H0(E)

)
→ 0.

Hence Rπ∗(G
∨ ⊗E) ∈ Coh(Y ) and Rπ∗(G

∨ ⊗E) = 0 if and only if R1π∗(G
∨ ⊗

H−1(E)) = π∗(G
∨ ⊗ H0(E)) = 0, which is equivalent to H−1(E),H0(E) ∈

S0(G) = 0. Therefore G is a local projective generator of C(G).

(c) We first prove that T (G)⊂ T . For an object E ∈ T (G), (b) implies that

there is a surjective morphism φ : π∗(V )⊗G→E in C(G), where V is a locally

free sheaf on Y . Since φ is surjective in Coh(X) and G ∈ T , E ∈ T . Since S(G)∩
T = 0, we get S(G)⊂ S. Therefore (T,S) = (T (G), S(G)). �

By the proof of Lemma 1.1.11, we get the following.

COROLLARY 1.1.12

Let G be as in Lemma 1.1.11, and suppose that (T (G), S(G)) is a torsion pair with

G ∈ T (G). Let E be a coherent sheaf on X, and let φ : π∗(π∗(G
∨ ⊗E))⊗G→E

be the evaluation map. Then E1 := imφ ∈ T (G) and E2 := cokerφ ∈ S(G). Thus

we have a decomposition of E,

(1.21) 0→ imφ→E → cokerφ→ 0,

with respect to the torsion pair (T (G), S(G)).

PROPOSITION 1.1.13

Let C be a category of perverse coherent sheaves, and let G be a local projective

generator. Then (T (G), S(G)) is a torsion pair of Coh(X) whose tilting is C.

Proof

We first note that G is a locally free sheaf by Assumption 1.1.6. Since G ∈ C,
we have Rπ∗(G

∨ ⊗G) ∈ Coh(Y ). By the definition of a local projective genera-

tor, we have S0(G) = 0. By Lemma 1.1.11, (T (G), S(G)) is a torsion pair. Since

S(G)[1], T (G) ⊂ C, we get C(G) ⊂ C. Conversely for E ∈ C, we have a spectral

sequence

(1.22) Ep,q
2 =Rpπ∗

(
G∨ ⊗Hq(E)

)
=⇒Ep+q

∞ =Rp+qπ∗(G
∨ ⊗E).

Since π−1(y) ≤ 1 for all y ∈ Y , this spectral sequence degenerates. Hence we

have Rπ∗(G
∨⊗Hq(E)) = 0 for q �=−1,0, π∗(G

∨⊗H−1(E)) = 0 and R1π∗(G
∨⊗

H0(E)) = 0. Therefore E ∈ C(G). �
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From now on, we impose Assumption 1.1.1(2), which is reasonable by Proposi-

tion 1.1.13 and Lemma 1.1.11(2).

LEMMA 1.1.14

Let C be a category of perverse coherent sheaves, and let G be a local projective

generator of C. Then

(1) (T (G∨), S(G∨)) is a torsion pair, and G∨ is a local projective generator

of C(G∨);

(2) if E is a local projective object of C, that is, R1π∗(E
∨ ⊗ F ) = 0 for all

F ∈ C, then E∨ is a local projective object of C(G∨);

(3) (T (G∨), S(G∨)) is independent of the choice of G;

(4) for E ∈D(X), Rπ∗(G
∨⊗E) is a zero-dimensional sheaf on Y if and only

if Rπ∗(G⊗DX(E)(KX)[n]) is a zero-dimensional sheaf on Y , where n= dimX.

By (3), we denote C(G∨) by CD.

Proof
(1) Since R1π∗(G

∨⊗G) = 0, G∨ ∈ T (G∨). We show that S0(G
∨) = 0. Assume

that Rπ∗(G⊗E) = 0 for a coherent sheaf E on X . Since

Hi
(
Y,Rπ∗(G⊗E)(−k)

)
=Hi

(
X,G⊗E(−k)

)
=Hn−i

(
X,G∨ ⊗DX(E)(KX)⊗OX(k)

)∨
(1.23)

=Hn−i
(
Y,Rπ∗

(
G∨ ⊗DX(E)(KX)

)
(k)
)∨

for all k ∈ Z and Hj(Y,Hn−i(Rπ∗(G
∨ ⊗DX(E)(KX)))(k)) = 0 for k � 0 and

j �= 0, we get Hn−i(Y,Rπ∗(G
∨ ⊗ DX(E)(KX))(k)) = H0(Y,Hn−i(Rπ∗(G

∨ ⊗
DX(E)(KX)))(k)) = 0 for k � 0. Therefore Rπ∗(G

∨ ⊗ DX(E)(KX)) = 0.

Since dimπ−1(y)≤ 1 for all y ∈ Y , we see that Rπ∗(G
∨ ⊗Hi(DX(E)(KX))) =

Rπ∗(H
i(G∨⊗D(E)(KX))) = 0 (see the proof of Proposition 1.1.13). Since G is a

local projective generator of C(G) = C, Hi(DX(E)(KX)) = 0 for all i. Therefore

DX(E)(KX) = 0, which implies that E = 0.

(2) We note that E is a locally free sheaf on X by Lemma 1.1.5(2). By G ∈ C,
we have R1π∗(E

∨⊗G) = 0, which implies that E∨ ∈ T (G∨). By Corollary 1.1.12,

there is a surjection G∨ ⊗ π∗(W )→ E∨, where W is a locally free sheaf on Y .

Then there is an inclusion E ↪→ G ⊗ π∗(W∨). Hence π∗(E ⊗ F ) = 0 for F ∈
Coh(X) with F ∈ S(G∨). Since there is a surjection G⊗ π∗(V )→E, R1π∗(E ⊗
F ) = 0 for F ∈ T (G∨).

(3) Let G′ be a local projective generator of C. Then (1) implies that (T (G′∨),

S(G′∨)) is also a torsion pair. By (2), G∨ is a local projective object of C(G′∨).

In particular, G∨ ∈ T (G′∨). Then we have T (G∨)⊂ T (G′∨) by Corollary 1.1.12.

In the same way, we also have T (G′∨)⊂ T (G∨). Therefore the claim holds.
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(4) Assuming that Rπ∗(G
∨ ⊗E) is a zero-dimensional sheaf on Y , we shall

show that Rπ∗(G⊗DX(E)(KX)[n]) is a zero-dimensional sheaf on Y . The argu-

ment is similar to that for (1). By our assumption,

(1.24) Hom
(
G,E(−m)[k]

)
=

{
H0(Y,Rπ∗(G

∨ ⊗E)), k = 0,

0, k �= 0.

By the Serre duality, we have

(1.25) Hom
(
G,E(−m)[k]

)
=Hom

(
G∨,
(
DX(E)(KX)[n]

)
(m)[−k]

)∨
.

For m� 0, we have

Hom
(
G∨,
(
DX(E)(KX)[n]

)
(m)[−k]

)
=H0

(
Y,H−k

(
Rπ∗
(
G⊗
(
DX(E)(KX)[n]

)))
(m)
)
.

Hence H−k(Rπ∗(G ⊗ (DX(E)(KX)[n]))) = 0 for k �= 0 and H0(Rπ∗(G ⊗
(DX(E)(KX)[n]))) is a zero-dimensional sheaf. �

We characterize S0(G) in terms of the Gieseker semistability of a 1-dimensional

sheaf (see the definition in (0.6)).

LEMMA 1.1.15

Let G be a locally free sheaf on X such that R1π∗(G
∨ ⊗G) = 0. Let E be a 1-

dimensional sheaf on a fiber of π such that χ(G,E) = 0. Then Rπ∗(G
∨ ⊗E) = 0

if and only if E is a G-twisted semistable sheaf on X.

Proof

By the proof of Lemma 1.1.11(1), we can take a decomposition

(1.26) 0→E1 →E →E2 → 0

such that Rπ∗(G
∨⊗E1) = π∗(G

∨⊗E) and Rπ∗(G
∨⊗E2) =R1π∗(G

∨⊗E)[−1].

Then χ(G,E1)≥ 0≥ χ(G,E2). Hence if E is G-twisted semistable, then π∗(G
∨⊗

E1) = π∗(G
∨ ⊗ E) = 0, which also implies that R1π∗(G

∨ ⊗ E) = 0. Conversely

if π∗(G
∨ ⊗ E) = R1π∗(G

∨ ⊗ E) = 0, then π∗(G
∨ ⊗ E′) = 0 for any subsheaf E′

of E. Hence E is G-twisted semistable. �

COROLLARY 1.1.16

Assume that π :X → Y is the minimal resolution of a rational double point. Let

G be a locally free sheaf on X. Then (T (G), S(G)) is a torsion pair with G ∈ T (G)

if and only if

(i) R1π∗(G
∨ ⊗G) = 0 and

(ii) there is no G-twisted stable sheaf E such that rkE = 0, χ(G∨ ⊗E) = 0,

(c1(E), c1(OX(1))) = 0, and (c1(E)2) =−2.

Moreover, (ii) is equivalent to rkG � | (c1(G),D) for D with (D,c1(OX(1))) = 0

and (D2) =−2.
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Proof

Let E be a 1-dimensional G-twisted stable sheaf on X . Then E is a sheaf on the

exceptional locus if and only if (c1(E), c1(OX(1))) = 0. Under this assumption,

we have χ(E,E) =−(c1(E)2)> 0. Since E ⊗KX
∼=E, we see that χ(E,E)≤ 2.

Hence (c1(E)2) = −2. By Lemma 1.1.15, we get the first part of our claim.

Since χ(G,E) = −(c1(G), c1(E)) + rkGχ(E), we also get the second claim by

[Y6, Proposition 4.6]. �

1.1.1. Irreducible objects of C
LEMMA 1.1.17

Let G be a locally free sheaf on X such that Rπ∗(G
∨ ⊗ F ) �= 0 for all nonzero

coherent sheaves F on a fiber of π. Then for a coherent sheaf E on X, π∗(G
∨ ⊗

E) = 0 implies that R1π∗(G
∨ ⊗E|π−1(y)) �= 0 for all y ∈ π(Supp(E)).

Proof

Assume that R1π∗(G
∨⊗E|π−1(y)) = 0. By Lemma 1.1.24 below, R1π∗(G

∨⊗E) =

0 in a neighborhood of y. Thus Rπ∗(G
∨ ⊗E) = 0 in a neighborhood of y. Then

Rπ∗(G
∨ ⊗E

L
⊗ Lπ∗(Cy)) =Rπ∗(G

∨ ⊗E)
L
⊗Cy = 0. Since the spectral sequence

Epq
2 =Rpπ∗

(
Hq
(
G∨ ⊗E

L
⊗ Lπ∗(Cy)

))
(1.27)

=⇒Ep+q
∞ =Hp+q

(
Rπ∗
(
G∨ ⊗E

L
⊗ Lπ∗(Cy)

))
degenerates, Rpπ∗(G

∨ ⊗ E ⊗ π∗(Cy)) = 0. By our assumption on G, we have

E|π−1(y) = 0, which is a contradiction. �

COROLLARY 1.1.18

Let G be a locally free sheaf on X such that S0(G) = 0. For an open subset of Y ,

we extend Definition 1.1.10 to G|π−1(U) ∈Coh(π−1(U)). Then S0(G|π−1(U)) = 0.

In particular, G|π−1(U) is a local projective generator of C(G|π−1(U)).

Proof

We first note that Lemma 1.1.17 holds for the morphism π′ : π−1(U)→ U , since

the projectivity of Y is not used in its proof. Since S0(G) = 0, Rπ′
∗(G

∨ ⊗ F ) �=
0 for all nonzero coherent sheaves F on a fiber of π′. For E ∈ Coh(π−1(U))

with π′
∗(G

∨ ⊗E) = 0, we have R1π′
∗(G

∨ ⊗E|π−1(y)) �= 0 for all y ∈ π′(Supp(E)).

Therefore S0(G|π−1(U)) = 0. �

DEFINITION 1.1.19

Let G be a local projective generator of a category of perverse coherent sheaves C.

(1) An object E ∈ C is zero-dimensional, if Rπ∗(G
∨⊗E) is zero-dimensional

as an object of Coh(Y ).

(2) An object E ∈ C is irreducible, if E does not have a proper subobject

except zero.
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(3) For a zero-dimensional object E ∈ C, we take a filtration

(1.28) 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs =E

such that Fi/Fi−1 are irreducible objects of C. Then
⊕

iFi/Fi−1 is the Jordan–

Hölder decomposition of E. As is well known, the Jordan–Hölder decomposition

is unique, though (1.28) is not unique.

REMARK 1.1.20

In Section 1.4, we shall define the dimension of E generally. According to the

definition of the stability in Definition 1.4.1, we also have the following.

(1) A zero-dimensional object E is G-twisted semistable, and a G-twisted

stable object corresponds to an irreducible object.

(2) The Jordan–Hölder decomposition of E is nothing but the standard rep-

resentative of the S-equivalence class of E.

LEMMA 1.1.21

Let G be as in Lemma 1.1.11, and suppose that (T (G), S(G)) is a torsion pair

with G ∈ T (G).

(1) For y ∈ Yπ, let π−1(y)red be the reduced subscheme of π−1(y). Then

π−1(y)red is a tree of smooth rational curves.

(2) We have Cx ∈ C(G) for all x ∈X.

(3) For Cx, x ∈ π−1(y), the Jordan–Hölder decomposition depends only on

y = π(x).

(4) Let
⊕sy

j=0 I
⊕ayj

yj be the Jordan–Hölder decomposition of Cx (y = π(x) ∈
Yπ). Then the irreducible objects of C(G) are

(1.29) Cx

(
x ∈X \ π−1(Yπ)

)
, Iyj (y ∈ Yπ,0≤ j ≤ sy).

In particular, if Rπ∗(G
∨ ⊗E) is a zero-dimensional A-module, then E is gener-

ated by (1.29).

Proof

For (2) we note that Rπ∗(G
∨ ⊗ Cx) = π∗(G

∨ ⊗ Cx). Hence Cx ∈ C(G). For (1)

and (3) we have a surjective map

(1.30) R1π∗(OX)→R1π∗(Oπ−1(y)red).

Since R1π∗(OX) = 0 by Assumption 1.1.1, we get

H1
(
π−1(y)red,Oπ−1(y)red

)
=H0

(
Y,R1π∗(Oπ−1(y)red)

)
= 0.

Then we see that π−1(y)red is a tree of smooth rational curves. Let Cyj , j =

1, . . . , ty , be the irreducible component of π−1(y)red. Since the restriction map

R1π∗(G
∨⊗G)→R1π∗(G

∨⊗G|Cyj
) is surjective, R1π∗(G

∨⊗G|Cyj
) = 0. Thus we

can write G|Cyj
∼= OCyj (dyj)

⊕ryj ⊕ OCyj (dyj + 1)⊕r′yj . Since R1π∗(G
∨ ⊗

OCyj (dyj)) = 0 and π∗(G
∨ ⊗ OCyj (dyj − 1)) = 0, OCyj (dyj),OCyj (dyj − 1)[1] ∈
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C(G). For x ∈Cyj , we have an exact sequence in CG,

(1.31) 0→OCyj (dyj)→Cx →OCyj (dyj − 1)[1]→ 0.

Hence the Jordan–Hölder decomposition of Cx is constant on Cyj . Since π−1(y)

is connected, the Jordan–Hölder decomposition of Cx is determined by y.

To see (4) let E be an irreducible object of C(G). Then we have

(i) E = F [1], F ∈Coh(X), or

(ii) E ∈Coh(X).

In the first case, since F ∈ S(G), we have π∗(G
∨ ⊗ F ) = 0. By Lemma 1.1.17,

we have R1π∗(G
∨ ⊗ F|π−1(y)) �= 0 for y ∈ π(Supp(F )), which implies that there

is a quotient F|π−1(y) → F ′ such that 0 �= F ′ ∈ S(G) for y ∈ π(Supp(F )). Then

we have a nontrivial morphism F [1]→ F ′[1], which should be injective in C(G).

Therefore π(Supp(F )) is a point. In the second case, we also see that π(Supp(E))

is a point. Therefore Rπ∗(G
∨ ⊗E) is a zero-dimensional sheaf.

(i) If E = F [1], then since π∗(G
∨⊗F ) = 0, F is purely 1-dimensional. Then

Hom(Cx, F [1]) = Hom(D(F )[n − 1],D(Cx)[n]) �= 0 for x ∈ Supp(F ), where n =

dimX . Hence we have a nontrivial morphism Iyj → E, y ∈ π(Supp(F )) ∩ Yπ ,

which is an isomorphism.

(ii) If E ∈Coh(X), then Hom(E,Cx) �= 0 for x ∈ Supp(E), which also implies

that E ∼= Iyj for Supp(E)⊂ π−1(y) or E ∼=Cx for Supp(E)⊂X \ π−1(Yπ). �

REMARK 1.1.22

Since π∗(G
∨ ⊗ Cx) is a coherent sheaf on the reduced point {y}, the multipli-

cation π∗(t) : Iyj → Iyj , t ∈ Iy is zero. Thus Hi(Iyj) are coherent sheaves on the

scheme π−1(y).

LEMMA 1.1.23

Let Iyj ∈ C(G) be irreducible objects in Lemma 1.1.21. Let E be a coherent sheaf

such that π(Supp(E)) = {y} ⊂ Yπ.

(1) For E ∈ T (G), there is a filtration

(1.32) 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs =E

such that for every Fk/Fk−1, there is Iyj ∈ T (G) and a surjective homomorphism

Iyj → Fk/Fk−1 in Coh(X).

(2) For E ∈ S(G), there is a filtration

(1.33) 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs =E

such that, for every Fk/Fk−1, there is Iyj [−1] ∈ S(G) and an injective homomor-

phism Fk/Fk−1 → Iyj [−1] in Coh(X).
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Proof

(1) Since E ∈ T (G), E contains Iyj in C(G). Let F be the quotient in C(G). Then

we have an exact sequence

(1.34) 0→H−1(Iyj)→ 0→H−1(F )→H0(Iyj)→E →H0(F )→ 0.

Hence Iyj ∈ T (G) and H0(F ) ∈ T (G). We set F1 := im(Iyj → E) in Coh(X).

Since E/F1 ∈ T (G) and Supp(E/F1)⊂ π−1(y), by the induction on the support

of E, we get the claim.

(2) Since E ∈ S(G), there is a quotient E[1]→ Iyj in C(G). Let F be the

kernel in C(G). Then we have an exact sequence

(1.35) 0→H−1(F )→E →H−1(Iyj)→H0(F )→ 0→H0(Iyj)→ 0.

Hence Iyj [−1] ∈ S(G) and H−1(F ) ∈ S(G). We set E′ := im(E →H−1(Iyj)) in

Coh(X). Then E′ is a subsheaf of Iyj [−1], and E is an extension of E′ by

H−1(F ) ∈ S(G). Since Supp(H−1(F ))⊂ π−1(y), by the induction on the support

of E, we get the claim. �

LEMMA 1.1.24

(1) The natural homomorphism π∗(π∗(Iπ−1(y)))→ Iπ−1(y) is surjective. In par-

ticular, Hom(Iπ−1(y),OCyj (−1)) = 0 for all j.

(2) We have Ext1(Oπ−1(y),OCyj (−1)) = 0 for all j. In particular,

H1
(
X,HomOX

(
Oπ−1(y),OCyj (−1)

))
=H0

(
X,Ext1OX

(
Oπ−1(y),OCyj (−1)

))
= 0.

(3) For a coherent sheaf E on X, R1π∗(E) = 0 at y if and only if

R1π∗(E|π−1(y)) = 0.

Proof

Since Iπ−1(y) = im(π∗(Iy)→OX), (1) holds. (2) Since Hom(OX ,OCyj (−1)[k]) =

0 for all j and k, the first claim follows from the exact sequence

(1.36) 0→ Iπ−1(y) →OX →Oπ−1(y) → 0.

Since H2(X,HomOX
(Oπ−1(y),OCyj (−1))) = 0, the second claim follows from the

local-global spectral sequence.

(3) The proof is similar to [Is1]. Assume that R1π∗(E|π−1(y)) = 0. We take

a locally free sheaf V on Y such that V → Iy is surjective. Then (1) implies

that π∗(V )→ Iπ−1(y) is surjective. Hence we have a surjective homomorphism

π∗(V ⊗n)⊗Oπ−1(y) → Inπ−1(y)/I
n+1
π−1(y)

. Then we see that R1π∗(E⊗OX/Inπ−1(y)) =

0. By the theorem of formal functions, we get the claim. �

LEMMA 1.1.25

Let Iyj ∈ C(G) be irreducible objects in Lemma 1.1.21. Let E be a coherent sheaf

on X. If Hom(E, Iyj [−1]) = 0 for all Iyj [−1] ∈ S(G), then E ∈ T (G).
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Proof

We note that Hom(E|π−1(y), Iyj [−1]) = 0 for all Iyj [−1] ∈ S(G). By Lem-

ma 1.1.23(2), E|π−1(y) ∈ T (G). Then R1π∗(G
∨⊗E|π−1(y)) = 0. By Lemma 1.1.24,

R1π∗(G
∨⊗E) = 0 in a neighborhood of y. Since y is any point of Yπ , R

1π∗(G
∨⊗

E) = 0, which implies that E ∈ T (G). �

PROPOSITION 1.1.26

Assume that #Yπ <∞. Let Iyj ∈ C(G) be irreducible objects in Lemma 1.1.21.

(1) We set

Σ :=
{
Iyj [−1]

∣∣ y ∈ Yπ, j = 0, . . . , sy
}
∩Coh(X),

T :=
{
E ∈Coh(X)

∣∣Hom(E,c) = 0, c ∈Σ
}
,(1.37)

S :=
{
E ∈Coh(X)

∣∣E is a successive extension of subsheaves of c ∈Σ
}
.

Then (T ,S) is a torsion pair of Coh(X) whose tilting is C(G). In particular,

C(G) is characterized by Σ.

(2) For the category CD in Lemma 1.1.14 for C = C(G), C(G)D is charac-

terized by

ΣD :=
{(

DX(Iyj)⊗KX [n]
)
[−1]

∣∣ y ∈ Yπ, j = 0, . . . , sy
}
∩Coh(X)

(1.38)
= DX

(
{Iyj |y ∈ Yπ, j = 0, . . . , sy} ∩Coh(X)

)
⊗KX [n− 1],

where n= dimX.

Proof

(1) For E ∈Coh(X), we consider φ :G⊗π∗(π∗(G
∨⊗E))→E. We set E1 := imφ

and E2 := cokerφ. Since Hom(G, Iyj [−1]) = 0 for all Iyj , G ∈ T . Hence E1 ∈ T .

We shall show that E2 ∈ S . By Corollary 1.1.12, E1 ∈ T (G),E2 ∈ S(G). Since

Supp(E2)⊂ π−1(Yπ), Lemma 1.1.23(2) implies that E2 ∈ S . Therefore (T ,S) is

a torsion pair of Coh(X). We also see that (T ,S) = (T (G), S(G)). Thus (1) holds.

(2) By Lemma 1.1.14(4), DX(Iyj) ⊗ KX [n] are the irreducible objects of

C(G)D . Hence the claim follows from (1). �

1.1.2. Local projective generators of C
We shall give a criterion for a two-term complex of coherent sheaves to be a

local projective generator of a category of perverse coherent sheaves. Since the

existence of a local projective generator is the most essential part of our theory,

we also discuss a certain torsion pair (see Definition 1.1.28(2)) to define a category

of perverse coherent sheaves.

DEFINITION 1.1.27

Let C be an abelian subcategory of D(X). For y ∈ Y , we set

(1.39) Cy :=
{
E ∈ C

∣∣ π(Supp(Hi(E)
))

= {y}, i ∈ Z
}
.
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DEFINITION 1.1.28

In Section 1.1.2, let (T,S) be a torsion pair of Coh(X) such that the tilted

category C satisfies one of the following conditions.

(1) There is a local projective generator G ∈ T of C; that is, C is a category of

perverse coherent sheaves, or

(2) C satisfies the following conditions:

(a) #Yπ <∞ and every object of Cy , y ∈ Y is of finite length;

(b) π(Supp(E))⊂ Yπ for E ∈ S.

The condition #Yπ < ∞ is a technical condition. Other conditions of (2) are

satisfied for a category of perverse coherent sheaves.

DEFINITION 1.1.29

Assume that F ⊂ E in C and E ∈ Cy , y ∈ Y implies F ∈ Cy . Then Iyj , j ∈ Jy =

{0,1, . . . , sy} denote the irreducible objects of Cy .

If y ∈ Y \ Yπ , then sy = 0 and Ey0 =Cx (π(x) = y).

LEMMA 1.1.30

Let Cyj (j = 1, . . . , ty) be the irreducible components of π−1(y)red, y ∈ Yπ. Assume

that C satisfies Definition 1.1.28(2). Then the following assertions hold:

(1) Cx ∈ C for all x ∈X;

(2) let L be a line bundle on Cyj ; then L ∈ T or L ∈ S; moreover, there is

n ∈ Z such that OCyj (n) ∈ S and OCyj (n+ 1) ∈ T ;

(3) the claims of Lemma 1.1.21, Lemma 1.1.23, and Lemma 1.1.25 hold.

Proof

We first show that the assumption of Definition 1.1.29 holds. Let F be a subob-

ject of E and E ∈ Cy . Then we have a morphism H−1(E/F )→H0(F ). Suppose

that H−1(E/F )|U �= 0 for the open set U :=X \ π−1(y). Since E ∈ Cy , we have

an isomorphism H−1(E/F )|U → H0(F )|U . Since Supp(H−1(E/F )) ⊂ π−1(Yπ)

by (b), we have a decomposition H−1(E/F )∼=
⊕

y′∈π∗(Supp(H−1(E/F ))) Vy′ , where

π∗(Supp(Vy′)) = {y′}. In particular, we can regard H−1(E/F )|U as a subsheaf

of H−1(E/F ). Then we have a nonzero homomorphism H0(F ) → H0(F )|U →
H−1(E/F )|U ↪→H−1(E/F ). Since (T,S) is a torsion pair,H0(F )→H−1(E/F ) is

a zero map. This is a contradiction. Therefore Supp(H−1(E/F )),Supp(H0(F ))⊂
π−1(y), which implies the claim.

By Definition 1.1.27(2), irreducible objects are E = Cx, x ∈X \ π−1(Yπ), or

irreducible objects of Cy, y ∈ Yπ . For a point x ∈ π−1(Yπ), assume that Cx /∈
T . Since Cx is an irreducible object of Coh(X) and (T,S) is a torsion pair,

Cx ∈ S. We take a curve Cyj with x ∈ Cyj . Then for any line bundle L on Cyj ,

Hom(L,Cx) ∼= C implies that L ∈ S for all line bundles L on Cyj . Indeed let

LT be the subsheaf of L such that LT ∈ T and L/LT ∈ S. Then Cx ∈ S implies
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that Hom(LT ,Cx) = 0. Hence LT = 0. Since L(−nx) ∈ S for all positive integers

n, L[1] ∈ Cy is not of finite length. Therefore Cx ∈ T for x ∈ π−1(Yπ). Thus (1)

holds.

(2) Let L be a line bundle on Cyj . Then we have a decomposition

(1.40) 0→ L1 → L→ L2 → 0

such that L1 ∈ T and L2 ∈ S. We note that (1) implies that every torsion OCyj -

module belongs to T . If L1 �= 0, then L2 is a torsion OCyj -module, which implies

that L2 = 0 and L ∈ T . If L1 = 0, then L = L2 ∈ S. Thus the first claim holds.

Assume that OCyj ∈ T . If OCyj (−n) ∈ T for all n > 0, then OCyj is not of

finite length. Hence there is a positive integer n such that OCyj (−n) ∈ S and

OCyj (−n+1) ∈ T . We next assume that OCyj ∈ S. If OCyj (n) ∈ S for all positive

integers n, then the exact sequence in Cy ,

(1.41) 0→OCyj (n)/OCyj →OCyj [1]→OCyj (n)[1]→ 0,

implies that OCyj [1] ∈ Cy is not of finite length. Therefore there is a positive

integer n such that OCyj (n− 1) ∈ S and OCyj (n) ∈ T .

(3) By (1), we get Lemma 1.1.21(2). We also get Lemma 1.1.21(3) from its

proof and (2). The other claims of Lemmas 1.1.21 and 1.1.23 are obvious. For

0 �=E ∈ S, (i) and Lemma 1.1.23 imply that there is a coherent sheaf Iyj [−1] ∈ S

such that Hom(E, Iyj [−1]) �= 0. Hence Lemma 1.1.25 also holds. �

We shall give a criterion (Proposition 1.1.33) for a two-term complex to be a

local projective generator of C. Since objects in C are two-term complexes, our

criterion is applicable to these objects.

LEMMA 1.1.31

Let E be an object of D(X) such that Hi(E) = 0 for i �=−1,0. If Ext1(E,Cx) = 0,

then E is a free sheaf in a neighborhood of x.

Proof

Since E fits in the exact triangle

(1.42) τ≤−1(E)→E → τ≥0(E)→
(
τ≤−1(E)

)
[1],

we have an exact sequence

0→ Ext1OX

(
H0(E),Cx

)
(1.43)

→ Ext1OX
(E,Cx)→HomOX

(
H−1(E),Cx

)
→Ext2OX

(
H0(E),Cx

)
.

Since Ext1(E,Cx) = H0(X,Ext1OX
(E,Cx)), Ext1OX

(E,Cx) = 0. Then

Ext1OX
(H0(E),Cx) = 0, which implies that H0(E) is a free sheaf in a neigh-

borhood of x. Then ExtiOX
(H0(E),Cx) = 0 for i > 0. Hence HomOX

(H−1(E),

Cx) = 0. Therefore H−1(E) = 0 in a neighborhood of x. �
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LEMMA 1.1.32

Let G1 be a locally free sheaf of rank r on X such that

(1.44) (a) Hom
(
G1, Iyj [p]

)
= 0, p �= 0, (b) χ(G1, Iyj)> 0

for all y, j.

(1) If 0 �=E ∈ S, then π∗(G
∨
1 ⊗E) = 0 and R1π∗(G

∨
1 ⊗E) �= 0.

(2) If R1π∗(G
∨
1 ⊗E) = 0, then E ∈ T .

(3) If 0 �= E ∈ T and Supp(E) ⊂ π−1(y), then π∗(G
∨
1 ⊗ E) �= 0 and

R1π∗(G
∨
1 ⊗E) = 0. In particular, χ(G1,E)> 0.

Proof

(1) We note that G1 ∈ T by Lemma 1.1.25. We first treat the case where C
is the category of perverse coherent sheaves. We consider the homomorphism

π∗(π∗(G
∨
1 ⊗E))⊗G1 →E. Then imφ ∈ T ∩S = 0. Since π∗(G

∨
1 ⊗ imφ) = π∗(G

∨
1 ⊗

E), we get π∗(G
∨
1 ⊗E) = 0. Let F �= 0 be a coherent sheaf on a fiber, and take

the decomposition

(1.45) 0→ F1 → F → F2 → 0

with F1 ∈ T,F2 ∈ S. Since F1, F2[1] ∈ C, the condition χ(G1, Iyj)> 0 implies that

χ(G1, F1)> 0 or χ(G1, F2)< 0, which imply that π∗(G
∨
1 ⊗F1) �= 0 or R1π∗(G

∨
1 ⊗

F2) �= 0. Since π∗(G
∨
1 ⊗ F1) is a subsheaf of π∗(G

∨
1 ⊗ F ) and R1π∗(G

∨
1 ⊗ F2)

is a quotient of R1π∗(G
∨
1 ⊗ F ), we get Rπ∗(G

∨
1 ⊗ F ) �= 0. Then we can apply

Lemma 1.1.17 to E and get R1π∗(G
∨
1 ⊗E|π−1(y)) �= 0 for y ∈ π(Supp(E)). Since

R1π∗(G
∨
1 ⊗E)→R1π∗(G

∨
1 ⊗E|π−1(y)) �= 0 is surjective, we get the claim.

We next assume that #Yπ <∞. Then E[1] is generated by Iyj . Hence (1.44)

implies that χ(G1,E[1])> 0 and Rπ∗(G
∨
1 ⊗E[1]) ∈ Coh(Y ). Hence R1π∗(G

∨
1 ⊗

E) �= 0 and π∗(G
∨
1 ⊗E) = 0.

(2) For E ∈Coh(X), we take a decomposition

(1.46) 0→E1 →E →E2 → 0

such that E1 ∈ T and E2 ∈ S. If R1π∗(G
∨
1 ⊗E) = 0, then (1) implies that E2 = 0.

(3) By Lemma 1.1.23, we may assume that E is a quotient of Iyj , Iyj ∈
T in Coh(X). Since Iyj is irreducible, φ : Iyj → E is injective in C. We set

F := ker(Iyj → E) in Coh(X). Then F ∈ S and F [1] is the cokernel of φ in C.
Hence π∗(G

∨
1 ⊗F ) = 0 by (1). By our assumption, π∗(G

∨
1 ⊗ Iyj) �= 0, Iyj ∈ T , and

R1π∗(G
∨
1 ⊗ Iyj) = 0. Therefore our claim holds. �

PROPOSITION 1.1.33

Let G1 be an object of D(X) such that Hi(G1) = 0 for i �=−1,0 and satisfies

(1.47) (a) Hom
(
G1, Iyj [p]

)
= 0, p �= 0, (b) χ(G1, Iyj)> 0

for all y ∈ Y and j = 0,1, . . . , sy.

(1) G1 is a locally free sheaf on X.
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(2) We have R1π∗(G
∨
1 ⊗G1) = 0.

(3) For E ∈Coh(X), E ∈ T if and only if R1π∗(G
∨
1 ⊗E) = 0, and E ∈ S if

and only if π∗(G
∨
1 ⊗E) = 0.

(4) G1 is a local projective generator of C.

Proof

(1) The claim follows from Lemma 1.1.31 and (a).

(2) It is sufficient to prove that R1π∗(G
∨
1 ⊗ G1|π−1(y)) = 0 for all y ∈ Yπ .

By Lemma 1.1.25, G1 ∈ T . Since Supp(G1|π−1(y)) = π−1(y) and G1|π−1(y) ∈ T ,

Lemma 1.1.23(1) implies that G1|π−1(y) ∈ T is a successive extension of quotients

of Iyj ∈ T . Hence it is sufficient to prove R1π∗(G
∨
1 ⊗Q) = 0 for all quotients Q

of Iyj ∈ T . By our assumption on G1, we have R1π∗(G
∨
1 ⊗ Iyj) = 0 for Iyj ∈ T .

Therefore the claim holds.

(3) By Lemma 1.1.32(2), we get

(1.48) T (G1)∩ S(G1)⊂ T ∩ S(G1) =
{
E ∈ T

∣∣ π∗(G
∨
1 ⊗E) = 0

}
.

If T ∩ S(G1) = 0, then Lemma 1.1.11(1) implies that G1 is a local projec-

tive generator of C(G1). Since G1 ∈ T by (2), Lemma 1.1.11(3) also implies

that C = C(G1). Therefore we shall prove that T ∩ S(G1) = 0. Assume that

E ∈ T satisfies π∗(G
∨
1 ⊗ E) = 0. We first prove that R1π∗(G

∨
1 ⊗ E) = 0. By

Lemma 1.1.24, it is sufficient to prove R1π∗(G
∨
1 ⊗ E|π−1(y)) = 0 for all y ∈ Y .

This follows from Lemma 1.1.32(3). Hence Rπ∗(G
∨
1 ⊗E) = 0. Then we see that

Rπ∗(G
∨
1 ⊗ E|π−1(y)) = 0 for all y ∈ Y by the proof of Lemma 1.1.17. Since

E|π−1(y) ∈ T , Lemma 1.1.32(3) implies that E|π−1(y) = 0 for all y ∈ Y . There-

fore E = 0.

(4) This is a consequence of (3) and Lemma 1.1.11(2). �

REMARK 1.1.34

According to (4), C satisfying Definition 1.1.28(2) is a category of perverse coher-

ent sheaves, if there is G1 in Proposition 1.1.33.

REMARK 1.1.35

In the condition (1.47), assume that G1 satisfies Hom(G1, Iyj [p]) = 0 (p = ±1)

only. Then we also see thatG1 is locally free by Lemma 1.1.31. Since dimπ−1(y)≤
1 for all y ∈ Y , we have Hom(G1, Iyj [p]) = 0 for p �= 0. Thus condition (a) follows.

Then the proofs of Lemma 1.1.32 and Proposition 1.1.33 imply that R1π∗(G
∨
1 ⊗

G1) = 0 and Rπ∗(G
∨
1 ⊗ F ) ∈Coh(Y ) for F ∈ C.

The following claim shows that R1π∗(G
∨
1 ⊗G1) = 0 is a fairly strong condition.

Since R1π∗(G
∨
1 ⊗G1) = 0 is an open condition, it also says that a small defor-

mation of a local projective generator is also a local projective generator.



284 Kōta Yoshioka

LEMMA 1.1.36

Let G1 be a locally free sheaf of rank r on X such that

(1.49) χ(G1, Iyj)> 0.

Then Hom(G1, Iyj [k]) = 0, k �= 0, if and only if R1π∗(G
∨
1 ⊗G1) = 0.

Proof

The only if part was already proved in Proposition 1.1.33. Assume that

R1π∗(G
∨
1 ⊗ G1) = 0. We first prove that G1 ∈ T . Assume that G1 /∈ T . Then

there is a surjective homomorphism G1 → E in Coh(X) such that E ∈ S. If C
has a local projective generator G, then π∗(G

∨ ⊗E) = 0. By Lemma 1.1.17, we

have R1π∗(G
∨ ⊗ E|π−1(y)) �= 0 for a point y ∈ Y . Hence we may assume that

Supp(E)⊂ π−1(y). In the second case, since #Yπ <∞, we may also assume that

Supp(E) ⊂ π−1(y). Then E[1] is generated by Iyj , 0 ≤ j ≤ sy . By our assump-

tion, χ(G1,E[1]) > 0. Hence Ext1(G1,E) �= 0, which implies that R1π∗(G
∨
1 ⊗

G1) �= 0. Therefore G1 ∈ T . For Iyj ∈ T , we consider the homomorphism φ :

π∗(π∗(G
∨
1 ⊗ Iyj)) ⊗ G1 → Iyj . Since Iyj is an irreducible object, φ is surjec-

tive in C, which implies that φ is surjective in Coh(X). Hence Ext1(G1, Iyj) = 0.

Since dimπ−1(y)≤ 1, we also get Extk(G1, Iyj) = 0 for k ≥ 2. Therefore Hom(G1,

Iyj [k]) = 0 for k �= 0. For Iyj ∈ S[1], dimπ−1(y)≤ 1 and the locally freeness of G1

imply that Ext1(G1, Iyj) = 0. Since G1 ∈ T , we also get Hom(G1, Iyj [−1]) = 0 for

all irreducible objects of C. �

1.2. Examples of perverse coherent sheaves
Let π :X → Y be a birational map in Section 1.1. Let G be a locally free sheaf

on X such that R1π∗(G
∨ ⊗G) = 0, that is, G ∈ T (G). We set A := π∗(G

∨ ⊗G)

as before. Let F be a coherent A-module on Y . Then Rπ∗((π
−1(F )

L
⊗π−1(A)

G)⊗G∨)∼= F as an A-module. By using the spectral sequence, we see that

(1.50) Rpπ∗
(
G∨ ⊗Hq

(
π−1(F )

L
⊗π−1(A) G

))
= 0, p+ q �= 0,

and we have an exact sequence

0→ R1π∗
(
G∨ ⊗H−1

(
π−1(F )

L
⊗π−1(A) G

))
(1.51)

→ F
λ→ π∗
(
G∨ ⊗H0

(
π−1(F )

L
⊗π−1(A) G

))
→ 0.

We set

(1.52) π−1(F )⊗π−1(A) G :=H0
(
π−1(F )

L
⊗π−1(A) G

)
∈Coh(X).

If S0(G) �= 0, then obviously (T (G), S(G)) is not a torsion pair of Coh(X) (cf.

Lemma 1.1.11). We shall construct torsion pairs associated to (T (G), S(G)). We

set

S := S(G),
(1.53)

T :=
{
E ∈ T (G)

∣∣Hom(E,c) = 0 for c ∈ S0(G)
}
.
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REMARK 1.2.1

We have G ∈ T . Indeed for c ∈ S0(G), Hom(G,c) =H0(Y,π∗(G
∨ ⊗ c)) = 0.

LEMMA 1.2.2

For E ∈Coh(X), let φ : π−1(π∗(G
∨⊗E))⊗π−1(A)G→E be the evaluation map.

(1) We have Rπ∗(G
∨ ⊗ kerφ) = 0, π∗(G

∨ ⊗ cokerφ) = 0, and R1π∗(G
∨ ⊗

E)∼=R1π∗(G
∨ ⊗ cokerφ).

(2) (T,S) is a torsion pair of Coh(X), and the decomposition of E is given

by

(1.54) 0→ imφ→E → cokerφ→ 0,

imφ ∈ T , cokerφ ∈ S.

Proof

(1) For the morphisms

λ : π∗(G
∨ ⊗E)−→ π∗

(
G∨ ⊗ π−1

(
π∗(G

∨ ⊗E)
)
⊗π−1(A) G

)
,

(1.55)
π∗(1G∨ ⊗ φ) : π∗

(
G∨ ⊗ π−1

(
π∗(G

∨ ⊗E)
)
⊗π−1(A) G

)
−→ π∗(G

∨ ⊗E),

the composition

π∗(G
∨ ⊗E)

λ−→ π∗
(
G∨ ⊗ π−1

(
π∗(G

∨ ⊗E)
)
⊗π−1(A) G

)
(1.56)

π∗(1G∨⊗φ)−→ π∗(G
∨ ⊗E)

is the identity. By (1.51), λ and π∗(1G∨ ⊗ φ) are isomorphic. Hence we get

imπ∗(1G∨ ⊗ φ) = π∗(G
∨ ⊗ imφ) = π∗(G

∨ ⊗E). Since R1π∗(G
∨ ⊗ π−1(π∗(G

∨ ⊗
E))⊗π−1(A) G) = 0, we get Rπ∗(G

∨ ⊗ kerφ) = 0. Since R1π∗(G
∨ ⊗ imφ) = 0, we

also get the remaining claims.

(2) We shall prove that imφ ∈ T . If imφ /∈ T , then there is a homomorphism

ψ : imφ→ F such that F ∈ S. Replacing F by imψ, we may assume that ψ is

surjective. Since ψ ◦ φ is surjective, Hom(G,F ) �= 0, which is a contradiction.

Therefore imφ ∈ T . Obviously we have S ∩T = {0}. Therefore (T,S) is a torsion

pair. �

DEFINITION 1.2.3

Let C(G) denote the tilting of Coh(X) with respect to the torsion pair (T,S)

above.

This definition is a generalization of Definition 1.1.10. In the sense of Defini-

tion 1.1.3, C(G) is the category of perverse coherent sheaves. Indeed, we have the

following.

LEMMA 1.2.4 ([VB, PROPOSITION 3.2.5])

The category C(G) has a local projective generator.
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Proof

Let OX(D) be a very ample line bundle on X such that π∗(π∗(G
∨ ⊗G(D)))⊗

G → G(D) is surjective. We set L := G(D). We take a locally free resolution

0→ L−1 → L0 → L→ 0 such that R1π∗(L
∨
0 ⊗G) = 0. Then

(1.57) Rπ∗(L
∨ ⊗G)[1] = Cone

(
π∗(L

∨
0 ⊗G)→ π∗(L

∨
−1 ⊗G)

)
.

We take a surjective homomorphism V → π∗(L
∨
−1⊗G) from a locally free sheaf V

on Y . Then we have a morphism π∗(V )⊗L→ Lπ∗(Rπ∗(L
∨⊗G))[1]⊗L→G[1],

which induces a surjective homomorphism V →R1π∗(L
∨ ⊗G). Hence we have a

morphism

(1.58) L→G[1]⊗ π∗(V )∨

such that the induced homomorphism

(1.59) V → π∗
(
HomOX

(
G[1],G[1]

))
⊗ V →R1π∗(L

∨ ⊗G)

is surjective. We set E := Cone(L→G[1]⊗π∗(V )∨)[−1]. Then E is a locally free

sheaf on X , and φ : π∗(π∗(G
∨⊗E))⊗G→E is surjective by our choice of L. By

(1.59) and our assumption, we have R1π∗(E
∨⊗G) = 0. For F ∈ T (G), we consider

the evaluation map ϕ : π∗(π∗(G
∨ ⊗F ))⊗G→ F . The proof of Lemma 1.1.11(1)

implies that cokerϕ ∈ S0(G). By the definition of T , cokerϕ = 0. Thus ϕ is

surjective. Hence R1π∗(E
∨ ⊗ F ) = 0 for F ∈ T (G).

For F ∈ S(G), the surjectivity of φ implies that π∗(E
∨⊗F ) = 0. If F /∈ S0(G),

then R1π∗(G
∨ ⊗ F ) �= 0, which implies that R1π∗(E

∨ ⊗ F ) �= 0. Assume that

F ∈ S0(G). Then since Rπ∗(G
∨ ⊗ F ) = 0 for F ∈ S0(G), we have R1π∗(E

∨ ⊗
F ) ∼= R1π∗(L

∨ ⊗ F ). Assume that R1π∗(L
∨ ⊗ F ) = 0 and F �= 0. We take a

point y ∈ π(Supp(F )). Since OX(D) is very ample, we can take a smooth divisor

C ∈ |OX(D)| such that π−1(y) ∩ C consists of finitely many points. We may

assume that C ∩ Supp(F|π−1(y)) �= ∅. Then we have an exact sequence

0→ L∨ →G∨ →G∨
|C → 0.

Since C → Y is generically finite, it is finite over an open neighborhood U of y.

Since Supp(F )∩ π−1(U)∩C �= ∅, we have G∨ ⊗F|π−1(U)∩C �= 0. Hence π∗(G
∨ ⊗

F|C) �= 0. On the other hand, our assumptions imply thatRπ∗(F
L
⊗OC⊗G∨) = 0.

Since the spectral sequence

(1.60) Epq
2 =Rpπ∗

(
Hq(F

L
⊗OC ⊗G∨)

)
⇒Ep+q

∞ =Hp+q
(
Rπ∗(F

L
⊗OC ⊗G∨)

)
degenerates, we have π∗(F ⊗ OC ⊗ G∨) = 0, which is a contradiction. Hence

R1π∗(L
∨ ⊗ F ) �= 0 for all nonzero F ∈ S0(G). Then G1 :=G⊕E satisfies

π∗(G
∨
1 ⊗ F ) �= 0, R1π∗(G

∨
1 ⊗ F ) = 0, 0 �= F ∈ T (G),

(1.61)
π∗(G

∨
1 ⊗ F ) = 0, R1π∗(G

∨
1 ⊗ F ) �= 0, 0 �= F ∈ S(G).

Therefore G1 is a local projective generator of C(G). �
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We also define another torsion pair associated to (T (G), S(G)):

S∗ :=
{
E ∈ S(G)

∣∣Hom(c,E) = 0 for c ∈ S0(G)
}
,

(1.62)
T ∗ := T (G).

LEMMA 1.2.5

(T ∗, S∗) is a torsion pair of Coh(X), and the tilted category has a local projective

generator. We denote the category by C(G)∗.

Proof

We set

S1 := S(G∨),
(1.63)

T1 :=
{
E ∈ T (G∨)

∣∣Hom(E,c) = 0 for c ∈ S0(G
∨)
}
.

Then (T1, S1) is a torsion pair of Coh(X), and Lemma 1.2.4 implies that the

tilted category C(G∨) has a local projective generator G∨ ⊕ E1, where E1 is a

locally free sheaf on X such that φ : π∗(π∗(G⊗E1))⊗G∨ →E1 is surjective and

R1π∗(G
∨ ⊗ E∨

1 ) = 0. By Lemma 1.1.14, (TD
1 , SD

1 ) is a torsion pair of Coh(X).

We prove that C(G)∗ = C(G∨)D by showing that (TD
1 , SD

1 ) = (T ∗, S∗). By the

surjectivity of φ, we have

(1.64) TD
1 =

{
E ∈Coh(X)

∣∣R1π∗(G
∨ ⊗E) =R1π∗(E1 ⊗E) = 0

}
= T ∗.

For a coherent sheaf E with π∗(G
∨ ⊗E) = 0, we consider ψ : π∗(π∗(E1 ⊗E))⊗

E∨
1 → E. Then imψ ∈ TD

1 = T ∗ and cokerψ ∈ SD
1 . Since π∗(G

∨ ⊗ imψ) = 0,

imψ ∈ S0(G). Therefore if E ∈ S∗, then imψ = 0, which means that E ∈ SD
1 . Con-

versely if E ∈ SD
1 , then S0(G)⊂ TD

1 implies that E ∈ S∗. Therefore (TD
1 , SD

1 ) =

(T ∗, S∗). �

LEMMA 1.2.6

We set S0y := {E ∈ S0(G) | π(Supp(E)) = {y}}. Then S0y[1] is generated by

{Iyj | Iyj ∈ S0(G)[1]}, where C = C(G).

Proof

For an exact sequence

(1.65) 0→E1 →E →E2 → 0

in C, we have an exact sequence

(1.66) 0→Rπ∗(G
∨ ⊗E1)→Rπ∗(G

∨ ⊗E)→Rπ∗(G
∨ ⊗E2)→ 0

in Coh(Y ). If E ∈ S0(G)[1], then Rπ∗(G
∨ ⊗ E1) = Rπ∗(G

∨ ⊗ E2) = 0. Then

Rπ∗(G
∨ ⊗ H−1(E1)) = Rπ∗(G

∨ ⊗ H−1(E2)) = 0 and Rπ∗(G
∨ ⊗ H0(E1)) =

Rπ∗(G
∨ ⊗H0(E2)) = 0. By the definition of T , H0(E1) = H0(E2) = 0. Hence

E1,E2 ∈ S0(G)[1]. Therefore the claim holds. �

By the construction of C(G) and C(G)∗, we have the following.
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PROPOSITION 1.2.7

We set A := π∗(G
∨ ⊗G). Then we have morphisms

C(G)→ CohA(Y ),
(1.67)

E �→Rπ∗(G
∨ ⊗E)

and

C(G)∗ → CohA(Y ),
(1.68)

E �→Rπ∗(G
∨ ⊗E).

Let τ≥−1 :D(X)→D(X) be the truncation morphism such that Hp(τ≥−1(E)) =

0 for p <−1 and Hp(τ≥−1(E)) =Hp(E) for p≥−1. By (1.50), we have

Hq
(
π−1(F )

L
⊗π−1(A) G

)
∈ S0(G), q �=−1,0,

(1.69)

Σ(F ) := τ≥−1
(
π−1(F )

L
⊗π−1(A) G

)
∈ C(G).

Thus we have a morphism Σ : CohA(Y )→C(G) such that Rπ∗(G
∨ ⊗Σ(F )) = F

for F ∈CohA(Y ).

REMARK 1.2.8

We have a morphism g : Σ(Rπ∗(G
∨ ⊗E))→E. It is not an isomorphism unless

G is a local projective generator of C(G). For E ∈ T , Lemma 1.2.2 implies that

g is injective and cokerg ∈ S0(G)[1].

1.2.1. pPer(X/Y ), p=−1,0, and their generalizations

We give examples such that S0(G) �= {0}. For y ∈ Yπ , we set Zy := π−1(y) and

Cyj , j = 1, . . . , ty , the irreducible components of Zy . As we shall see later, we

have ty = sy . By Assumption 1.1.1 and Lemma 1.1.21, Cyj are smooth rational

curves and OX ∈ T (OX). Then S0(OX) contains OCyj (−1), y ∈ Yπ , and C(OX)

is nothing but the category −1Per(X/Y ) defined by Bridgeland. We also have

C(OX)∗ = C(O∨
X)D = 0Per(X/Y ). We shall study C(G) such that S0(G) contains

line bundles on Cyj , y ∈ Yπ . For this purpose, we first prepare some properties

of S0(OX) and C(OX).

The following lemma shows that we do not need to specify the ample divisor

for the (OX -twisted) semistability of E with χ(E) = 1.

LEMMA 1.2.9

Let E be a 1-dimensional sheaf such that Supp(E)⊂ Zy and χ(E) = 1. Then the

(OX -twisted) semistability of E is independent of the choice of an ample line

bundle L on X.

Proof

By (0.4), E is (OX -twisted) semistable if and only if χ(F ) ≤ 0 for all proper

subsheaves F of E. Hence the semistability is independent of L. �
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LEMMA 1.2.10

(1) Let E be a semistable 1-dimensional sheaf such that Supp(E)⊂ Zy and

χ(E) = 1. Then there is a curve D ⊂ Zy, and E ∼= OD. Conversely, if OD is

1-dimensional, χ(OD) = 1, and π(D) = {y}, then OD is stable. In particular, D

is a subscheme of Zy.

(2) OZy is stable.

Proof

(1) Since χ(E) = 1, π∗(E) �= 0. Since π∗(E) is zero-dimensional, we have a homo-

morphism Cy → π∗(E). Then we have a homomorphism φ :OZy = π∗(Cy)→E.

We denote the image by OD. Since R1π∗(OX) = 0, we have H1(X,OD) = 0.

Hence χ(OD)≥ 1. Since E is semistable, φ must be surjective.

Conversely, we assume that OD satisfies χ(OD) = 1. For a quotient OD →
OC , H

1(X,OC) = 0 implies that χ(OC)≥ 1, which implies that OD is stable.

(2) We have an exact sequence

0→ IZy →OX → π∗(Cy)→ 0.

Since π∗(OX) = OY and R1π∗(IZy ) = 0 (see Lemma 1.1.24), we have a sur-

jective homomorphism OY → π∗(π
∗(Cy)). Hence we get an isomorphsim Cy →

π∗(π
∗(Cy)). Therefore χ(OZy ) = 1. By (1), OZy is stable. �

LEMMA 1.2.11

(1) Let E be a stable purely 1-dimensional sheaf such that π(Supp(E)) = {y}
and χ(E) = 0. Then E ∼=OCyj (−1).

(2) Let E be a 1-dimensional sheaf such that Rπ∗(E) = 0. Then E is a

semistable 1-dimensional sheaf with χ(E) = 0. In particular, E is a successive

extension of OCyj (−1), y ∈ Y , 1≤ j ≤ ty.

Proof
(1) We set n := dimX . We take a point x ∈ Supp(E). Then Ext1OX

(Cx,E) =

Cx

L
⊗ E[−n+ 1]. Since E is purely 1-dimensional, depthOX,x

Ex = 1. Hence the

projective dimension of E at x is n−1. Then T orOX
n−1(Cx,E) =H0(Cx

L
⊗E[−n+

1]) �= 0. Since Ext1(Cx,E) =H0(X,Ext1OX
(Cx,E)) �= 0, we can take a nontrivial

extension

(1.70) 0→E → F →Cx → 0.

If F is not semistable, then since χ(F ) = 1, there is a quotient F → F ′ of F

such that F ′ is a stable sheaf with χ(F ′)≤ 0. Then E → F ′ is an isomorphism,

which is a contradiction. By Lemma 1.2.10, F =OD. We take an integral curve

C ⊂D containing x. Since OD → Cx factors through OC , we have a surjective

homomorphism E →OC(−1). By the stability of E, E ∼=OC(−1).

(2) Let F be a subsheaf of E. Then we have π∗(F ) = 0, which implies that

χ(F )≤ 0. Therefore E is semistable. �
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We shall slightly generalize −1Per(X/Y ). Let G be a locally free sheaf on X .

ASSUMPTION 1.2.12

There are line bundles OCyj (byj) on Cyj such that Rπ∗(G
∨ ⊗OCyj (byj)) = 0 for

all y ∈ Yπ and j = 1,2, . . . , ty .

LEMMA 1.2.13

(1) Let E be a locally free sheaf of rank r on X such that E|Cyj
∼=O⊕r

Cyj
. Then E

is the pullback of a locally free sheaf on Y .

(2) We have G∨ ⊗G∼= π∗(π∗(G
∨ ⊗G)). In particular, R1π∗(G

∨ ⊗G) = 0.

Proof

(1) We consider the map φ :H0(E|Zy
)⊗OZy → E|Zy

. For any point x ∈ Zy , we

have an exact sequence

(1.71) 0→ Fx →OZy →Cx → 0

such that Rπ∗(Fx) = 0. By Lemma 1.2.11(2) and our assumption, we have

Rπ∗(E⊗Fx) = 0. Hence H0(E|Zy
)→H0(E|{x}) is isomorphic and H1(E|Zy

) = 0.

Therefore φ is a surjective homomorphism of locally free sheaves of the same rank,

which implies that φ is an isomorphism. By R1π∗(E) = 0 (see Lemma 1.1.24(3))

and the surjectivity of π∗(π∗(IZy ))→ IZy , R
1π∗(E ⊗ IZy ) = 0. Hence π∗(E)→

π∗(E|Zy
) is surjective. Then we can take a homomorphism O⊕r

U → π∗(E)|U in

a neighborhood of y such that O⊕r
U → π∗(E|Zy

) is surjective. Then we have

a homomorphism π∗(O⊕r
U ) → E|π−1(U) which is surjective on Zy . Since π is

proper, replacing U by a small neighborhood of y, we have an isomorphism

π∗(O⊕r
U )→E|π−1(U). Therefore E is the pullback of a locally free sheaf on Y .

(2) Since G∨ ⊗ OCyj (byj) is a locally free sheaf on Cyj with Rπ∗(G
∨ ⊗

OCyj (byj)) = 0, we have G∨ ⊗ OCyj (byj)
∼= OCyj (−1)⊕ rkG. Hence G|Cyj

∼=
OCyj (1)

⊕ rkG ⊗ OCyj (byj). Hence G∨ ⊗ G|Cyj
∼= O⊕(rkG)2

Cyj
. By (1), we get the

first claim. Then Assumption 1.1.1 implies R1π∗(G
∨ ⊗G) = 0. �

LEMMA 1.2.14

For E ∈Coh(X), we have

(1.72) π−1
(
π∗(G

∨ ⊗E)
)
⊗π−1(A) G⊗OX

G∨ ∼= π∗π∗(G
∨ ⊗E).

Proof

By Lemma 1.2.13, we get

π−1
(
π∗(G

∨ ⊗E)
)
⊗π−1(A) G⊗OX

G∨

∼= π−1
(
π∗(G

∨ ⊗E)
)
⊗π−1(A) π

−1
(
π∗(G⊗OX

G∨)
)
⊗π−1(OY ) OX

(1.73)
∼= π−1(π∗(G

∨ ⊗E))⊗π−1(OY ) OX

= π∗(π∗(G
∨ ⊗E)

)
.

Therefore the claims hold. �
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LEMMA 1.2.15

Let y ∈ Yπ. Then the A-module π∗(G
∨ ⊗ Cx) does not depend on the choice of

x ∈ π−1(y). We set

(1.74) Ay := π−1
(
π∗(G

∨ ⊗Cx)
)
⊗π−1(A) G, x ∈ Zy.

Proof

For the exact sequence

(1.75) 0→OCyj (byj)→OCyj (byj + 1)→Cx → 0,

we have π∗(G
∨ ⊗OCyj (byj + 1)) ∼= π∗(G

∨ ⊗ Cx). Hence π∗(G
∨ ⊗ Cx) does not

depend on the choice of x ∈ Zy . �

LEMMA 1.2.16

(1) Ay is a unique line bundle on Zy such that Ay|Cyj
∼= OCyj (byj + 1) for

j = 1,2, . . . , ty.

(2) We have G∨ ⊗Ay
∼=O⊕ rkG

Zy
.

Proof

By Lemma 1.2.14, G∨ ⊗Ay
∼= π∗(π∗(G

∨ ⊗Cx))∼=O⊕ rkG
Zy

. Thus (2) holds. Since

G|Zy
is a locally free sheaf on Zy , Ay is a line bundle on Zy . Then A⊗ rkG

y
∼=

detG|Zy
. Since the restriction map Pic(Zy) →

∏
j Pic(Cyj) is bijective and

Pic(Cyj)∼= Z, G|Cyj
∼=OCyj (byj + 1)⊕ rkG implies claim (1). �

LEMMA 1.2.17

For a coherent sheaf E with Supp(E)⊂ Zy, χ(G,E) ∈ Z rkG.

Proof

We note thatK(Zy) is generated byOCyj (byj) and Cx. For E with Supp(E)⊂ Zy ,

we have a filtration 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = E such that Fi/Fi−1 ∈ Coh(Zy).

Hence the claim follows from χ(G,OCyj (byj)) = 0 and χ(G,Cx) = rkG. �

Thanks to Lemma 1.2.17, we see that the G-twisted semistability of E with

χ(G,E) = rkG is independent of the choice of an ample line bundle L and is

equivalent to the G-twisted stability (see the proof of Lemma 1.2.9).

LEMMA 1.2.18

(1) Let E be a G-twisted, semistable 1-dimensional sheaf such that Supp(E)⊂
Zy and χ(G,E) = rkG. Then there is a subscheme C of Zy such that χ(OC) = 1

and E ∼= Ay ⊗ OC . Conversely, for a subscheme C of Zy such that OC is 1-

dimensional, χ(OC) = 1, E =Ay⊗OC is a G-twisted stable sheaf with χ(G,E) =

rkG, and π(Supp(E)) = {y}.
(2) Ay is G-twisted stable.
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Proof
(1) We choose an exact sequence

(1.76) 0→K →E →Cx → 0.

Since E is a G-twisted semistable 1-dimensional sheaf with χ(G,E) = rkG,

K is a G-twisted semistable sheaf with χ(G,K) = 0. If π∗(G
∨ ⊗K) �= 0, then

we have a nonzero homomorphism φ : π−1(π∗(G
∨ ⊗ K)) ⊗π−1(A) G → K such

that π∗(G
∨ ⊗ imφ) = π∗(G

∨ ⊗K). Since R1π∗(G
∨ ⊗ imφ) = 0, χ(G, imφ) > 0,

which is a contradiction. Therefore π∗(G
∨ ⊗K) = 0. Hence ξ : π∗(G

∨ ⊗ E) →
π∗(G

∨ ⊗ Cx) is injective. Since dimH0(Y,π∗(G
∨ ⊗ E)) ≥ χ(G,E) = rkG, ξ is

an isomorphism. Then we have a homomorphism ψ : Ay → E. Since π∗(G
∨ ⊗

imψ) = π∗(G
∨ ⊗E) and R1π∗(G

∨ ⊗ imψ) = 0, we get imψ =E. Since E ⊗AD
y ,

AD
y := HomOX

(Ay,OZy) is a quotient of OZy , there is a subscheme C of Zy

such that E ⊗AD
y
∼=OC . Since χ(G,E) = χ(G,Ay ⊗OC) = χ(O⊕ rkG

C ), we have

χ(OC) = 1.

Conversely, for E ⊗ A∨
y
∼=OC such that OC is 1-dimensional, C ⊂ Zy , and

χ(OC) = 1, we consider a quotient E → F . Then F = Ay ⊗OD, D ⊂ C. Since

R1π∗(G
∨ ⊗ F ) = 0 and G∨ ⊗ Ay ⊗OD

∼=O⊕ rkG
D , we get χ(G,F ) ≥ rkG. From

this fact, we first see that E is purely 1-dimensional, and then we see that it is

G-twisted stable.

(2) This follows from (1) and χ(OZy ) = 1. �

LEMMA 1.2.19

Let E be a G-twisted stable purely 1-dimensional sheaf such that π(Supp(E)) =

{y} and χ(G,E) = 0. Then E ∼=Ay ⊗OCyj (−1)∼=OCyj (byj).

Proof

We set n := dimX . We take a point x ∈ Supp(E). Then Ext1OX
(Cx,E) = Cx

L
⊗

E[−n+1]. Since E is purely 1-dimensional, depthOX,x
Ex = 1. Hence the projec-

tive dimension of E at x is n−1. Then T orOX
n−1(Cx,E) =H0(Cx

L
⊗E[−n+1]) �= 0.

Since Ext1(Cx,E) =H0(X,Ext1OX
(Cx,E)) �= 0, we can take a nontrivial exten-

sion

(1.77) 0→E → F →Cx → 0.

If F is not G-twisted semistable, then since χ(G,F ) = rkG, there is a quotient

F → F ′ of F such that F ′ is a G-twisted stable sheaf with χ(G,F ′) ≤ 0. Then

E → F ′ is an isomorphism, which is a contradiction. By Lemma 1.2.18, F is a

quotient of Ay . Thus we may write F =Ay ⊗OD, where D is a subscheme of Zy .

We take an integral curve C ⊂D containing x. Since OD → Cx factor through

OC , we have a surjective homomorphism E →Ay ⊗OC(−1). By the stability of

E, E ∼=Ay ⊗OC(−1). �
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LEMMA 1.2.20

Let E be a 1-dimensional sheaf such that χ(G,E) = 0 and π(Supp(E)) = {y}.
Then the following conditions are equivalent:

(1) Rπ∗(G
∨ ⊗E) = 0.

(2) E is a G-twisted semistable 1-dimensional sheaf with π(Supp(E)) = {y}.
(3) E is a successive extension of Ay ⊗OCyj (−1), 1≤ j ≤ ty.

Proof

Lemma 1.1.15 gives the equivalence of (1) and (2). The equivalence of (2) and

(3) follows from Lemma 1.2.19. �

LEMMA 1.2.21

Let E be a 1-dimensional sheaf such that π∗(G
∨⊗E) = 0. Then there is a homo-

morphism E → Ay ⊗OCyj (−1). In particular, E is generated by subsheaves of

Ay ⊗OCyj (−1), y ∈ Yπ, 1≤ j ≤ ty.

Proof

Since π(Supp(E)) is zero-dimensional, we have a decomposition E =
⊕

iEi,

Supp(Ei)∩ Supp(Ej) = ∅, i �= j. So we may assume that π(Supp(E)) is a point.

We note that χ(G,E) ≤ 0. If χ(G,E) = 0, then χ(R1π∗(G
∨ ⊗ E)) = 0. Since

dimE = 1 and π∗(G
∨ ⊗ E) = 0, we get dimπ(Supp(E)) = 0. Then we have

R1π∗(G
∨ ⊗ E) = 0. Hence the claim follows from Lemma 1.2.20. We assume

that χ(G,E)< 0. We set n := dimX . Let

(1.78) 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs =E

be a filtration such that Ei := Fi/Fi−1, 1 ≤ i ≤ s, are G-twisted stable and

χ(G,Ei)/(chn−1(Ei),L) ≤ χ(G,Ei−1)/(chn−1(Ei−1),L), where L is an ample

divisor on X . Since π∗(G
∨⊗E) = 0 for any G-twisted stable 1-dimensional sheaf

E on a fiber with χ(G,E)≤ 0, replacing E by a G-twisted stable sheaf Es, we

may assume that E is G-twisted stable. We take a nontrivial extension

(1.79) 0→E → F →Cx → 0.

Then F is purely 1-dimensional, and χ(G,F ) = χ(G,E) + rkG ≤ 0 by Lem-

ma 1.2.17. Assume that there is a quotient F → F ′ of F such that F ′ is a G-

twisted stable sheaf with χ(G,F ′)/(chn−1(F
′),L)< χ(G,F )/(chn−1(F ),L)≤ 0.

Then φ : E → F ′ is surjective over X \ {x}. Hence χ(G,F ′)/(chn−1(F
′),L) ≥

χ(G, imφ)/(chn−1(imφ),L) ≥ χ(G,E)/(chn−1(E),L). Since (chn−1(F
′),L) ≤

(chn−1(F ),L) = (chn−1(E),L), we get χ(G,F ′) ≥ χ(G,E)(chn−1(F
′),L)/

(chn−1(E),L)≥ χ(G,E). If χ(G,F ′) = χ(G,E), then φ is an isomorphism. Since

the extension is nontrivial, this is a contradiction. Therefore F is G-twisted

semistable or χ(G,F ′) > χ(G,E). Thus we get a homomorphism ψ : E → E′

such that E′ is a stable sheaf with χ(G,E)<χ(G,E′)< 0 and ψ is surjective in

codimension n− 1. By the induction on χ(G,E), we get the claim. �
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LEMMA 1.2.22

For a point y ∈ Yπ, let E be a 1-dimensional sheaf on X satisfying the following

two conditions:

(i) Hom(E,Ay ⊗OCyj (−1)) = Ext1(E,Ay ⊗OCyj (−1)) = 0 for all j;

(ii) There is an exact sequence

(1.80) 0→ F →E →Cx → 0

such that F is a G-twisted semistable 1-dimensional sheaf with π(Supp(F )) =

{y}, χ(G,F ) = 0, and x ∈ Zy.

Then E ∼=Ay. Conversely, E :=Ay satisfies (i) and (ii).

Proof

We first prove that Ay satisfies (i) and (ii). For the exact sequence

(1.81) 0→ F ′ →Ay →Cx → 0,

we have Rπ∗(G,F ′) = 0. Hence (ii) holds by Lemma 1.2.20; (i) follows from

Lemma 1.1.24. Conversely we assume that E satisfies (i) and (ii). By (ii), π∗(G
∨⊗

E) ∼= π∗(G
∨ ⊗ Cx) and R1π∗(G

∨ ⊗ E) = 0. By (i), Lemma 1.2.2, and Lem-

ma 1.2.20, π−1(π∗(G
∨ ⊗ E)) ⊗π−1(A) G → E is surjective. Hence we have an

exact sequence

(1.82) 0→ F ′ →Ay →E → 0,

where F ′ is a G-twisted semistable 1-dimensional sheaf with χ(G,F ′) = 0. Since

Ext1(E,Ay ⊗OCyj (−1)) = 0 for all j, Ay
∼=E ⊕ F ′, which implies that Ay

∼=E.

�

PROPOSITION 1.2.23 ([VB, PROPOSITION 3.5.7])

(1) Ay and Ay ⊗OCyj (−1)[1] (j = 1, . . . , ty) are irreducible objects of C(G);

(2) Cx, π(x) = y ∈ Yπ, is generated by irreducible objects in (1).

Proof

(1) Assume that there is an exact sequence in C(G):

(1.83) 0→E1 →Ay →E2 → 0.

Since H−1(E1) = 0, E1 ∈ T and π∗(G
∨ ⊗ E1) ∼= π∗(G

∨ ⊗ Ay) = C⊕ rkG
y . Hence

we have a nonzero morphism Ay → E1. Since Hom(Ay,Ay) ∼= C, E1
∼= Ay and

E2 = 0. For Ay ⊗OCyj (−1)[1], assume that there is an exact sequence in C(G):

(1.84) 0→E1 →Ay ⊗OCyj (−1)[1]→E2 → 0.

Since H0(E2) = 0, we have E2[−1] ∈ S. Then Lemma 1.2.21 implies that we have

a nonzero morphism E2 →Ay⊗OCyj (−1)[1]. Since Hom(Ay⊗OCyj (−1)[1],Ay⊗
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OCyj (−1)[1]) =C, we get E1 = 0. Therefore Ay⊗OCyj (−1)[1] is irreducible; (2) is

obvious by Lemma 1.2.22. �

By Proposition 1.2.23 and Lemma 1.1.21, we have the following.

COROLLARY 1.2.24

We set

(1.85) Iyj :=

⎧⎪⎪⎨⎪⎪⎩
Cx, π(x) = y /∈ Yπ, j = 0,

Ay, y ∈ Yπ, j = 0,

Ay ⊗OCyj (−1)[1], y ∈ Yπ, j = 1, . . . , sy.

Then they are the irreducible objects of C(G), and sy is equal to the number of

1-dimensional irreducible components of π−1(y); that is, sy = 0 for y ∈ Y \ Yπ

and sy = ty for y ∈ Yπ.

We give a characterization of T = T (G).

PROPOSITION 1.2.25
(1) For E ∈Coh(X), the following are equivalent:

(a) E ∈ T (G);

(b) Hom(E,Ay ⊗OCyj (−1)) = 0 for all y, j;

(c) φ : π−1(π∗(G
∨ ⊗E))⊗π−1(A) G→E is surjective.

(2) If (c) holds, then kerφ ∈ S0(G).

Proof
(1) This is a consequence of Lemmas 1.2.2 and 1.1.25.

(2) The claim follows from Lemma 1.2.2. �

We note that G ⊗ HomOZy
(Ay,OZy)

∼= O⊕ rkG
Zy

. Then we have HomOZy
(Ay,

OZy )
∼= π−1(π∗(G⊗Cx))⊗π−1(A) G

∨. We set

(1.86) I∗yj :=

⎧⎪⎪⎨⎪⎪⎩
Cx, π(x) = y /∈ Yπ, j = 0,

Ay ⊗ ωZy [1], y ∈ Yπ, j = 0,

Ay ⊗OCyj (−1), y ∈ Yπ, j = 1, . . . , sy,

where sy is the number of 1-dimensional irreducible components of π−1(y) as

above. Then we also have the following.

PROPOSITION 1.2.26 ([VB, PROPOSITION 3.5.8])

We have the following:

(1) I∗yj , j = 0, . . . , sy, are irreducible objects of C(G)∗ = C(G∨)D;
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(2) Cx, π(x) = y ∈ Yπ, is generated by I∗yj . In particular, irreducible objects

of C(G)∗ are

(1.87) I∗yj , y ∈ Y, j = 0,1, . . . , sy.

LEMMA 1.2.27

For a point y ∈ Yπ, let E be a 1-dimensional sheaf on X satisfying the following

two conditions:

(i) Hom(Ay ⊗OCyj (−1),E) = Ext1(Ay ⊗OCyj (−1),E) = 0 for all j;

(ii) there is an exact sequence

(1.88) 0→E → F →Cx → 0

such that F is a G-twisted semistable 1-dimensional sheaf with π(Supp(F )) =

{y}, χ(G,F ) = 0 and x ∈ Zy.

Then E ∼=Ay ⊗ ωZy .

Proof

We set n := dimX . For a purely 1-dimensional sheaf E on X , RHomOX
(E,

KX [n− 1]) ∈ Coh(X) and RHomOX
(E,KX [n− 1]) =HomOC

(E,ωC) if E is a

locally free sheaf on a curve without embedded primes. Hence the claim follows

from Lemma 1.2.22. �

1.3. Families of perverse coherent sheaves
We shall explain families of complexes which correspond to families of A-modules

via Morita equivalence. Let f :X → S and g : Y → S be flat families of projective

varieties parameterized by a scheme S, and let π :X → Y be an S-morphism.

Let OY (1) be a relatively ample line bundle over Y → S. From Section 1.3 to

Section 1.6, we assume the following.

ASSUMPTION 1.3.1

(i) The morphism f : X → S is a smooth morphism; X → S is a smooth

family.

(ii) There is a locally free sheaf G on X such that Gs :=G|f−1(s), s ∈ S, are

local projective generators of a family of abelian categories Cs ⊂D(Xs).

(iii) We have dimπ−1(y) ≤ 1 for all y ∈ Y ; that is, π satisfies Assump-

tion 1.1.1.

Then Cs is a tilting of Coh(Xs).

REMARK 1.3.2

Assumptions (i), (ii), and (iii) imply that

(iv) R1π∗(G
∨ ⊗G) = 0;

(v) we have
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(1.89)
{
E ∈Coh(X)

∣∣Rπ∗(G
∨ ⊗E) = 0

}
= 0.

Thus G defines a tilting C of Coh(X).

Indeed if E ∈ Coh(X) satisfies Rπ∗(G
∨ ⊗ E) = 0, then the projection formula

implies thatRπ∗(G
∨⊗E

L
⊗ Lf∗(Cs)) =Rπ∗(G

∨⊗E)
L
⊗ Lg∗(Cs) = 0 for all s ∈ S.

Then Rπ∗(G
∨ ⊗ Hp(E

L
⊗ Lf∗(Cs))) = 0 for all p and s ∈ S. By (ii), Hp(E

L
⊗

Lf∗(Cs)) = 0 for all p and s ∈ S. Therefore (v) holds; (iv) is obvious. Conversely

if (i), (iii), (iv), and (v) hold, then (ii) holds. So we may replace (ii) by (iv)

and (v).

REMARK 1.3.3

We do not require the birationality of π. If π is finite and f is smooth, then

conditions (ii) and (iii) hold.

For a morphism T → S, we set XT :=X ×S T , YT := Y ×S T , and πT := π× idT .

DEFINITION 1.3.4

(1) A family of objects in Cs, s ∈ S, means a bounded complex F • of coherent

sheaves on X such that F i are flat over S and F •
s ∈ Cs for all s ∈ S.

(2) A family of local projective generators is a locally free sheaf G on X such

that Gs :=G|f−1(s), s ∈ S, are local projective generators of a family of abelian

categories Cs.

REMARK 1.3.5

If F •
s ∈ Coh(Xs) for all s ∈ S, then F • is isomorphic to a coherent sheaf on X

which is flat over S.

LEMMA 1.3.6

For a family F • of objects in Cs, s ∈ S, there is a complex F̃ • such that

(i) F̃ i
s ∈ Cs, s ∈ S,

(ii) F̃ i are flat over S, and

(iii) F • ∼= F̃ •.

Proof

We set d := dimXs, s ∈ S. For the bounded complex F •, we take a locally free

resolution of OX ,

(1.90) 0→ V−d → · · · → V−1 → V0 →OX → 0

such that Rkπ∗((G
∨ ⊗ V ∨

−i ⊗ F j)s) = 0, k > 0, for 0≤ i≤ d− 1 and all j. Since

X → Y is projective, we can take such a resolution. Then Rkπ∗((G
∨ ⊗ V ∨

−d ⊗
F j)s) = 0, k > 0, for all j. Therefore we have an isomorphism F • ∼= V ∨

• ⊗ F •

such that (V ∨
• ⊗ F •)i are S-flat and (V ∨

• ⊗F •)is =
⊕

p+q=i V
∨
−p ⊗ F q

s ∈ Cs for all

s ∈ S. �
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PROPOSITION 1.3.7

(1) Let F • be a family of objects in Cs, s ∈ S. Then we get

(1.91) F • ∼=Cone(E1 →E2),

where Ei ∈Coh(X) are flat over S and (Ei)s ∈ Cs, s ∈ S.

(2) Let F • be a family of objects in Cs, s ∈ S. Then we have a complex

(1.92) G(−n1)⊗ f∗(U1)→G(−n2)⊗ f∗(U2)→ F • → 0

whose restriction to s ∈ S is exact in Cs, where U1,U2 are locally free sheaves

on S.

(3) Let F be an A-module flat over S. Then we can attach a family E of

objects in Cs, s ∈ S, such that Rπ∗(G
∨ ⊗E) = F . The correspondence is functo-

rial, and E is unique in D(X). We denote E by π−1(F )⊗π−1(A) G.

Proof

(1) We may assume that Lemma 1.3.6(i)–(iii) hold for F •. We take a sufficiently

large n with Homf (G(−n), F j [i]) = 0, i > 0, for all j. Then W j := Homf (G(−n),

F j) are locally free sheaves. Let W • := RHomf (G(−n), F •) be the complex

defined by W j , j ∈ Z. Then we have a morphism G(−n)⊗ f∗(W •)→ F •. Since

F •
s ∈ Cs, s ∈ S, Hom(Gs(−n), F •

s [i]) = 0 for i �= 0 and all s ∈ S. Then the base-

change theorem implies that U := Homf (G(−n), F •) is a locally free sheaf on S

and Homf (G(−n), F •)s ∼=Hom(G(−n)s, F
•
s ). HenceG(−n)⊗f∗(W •)∼=G(−n)⊗

f∗(U), which defines a family of morphisms

(1.93) G(−n)⊗ f∗(U)→ F •.

Since F •
s ∈ Cs for all s ∈ S, Rπ∗(G

∨ ⊗F •) is a coherent sheaf on Y which is flat

over S, and g∗g∗(π∗(G
∨⊗F •)(n))→ π∗(G

∨⊗F •)(n) is surjective in Coh(Y ) for

n� 0. Since W • ∼= g∗(π∗(G
∨ ⊗ F •)(n)), the homomorphism

(1.94) π∗(G
∨ ⊗G)(−n)⊗ g∗(U)→ π∗(G

∨ ⊗ F •)

in Coh(Y ) is surjective for n� 0. Thus we have a family of exact sequences

(1.95) 0→E• →G(−n)⊗ f∗(U)→ F • → 0

in Cs, s ∈ S. Since G ∈Coh(X), we have E• ∈Coh(X) which is flat over S; (2) is

a consequence of the proof of (1).

(3) We take a resolution of F ,

· · · d
−3

→ g∗(U−2)⊗A(−n2)
(1.96)

d−2

→ g∗(U−1)⊗A(−n1)
d−1

→ g∗(U0)⊗A(−n0)→ F → 0,

where Ui are locally free sheaves on S. Then we have a complex

· · · d̃
−3

→ f∗(U−2)⊗G(−n2)
(1.97)

d̃−2

→ f∗(U−1)⊗G(−n1)
d̃−1

→ f∗(U0)⊗G(−n0).
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By the Morita equivalence (see Proposition 1.1.7), we have im d̃−i
s = ker d̃−i+1

s

in Cs for all s ∈ S. Let coker d̃−2 be the cokernel of d̃−2 in Coh(X). Then by

Lemma 1.3.8 below, coker d̃−2 is flat over S, (coker d̃−2)s = coker(d̃−2
s ) ∈ Cs, and

(1.98) E := Cone
(
coker d̃−2 → f∗(U0)⊗G(−n0)

)
is a family of objects in Cs. By the construction, we have Es = π−1(Fs)⊗π−1(As)

Gs. It is easy to see that the class of E in D(X) does not depend on the choice

of the resolution (1.96) (cf. [BS, Lemma 14]). �

LEMMA 1.3.8

Let Ei, 0≤ i≤ 3, be coherent sheaves on X which are flat over S. Let

(1.99) E0 d0

→E1 d1

→E2 d2

→E3

be a complex in Coh(X).

(1) If kerd1s = imd0s in Coh(Xs), then (imd1)s → E2
s is injective. In par-

ticular, if kerd1s = imd0s in Coh(Xs) for all s ∈ S, then cokerd1, imd1,kerd1 in

Coh(X) are flat over S and imd0 = kerd1.

(2) Assume that Ei
s ∈ Cs for all s ∈ S. We denote the kernel, cokernel, and

the image of dis in Cs by kerCs d
i
s, cokerCs d

i
s, and imCs d

i
s, respectively. If E

i
s ∈ Cs

and kerCs d
i
s = imCs d

i−1
s , i= 1,2, in Cs for all s, then imCs d

i−1
s coincide with the

image of di−1
s in Coh(Xs) for i = 1,2 and kerCs d

1
s coincides with the kernel of

d1s in Coh(Xs). In particular, E
•
:E2/d1(E1)→E3 is a family of objects in Cs,

and we get an exact triangle:

(1.100) kerd0 →E• →E
• → kerd0[1]

where kerd0 is the kernel of d0 in Coh(X), which is flat over S.

Proof

(1) Let K be the kernel of ξ : (imd1)s →E2
s . Then we have an exact sequence

(1.101) (kerd1)s → ker(d1s)→K → 0.

Since the image of E0
s → (kerd1)s → E1

s is d0s(E
0
s ) = ker(d1s), K = 0. The other

claims easily follow from this.

(2) By our assumption, imCs d
i
s = cokerCs d

i−1
s for i = 1,2. Since imCs d

i
s

is a subobject of Ei+1
s for i = 0,1,2, imCs d

i
s ∈ Coh(Xs) for i = 0,1,2 and

H−1(cokerCs d
i−1
s ) = H−1(imCs d

i
s) = 0 for i = 1,2. Then H0(imCs d

i−1
s ) →

H0(Ei
s) is injective for i = 1,2, which implies that imCs d

i−1
s is the image of

di−1
s in Coh(Xs) for i= 1,2. By the exact sequence

(1.102) 0→H0(kerCs d
1
s)→H0(E1

s )→H0(imCs d
1
s)→ 0

and the injectivity of H0(imCs d
1
s) → H0(E2

s ), kerCs d
1
s is the kernel of d1s in

Coh(Xs). Then the other claims follow from (1). �
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1.3.1. Quot schemes

LEMMA 1.3.9

Let A be an OY -algebra on Y which is flat over S. Let B be a coherent A-

module on Y which is flat over S. There is a closed subscheme QuotA,P
B/Y/S of

Q := QuotPB/Y/S parameterizing all quotient As-modules F of Bs with χ(F (n)) =

P (n).

Proof

Let Q and K be the universal quotient and the universal subsheaf of B⊗OS
OQ:

(1.103) 0→K→B ⊗OS
OQ →Q→ 0.

Then we have a homomorphism

(1.104) K⊗OS
A→B ⊗OS

OQ ⊗OS
A→B ⊗OS

OQ →Q

induced by the multiplication map B ⊗OS
OQ ⊗OS

A → B ⊗OS
OQ. Let Z =

QuotA,P
B/Y/S be the zero locus of this homomorphism. Then for an S-morphism

T →Q, K⊗OS
OT is an A⊗OS

OT -submodule of B⊗OS
OT if and only if T →Q

factors through Z. �

COROLLARY 1.3.10

Let G′ be a family of objects in Cs, s ∈ S. Then there is a quot scheme QuotC,PG′/X/S

parameterizing all quotients G′
s → E in Cs, where P is the Gs-twisted Hilbert

polynomial of the quotient object E,s ∈ S.

Proof

We set A := π∗(G
∨ ⊗OX

G). Then A is a flat family of OY -algebras on Y , and

we have an equivalence between the category of AT -modules F flat over T and

the category of families E of objects in Ct, t ∈ T , by F �→ π−1
T (F )⊗π−1(AT ) GT .

So the claim follows from Lemma 1.3.9 (cf. B = π∗(G
∨ ⊗G′)). �

1.4. Stability for perverse coherent sheaves
For a nonzero object E ∈ Cs, χ(Gs,E(n)) = χ(Rπ∗(G

∨
s ⊗ E)(n)) > 0 for n� 0

and there are integers ai(E) such that

(1.105) χ
(
Gs,E(n)

)
=
∑
i

ai(E)

(
n+ i

i

)
.

DEFINITION 1.4.1 (SIMPSON)

Assume that Cs is a tilting of Coh(Xs) for all s ∈ S.

(1) An object E ∈ Cs is d-dimensional if ad(E)> 0 and ai(E) = 0, i > d.

(2) An object E ∈ Cs of dimension d is Gs-twisted semistable if

(1.106) χ
(
Gs, F (n)

)
≤ ad(F )

ad(E)
χ
(
Gs,E(n)

)
, n� 0,

for all proper subobjects F of E.
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(3) An object E ∈ Cs of dimension d is μ-semistable if E does not contain a

subobject F �= 0 with ad(F ) = 0 and

(1.107) ad−1(F )≤ ad(F )

ad(E)
dd−1(E),

for all proper subobjects F of E.

REMARK 1.4.2

(1) If dimE > dimπ(Zs) and E is Gs-twisted semistable, then H−1(E) = 0.

Indeed H−1(E)[1] is a subobject of E with

(1.108) degχ
(
Gs,H

−1(E)(n)
)
≤ dimπ(Zs)< degχ

(
Gs,E(n)

)
.

(2) Assume that E ∈Coh(Xs)∩ Cs. For an exact sequence

(1.109) 0→ F →E → F ′ → 0

in Cs, we have an exact sequence in Coh(Xs),

(1.110) H−1(F ′)
ϕ→H0(F )→H0(E)→H0(F ′)→ 0.

Since χ(Gs,H
0(F )(n))≤ χ(Gs, (cokerϕ)(n)), in order to check the semistability

of E, we may assume that H−1(F ′) = 0.

PROPOSITION 1.4.3

There is a coarse moduli scheme M
C,P
X/S → S of Gs-twisted semistable objects

E ∈ Cs with the Gs-twisted Hilbert polynomial P . M
C,P
X/S is a projective scheme

over S.

Proof

The claim is due to Simpson [S, Theorem 4.7]. We set A := π∗(G
∨⊗G). If we set

Λ0 =OY and Λk =A for k ≥ 1, then a sheaf of A-modules is an example of Λ-

modules in [S]. Let Qss be an open subscheme of QuotA,P
A(−n)⊗V/Y/S consisting of

semistable As-modules on Ys, s ∈ S, where V is a vector space of dimension P (n).

Then we have the moduli space M
A,P

Y/S → S of semistable As-modules on Ys as a

geometric invariant theory (GIT) quotient Qss//GL(V ), where we use a natural

polarization on the embedding of the quot scheme into the Grassmannian. By a

standard argument due to Langton, we see that M
A,P

Y/S is projective over S. Since

the semistable As-modules correspond to Gs-twisted semistable objects via the

Morita equivalence (see Proposition 1.3.7), we get the moduli space M
C,P
X/S → S,

which is projective over S. �

We consider a natural relative polarization on M
C,P
X/S . Let Q

ss be the open sub-

scheme of QuotC,PG(−n)⊗V/X/S
∼=QuotA,P

A(−n)⊗V/Y/S as in the above proof. Thus we

have M
C,P
X/S = Qss//GL(V ). Let Q be the universal quotient on Qss ×X . Then

Q|{q}×X is G-twisted semistable for all q ∈Qss. By the construction of the mod-

uli space, we have a GL(V )-equivariant isomorphism V → pQss∗(G
∨⊗Q(n)). We
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set

Lm,n := detpQss!

(
G∨ ⊗Q(n+m)

)⊗P (n)

⊗ detpQss!

(
G∨ ⊗Q(n)

)⊗(−P (m+n))
(1.111)

= detpQss!

(
G∨ ⊗Q(n+m)

)⊗P (n) ⊗ detV ⊗(−P (m+n)).

We note that Rπ∗(G
∨ ⊗ Q) gives the universal quotient A-module on Y ×

QuotA,P
A(−n)⊗V/Y/S . By the construction of the moduli space, we get the following.

LEMMA 1.4.4

For m� n� 0, Lm,n is the pullback of a relatively ample line bundle on M
C,P
X/S .

Assume that S = Spec(C) and dimX = 2. We take H ∈ |OX(1)|.

DEFINITION 1.4.5

(1) For e ∈ K(X)top, M
G

H(e) is the moduli space of G-twisted semistable

objects E of C with τ(E) = e and MG
H (e) the open subscheme consisting of

G-twisted stable objects.

(2) Let MH(e)μ-ss (resp., MG
H(e)ss,MG

H(e)s) be the moduli stack of μ-

semistable (resp., G-twisted semistable, G-twisted stable) objects E of C with

τ(E) = e.

We set r0 := rke and ξ0 := c1(e). Then we see that

ch
(
P (n)G∨((n+m)H

)
− P (n+m)G∨(nH)

)
=m
[ (rkG)r0

2
(H2)

{
(m− 2n) chG∨

− n(n+m)
(
(rkG)H −

(
c1(G),H

)
�X
)}

(1.112)

+
(
H, (rkG)ξ0 − r0c1(G)− (rkG)r0

2
KX

)
×
(
− chG∨ +

n(n+m)

2
(H2)(rkG)�X

)]
.

LEMMA 1.4.6

We take ζ ∈K(X) with ch(ζ) = r0H+(ξ0,H)�X and assume that r0 > 0. Assume

that τ(G) ∈ Ze. If χ(e,e) = 0 and E ∼=E ⊗KX for a G-twisted stable objects E

with τ(E) = e and MG
H(e)ss is smooth at E, then detpQss!(Q ⊗ ζ∨) ∼=

detpQss!(Q∨ ⊗ ζ)∨ is the pullback of an ample line bundle L(ζ) on M
G

H(e).

Proof

We first show that detpQss!(Q⊗E∨)∼=OQss as a PGL(V )-equivariant line bundle

for E ∈MG
H(e)s with E ∼=E ⊗KX . We set U := {q ∈Qss | Q|{q}×X �∼=E}. Then

Hom(Q|{q}×X ,E) = Hom(E,Q|{q}×X) = 0 for x ∈ U . Since χ(e,e) = 0, we also
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have Ext1(E,Q|{q}×X) = 0. Hence detpQss!(Q ⊗ E∨)|U ∼= OU . Since

codimQss(Qss \U)≥ 2 and Qss is smooth in a neighborhood of Qss \U , we have

detpQss!(Q⊗E∨)∼=OQss as a PGL(V )-equivariant line bundle. We set τ(G) = λe,

λ ∈ Z>0. Since r0KX = 0, we have (H, (rkG)ξ0−r0c1(G)− (rkG)r0
2 KX) = 0. Then

we get P (n)G∨((n+m)H)−P (n+m)G∨(nH)≡mn(n+m)λζ∨ mod Ze∨. By

Lemma 1.4.4, we get our claim. �

REMARK 1.4.7

If E ∼=E⊗KX and MG
H(e)ss is smooth at E, then for an irreducible component

M of MG
H(e)s containing E, we see that M is smooth and E ∼=E ⊗KX for all

E ∈M.

Indeed for E′ ∈M, we have dimExt1(E′,E′) = 1+dimHom(E′,E′⊗KX). If

Hom(E′,E′ ⊗KX) = 0 for E′ ∈M, then dimExt1(E′,E′) = 1 and M is smooth

of dimension zero at E′. Since M is irreducible and M is smooth of dimension 1

at E, we have Hom(E′,E′⊗KX) �= 0 for all E′ ∈M. Then we have E′ ∼=E′⊗KX

and dimExt1(E′,E′) = 2, which implies that M is smooth.

For a family E of G-twisted semistable objects on X parameterized by S, we have

a morphism f : S →M
G

H(e) such that f(s) is the S-equivalence class of E|{s}×X .

Then we have detpS!(E ⊗ ζ∨)∼= f∗(L(ζ)).
Indeed we have a morphism S → [Qss/GL(V )] =MG

H(e)ss; that is, we have

a principal GL(V )-bundle h : P → S and a GL(V )-equivariant morphism f :

P →Qss which induces a GL(V )-equivariant isomorphism (h× 1X)∗(E) ∼= (f ×
1X)∗(Q). Hence we have detpS!(E ⊗ ζ∨)∼= f∗(L(ζ)).

More generally we assume that E is a family of G-twisted semistable objects

as twisted objects, that is, E is a collection of families Ei on Si ×X such that

(i) S =
⋃

i Si is an open covering of S;

(ii) there are isomorphisms ϕij : Ei|(Si∩Sj)×X
∼= Ej|(Si∩Sj)×X ; and

(iii) ϕki ◦ϕjk ◦ϕij is a multiplication (see Section 1.7).

By these conditions, the collection of line bundles detpSi!(Ei ⊗ ζ∨) ∈ Pic(Si)

defines a line bundle on S. We denote this line bundle by detpS!(E ⊗ ζ∨).

LEMMA 1.4.8

For the morphism f : S → M
G

H(e) such that f(s) is the S-equivalence class of

E|{s}×X , we have an isomorphism

detpS!(E∨ ⊗ ζ)∨ ∼= detpS!(E ⊗ ζ∨)∼= f∗(L(ζ)).
Proof

For the proof, we take an object F ∈ C such that Wi := pSi∗(Ei ⊗F∨) are locally

free. For the twisted sheaf W := ({Wi},{ϕij}) we consider the projective bundle

φ : P(W ) → S. We set Pi := φ−1(Si). Since OPi(1) defines a twisted sheaf on

P = P(W ), we have a family of untwisted objects E ′ such that (φ×1)∗(E|Si×X)∼=
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E ′
|Pi×X ⊗OPi(1). For the family E ′, we have a morphism f ′ : P →M

G

H(e) such

that detpP !(E ′⊗ ζ∨)∼= f ′∗(L(ζ)). We note that φ∗ : Pic(S)→ Pic(P ) is injective.

So we regard Pic(S) as a subset of Pic(P ). It is easy to see that detpP !(E ′⊗ζ∨)∼=
φ∗(detpS!(E ⊗ ζ∨)). Hence the claim holds. �

DEFINITION 1.4.9

Assume that rke> 0.

(1) P (e) is the set of subobjects E′ of E ∈MH(e)μ−ss such that

(1.113)
(c1(G

∨ ⊗E),H)

rkE
=

(c1(G
∨ ⊗E′),H)

rkE′ .

(2) For E′ ∈ P (e), we define a wall WE′ ⊂ NS(X) ⊗ R as the set of α ∈
NS(X)⊗R satisfying

(1.114)
(
α,

c1(G
∨ ⊗E)

rkE
− c1(G

∨ ⊗E′)

rkE′

)
+
(χ(G∨ ⊗E)

rkE
− χ(G∨ ⊗E′)

rkE′

)
= 0.

Since {τ(E′) |E′ ∈ P (e)} is a finite set,
⋃

E′ WE′ is finite. If α ∈NS(X)⊗Q does

not lie on any WE′ , we say that α is general. If a local projective generator G′

satisfies α := c1(G
′)/ rkG′ − c1(G)/ rkG /∈

⋃
E′ WE′ , then we also say that G′ is

general.

LEMMA 1.4.10

If G is general, that is, if 0 /∈
⋃

E′ WE′ , then for E′ ∈ P (e),

(1.115)
χ(G,e)

rke
=

χ(G,E′)

rkE′ ⇐⇒ e

rke
=

τ(E′)

rkE′ ∈K(X)top ⊗Q.

In particular, if e is primitive, then M
G

H(e) =MG
H (e) for a general G.

1.5. A generalization of stability for zero-dimensional objects
It is easy to see that every zero-dimensional object is Gs-twisted semistable. Our

definition is not sufficient in order to get a good moduli space. So we introduce

a refined version of twisted stability.

DEFINITION 1.5.1

Let G,G′ be families of local projective generators of Cs. A zero-dimensional

object E is (Gs,G
′
s)-twisted semistable if

(1.116)
χ(G′

s,E1)

χ(Gs,E1)
≤ χ(G′

s,E)

χ(Gs,E)

for all proper subobjects E1 of E.

By a modification of Simpson’s construction of moduli spaces, we can construct

the coarse moduli scheme of (Gs,G
′
s)-twisted semistable objects. From now on,

we assume that S = Spec(C) for simplicity.
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LEMMA 1.5.2

Let G be a locally free sheaf on X which is a local projective generator of C.

(1) Assume that there is an exact sequence in C,

(1.117) 0→E′ → V0 → V1 → · · · → Vr →E → 0

such that Vi are local projective objects of C. If r ≥ dimX, then E′ is a local

projective object of C.
(2) For E ∈ K(X), there is a local projective generator G′ of C such that

E =G′ −NG(−n), where N and n are sufficiently large integers.

Proof

(1) We first prove that Hi(Rπ∗RHomOX
(E,F )) = 0, i > dimX+1, for all F ∈ C.

Since C is a tilting of Coh(X) (see Proposition 1.1.13), Hi(E) =Hi(F ) = 0 for

i �=−1,0. By using a spectral sequence, we get

(1.118) Hi
(
Rπ∗RHomOX

(
H−p(E)[p],H−q(F )[q]

))
= 0

for i > dimX + 1. Hence we get Hi(Rπ∗RHomOX
(E,F )) = 0, i > dimX + 1.

Then we see that

(1.119) Hi
(
Rπ∗RHomOX

(E′, F )
)∼=Hi+r+1

(
Rπ∗RHomOX

(E,F )
)
= 0

for all integer with i >max{dimX − r,0}= 0. Therefore E′ is a local projective

object.

(2) We first prove that there are local projective generators G1,G2 such that

E =G1 −G2. We may assume that E ∈ C. We take a resolution of E,

0→ E′ →G(−nr)
⊕Nr

φ→G(−nr−1)
⊕Nr−1 → · · ·

(1.120)
→ G(−n0)

⊕N0 →E → 0.

If r ≥ dimX , then (1) implies that E′ is a local projective object. We set r :=

2j0+1. We setG1 :=E′⊕
⊕j0

j=0G(−n2j)
⊕N2j andG2 :=

⊕j0
j=0G(−n2j+1)

⊕N2j+1 .

Then G1 and G2 are local projective generators, and E = G1 −G2. We take a

resolution

(1.121) 0→G′
2 →G(−n)⊕N →G2 → 0

such that G′
2 ∈ C. Then we see that Rπ∗RHomOX

(G′
2, F ) ∈ Coh(Y ) for any

F ∈ C. Since E = (G1 ⊕G′
2)−G(−n)⊕N and G1 ⊕G′

2 is a local projective gen-

erator, we get our claim. �

DEFINITION 1.5.3

Let A be an element of K(X)⊗Q, and let G be a local projective generator. A

zero-dimensional object E is (G,A)-twisted semistable if

(1.122)
χ(A,F )

χ(G,F )
≤ χ(A,E)

χ(G,E)

for all proper subobjects F of E.
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By Lemma 1.5.2, we write N ′A = G′ − NG(−n) ∈ K(X), where G′ is a local

projective generator and n,N,N ′ > 0. Then

(1.123)
χ(G′,E)

χ(G,E)
=N ′χ(A,E)

χ(G,E)
+N.

Hence E is (G,G′)-twisted semistable if and only if E is (G,A)-twisted semistable.

Thus we get the following proposition.

PROPOSITION 1.5.4

Assume that dimX = 2. Let A be an element of K(X)⊗Q, and let G be a local

projective generator. Let v be a Mukai vector of a zero-dimensional object.

(1) There is a coarse moduli scheme M
G,A

OX(1)(v) of (G,A)-twisted semistable

objects of C.
(2) If v is primitive and A is general in K(X)⊗Q, then M

G,A

OX(1)(v) consists

of (G,A)-twisted stable objects. Moreover, M
G,A

OX(1)(v) is a fine moduli space.

REMARK 1.5.5

As is well known, if there is E ∈K(X) with χ(E,v) = 1, then there is a universal

family. If particular, for v = �X , we have a universal family. If v �= �X , then the

moduli space is a point. So obviously we have a universal family.

REMARK 1.5.6

If v(E) = �X and rkA = 0, then E is (G,A)-twisted semistable if and only if

χ(A,E′) ≤ 0 for all subobjects E′ of E in C. Thus the semistability does not

depend on the choice of G.

REMARK 1.5.7

In Section 1.7, we deal with the twisted sheaves. In this case, we still have the

moduli spaces of zero-dimensional stable objects, but M
G,A

OX(1)(�X) does not have

a universal family.

DEFINITION 1.5.8

MG,A
OX(1)(v)

ss denotes the moduli stack of (G,A)-twisted semistable objects E

with v(E) = v.

1.6. Construction of the moduli spaces of A-modules of dimension zero
By Proposition 1.1.7, we have an equivalence C →CohA(Y ). We set B := π∗(G

∨⊗
G′). Then B is a local projective generator of CohA(Y ). For all F ∈ CohA(Y ),

RHomA(B, F ) = HomA(B, F ) and RHomA(B, F ) = 0 if and only if F = 0. In

particular, we have a surjective morphism

(1.124) φ :HomA(B, F )⊗A B→ F.
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For F ∈CohA(Y ), we set

(1.125) χA(B, F ) := χ
(
RHomA(B, F )

)
.

For F ∈CohA(Y ), π−1(F )⊗π−1(A) G is (G,G′)-twisted semistable if

(1.126)
χA(B, F1)

χ(F1)
≤ χA(B, F )

χ(F )

for all proper sub-A-modules F1 of F . We define the (A,B)-twisted semistability

by this inequality.

PROPOSITION 1.6.1

There is a coarse moduli scheme of (A,B)-twisted semistable A-modules of dimen-

sion zero.

Proof of Proposition 1.6.1

Let F be an A-module of dimension zero. Then HomA(B, F )⊗B→ F is surjec-

tive. Hence all zero-dimensional objects F are parameterized by a quot scheme

Q := QuotA,m
V⊗B/Y/C, where m= χ(F ) and dimV = χA(B, F ). Let V ⊗OQ ⊗B→

F be the universal quotient. For simplicity, we set Fq := F|{q}×Y , q ∈Q. For a

sufficiently large integer n, we have a quotient V ⊗H0(Y,B(n))→H0(Y,F (n)).

We set W :=H0(Y,B(n)). Then we have an embedding

(1.127) QuotA,m
V⊗B/Y/C ↪→Gr(V ⊗W,m).

This embedding is equivariant with respect to the natural action of PGL(V ).

The following is well known.

LEMMA 1.6.2

Let α : V ⊗W → U be a point of G := Gr(V ⊗W,m). Then α belongs to the set

Gss of semistable points if and only if

(1.128)
dimU

dimV
≤ dimα(V1 ⊗W )

dimV1

for all proper subspaces V1 �= 0 of V . If the inequality is strict for all V1, then α

is stable.

We set

(1.129) Qss :=
{
q ∈Q

∣∣Fq is (A,B)-twisted semistable
}
.

For q ∈ Qss, V → HomA(B, F ) is an isomorphism. We only prove that Qss =

Gss ∩Q. Then Proposition 1.6.1 easily follows.

For an A-submodule F1 of F , we set V1 := HomA(B, F1). Then we have a

surjective homomorphism V1 ⊗B → F1. Conversely, for a subspace V1 of V , we

set F1 := im(V1 ⊗B→ F ). Then V1 →HomA(B, F1) is injective.

We set

(1.130) F :=
{
im(V1 ⊗B→Fq)

∣∣ q ∈Q,V1 ⊂ V
}
.
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Since F is bounded, we can take an integer n in the definition of W such that

V1⊗W →H0(Y,F1) is surjective for all F1 ∈ F. Assume that Fq is (A,B)-twisted
semistable. For any V1 ⊂ V , we set F1 := im(V1 ⊗ B →Fq). Then α(V1 ⊗W ) =

H0(Y,F1). Hence

dimα(V1 ⊗W )

dimV1
≥ χ(F1)

dimHomA(B, F1)
(1.131)

=
χ(F1)

χA(B, F1)
≥ χ(Fq)

χA(B,Fq)
=

dimα(V ⊗W )

dimV
.

Thus q ∈Gss.

We take a point q ∈Gss ∩Q. We first prove that ψ : V →HomA(B,Fq) is an

isomorphism. We set V1 := kerψ. Since V1⊗B→Fq is zero, we get α(V1⊗W ) = 0.

Then

(1.132)
dimU

dimV
≤ dimα(V1 ⊗W )

dimV1
= 0,

which is a contradiction. Therefore ψ is injective. Since dimV = dimHomA(B,
Fq), ψ is an isomorphism. Let F1 �= 0 be a proper A-submodule of Fq . We set

V1 := HomA(B, F1). Then

(1.133)
χ(F1)

dimHomA(B, F1)
≥ dimα(V1 ⊗W )

dimV1
≥ dimα(V ⊗W )

dimV
=

χ(Fq)

χA(B,Fq)
.

Hence Fq is (A,B)-twisted semistable. If q is a stable point, then we also see that

Fq is (A,B)-twisted stable.

1.7. Twisted case
1.7.1. Definition

Let X =
⋃

iXi be an analytic open covering of X , and let β = {βijk ∈H0(Xi ∩
Xj ∩ Xk,O×

X)}, a Cech 2-cocycle of O×
X . We assume that β defines a torsion

element [β] of H2(X,O×
X).

DEFINITION 1.7.1

A coherent β-twisted sheaf E consists of ({Ei},{ϕij}) such that

(i) Ei is a coherent sheaf on Xi;

(ii) ϕij :Ei|Xi∩Xj
→Ej|Xi∩Xj

is an isomorphism;

(iii) ϕji = ϕ−1
ij ;

(iv) ϕki ◦ϕjk ◦ϕij = βijk idXi∩Xj∩Xk
.

Let G be a locally free β-twisted sheaf of rank r, and let P := P(G∨) be the asso-

ciated projective bundle over X (cf. [Y4, Section 1.1]). Let w(P ) ∈H2(X,Z/rZ)

be the characteristic class of P (see [Y4, Definition 1.2]). Then [β] is trivial if

and only if w(P ) ∈ im(NS(X)→H2(X,Z/rZ)) (see [Y4, Lemma 1.4]).

Let Cohβ(X) be the category of coherent β-twisted sheaves on X , and

let Dβ(X) be the bounded derived category of Cohβ(X). Let Kβ(X) be the

Grothendieck group of Cohβ(X). Then similar statements in Lemma 1.1.11 hold
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for Cohβ(X). Then all results in Sections 1.3 and 1.4 hold. In particular, if a

locally free β-twisted sheaf G defines a torsion pair, then we have the mod-

uli of G-twisted semistable objects. Replacing ζ ∈ K(X) by ζ ∈ Kβ(X) with

c1(ζ) = r0H and χ(G⊗ ζ∨) = 0, Lemma 1.4.6 also holds.

1.7.2. Chern character

We have a homomorphism

chG :Dβ(X)→Hev(X,Q),
(1.134)

E �→ ch(G∨ ⊗E)√
ch(G∨ ⊗G)

.

Obviously chG(E) depends only on the class in Kβ(X). Since

(1.135) chG(E)∨ chG(F ) =
ch((G∨ ⊗E)∨ ⊗ (G∨ ⊗ F ))

ch(G∨ ⊗G)
= ch(E∨ ⊗ F ),

we have the following Riemann–Roch formula:

(1.136) χ(E,F ) =

∫
X

chG(E)∨ chG(F )tdX .

Assume that X is a surface. For a torsion G-twisted sheaf E, we can attach

the codimension 1 part of the scheme-theoretic support Div(E) as in the usual

sheaves. Then we see that

(1.137) chG(E) =
(
0,
[
Div(E)

]
, a
)
, a ∈Q,

where [Div(E)] denotes the homology class of the divisor Div(E), and we regard it

as an element of H2(X,Z) by the Poincaré duality. More generally, if E ∈Dβ(X)

satisfies rkHi(E) = 0 for all i, then

(1.138) chG(E) =
(
0,
∑
i

(−1)i
[
Div
(
Hi(E)

)]
, a
)
, a ∈Q.

We set c1(E) :=
∑

i(−1)i[Div(Hi(E))].

REMARK 1.7.2

If H3(X,Z) is torsion free, then we have an automorphism η of H∗(X,Q) such

that the image of η ◦ chG is contained in ch(K(X)) ⊂ Z ⊕ H2(X,Z) ⊕ H4(X,

(1/2)Z) and (1.136) holds if we replace chG by η ◦ chG (cf. [Y4]). We first note

that

(1.139) ch
(
K(X)

)
=
{
(r,D,a)

∣∣ r ∈ Z,D ∈H2(X,Z), a− (D,KX)/2 ∈ Z
}
.

Replacing the statement of [Y4, Lemma 3.1] by

c2(E
∨ ⊗E) + r(r− 1)

(
w(E),KX

)
(1.140)

≡−(r− 1)
((
w(E)2

)
− r
(
w(E),KX

))
mod 2r,

we can prove a claim similar to [Y4, Lemma 3.3].
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LEMMA 1.7.3

Let E be a β-twisted sheaf of rkE = 0. Then

(1.141)
[
χ(G,E) mod rZ

]
≡−w(P )∩

[
Div(E)

]
,

where we identified H0(X,Z/rZ) with Z/rZ.

Proof

Since χ(G,E) and [Div(E)] are additive, it is sufficient to prove the claim for pure

sheaves. If dimE = 0 as an object of Cohβ(X), then r | χ(G,E) and Div(E) = 0.

Hence the claim holds. We assume that E is purely 1-dimensional. Then E is a

twisted sheaf on C := Div(E). Since C is a curve, there is a β-twisted line bundle

L on C, and we have an equivalence

ϕ : Cohβ(C)→ Coh(C),
(1.142)

E �→ E ⊗L∨.

Then we can take a filtration 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn =E of E such that Div(Fi/

Fi−1) are reduced and irreducible curves and Fi/Fi−1 are torsion-free β-twisted

sheaves of rank 1 on Div(Fi/Fi−1). Replacing E by Fi/Fi−1, we may assume

that E is a twisted sheaf of rank 1 on an irreducible and reduced curve C =

Div(E). Then χ(G,E) = χ(ϕ(G|C)
∨⊗ϕ(E)) =

∫
C
c1(ϕ(G|C)

∨)+rχ(ϕ(E)). Since

w(P )|C =w(P|C) = c1(ϕ(G|C)) mod rZ, [χ(G,E) mod rZ]≡−w(P )∩ [C]. �

COROLLARY 1.7.4

For an object E of Dβ(X), assume that rkHi(E) = 0 for all i. Then

(1.143)
[
χ(G,E) mod rZ

]
≡−w(P )∩

[
Div(E)

]
.

Moreover if c1(E) = 0, then chG(E) ∈ Z�X .

Proof

The second claim follows from
∫
X
chG(E) = χ(G,E)/r = (χ(G,E)/r)

∫
X
�X . �

2. Perverse coherent sheaves for the resolution of rational double points

2.1. Perverse coherent sheaves on the resolution of rational singularities
Let Y be a projective normal surface with at worst rational singularities, and let

π :X → Y be the minimal resolution. Let pi, i= 1,2, . . . , n be the singular points

of Y , and let Zi := π−1(pi) =
∑ti

j=1 aijCij be their fundamental cycles. By the

assumption, we have R1π∗(OX) = 0, and Cij are smooth rational curves on X .

Let β be a 2-cocycle of O×
X whose image in H2(X,O×

X) is a torsion ele-

ment. For β-twisted line bundles Lij on Cij , we shall define abelian categories

Per(X/Y,{Lij}) and Per(X/Y,{Lij})∗. Let Api be the unique line bundle on Zi

such that Api|Cij
= Lij(1) (see Lemma 1.2.16).

PROPOSITION 2.1.1

(1) There is a locally free sheaf G such that Rπ∗(G
∨ ⊗Lij) = 0 for all i, j.
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(2) C(G) is the tilting of Cohβ(X) with respect to the torsion pair (T,S) such

that

S :=
{
E ∈Cohβ(X)

∣∣E is generated by subsheaves of Lij

}
,

(2.1)
T :=

{
E ∈Cohβ(X)

∣∣Hom(E,Lij) = 0
}
.

(3) C(G)∗ is the tilting of Cohβ(X) with respect to the torsion pair (T ∗, S∗)

such that

S∗ :=
{
E ∈Cohβ(X)

∣∣E is generated by subsheaves of Api ⊗ ωZi

}
,

(2.2)
T ∗ :=

{
E ∈Cohβ(X)

∣∣Hom(E,Api ⊗ ωZi) = 0
}
.

For the proof of (1), we shall use the deformation theory of a coherent twisted

sheaf.

DEFINITION 2.1.2

For a coherent β-twisted sheaf E on a scheme W , Def(W,E) denotes the local

deformation space of E fixing detE.

For a complex E ∈Dβ(X), let

(2.3) Exti(E,E)0 := ker
(
Exti(E,E)

tr→Hi(X,OX)
)

be the kernel of the trace map. If Ext2(E,E)0 = 0, then Def(W,E) is smooth

and the Zariski tangent space at E is Ext1(E,E)0. The following is well known.

LEMMA 2.1.3

Let D be a divisor on X. For E ∈Cohβ(X) with rkE > 0, we have a torsion-free

β-twisted sheaf E′ such that τ(E′) = τ(E)− nτ(Cx) and Ext2(E′,E′(D))0 = 0.

Proof

For a locally free β-twisted sheaf E, we consider a general surjective homo-

morphism φ : E →
⊕n

i=1Cxi , xi ∈X . If n is sufficiently large, then E′ := kerφ

satisfies the claim. �

LEMMA 2.1.4

Let C be an effective divisor on X. For (r,L) ∈ Z>0 × Pic(C), the moduli stack

of locally free sheaves E on C such that (rkE,detE) = (r,L) is irreducible.

Proof

For a locally free sheaf E on C we consider φ : H0(X,E(k)) ⊗ OC(−k) → E.

Assume that φ is surjective. Then there is a subvector space V ⊂H0(X,E(k)) of

dimV = r−1 such that ψ : V ⊗OC(−k)→E is injective for any point of C. Then

cokerψ is a line bundle which is isomorphic to det(E) ⊗ OC((r − 1)k). Hence

E is parameterized an affine space Ext1OC
(L ⊗ OC((r − 1)k),OC(−k) ⊗ V ) =
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H1(C,L∨(−rk)⊗ V ). Since the surjectivity of φ is an open condition and φ is

surjective for k� 0, we get our claim. �

Proof of Proposition 2.1.1

(1) For a locally free β-twisted sheaf G1 on X , we set gij := χ(G1,Lij). Let

α ∈
⊕n

i=1

⊕ti
j=1Q[Cij ] be a Q-divisor such that rkG1(α,Cij) = gij . We take a

locally free sheaf A ∈Coh(X) such that c1(A)/ rkA= α. Then χ(G1 ⊗A,Lij) =

rkA(gij − rkG1(α,Cij)) = 0 for all i, j. By Lemma 2.1.3, there is a torsion-free β-

twisted sheaf G on X such that τ(G) = τ(G1⊗A)−kτ(Cx) and Hom(G,G(KX +

Cij))0 = 0 for all i, j. We consider the restriction morphism

(2.4) φij : Def(X,G)→Def(Cij ,G|Cij
).

Since Ext2(G,G(−Cij))0 = 0, we get Ext2(G,G)0 = 0. Thus Def(X,G) is smooth.

We also have the smoothness of Def(Cij ,G|Cij
), by the local freeness of G|Cij

.

We consider the homomorphism of the tangent spaces

(2.5) Ext1OX
(G,G)0 → Ext1OCij

(G|Cij
,G|Cij

)0.

Then it is surjective by Ext2(G,G(−Cij))0 = 0. Therefore φ is submersive. By

the equivalence ϕ : Cohβ(Cij)→ Coh(Cij) in (1.142), we have an isomorphism

Def(Cij ,G|Cij
) → Def(Cij , ϕ(G|Cij

)). Since χ(G,Lij) = 0, det(G|Cij
⊗ L∨

ij) =

OCij (rkG). Then Lemma 2.1.4 implies that G deforms to a β-twisted sheaf such

that G|Cij
∼= Lij(1)

⊕ rkG. Since these conditions are open, there is a locally free

β-twisted sheaf G such that G|Cij
∼= Lij(1)

⊕ rkG for all i, j. By taking the double

dual of G, we get (1).

(2) Note that Lij = Api ⊗OCij (−1). By Propositions 1.2.23 and 1.1.26, we

get the claim. For (3), we use Propositions 1.2.26 and 1.1.26. �

DEFINITION 2.1.5

(1) We set Per(X/Y,{Lij}) := C(G) and Per(X/Y,{Lij})∗ := C(G)∗.

(2) If β is trivial, then we can write Lij = OCij (bij). In this case, we set

Per(X/Y,b1, . . . ,bn) := Per(X/Y,{Lij}) and Per(X/Y,b1, . . . ,bn)
∗ := Per(X/Y,

{Lij})∗, where bi := (bi1, bi2, . . . , biti).

REMARK 2.1.6

If bi = (−1,−1, . . . ,−1) for all i, then Per(X/Y,b1, . . . ,bn) =
−1Per(X/Y ).

DEFINITION 2.1.7

We set

A0(bi) := Api ,
(2.6)

A0(bi)
∗ := Api ⊗ ωZi .

We collect easy facts on A0(bi) and A0(bi)
∗ which follow from Lemmas 1.2.22

and 1.2.27.
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LEMMA 2.1.8
(1) (a) For E =A0(bi), we have

(2.7) Hom
(
E,OCij (bij)

)
=Ext1

(
E,OCij (bij)

)
= 0, 1≤ j ≤ ti,

and there is an exact sequence

(2.8) 0 −−−−→ F −−−−→ E −−−−→ Cx −−−−→ 0

such that F is a successive extension of OCij (bij) and x ∈ Zi.

(b) Conversely, if E satisfies these conditions, then E ∼=A0(bi).

(2) (a) For E =A0(bi)
∗, we have

(2.9) Hom
(
OCij (bij),E

)
=Ext1

(
OCij (bij),E

)
= 0, 1≤ j ≤ ti,

and there is an exact sequence

(2.10) 0 −−−−→ E −−−−→ F −−−−→ Cx −−−−→ 0

such that F is a successive extension of OCij (bij) and x ∈ Zi.

(b) Conversely, if E satisfies these conditions, then E ∼=A0(bi)
∗.

2.2. Moduli spaces of zero-dimensional objects
Let π :X → Y be the minimal resolution of a normal projective surface Y , and

let p1, p2, . . . , pn be the rational double points of Y as in Section 2.1. We set

Z :=
⋃

iZi. Let G be a locally free sheaf on X which is a tilting generator of the

category C := C(G) in Lemma 1.1.11. For α ∈ NS(X)⊗Q, we define α-twisted

semistability as (G,A)-twisted stability in Definition 1.5.3 with γ(A) = (0, α,0),

where γ is the homomorphism (0.8). Since rkA = 0, γ(A) is nothing but the

Mukai vector v(A) of A. In this subsection, we shall study the moduli of α-

twisted semistable objects. For brevity, we say that α-twisted semistability is

α-semistability.

DEFINITION 2.2.1

For simplicity, we set Xα :=M
G,α

OX(1)(�X). We also set Xα :=MG,α
OX(1)(�X)ss.

Zero-semistability means that the inequality (1.122) holds for A= 0. Hence every

zero-dimensional object is zero-semistable, and we have a natural morphism πα :

Xα →X0. We also see that zero-stable objects correspond to irreducible objects

of C.

LEMMA 2.2.2

For a zero-dimensional object E of C, there is a proper subspace T (E) of Ext2(E,

E) such that all obstructions for infinitesimal deformations of E belong to T (E).

Proof

Let E be a zero-dimensional object of C. We first assume that there is a curve

C ∈ |KX | such that C ∩ Supp(E) = ∅. Then H0(X,KX) → Hom(E,E(KX)) is
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nontrivial, which implies that the trace map

(2.11) tr : Ext2(E,E)→H2(X,OX)

is nontrivial. Since the obstruction for infinitesimal deformations of E lives in

ker tr, T (E) = ker tr is a proper subspace of Ext2(E,E). For a general case, we use

the covering trick. Let D be a very ample divisor on Y such that there is a smooth

curve B ∈ |2D| with B ∩ π(Supp(E) ∪ Z) = ∅ and |KY +D| contains a curve C

with C ∩ π(Supp(E)∪Z) = ∅. Since π is isomorphic over Y \π(Z), we may regard

B and C as divisors on X . Let φ : Ỹ → Y be the double covering branched

along B, and set X̃ = X ×Y Ỹ . We also denote X̃ → X by φ. Then |K
X̃
| =

|φ∗(KX+D)| contains φ∗(C). Since φ is étale over Y \B, we have a decomposition

π∗(E) = E1 ⊕E2, and Ext2(E,E)→ Ext2(Ei,Ei) are isomorphisms for i= 1,2.

Under these isomorphisms, T (E) is mapped into T (Ei). Since tri : Ext
2(Ei,Ei)→

H2(X̃,O
X̃
) are nontrivial, ker tri are proper subspaces of Ext2(Ei,Ei). Hence

T (E) is a proper subspace of Ext2(E,E). �

PROPOSITION 2.2.3

(1) For a zero-dimensional object E of C, E⊗KX
∼=E. In particular, Ext2(E,

E)∼=Hom(E,E)∨.

(2) For a zero-dimensional Mukai vector v, MG,α
OX(1)(v) is smooth of dimen-

sion 〈v2〉+ 2.

Proof

(1) Since KX = π∗(KY ) and dimπ(Supp(E)) = 0, we get E ⊗KX
∼= E. (2) For

E ∈MG,α
OX(1)(v), we have Hom(E,E) =C. Then Lemma 2.2.2 implies that T (E) =

0. Since dimExt1(E,E) = 〈v2〉+ 2, MG,α
OX(1)(v) is smooth of dimension 〈v2〉+ 2.

�

REMARK 2.2.4

There is another argument to prove the smoothness due to Bridgeland [Br1]. We

shall use the argument later. So for stable objects, we do not need Lemma 2.2.2,

but it is necessary for the study of properly semistable objects (see Proposi-

tion 2.2.8).

LEMMA 2.2.5

Assume that α ∈NS(X)⊗Q satisfies

(α,D) �= 0 for all D ∈NS(X) with (D2) =−2 and
(2.12) (

c1(OX(1)),D
)
= 0.

Then Xα =MG,α
OX(1)(�X); that is, Xα consists of α-stable objects.

Proof

Assume that E ∈Xα is S-equivalent to
⊕t

i=1Ei, where Ei are α-stable objects.

Then (α, c1(Ei)) = 0, (c1(OX(1)), c1(Ei)) = 0, and (c1(Ei)
2) = 〈v(Ei)

2〉 ≥ −2 for
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all i. Since 〈v(Ei), v(Ej)〉 ≥ 0 for Ei �∼=Ej and
∑

i,j〈v(Ei), v(Ej)〉= 〈v(E)2〉= 0,

(i) 〈v(Ei)
2〉=−2 for an i, or

(ii) 〈v(Ei)
2〉= 0 for all i.

By our choice of α, case (i) does not occur. In the second case, we see that v(Ei) =

ai�X , ai ∈ Z. Since χ(G,Ei) = rkGai > 0, we have ai > 0. Then �X = (
∑

i ai)�X
implies t= 1. Therefore E is α-stable. �

LEMMA 2.2.6

Let E be an object of D(X×X ′) such that ΦE∨

X→X′ :D(X)→D(X ′) is an equiva-

lence, E|X×{x′} ∈ C for all x′ ∈X ′, and v(E|X×{x′}) = �X . Then every irreducible

object of C appears as a direct summand of the S-equivalence class of E|X×{x′}.

Proof

Let E be an irreducible object of C. If Supp(E) �⊂ Z, then we have a non-

trivial morphism E → Cx, x /∈ Z. Since (C)|X\Z = Coh(X \ Z), Cx is an irre-

ducible object. Hence E ∼=Cx. Since χ(E|X×{x′},Cx) = 0 and ΦE∨

X→X′ is an equiv-

alence, there is a point x′ ∈ X ′ such that Hom(E|X×{x′},Cx) �= 0 or Hom(Cx,

E|X×{x′}) �= 0. Since v(Cx) = v(E|X×{x′}) = �X , we get Cx
∼= E|X×{x′}. If

Supp(E) ⊂
⋃

iZi, then we still have χ(E|X×{x′},E) = 0, since E|X×{x′} = Cx,

x /∈ Z, for a point x′ ∈ X ′. Then we have Hom(E|X×{x′},E) �= 0 or Hom(E,

E|X×{x′}) �= 0. Therefore our claim holds. �

LEMMA 2.2.7

If α is general, then Xα is irreducible.

Proof

Let X ′ be a connected component of Xα, and let E be a universal family on

X ×X ′. By Proposition 2.2.3, E|X×{x′} ⊗KX
∼= E|X×{x′} for all x′ ∈X ′. Then

we have an equivalence ΦE∨

X→X′ :D(X)→D(X ′). By the same argument as in

the proof of Lemma 2.2.6, we see that every E ∈Xα belongs to X ′. �

PROPOSITION 2.2.8

We have that X 0 is a locally complete intersection stack of dimension 1 and

irreducible. In particular, X 0 is a reduced stack.

Proof

Let Q be an open subscheme of a perverse quot scheme such that X0 is a GIT

quotient of a suitable GL(N)-action. Then X 0 is the quotient stack [Q/GL(N)].

Let E be the family of zero-dimensional objects of C on Q×X . For any point

q ∈Q, we set n1 := dimHom(K|{q}×X ,E|{q}×X) and n2 := dimT (E|{q}×X), where

K is the universal subobject on Q × X . Then an analytic neighborhood of

Q is an intersection of n2 hypersurfaces in Cn1 . Hence dimQ ≥ n1 − n2 and

dim[Q/GL(N)] ≥ −χ(E|{q}×X ,E|{q}×X) + 1 = 1. We take a general α and set
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Qu := {q ∈ Q|E|{q}×X is not α-semistable}. By the proof of [OY, Proposi-

tion 2.16], we see that dim[Qu/GL(N)] = 0. Since [(Q\Qu)/GL(N)] is the mod-

uli stack of α-stable objects, it is a smooth and irreducible stack of dimension 1.

Hence [Q/GL(N)] is a locally complete intersection stack of dimension 1 and

irreducible. In particular [Q/GL(N)] is a reduced stack. �

LEMMA 2.2.9

Let E be a zero-semistable object with v(E) = �X . Then Supp(π∗(G
∨ ⊗E)) is a

point of Y .

Proof

For E, we have a decomposition E =
⊕t

i=1Ei such that Supp(π∗(G
∨ ⊗ Ei)),

i = 1, . . . , t are distinct t-points of Y . We set v(Ei) = (0,Di, ai). Since Di are

contained in the exceptional loci, 0 = 〈v(E)2〉 =
∑

i(D
2
i ) implies that (D2

i ) = 0

for all i. Thus we have v(Ei) = ai�X for all i, which implies that �X = (
∑

i ai)�X .

Since χ(G,Ei)> 0, we have ai > 0. Therefore t= 1. �

By Lemma 1.1.21, we get the following.

LEMMA 2.2.10

(1) We have Cx ∈ C for all x ∈X. In particular, we have a morphism ϕ :

X →X0 by sending x ∈X to the S-equivalence class of Cx;

(2) ϕ(Zi) is a point.

PROPOSITION 2.2.11

There is an isomorphism ψ :X0 → Y such that ψ ◦ ϕ :X → Y coincides with π.

In particular, X0 is a normal projective surface.

Proof

We keep the notation in the proof of Proposition 2.2.8. By Lemma 2.2.9, F :=

π∗(G
∨ ⊗ E) is a flat family of coherent sheaves on Y such that Supp(Fq) is

a point for every q ∈ Q. Since the characteristic of the base field is zero, we

have a morphism Q→ SrY , where r = rkG (cf. [F1], [F2]). Since the image is

contained in the diagonal Y , we have a morphism Q → Y . Hence we have a

morphsim ψ :X0 → Y . By the construction of ϕ and ψ, π = ψ ◦ ϕ. Since ϕ and

ψ are projective birational morphisms between irreducible surfaces, ϕ and ψ are

contractions. By using Lemma 2.2.10, we see that ψ is injective. Hence ψ is a

finite morphism. Since Y is normal, ψ is an isomorphism. �

LEMMA 2.2.12

(1) Assume that pi ∈ Y corresponds to
⊕si

j=0E
⊕aij

ij via ψ, where Eij are

zero-stable objects. Then Cx, x ∈ Zi, are S-equivalent to
⊕si

j=0E
⊕aij

ij . We also

have Eij ∈ Cpi .
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(2) Let E ∈ C be a zero-twisted stable object. Then E is one of the following:

(2.13) Cx (x ∈X \Z), Eij (1≤ i≤ n,0≤ j ≤ si).

(3) Every zero-dimensional object is generated by (2.13).

Proof

By Proposition 2.2.11 and Lemma 2.2.9, (1) holds. We shall apply Lemma 2.2.6

to E =OΔ ∈D(X ×X). Then (2) is a consequence of (1). It also follows from

Lemma 1.1.21(3); (3) follows from (2). �

REMARK 2.2.13

If C = −1Per(X/Y ), then π∗(E) is a flat family of coherent sheaves on Y such

that π∗(E)|{q}×Y is a point sheaf. Then we have a morphism Q→ Y . Thus we

do not need the reducedness of Q in this case.

Thanks to Lemma 2.2.12, we introduce the following definition.

DEFINITION 2.2.14

(1) Eij (i.e., Ipij in Definition 1.1.29), 0 ≤ j ≤ si, denotes the zero-stable

objects of Cpi ;

(2) aij , 0≤ j ≤ si, are positive integers such that
⊕si

j=0E
⊕aij

ij and Cx (x ∈ Zi)

are S-equivalent.

LEMMA 2.2.15

Assume that α ∈NS(X)⊗Q satisfies (2.12). Then KXα is the pullback of a line

bundle on X0.

Proof

Let E be the universal family on Xα ×X . Let pS : S ×X → S be the projection.

Since Xα is smooth, the base-change theorem implies that ExtipXα (E ,E), i =
0,1,2, are locally free sheaves on Xα and compatible with base changes. Since

Ext1pXα (E ,E) is the tangent bundle of Xα, we show that there is a symplectic

form on Ext1pXα (E ,E). For any point y ∈ Y , we take a very ample divisor D2

on Y such that y /∈D2, |KY +D2| contains a divisor D1 with y /∈D1. We set

U := Y \ (D1∪D2). Then U is an open neighborhood of y such that KY is trivial

over U . Let D̃i be the pullback of Di to X . Then we have KX =OX(D̃1 − D̃2).

We set V := π−1
α (ψ−1(U)). We shall prove that (i) the alternating pairing

(2.14) Ext1pV
(E ,E)×Ext1pV

(E ,E)→ Ext2pV
(E ,E)

is nondegenerate and (ii) Ext2pV
(E ,E) ∼= OV . Since Ext1pXα (E ,E) is the tangent

bundle, this means that KV
∼=OV . Thus the claim holds.

We first note that there are isomorphisms

(2.15) ExtipV
(E ,E)∼=ExtipV

(
E ,E(D̃1)

)∼=ExtipV

(
E ,E(D̃1 − D̃2)

)
, i= 0,1,2,



318 Kōta Yoshioka

which is compatible with the base change. By the Serre duality, the trace map

tr : Ext2(Ey,Ey(KX)) → H2(X,KX) is an isomorphism for y ∈ V . Hence (ii)

holds, where Ey := E|{y}×X . By the Serre duality, the pairing Ext1(Ey,Ey) ×
Ext1(Ey,Ey(KX))→ Ext2(Ey,Ey(KX))∼=H2(X,KX) is nondegenerate. Combin-

ing this with (2.15), we get (i). �

DEFINITION 2.2.16

We set Zα
i := π−1

α (
⊕

j E
⊕aij

ij ) = π−1
α ◦ ψ−1(pi) and Zα :=

⋃
iZ

α
i .

LEMMA 2.2.17 (CF. [OY, LEMMA 2.4])

Assume that −(α, c1(Eij)) > 0 for all j > 0. Let F be a zero-semistable object

such that v(F ) = v(Ei0 ⊕
⊕

j>0E
⊕bj
ij ), 0≤ bj ≤ aij .

(1) If v(F ) �= �X , then F is S-equivalent to Ei0 ⊕
⊕

j>0E
⊕bj
ij with respect to

zero-stability.

(2) Assume that F is S-equivalent to Ei0 ⊕
⊕

j>0E
⊕bj
ij . Then the following con-

ditions are equivalent:

(a) F is α-stable;

(b) F is α-semistable;

(c) Hom(Eij , F ) = 0 for all j > 0.

(3) Assume that F is α-stable. For a nonzero homomorphism φ : F →Eij , j > 0,

φ is surjective and F ′ := kerφ is an α-stable object.

(4) If there is a nontrivial extension

(2.16) 0→ F → F ′′ →Eij → 0

and bk + δjk ≤ aik, then F ′′ is an α-stable object, where δjk = 0,1 according

as j �= k, j = k.

Proof
(1) Since E := F ⊕

⊕
j>0E

⊕(aij−bj)
ij is a zero-semistable object with v(E) =

�X and Supp(π∗(G
∨⊗E)) = Supp(π∗(G

∨⊗F ))∪{pi}, Lemma 2.2.9 and Propo-

sition 2.2.11 imply that the S-equivalence class of E corresponds to pi ∈ Y .

Hence E is S-equivalent to
⊕

j≥0E
⊕aij

ij , which implies that F is S-equivalent to

Ei0 ⊕
⊕

j>0E
⊕bj
ij .

(2) It is sufficient to prove that (c) implies (a). Let ψ : F → I be a quotient

of F . Since I and kerψ are zero-dimensional objects, they are zero-semistable.

Since Hom(Eij ,kerψ) = 0 for j > 0, (1) implies that Ei0 is a subobject of kerψ.

Hence v(I) =
∑

j>0 b
′
jvij , which implies that F is α-stable.

(3) Since Eij is irreducible, φ is surjective. By (1), kerφ also satisfies the

assumption of (2). Let ψ : kerφ→ I be a quotient object. Since Hom(Eik, F ) = 0

for k > 0, (2) implies that kerφ is α-stable.

(4) Since v(F ) �= �X , (1) implies that F ′′ satisfies the assumption of (2). If

Hom(Eik, F
′′) �= 0 for k > 0, then Hom(Eik, F ) = 0 implies that k = j and we
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have a splitting of the exact sequence. Hence Hom(Eik, F
′′) = 0 for k > 0. Then

(2) implies the claim. �

COROLLARY 2.2.18

Assume that −(α, c1(Eij)) > 0 for all j > 0. We set v := v(Ei0 ⊕
⊕

j>0E
⊕bj
ij ),

0≤ bj ≤ aij , with 〈v2〉=−2.

(1) We have dimHom(E,Eij) =max{−〈v, v(Eij)〉,0}.
(2) If −〈v, v(Eij)〉 > 0, then MG,α

OX(1)(v)
∼= MG,α

OX(1)(w), where w = v + 〈v,
v(Eij)〉v(Eij).

Proof
(1) For E ∈MG,α

OX(1)(v), we set n := dimHom(E,Eij). Then we have a surjec-

tive morphism φ : E → E⊕n
ij . Then F := kerφ is α-stable. Since −2≤ 〈v(F )2〉=

〈v(E)2〉 − 2n(n+ 〈v, v(Eij)〉), n=−〈v, v(Eij)〉 or n= 0.

(2) If −〈v, v(Eij)〉> 0, then dimHom(E,Eij) =−〈v, v(Eij)〉, Extp(E,Eij) =

0, p > 0, and we have a morphism σ :MG,α
OX(1)(v)→MG,α

OX(1)(w) by sending E ∈
MG,α

OX(1)(v) to F := ker(E →E⊗Hom(E,Eij)
∨). Conversely, for F ∈MG,α

OX(1)(w),

〈v(F ), v(Eij)〉 = −〈v, v(Eij)〉 > 0. Hence Hom(F,Eij) = 0, which implies that

dimExt1(Eij , F ) = 〈v(F ), v(Eij)〉 and the universal extension gives an α-stable

object E with v(E) = v. Therefore we also have the inverse of σ. �

We come to the main result of this subsection.

THEOREM 2.2.19 (CF. [OY, THEOREM 0.1])

(1) We have X0 ∼= Y , and the singular points p1, p2, . . . , pn of X0 correspond

to the S-equivalence classes of properly zero-twisted semistable objects.

(2) Assume that α satisfies that (α,D) �= 0 for all D ∈NS(X) with (D2) =−2

and (c1(OX(1)),D) = 0. Then Xα = MG,α
OX(1)(�X); that is, the α-semistability

and the α-stability are equivalent. In particular, πα : Xα → X0 is the minimal

resolution of the singularities.

(3) Let
⊕si

j=0E
⊕aij

ij be the S-equivalence class corresponding to pi as in Defi-

nition 2.2.14. Then the matrix (−〈v(Eij), v(Eik)〉)j,k≥0 is of affine type Ã, D̃, Ẽ.

Assume that ai0 = 1 (cf. Lemma A.1.1(1)). Then the singularity of X0 at pi
is a rational double point of type A,D,E according to the type of the matrix

(−〈v(Eij), v(Eik)〉)j,k≥1.

(4) We have si = ti, that is

#{irreducible objects of Cpi}=#{irreducible components of Zi}+ 1.

Proof
(1) By Proposition 2.2.11, X0 ∼= Y . Since ϕ : X → X0 is surjective, y ∈ Y

corresponds to the S-equivalence class of Cx, x ∈ π−1(y). By Lemma 2.2.10, Cx,

x ∈ π−1(pi), is not irreducible. Hence pi corresponds to a properly zero-semistable

object. For a smooth point y ∈ Y , Cx, x ∈ π−1(y), is irreducible. Therefore the
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second claim also holds. The proof of (2) is a consequence of Proposition 2.2.3

and Lemma 2.2.15.

(3) We note that

χ(G,Eij) > 0,〈
�X , v(Eij)

〉
= 0,

(2.17) 〈
v(Eij), v(Eij)

〉
= −2,〈

v(Eij), v(Ekl)
〉
≥ 0 (Eij �=Ekl).

As we see in Example A.1.3 in the appendix, we can apply Lemma A.1.1(1) to

our situation. Hence the matrix (−〈v(Eij), v(Eik)〉)j,k≥0 is of affine type Ã, D̃, Ẽ.

Then we may assume that ai0 = 1 for all i. By Lemma A.1.1(2), we can choose

an α with −〈v(Eij), α〉 > 0 for all j > 0. Let Eα be the universal family on

X ×Xα. The claim (3) is a consequence of the following lemma. The claim (4)

is a consequence of (3) and the uniqueness of the minimal resolution. Since the

first part of (3) implies that the rank of (−〈v(Eij), v(Eik)〉)j,k≥0 is si, (4) also

follows from
∑si

j=0ZEij = (
∑ti

j=1ZOCij )+ZCx, where we identify Cohβ(Zi) with

Coh(Zi) via (1.142). �

REMARK 2.2.20

For α satisfying −〈v(Eij), α〉 > 0 for all j > 0, Lemma 2.2.22 also shows that

πα :Xα →X0 is the minimal resolution.

DEFINITION 2.2.21

From now on, we assume that ai0 = 1 for all i.

LEMMA 2.2.22

Let E be a universal family on X ×Xα. Assume that α satisfies −〈v(Eij), α〉> 0

for all j > 0.

(1) We set

(2.18) Cα
ij :=

{
xα ∈Xα

∣∣Hom(E|X×{xα},Eij) �= 0
}
, j > 0.

Then Cα
ij is a smooth rational curve.

(2) We have

(2.19) Zα
i =
{
xα ∈Xα

∣∣Hom(Ei0,E|X×{xα}) �= 0
}
=
⋃
j

Cα
ij .

(3) We have that
⋃

j C
α
ij is simple normal crossing and (Cα

ij ,C
α
ik) = 〈v(Eij),

v(Eik)〉.

Proof

(1) By our choice of α, Hom(Eij ,E|X×{xα}) = 0 for all xα ∈Xα. If Cα
ij = ∅, then

χ(Eij ,E|X×{xα}) = 0 implies that Hom(E|X×{xα},Eij) = Ext1(E|X×{xα},Eij) = 0.

Then ΦE∨

X→Xα(Eij) = 0, which is a contradiction. Therefore Cα
ij �= ∅. In order to
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prove the smoothness, we consider the moduli space of coherent systems

(2.20) N
(
�X , v(Eij)

)
:=
{
(E,V )

∣∣E ∈Xα, V ⊂Hom(E,Eij),dimC V = 1
}
.

We have a natural projection ι : N(�X , v(Eij)) → Xα whose image is Cα
ij . For

(E,V ) ∈N(�X , v(Eij)), we have a homomorphism ξ :E →Eij ⊗V ∨. The Zariski

tangent space at (E,V ) is Hom(E,E → Eij ⊗ V ∨). By Lemma 2.2.17(3), ξ is

surjective and ker ξ ∈ MG,α
OX(1)(�X − v(Eij)). In particular, Hom(E,E → Eij ⊗

V ∨)∼=Ext1(E,ker ξ). Conversely, for F ∈MG,α
OX(1)(�X − v(Eij)) and a nontrivial

extension

(2.21) 0→ F →E →Eij → 0,

Lemma 2.2.17(4) implies that E ∈Xα and E →Eij defines an element of N(�X ,

v(Eij)). By Corollary 2.2.18(1) and our choice of α, Hom(F,Eij) = Hom(Eij ,

F ) = 0. Hence dimExt1(Eij , F ) = 2. Since MG,α
OX(1)(�X − v(Eij)) is a reduced

one point, we see that N(�X , v(Eij)) is isomorphic to P1. We show that ι :

N(�X , v(Eij)) → Xα is a closed immersion. For (E,V ) ∈ N(�X , v(Eij)),

dimHom(E,Eij) = dimHom(ker ξ,Eij) + 1 = 1. Hence ι is injective. We also see

that ι∗ : Ext
1(E,ker ξ)→ Ext1(E,E) is injective. Therefore ι is a closed immer-

sion.

(2) By our choice of α, Hom(Ei0,E|X×{xα}) �= 0 for xα ∈ Zα
i . Conversely, if

Hom(Ei0,E|X×{xα}) �= 0, then Lemma 2.2.9 implies that Supp(π∗(G
∨ ⊗

E|X×{xα})) = {pi}. Since Supp(π∗(G
∨ ⊗ E|X×{xα})) depends only on the

S-equivalence class of E|X×{xα}, we have ψ(πα(x
α)) = pi. Thus x

α ∈ Zα
i . There-

fore we have the first equality. By the choice of α, we also get Zα
i ⊂
⋃

j C
α
ij .

If Hom(E|X×{xα},Eij) �= 0, j > 0, then we see that Supp(π∗(G
∨ ⊗ E|X×{xα})) =

{pi}, which implies that xα ∈ Zα
i . Thus the second claim also holds.

(3) Since (−〈v(Eij), v(Eik)〉)j,k≥1 is of ADE-type, by using Corollary 2.2.18,

we can show that MG,α
OX(1)(v)

∼= MG,α
OX(1)(v(Ei0)) for v = v(Ei0 ⊕

⊕
j>0E

⊕bj
ij ),

0 ≤ bj ≤ aij , with 〈v2〉 = −2. In particular, they are nonempty. Then by simi-

lar arguments in [OY, Proposition 2.9], we can also show that
⋃

j C
α
ij is simple

normal crossing and (Cα
ij ,C

α
ik) = 〈v(Eij), v(Eik)〉. (For another proof, see Corol-

lary 2.3.12.) �

2.3. Fourier–Mukai transforms on X

We keep the notation in Section 2.2. Assume that Xα consists of α-stable objects.

Let Eα be a universal family on X × Xα. We have an equivalence Φ
(Eα)∨

X→Xα :

D(X)→D(Xα). If Fα is another universal family, then we see that

(2.22) Φ
(Eα)∨

X→Xα ◦ΦFα

Xα→X =Φ
OΔ(L)
Xα→Xα [−2], L ∈ Pic(Xα).

Let Γα be the closure of the graph of the rational map π−1
α ◦ π:

(2.23)

Γα −−−−→ Xα⏐⏐# ⏐⏐#πα

X −−−−→
π

Y
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LEMMA 2.3.1

(1) We may assume that Eα
|X×(Xα\Zα)

∼=OΓα|X×(Xα\Zα).

(2) Eα is characterized by Eα
|X×(Xα\Zα) and detΦ

(Eα)∨

X→Xα(G).

Proof
(1) We note that Eα

|X×(Xα\Zα)
∼= (OΓα ⊗ p∗Xα(L))|X×(Xα\Zα), where L ∈

Pic(Xα \Zα). We also denote an extension of L to Xα by L. Then Eα⊗p∗Xα(L∨)

is a desired universal family.

(2) Assume that Eα
|X×(Xα\Zα)

∼= (Eα ⊗ p∗Xα(L))|X×(Xα\Zα) and

detΦ
(Eα)∨

X→Xα(G)∼= detΦ
(Eα⊗p∗

Xα (L))∨

X→Xα (G). Then L|Xα\Zα ∼=OXα\Zα and L⊗ rkG ∼=
OXα . In order to prove L ∼=OXα , it is sufficient to prove the injectivity of the

restriction map

(2.24) r : Pic(Xα)→ Pic(Xα \Zα)×
∏
i,j

Pic(Cα
ij).

If L|Xα\Zα ∼=OXα\Zα , then we can write L=OX(
∑

i,j rijC
α
ij). Since the intersec-

tion matrix ((Cα
ij ,C

α
ik))j,k is negative definite, deg(L|Cα

ij
) =
∑

k rik(C
α
ik,C

α
ij) = 0

for all i, j implies that rij = 0 for all i, j. Thus r is injective. �

DEFINITION 2.3.2

We set Λα := Φ
(Eα)∨

X→Xα [2].

LEMMA 2.3.3

Let OX(C) and OXα(C) be the pullbacks of a line bundle OY (C) on Y . Then

Λα ◦
(
OX(C)⊗ •

)
=
(
OXα(C)⊗ •

)
◦Λα.

Proof

Let D be an effective divisor on X such that D ∩Z = ∅. It is sufficient to prove

that

(2.25) Eα ⊗
(
OX(−D)�OXα(D)

)∼= Eα.

We note that Eα ∼=OΓα over Xα \Zα. Obviously the claim holds over Xα \Zα.

By Lemma 2.3.1, we shall show that detΛα(G(D)) ∼= det(Λα(G)(D)). We have

an exact triangle

(2.26) (Eα)∨ → (Eα)∨(D)→ (Eα)∨|D(D)→ (Eα)∨[1].

Since (Eα)∨|D(D)∼=OΔ|D(D)[−2], we have an exact triangle

(2.27) Λα(G)→ Λα
(
G(D)

)
→G|D(D)→ Λα(G)[1].

Hence we get detΛα(G(D))∼= (detΛα(G))((rkG)D)∼= det(Λα(G)(D)). �

PROPOSITION 2.3.4

(1) We set Gα := Λα(G). Then Gα is a locally free sheaf, and Rπα∗(G
α∨ ⊗

Gα) = πα∗(G
α∨ ⊗Gα).
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(2) For the zero-stable objects Eij , Λ
α(Eij)[k] is a sheaf, where k =−1 or 0

according as (α, c1(Eij))< 0 or (α, c1(Eij))> 0.

(3) We set Aα := πα∗(G
α∨⊗Gα). Then Aα is a reflexive sheaf on Y . Under

the identification Xα \ Zα ∼=X \ Z, Gα
|Xα\Zα corresponds to G|X\Z . Hence we

have an isomorphism A∼=Aα.

(4) We identify CohA(Y ) with CohAα(Y ) via A∼=Aα. Then we have a com-

mutative diagram

(2.28)

C Λα

−−−−→ Λα(C)

Rπ∗HomOX
(G, )

⏐⏐# ⏐⏐#Rπα∗HomOXα (Gα, )

CohA(Y ) CohAα(Y )

In particular, Gα gives a local projective generator of Λα(C).
(5) We set

Sα :=
{
Λα(Eij)[−1]

∣∣ i, j}∩Coh(Xα),

T α :=
{
E ∈Coh(Xα)

∣∣Hom(E,c) = 0, c ∈ Sα
}
,

(2.29)
Sα :=

{
E ∈Coh(Xα)

∣∣E is a successive extension

of subsheaves of c ∈ Sα
}
.

Then (T α,Sα) is a torsion pair of Coh(Xα), and Λα(C) is the tilting of Coh(Xα)

with respect to (T α,Sα).

(6) Let G′ be a local projective generator of C. For e ∈K(X)top, Λ
α induces

an isomorphism MG′

OX(1)(e)
ss →MΛα(G′)

OXα (1)(Λ
α(e))ss.

Proof
(1) We note that Hom(Eα

|X×{xα},G[i]) ∼= Hom(G,Eα
|X×{xα}[2 − i])∨ = 0 for

i �= 2 and xα ∈Xα. By the base-change theorem, Gα is a locally free sheaf. By

using Lemma 2.3.3 and the ampleness of OY (1), we have

H0
(
Y,Riπα∗(G

α∨ ⊗Gα)(n)
)

=Hom
(
Λα(G),Λα(G)(n)[i]

)
(2.30)

= Hom
(
Λα(G),Λα

(
G(n)

)
[i]
)

=Hom
(
G,G(n)[i]

)
=H0

(
Y,Riπ∗(G

∨ ⊗G)(n)
)
= 0

for n� 0 and i �= 0. Therefore Riπ∗(G
α∨ ⊗Gα) = 0, i �= 0, and the claim holds.

(2) If (α, c1(Eij))< 0, then Hom(Eα
|X×{xα},Eij [2])∼=Hom(Eij ,Eα

|X×{xα})
∨ =

0 for xα ∈Xα. Since Hom(Eα
X×|{xα},Eij) = 0 if xα /∈ Zα

i , we see that Λ
α(Eij)[−1]

is a torsion sheaf whose support is contained in Zα
i .

If (α, c1(Eij)) > 0, then Hom(Eα
|X×{xα},Eij) = 0 for xα ∈ Xα. Since

Hom(Eα
|X×{xα},Eij [2]) = 0 if xα /∈ Zα

i , we see that Λα(Eij) is a torsion sheaf

whose support is contained in Zα
i .
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(3) By claim (1) and [E, Lemma 2.1], Aα is a reflexive sheaf. Since Eα is

isomorphic to OΓα over Xα \Zα, we get Λα(G)|Xα\Zα ∼= π−1
α ◦ π(G|X\Z). Hence

the second claim also follows.

(4) For E ∈ C, we first prove that Rπα∗(G
α∨ ⊗ Λα(E)) ∈ CohAα(Y ). As in

the proof of (1), we have

Hi
(
Y,Rπα∗

(
Gα∨ ⊗Λα(E)

)
(n)
)
= Hom

(
Gα,Λα(E)(n)[i]

)
(2.31)

= Hom
(
G,E(n)[i]

)
= 0

for i �= 0, n� 0. Therefore Hi(Rπα∗(G
α∨⊗Λα(E))) = 0 for i �= 0. For E ∈ C, we

take an exact sequence

(2.32) G(−m)⊕M →G(−n)⊕N →E → 0.

Then we have a diagram

(2.33)

A(−m)⊕M −−−−→ A(−n)⊕N −−−−→ π∗(G
∨ ⊗E) −−−−→ 0

φ

⏐⏐# ⏐⏐#ψ
Aα(−m)⊕M −−−−→ Aα(−n)⊕N −−−−→ πα∗

(
Gα∨ ⊗Λα(E)

)
−−−−→ 0

which is commutative over Y ∗ := Y \ {p1, p2, . . . , pn}, where φ and ψ are the iso-

morphisms induced by A ∼= Aα. Let j : Y ∗ ↪→ Y be the inclusion. Since

HomOY
(A,Aα) → j∗j

∗HomOY
(A,Aα) is an isomorphism, (2.33) is commuta-

tive, which induces an isomorphism ξ : π∗(G
∨ ⊗ E)→ πα∗(G

α∨ ⊗ Λα(E)). It is

easy to see that the construction of ξ is functorial and defines an isomorphism

Rπ∗HomOX
(G, )∼=Rπα∗HomOXα (Gα, ) ◦Λα.

(5) Since Λα is an equivalence, Λα(Eij) are irreducible objects of Λα(C). By
Propositions 1.1.13 and 1.1.26, we get the claim.

(6) We note that the proof of (1) implies that Λα(G′) is a local projective

generator of Λα(C). By Lemma 2.3.3, χ(G′,E(n)) = χ(Λα(G′),Λα(E)(n)). Hence

the claim holds. �

REMARK 2.3.5

If C =−1 Per(X/Y ), then OX ∈−1 Per(X/Y ) and Λα(OX) is a line bundle

on Xα. Hence we may assume that Λα(OX) ∼= OXα . Then Hom(OXα ,

Λα(OCij (−1))[n]) = 0 for all n. Thus Λα(OCij (−1))[n] is a successive extension of

OCik
(−1). We also get Hom(OXα ,Λα(OZi)) =C and Hom(OXα ,Λα(OZi)[n]) = 0

for n �= 0.

Since Λα is an equivalence with Λα(�X) = �Xα , we have the following corollary.

COROLLARY 2.3.6

For a general α, the equivalence

Λα : C →Λα(C)
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induces an isomorphism

Λα :MG,β
OX(1)(�X)ss →MGα,Λα(β)

OXα (1) (�Xα)ss,

where β ∈ �⊥X .

2.3.1. Wall and chambers

For the zero-stable objects Eij in Theorem 2.2.19, we set vij := v(Eij). By

Lemma 2.2.6, {Eij} is the set of irreducible objects E with Supp(E)⊂
⋃

iZi. Let

gi be the finite-dimensional Lie algebra whose Cartan matrix is (−〈vij , vik〉j,k≥1)

and

(2.34) Ri :=
{
u=
∑
j>0

n′
ijvij

∣∣∣ 〈u2〉=−2, n′
ij ≥ 0

}
.

Then Ri is identified with the set of positive roots of gi. In particular, Ri is a

finite set.

DEFINITION 2.3.7

Let v be the Mukai vector of a zero-dimensional object E, which is primitive.

For u ∈
⋃

iRi, we define the wall as

(2.35) Wu :=
{
α ∈NS(X)⊗R

∣∣∣ 〈u,α〉
〈u, v(G)〉 =

〈v,α〉
〈v, v(G)〉

}
.

A connected component of NS(X)⊗R \
⋃

uWu is called a chamber.

REMARK 2.3.8

If v = �X , then Wu = u⊥.

LEMMA 2.3.9

Let v be the Mukai vector of a zero-dimensional object E, which is primitive.

(1) M
G,α

OX(1)(v) consists of α-twisted stable objects if and only if α /∈
⋃

uWu.

We say that α is general with respect to v.

(2) If α is general with respect to v, then the virtual Hodge number of

MG,α
OX(1)(v) does not depend on the choice of α. In particular, the nonemptyness

of MG,α
OX(1)(v) does not depend on the choice of α.

Proof
(1) For E ∈ M

G,α

OX(1)(v), we assume that E is S-equivalent to
⊕k

i=1Ei,

where Ei are α-stable. If 〈v(Ei)
2〉 = 0 for all i, then v(Ei) ∈ Z>0�X . Hence

v =
∑k

i=1 v(Ei) is not primitive. Therefore we may assume that 〈v(E1)
2〉=−2.

By the α-stability of E1, Supp(E1) ⊂ Zi for an i. Since E1 is generated by

{Eij | 0≤ j ≤ si}, v(E1) ∈
⊕si

j=0Z≥0vij . Then we see that v(E1) ∈ ±Ri + Z�X .

Therefore the claim holds.

(2) The proof is similar to that of [Y3, Proposition 2.6]. �
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LEMMA 2.3.10

(1) Let w1 := vi0 +
∑si

j=1 nijvij , nij ≥ 0, be a Mukai vector with 〈w2
1〉 ≥ −2.

Then there is an α-twisted stable object E with v(E) =w1 for a general α.

(2) Let w2 ∈Ri be a nonzero Mukai vector. Then there is an α-twisted stable

object E with v(E) =w2 for a general α.

Proof
(1) By Proposition 2.3.16 below and Corollary 2.3.6, we may assume that

C =Per(X ′/Y,b1, . . . ,bn). The claim follows from Lemma 2.3.19 below and Lem-

ma 2.3.9(2). Instead of using Lemma 2.3.19, we can also use Corollary 2.2.18 to

show the claim for a special α.

(2) We set w1 :=
∑si

j=0 aijvij−w2. Then w1 is the Mukai vector in (1). We can

take a general element α ∈NS(X)⊗Q such that 〈α,w1〉= 0. Then α is general

with respect to w1 and we have a α-twisted stable object E with v(E) =w1. We

consider Xα′
such that α′ is sufficiently close to α and 〈α′, v(E)〉> 0. Since Λα′

is an equivalence, there is a morphism φ : E →Eα′

|{y}×X , where y ∈Xα′
. By our

choice of α, cokerφ is an α-twisted stable object with v(cokerφ) =w2. Then the

claim follows from Lemma 2.3.9(2). �

2.3.2. A special chamber

We take α ∈ �⊥X with −〈v(Eij), α〉> 0, j > 0.

LEMMA 2.3.11

For j > 0, Λα(Eij)[−1], j > 0, is a line bundle on Cα
ij . We set Λα(Eij) :=

OCα
ij
(bαij)[1].

Proof

We note that Λα(Eij)
L
⊗ Cxα = RHom(Eα

|X×{xα},Eij [2]). Then Hk(Λ(Eij)
L
⊗

Cxα) = 0 for k �= −1,−2. Hence Hk(Λα(Eij)) = 0 for k �= −1,−2 and

H−2(Λα(Eij)) is a locally free sheaf. By the proof of Theorem 2.2.19(3),

Supp(Hk(Λα(Eij))) ⊂ Cα
ij for all k. Hence H−2(Λα(Eij)) = 0, which implies

that Λα(Eij)[−1] ∈ Coh(Xα). Since Hom(Cxα ,Λα(Eij)[−1]) = Hom(Eα
|X×{xα},

Eij [−1]) = 0, Λα(Eij)[−1] is purely 1-dimensional. We set C :=Div(Λα(Eij)[−1]).

Then (C2) = 〈v(Λα(Eij)[−1])2〉 = 〈v(Eij)
2〉 = −2, which implies that C = Cα

ij .

Therefore Λα(Eij)[−1] is a line bundle on Cα
ij . �

COROLLARY 2.3.12

(1) We have (Cα
ij ,C

α
i′j′) = 〈v(Eij), v(Ei′j′)〉.

(2) {Cα
ij} is a simple normal crossing divisor.

Proof

(1) By Lemma 2.3.11, (Cα
ij ,C

α
i′j′) = 〈v(Λα(Eij)), v(Λ

α(Ei′j′))〉 = 〈v(Eij),

v(Ei′j′)〉. Then (2) also follows. �
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We have that Ei0 is a subobject of E|X×{xα} for xα ∈ Zα
i , and we have an exact

sequence

(2.36) 0→Ei0 →E|X×{xα} → F → 0, xα ∈ Zα
i ,

where F is a zero-semistable object with gr(F ) =
⊕si

j=1E
⊕aij

ij . Then we get an

exact sequence

(2.37) 0→Λα(F )[−1]→ Λα(Ei0)→Cxα → 0

in Coh(Xα). Thus Λα(Ei0) ∈Coh(Xα).

DEFINITION 2.3.13

We set Aα
i0 := Λα(Ei0) and Aα

ij := Λα(Eij) =OCα
ij
(bαij)[1] for j > 0.

LEMMA 2.3.14

(1) We have Hom(Aα
i0,A

α
ij [−1]) = Ext1(Aα

i0,A
α
ij [−1]) = 0.

(2) We set bα
i := (bαi1, b

α
i2, . . . , b

α
isi

). Then Aα
i0

∼= A0(b
α
i ). In particular,

Hom(Aα
i0,Cxα) =C for xα ∈ Zα

i .

Proof
(1) We have

Hom
(
Aα

i0,A
α
ij [k]
)
= Hom

(
Λα(Ei0),Λ

α(Eij)[k]
)

(2.38)
= Hom

(
Ei0,Eij [k]

)
= 0

for k =−1,0.

(2) By (2.37) and (1), we can apply Lemma 1.2.22 and get Aα
i0 =A0(b

α
i ) =

Api . �

REMARK 2.3.15

Assume that α ∈ v⊥0 satisfies −〈v(Eij), α〉< 0, j > 0. Then Φ(Eij)[2] =OCα
ij
(b′′ij),

j > 0, and Φ(Ei0)[2] =A0(b
′′
i )[1] belong to Per(Xα/Y,b′′

1 , . . . ,b
′′
n)

∗, where b′′
i :=

(b′′i1, . . . , b
′′
isi

).

By Proposition 2.3.4, we have the following result.

PROPOSITION 2.3.16

If −〈α,v(Eij)〉> 0 for all j > 0, then Λα induces an equivalence

C → Per(Xα/Y,bα
1 , . . . ,b

α
n),

where bα
i = (bαi1, . . . , b

α
isi

).

PROPOSITION 2.3.17

Assume that there is a β ∈ �⊥X such that Cx are β-stable for all x ∈X.

(1) We set F := Eα∨[2]. Then we have an isomorphism
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X →M
Gα,Λα(β)
OXα (1) (�Xα) = (Xα)Λ

α(β),
(2.39)

x �→ F
L
⊗Cx.

Since Φ
F∨[2]
Xα→X =ΦEα

Xα→X , we have C =Φ
F∨[2]
Xα→X(Per(Xα/Y,bα

1 , . . . ,b
α
n)).

(2) We also have an isomorphism

X →M
(Gα)∨,−DXα◦Λα(β)
OXα (1) (�Xα),

(2.40)

x �→ Eα
L
⊗Cx,

where M
(Gα)∨,−DXα◦Λα(β)
OXα (1) (�Xα) is the moduli of stable objects of Λα(C)D.

Thus X and Xα are Fourier–Mukai dual.

Proof
(1) This is a consequence of Corollary 2.3.6.

(2) This is a consequence of (1) and the isomorphism MGα,γ
OXα (1)(�Xα)ss →

M(Gα)∨,−DXα (γ)
OXα (1) (�Xα)ss defined by E �→DXα(E)[2]. �

The following proposition explains the condition of the stability of Cx.

PROPOSITION 2.3.18

There exist X ′ and γ such that C =Λγ(Per(X ′/Y,b1, . . . ,bn)) with X = (X ′)γ if

and only if there is a β ∈ �⊥X such that Cx are β-stable for all x ∈X.

Proof

For X = (X ′)γ , γ-stability of Eγ
|X′×{x} and Corollary 2.3.6 imply the β-stability of

Cx, where β := Λγ(γ). Conversely, if Cx are β-stable for all x ∈X , then Propo-

sition 2.3.17(1) implies the claim, where X ′ := Xα in Proposition 2.3.16 and

γ := Λα(β). �

We give two examples of C satisfying the stability condition of Cx.

LEMMA 2.3.19

(1) Assume that C = Per(X/Y,b1, . . . ,bn). If −〈α,v(OCij (bij)[1])〉 > 0 for

all j > 0, then X ∼=Xα by sending x ∈X to Cx ∈Xα. Moreover Api ⊗OC such

that OC is a purely 1-dimensional OZi -module with χ(OC) = 1 are α-stable.

(2) Assume that C =Per(X/Y,b1, . . . ,bn)
∗. If −〈α,v(OCij (bij))〉< 0 for all

j > 0, then X ∼=Xα by sending x ∈X to Cx ∈Xα.

Proof

We only prove (1). Since Cx, x ∈ X \
⋃n

i=1Zi is irreducible, it is α-stable for

any α. For x ∈ Zi, assume that there is an exact sequence

(2.41) 0→E1 →Cx →E2 → 0
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such that E1 �= 0, E2 �= 0 and −〈α,v(E1)〉 = χ(v−1(α),E1) ≥ 0. We note that

−〈α,v(Eij)〉> 0 for all j > 0. Since 〈α,�X〉= 0, 〈α,v(A0(bi))〉=−
∑

j>0 aij〈α,
v(Eij)〉. As a zero-semistable object, E1 is S-equivalent to

⊕
j>0OCij (bij)[1]

⊕a′
ij ,

a′ij ≤ aij . Since Hom(OCij (bij)[1],Cx) = 0, this is impossible. Therefore Cx is α-

twisted stable. Then we have an injective morphism φ : X → Xα by sending

x ∈X to Cx. By using the Fourier–Mukai transform Φ
O∨

Δ

X→X :D(X)→D(X), we

see that φ is surjective. Since both spaces are smooth, φ is an isomorphism. The

last claim also follows by a similar argument. �

2.3.3. Relation with the twist functor (see [ST])

Let F be a spherical object of D(X), and set

(2.42) E := Cone(F∨ � F →OΔ)[1].

Then TF := ΦE
X→X is an autoequivalence of D(X).

LEMMA 2.3.20

Let Π :D(X)→D(Y ) be a Fourier–Mukai transform. Then

(2.43) Π ◦ TF
∼= TΠ(F ) ◦Π.

Proof

Let E ∈D(X × Y ) be an object such that Π = ΦE
X→Y . It is sufficient to prove

Π(E) ∼= TΠ(F )(E). We set Xi := X , i = 1,2. We note that F∨ ∼= Homp(OX1 �
F,OΔ), where p :X1×X2 →X1 is the projection and Δ⊂X1×X2 the diagonal.

Then

(2.44) E ∼=Cone
(
Homp(OX1 � F,OΔ)� F →OΔ

)
[1].

Let pX2 : Y ×X2 →X2, pY : Y ×X2 → Y , and q :X1×Y →X1 be the projections.

We have a morphism

Homp(OX1 � F,OΔ)→ Homq′
(
OX1 �

(
E⊗ p∗X2

(F )
)
, (OX1 �E)|Δ′

)
(2.45)

→ Homq

(
OX1 �RpY ∗

(
E⊗ p∗X2

(F )
)
,E
)
,

where Δ′ =Δ× Y and q′ :X1 × Y ×X2 →X1 is the projection. We also have a

commutative diagram in D(Y ×X1):

(2.46)

Homp(OX1 � F,OΔ)�Π(F )
α−−−−→ E

γ

⏐⏐# ∥∥∥
Homq(OX1 �ΦE

X→Y (F ),E)�Π(F )
β−−−−→ E

Since Π is an equivalence, γ is an isomorphism. Since Π(E) ∼= Cone(α)[1] and

TΠ(F )(E)∼=Cone(β)[1], we get Π(E)∼= TΠ(F )(E). �

COROLLARY 2.3.21

Assume that Supp(Hi(F ))⊂ Z for all i. Let D be the pullback of a divisor on Y .

Then TF (E(D))∼= TF (E)(D).
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Proof

We apply Lemma 2.3.20 to Π =Φ
OΔ(D)
X→X . Since Π(F )∼= F , we get our claim. �

PROPOSITION 2.3.22

Assume that G∨ ⊗G satisfies R1π∗(G
∨ ⊗G) = 0. Assume that G′ := TF (G) is a

locally free sheaf up to shift.

(1) We have R1π∗(G
′∨ ⊗G′) = 0 and π∗(G

′∨ ⊗G′)∼= π∗(G
∨ ⊗G).

(2) We set A′ := π∗(G
′∨ ⊗ G′). We identify CohA(Y ) with CohA′(Y ) via

A∼=A′. Then we have a commutative diagram

(2.47)

Per(X/Y,b1, . . . ,bn)
TF−−−−→ TF

(
Per(X/Y,b1, . . . ,bn)

)
Rπ∗HomOX

(G, )

⏐⏐# ⏐⏐#Rπ∗HomOX
(G′, )

CohA(Y ) CohA′(Y )

Proof

The proof is almost the same as that of Proposition 2.3.4. �

For an α ∈H⊥ ⊗Q, let F be an α-stable object such that

(i) 〈v(F )2〉=−2 and

(ii) 〈α,v(F )〉= 0.

By (i), F is a spherical object. By the same proof of [OY, Proposition 1.12], we

have the following result.

PROPOSITION 2.3.23

We set α± :=±εv(F ) + α, where 0< ε� 1. Then TF induces an isomorphism

Xα− →Xα+

,
(2.48)

E �→ TF (E)

which preserves the S-equivalence classes. Hence we have an isomorphism

(2.49) Xα− →Xα+

.

Combining Proposition 2.3.23 with Lemma 2.3.20, we get the following corol-

lary.

COROLLARY 2.3.24

Assume that α belongs to exactly one wall defined by F . Then TF induces an

isomorphism Xα− →Xα+

. Under this isomorphism, we have

(2.50) ΦEα+

Xα−→X
∼= TF ◦ΦEα−

Xα−→X
∼=ΦEα−

Xα−→X
◦ TA,

where A := Φ
(Eα−

)∨[2]

X→Xα− (F ).
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2.3.4. More results on the structure of C
Let C be the category of perverse coherent sheaves in Lemma 1.1.11. Assume

that there is β ∈NS(X)⊗Q such that Cx is β-stable for all x ∈X . By Proposi-

tion 2.3.18, C =Λα(Per(X ′/Y,b1, . . . ,bn)). So we first assume that C =Per(X/Y,

b1, . . . ,bn) and set

(2.51) Eij :=

{
OCij (bij)[1], j > 0,

A0(b), j = 0.

We set vij := v(Eij). Let u0 be an isotropic Mukai vector such that r0 := rku0 > 0,

〈u0, vij〉= 0 for all i, j. We set

(2.52) L := Zu0 +

n∑
i=1

si∑
j=0

Zvij .

Then L is a sublattice of H∗(X,Z), and we have a decomposition

(2.53) L= (Zu0 ⊕Z�X)⊥
( n⊕

i=1

si⊕
j=1

Zvij

)
.

We set

Ti :=

si⊕
j=1

ZCij ,

(2.54)

T :=

n⊕
i=1

Ti.

Then we have an isometry

ψ :

n⊕
i=1

si⊕
j=1

Zvij → T

(2.55)
v �→ c1(v).

Combining the isometry Zu0 ⊕Z�X → Zr0 ⊕Z�X (xu0 + z�X �→ xr0 + z�X ), we

also have an isometry

(2.56) ψ̃ : (Zu0 ⊕Z�X)⊥
( n⊕

i=1

si⊕
j=1

Zvij

)
→ (Zr0 ⊕Z�X)⊥ T.

Let gi (resp., ĝi) be the finite-dimensional Lie algebra (resp., affine Lie algebra)

associated to the lattice
⊕si

j=1Zvij (resp.,
⊕si

j=0Zvij). Let g (resp., ĝ) be the Lie

algebra associated to
⊕n

i=1

⊕si
j=1Zvij (resp.,

⊕n
i=1

⊕si
j=0Zvij). Since the centers

of ĝ and ĝi are 1-dimensional, ĝ is smaller than
⊕

i ĝi.

Let W (gi) (resp., W (g)) be the Weyl group of gi (resp., g), and let Wi (resp.,

W) be the set of Weyl chambers of W (gi) (resp., W (g)). Since g =
⊕n

i=1 gi,

W (g) =
∏n

i=1W (gi), and W =
∏n

i=1Wi. By the action of W (g), Qu0 +Q�X is

fixed. Let W (ĝi) (resp., W (ĝ)) be the Weyl group of ĝi (resp., ĝ). We have the
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following decompositions:

W (ĝi) = Ti �W (gi),
(2.57)

W (ĝ) = T �W (g),

and the action of D ∈ T on L is the multiplication by eD. Indeed

TOCij
(bij+1) ◦ TOCij

(bij)[1] = e−Cij

as an isometry of L.

We shall study the category Λα(C). We may assume that α ∈NS(X)⊗Q is

α=
∑

iαi with αi ∈ Ti ⊗Q. Via the identification ψ, we have an action of W on

T ⊗Q. We set

Cfund
i :=

{
α ∈ Ti ⊗R

∣∣ (α,Cij)> 0,1≤ j ≤ si
}
,

(2.58)

Cfund :=

n∏
i=1

Cfund
i .

Cfund is the fundamental Weyl chamber. If α ∈Cfund, then Lemma 2.3.19 implies

that Cx is α-stable for all x ∈ X . By the action of W (gi), we have Wi =

W (gi)C
fund
i . We also set

(2.59) Cfund
alcove :=

{
α ∈ T ⊗R

∣∣ (α,Cij)> 0,1≤ j ≤ si, (α,Zi)< 1
}
.

By the isometry ψ̃−1, we have

(α,Cij) = −〈ψ−1(α), vij〉

= −
〈( u0

rku0
+ ψ−1(α) +

(α2)

2
�X

)
, vij

〉
(2.60)

= −〈e(c1(u0)/ rku0)+α, vij〉

for j > 0 and 1−(α,Zi) = 1+
∑si

j=1 aij〈e(c1(u0)/ rku0)+α, vij〉=−〈e(c1(u0)/ rku0)+α,

vi0〉. Hence we have

(2.61) Cfund
alcove =

{
α ∈ T ⊗R

∣∣−〈e(c1(u0)/ rku0)+α, vij〉> 0
}
.

Applying Corollary 2.3.24 successively, we get the following result.

PROPOSITION 2.3.25

If α ∈ T ⊗Q belongs to a chamber C =
∏n

i=1Ci, Ci ⊂ Ti⊗Q, then there are rigid

objects F1, . . . , Fn ∈ C such that Xα ∼= X and ΦEα

X→X = TFn ◦ TFn−1 ◦ · · · ◦ TF1 .

Thus Λα = (ΦEα

X→X)−1 induces an isometry w(α) of L.

Then we have a map

φ :W →W (ĝ)/T,
(2.62)

C(α) �→ [w(α) mod T ],

where C(α) is the chamber containing α.



Perverse coherent sheaves I 333

LEMMA 2.3.26

The map φ :W →W (ĝ)/T ∼=W (g) is bijective.

Proof

There is an element α0 in the fundamental Weyl chamber such that α =

ΦEα

X→X(α0). Hence w(α)(C(α)) = C(α0). Thus φ is injective. Since #Wi =

#W (gi), φ is bijective. �

We set

(2.63) T ∗ :=
{
D ∈ T ⊗Q

∣∣ (D,Cij) ∈ Z
}
.

Then W̃ := T ∗ �W (g) is the extended Weyl group. By the action of W̃ , we can

change (b1, . . . ,bn) to any sequence (b′
1, . . . ,b

′
n).

PROPOSITION 2.3.27

Let C be the category in Lemma 1.1.11, and assume that there is β ∈NS(X)⊗Q

such that Cx is β-stable for all x ∈X. Then C is equivalent to −1Per(X/Y ). In

particular, Per(X/Y,b1, . . . ,bn)∼= −1Per(X/Y ).

Proof

We may assume that C =Per(X/Y,b1, . . . ,bn). We set

(2.64) uij :=

{
v(OCij (−1)[1]), j > 0,

v(OZi), j = 0.

By the theory of affine Lie algebras, there is an element w ∈W (ĝ) such that

w
({

β ∈ T ⊗R
∣∣−〈eβ , vij〉> 0, i, j ≥ 0

})
(2.65)

=
{
β ∈ T ⊗R

∣∣−〈eβ , uij〉> 0, i, j ≥ 0
}
.

Then we have {
w(vij)

∣∣ 0≤ j ≤ si
}
=
{
uij

∣∣ 0≤ j ≤ si
}

for all i.

For each i, there is an integer ji such that (1) c1(w(viji)) is effective and

(2) −c1(w(vij)), j �= ji are effective. By Lemma 2.3.26, we have w = eDφ(α),

D,α ∈ T . Since v(Λα(Eij) ⊗ OX(D)) = eDv(Λα(Eij)) = eDφ(α)(vij), Proposi-

tion 2.3.4(2) implies that −(α, c1(Eij))> 0 unless j = ji. By Lemmas 2.2.22 and

2.3.11, Λα(Eij)[−1], j �= ji, is a line bundle on a smooth rational curve and

Λα(Eiji) is a line bundle on Zi. Thus{
Λα(Eij)⊗OX(D)

∣∣ j �= ji
}
=
{
OCij (−1)[1]

∣∣ 0< j ≤ si
}
,

(2.66)
Λα(Eiji)⊗OX(D) = OZi .

By Proposition 2.3.4(5), we get Λα(C)⊗OX(D)∼= −1Per(X/Y ). �
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REMARK 2.3.28

For the derived category of coherent twisted sheaves, we also see that the equiv-

alence classes of Per(X/Y,{Lij}) do not depend on the choice of {Lij}.

2.4. Construction of a local projective generator
We return to the general situation in Section 2.1. We shall construct local pro-

jective generators for Per(X/Y,{Lij}).

PROPOSITION 2.4.1

Let β be a 2-cocycle of O×
X defining a torsion element of H2(X,O×

X). Assume

that E ∈Kβ(X) satisfies

0≤−χ(E,Lij), 1≤ j ≤ si,
(2.67)

−
∑
j

aijχ(E,Lij)≤ r

for all i.

(1) There is a locally free β-twisted sheaf G on X such that R1π∗(G
∨ ⊗

G) = 0, Rπ∗(G
∨ ⊗ F ) ∈ Coh(Y ) for F ∈ Per(X/Y,{Lij}), G is μ-stable, and

τ(G) = τ(E)− kτ(Cx), k� 0.

(2) There is a locally free β-twisted sheaf G on X such that R1π∗(G
∨⊗G) =

0, Rπ∗(G
∨ ⊗ F ) ∈Coh(Y ) for F ∈ Per(X/Y,{Lij}), and τ(G) = 2τ(E).

(3) Moreover, if the inequalities in (2.67) are strict, then G in (1) and (2)

are local projective generators of Per(X/Y,{Lij}).

COROLLARY 2.4.2

Assume that (r, ξ) ∈ Z>0 ⊕NS(X) satisfies

0< (ξ,Cij)− r(bij + 1), 1≤ j ≤ si,
(2.68) ∑

j

aij(ξ,Cij)− r
∑
j

aij(bij + 1)< r,

for all i.

(1) For any sufficiently large c2 ∈ Z, there is a local projective generator G

of Per(X/Y,b1, . . . ,bn) such that G is a μ-stable sheaf with respect to H and

(rkG,c1(G), c2(G)) = (r, ξ, c2).

(2) For any e ∈K(X)top with (rke, c1(e)) = (r, ξ), there is a local projective

generator G such that τ(G) = 2e.

Proof of Proposition 2.4.1
(1) We assume that H is represented by a smooth connected curve with

Z ∩H = ∅, where Z =
∑n

i=1Zi. We take a torsion-free sheaf E such that Ext2(E,

E(−Z − H))0 = 0 by using Lemma 2.1.3. By the construction of E, we may

assume that E is locally free on Z ∪H . We consider the restriction morphism of
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the local deformation spaces

(2.69) φ : Def(X,E)→Def(Z,E|Z)×Def(H,E|H).

Then Def(X,E) and Def(Z,E|Z)×Def(H,E|H) are smooth, and φ is submersive.

In particular, by using Lemma 2.4.3 below, we see that E deforms to a locally free

β-twisted sheaf G such that G is μ-stable with respect to H and Hom(G,Lij) =

Ext1(G,Api) = 0 for all i, j. By Remark 1.1.35, Proposition 2.4.1(1) holds.

(2) By (1), we have locally free sheaves Ei, i = 1,2, such that R1π∗(E
∨
i ⊗

Ei) = 0, Rπ∗(G
∨
i ⊗ F ) ∈ Coh(Y ) for F ∈ Per(X/Y,{Lij}), τ(Ei) = τ(E) −

kiτ(Cx), and k1 + k2 = k2(H2) rkE. Then G=E1(kH)⊕E2(−kH) satisfies the

claim.

(3) The claim follows from Proposition 1.1.33. �

LEMMA 2.4.3

(1) E|Z deforms to a locally free β-twisted sheaf such that

(2.70) H0(Cij ,E
∨ ⊗Lij) =H1(Zi,E

∨ ⊗Api) = 0

for all i, j.

(2) E|H deforms to a μ-stable locally free β-twisted sheaf on H .

Proof
(1) Since E|Z =

⊕n
i=1E|Zi

, we shall prove the claims for each E|Zi
. Since

H2(Z,O×
Z ) = {1}, there is a β-twisted line bundle L on Zi which induces

an equivalence ϕ : Cohβ(Z) ∼= Coh(Z) in (1.142). Since Pic(Zi) → Zsi (L �→∏si
j=1 deg(L|Cij

)) is an isomorphism, we may assume that ϕ(Lij) = OCij (−1).

Thus we may assume that β is trivial and Lij =OCij (−1). In this case, we have

Api = OZi . Then we have deg(E|Cij
) ≥ 0 for all j > 0 and deg(E|Zi

) ≤ r. Let

D be an effective Cartier divisor on Zi such that (D,Cij) = deg(E|Cij
). Then

OZi(D)∼= detE|Zi
, and

(2.71) K := ker
(
H0(OZi∩D)⊗OZi →OZi∩D

)
is a locally free sheaf on Zi such that H1(Zi,K) = 0 and H0(Cij ,K|Cij

(−1)) = 0.

Since rkK = dimH0(OZi∩D) = deg(D) = deg(E|Zi
) ≤ r, we set F := K ⊕

O⊕(rkE−rkK)
Zi

. Since F is a locally free sheaf with (rkF∨,det(F∨)) = (rkE|Zi
,

det(E|Zi
)), we get the claim by Lemma 2.1.4 and the openness of the condi-

tion (2.70).

(2) This is well known. �

COROLLARY 2.4.4

Let C be the category of perverse coherent sheaves on X, and let Eij , 1≤ i≤ n,

0 ≤ j ≤ si, be the zero-stable objects in Definition 2.2.14. For an element E ∈
K(X) satisfying χ(E,Eij)> 0 for all i, j, there is a local projective generator G

of C such that τ(G) = 2τ(E).
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Proof

We consider the equivalence Λα in Proposition 2.3.16. Then since χ(Λα(E),

Λα(Eij)) > 0 for all i, j, Proposition 2.4.1 implies that there is a local projec-

tive generator Gα of Λα(C) such that τ(Gα) = 2τ(Λα(E)). We then also set

G := (Λα)−1(Gα) ∈ C. Then

H0
(
X,Hk(G

L
⊗Cx)

)
=Hk(X,G

L
⊗Cx)

= Hom
(
Cx,G[k+ 2]

)
(2.72)

= Hom
(
Λα(Cx),G

α[k+ 2]
)

= Hom
(
Gα,Λα(Cx)[−k]

)∨
= 0

for all x ∈X and k �= 0, where we used the fact that Λα is an equivalence and

[Br2, Theorem 1.1] to show that Λα(Cx)(KXα)∼= Λα(Cx). The same claim also

follows from Lemma 2.2.15 and the proof of Lemma 2.3.3.

Therefore G is a locally free sheaf on X . Since Gα is a local projective

generator of Λα(C) and Λα is an equivalence, G is a local projective generator

of C. �

PROPOSITION 2.4.5

We set v = (r, ξ, a) ∈Hev(X,Z)alg, r > 0. Assume that (ξ,D) /∈ rZ for all D ∈⊕
i,j Z[Cij ] with (D2) =−2. Then there is a category of perverse coherent sheaves

C(v) and a locally free sheaf G on X such that G is a local projective generator

of C(v) with v(G) = 2v. We also have a local projective generator G′ of C(v) such
that G′ is μ-stable with respect to H and v(G′) = v− b�X , b� 0. Moreover, there

is β ∈ �⊥X such that Cx ∈ C(v) is β-stable for all x ∈X.

Proof

We set C =Per(X/Y,b1, . . . ,bn) and keep the notation as above. By our assump-

tion, 〈v,u〉 /∈ rZ for all (−2)-vectors u ∈ L. Then there is w ∈ W (ĝ) such that

v = w(vf ) and vf/r belongs to the fundamental alcove, that is, −〈vf/r, vij〉> 0

for all i, j. By Lemma 2.3.26, we have an element α such that w = eDφ(α),

D ∈ T . By Proposition 2.4.1, there is a local projective generator Gf of C such

that v(Gf ) = 2vf . We set C(v) := Λα(C)⊗OX(D). Then Gα := Λα(Gf ) is a local

projective generator of C(v)⊗OX(−D). Hence G :=Gα(D) is a local projective

generator of C(v) such that v(G) = 2v. The last claim follows from Proposi-

tion 2.3.18. �

REMARK 2.4.6

If v is a Mukai vector of a twisted sheaf, then replacing Per(X/Y,b1, . . . ,bn) by

Per(X/Y,{Lij}), the same claim holds.

2.5. Deformation of a local projective generator
Let f : (X ,L)→ S be a flat family of polarized surfaces over S. For a point s0 ∈ S,

we set X := Xs0 . Let H be a relative Cartier divisor on X such that H :=Hs0



Perverse coherent sheaves I 337

gives a contraction f :X → Y to a normal surface Y with Rπ∗(OX) =OY . We

construct a family of contractions f :X →Y over a neighborhood of s0.

Replacing H by mH , we may assume that Hi(X,OX(mH)) = Hi(Y,

OY (mH)) = 0 for m > 0. We shall find an open neighborhood S0 of s0 such

that Rif∗(OXS0
(mH)) = 0, i > 0,m > 0, and f∗(OXS0

(mH)) is locally free. We

consider the exact sequence

(2.73) 0→OX (mH)→OX
(
(m+ 1)H

)
→OH

(
(m+ 1)H

)
→ 0.

Since H → S is a flat morphism, the base-change theorem implies that

Rif∗(OX (mH)) → Rif∗(OX ((m + 1)H)) (i > 0) is surjective if (m + 1)(H2) >

(H2) + (H,KX). We take an open neighborhood S0 of s0 such that

Rif∗(OXS0
(mH)) = 0, i > 0, (H,KX)/(H2) ≥m> 0. Then the claim holds. We

replace S by S0 and set Y := Proj(
⊕

m f∗(OX (mH))). Then Y is flat over S and

Ys0
∼= Y . By the construction, Y → S is a flat family of normal surfaces.

Let Z := {x ∈ X | dimπ−1(π(x)) ≥ 1} be the exceptional locus. Then {(Zs,

Ls) | s ∈ S} is a bounded set. Hence D := {D ∈NS(Xs) | s ∈ S, (D,Hs) = 0} is a

finite set. Replacing S by an open neighborhood of s0, we may assume that D ∈D
is a deformation of D0 ∈NS(X) (i.e., D belongs to NS(X) via the identification

H2(Xs,Z)∼=H2(X,Z)).

LEMMA 2.5.1

Assume that there is a locally free sheaf G on X such that R1π∗(G
∨ ⊗G) = 0

and rkG � (c1(G)s0 ,D) for all (−2)-curves with (D,Hs0) = 0. Then replacing S

by an open neighborhood of s0, we may assume that rkG � (c1(G)s,D) for all

(−2)-curves with (D,Hs) = 0. Thus G is a family of tilting generators.

As an example, we consider a family of K3 surfaces. Let X be a K3 surface,

and let π :X → Y be a contraction. Let pi, i= 1,2, . . . , n be the singular points,

and let Zi :=
∑

j aijCij be their fundamental cycles. Let H be the pullback of

an ample divisor on Y . Assume that (r, ξ) ∈ Z>0 ×NS(X) satisfies r � (ξ,D) for

all (−2)-curves D with (D,H) = 0. By Proposition 2.4.5, there is a category

of perverse coherent sheaves C and a local projective generator G of C such

that G is μ-stable with respect to H and (rkG,c1(G)) = (r, ξ). Replacing G by

G ⊗ L⊗m and L ∈ Pic(X) and C by C ⊗ L⊗m, we assume that ξ is ample. If

(Qξ + QH) ∩H⊥ does not contain a (−2)-curve, then we have a deformation

(X ,L)→ S of (X,ξ) such that Hs is ample for a general s ∈ S. Since G is simple,

replacing S by a smooth covering S′ → S, we also have a deformation G of G

over S. By shrinking S, we may assume that G is a family of tilting generators.

Then we can construct a family of moduli spaces f : M
G
(X ,H)/S(v) → S of Gs-

twisted semistable objects on Xs, s ∈ S (for the twisted cases, see steps (3),

(4) of the proof of [Y4, Theorem 3.16]). By our assumption, a general fiber of

f is the moduli space of Gs-twisted semistable sheaves, which is nonempty by

Lemma A.2.4. Hence we get the following lemma.
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LEMMA 2.5.2

Assume that v is primitive and 〈v2〉 ≥ −2. Then f is surjective. In particular,

M
G
(X ,H)/S(v)s0 �= ∅.

REMARK 2.5.3

We note that R := {C ∈NS(X) | (C,H) = 0, (C2) =−2} is a finite set. If ρ(X)≥
3, then

⋃
C∈R(QH +QC) is a proper subset of NS(X)⊗Q. Hence (Qξ+QH)∩

R = ∅ for a general ξ. In general, we have a deformation (X ,L)→ S of (X,ξ)

such that G is a family of tilting generators and ρ(Xs) ≥ 3 for infinitely many

points s ∈ S.

REMARK 2.5.4

By the usual deformation theory of objects, we note that MG
(X ,H)/S(v) → S is

a smooth morphism. If M
G
(X ,H)/S(v)s0 =MG

(X ,H)/S(v)s0 , then we have a smooth

deformation M
G
(X ,H)/S(v)→ S of M

G
(X ,H)/S(v)s0 . In particular, M

G
(X ,H)/S(v)s0

deforms to a usual moduli of semistable sheaves.

COROLLARY 2.5.5

Let v0 = (r, ξ, a) be a primitive isotropic Mukai vector such that r � | (ξ,D) for all

(−2)-curves D with (D,H) = 0. Let C be the category in Proposition 2.4.5. Then

Mv0
H (v0) �= ∅.

Proof

By Lemma 2.5.2 and Remark 2.5.3, we see that M
v0
H (v0) �= ∅. By the same proof

as that of [OY, Lemma 2.17], we see that M
v0+α

H (v0) �= ∅ for a general α. Then

M
v0+α

H (v0) is a K3 surface. In the same way as in the proof of [OY, Proposi-

tion 2.11], we see that Mv0
H (v0) �= ∅. �

Appendix

A.1 Elementary facts on lattices
LEMMA A.1.1

Assume that L ∼= Zn has an integral bilinear form ( , ) and a linear map f :

L⊗Q→Q. Let v be a primitive element of L such that (v, v) = 0, (v,w) = (w,v)

for any w. We set v⊥ := {x ∈ L | (v,x) = 0}. Assume that ( , )|v⊥ is symmetric,

that there is an element u ∈ L⊗Q such that (u, v) = 0 and that (v⊥ ∩ u⊥)/Zv is

negative definite.

(1) If v =
∑s

i=0 aivi, ai ∈ Z>0, such that

(i) vi ∈ v⊥ ∩ u⊥, i= 0,1, . . . , s,

(ii) (v2i ) =−2,

(iii) (vi, vj)≥ 0 for i �= j, and

(iv) f(vi)> 0 for 0≤ i≤ s.
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Then the matrix (−(vi, vj)i,j) is of affine type Ã, D̃, Ẽ, and 1 ∈ {a0, a1,
. . . , as}.

(2) Assume that v has two expressions

(A.1) v =

s∑
i=0

aivi =

t∑
i=0

a′iv
′
i, ai, a

′
i ∈ Z>0,

such that vi, v
′
i ∈ v⊥ ∩ u⊥, (v2i ) = ((v′i)

2) = −2, f(vi), f(v
′
i) > 0, and (w1,

w2)≥ 0 for different w1,w2 ∈ V1 ∪ V2, where V1 := {v0, v1, . . . , vs} and V2 :=

{v′0, v′1, . . . , v′t}, V1 = V2, or
⊕

iZvi ⊥
⊕

iZv
′
i.

Proof

(1) We shall show that the dual graph of {v0, v1, . . . , vs} is connected. If we have a

decomposition v = (
∑

i∈I1
aivi)+(

∑
i∈I2

aivi) such that (vi, vj) = 0 for i ∈ I1, j ∈
I2, then 0 = (v2) = (

∑
i∈I1

aivi)
2 + (

∑
i∈I2

aivi)
2. Hence

∑
i∈I1

aivi,
∑

i∈I2
aivi ∈

Zv, which implies that the graph is connected by (iv). Then the standard argu-

ments show the claims.

(2) We set I := {i | v′i ∈ V1} and J := {i | v′i /∈ V1}. Then v = (
∑

i∈I a
′
iv

′
i) +

(
∑

i∈J a
′
iv

′
i). If i ∈ J , then 0 = (vi, v) =

∑
j aj(v

′
i, vj)≥ 0. Hence v′i ∈ (

⊕
iZvi)

⊥.

Then 0 = (v2) = ((
∑

i∈I a
′
iv

′
i)

2) + ((
∑

i∈J a
′
iv

′
i)

2). Hence
∑

i∈I a
′
iv

′
i,
∑

i∈J a
′
iv

′
i ∈

Zv, which implies that I = ∅ or J = ∅. If J = ∅, then V2 ⊂ V1, and we see that

V1 = V2. If I = ∅, then all v′i belong to
⊕

iZvi. Thus
⊕

iZvi ⊥
⊕

iZv
′
i. �

REMARK A.1.2

If the dual graph of {v0, v1, . . . , vs} is connected, then we do not need the existence

of u and f to show (1). Thus if v =
∑s

i=0 aivi, ai ∈ Z>0, such that

(i) vi ∈ v⊥, i= 0,1, . . . , s,

(ii) (v2i ) =−2,

(iii) (vi, vj)≥ 0 for i �= j,

then the matrix (−(vi, vj)i,j) is of affine type Ã, D̃, Ẽ and 1 ∈ {a0, a1, . . . , as} (cf.

[Ko, proof of Theorem 6.2]).

If the dual graphs of {v0, v1, . . . , vs} and {v′0, v′1, . . . , v′t} are connected, then

(2) also holds under the assumption vi, v
′
i ∈ v⊥, (v2i ) = ((v′i)

2) = −2, and (w1,

w2)≥ 0 for different w1,w2 ∈ V1 ∪ V2.

EXAMPLE A.1.3

Let X be a smooth projective surface, and let H be a divisor on X with (H2)> 0.

We set L := ch(K(X)) and (x, y) := −
∫
X
x∨ytdX , x, y ∈ L. Then �X = ch(Cx)

is primitive in L. Since Cx ⊗ KX
∼= Cx, (�X , x) = (x,�X). Moreover, ( , )|�⊥

X

is symmetric. Since (�⊥X ∩ ch(OH)⊥)/Z�X ∼= {D ∈ NS(X)f | (H,D) = 0}, it is

negative definite, where NS(X)f is the torsion-free quotient of NS(X).
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A.2 Existence of twisted semistable sheaves
Let X be a smooth projective surface, and let H be an ample divisor on X . Let

e ∈K(X)top be a toplogical invariant of a coherent sheaf on X .

DEFINITION A.2.1

A polarization H on X is general with respect to e if for every μ-semistable sheaf

E with τ(E) = e and a subsheaf F �= 0 of E,

(A.2)
(c1(F ),H)

rkF
=

(c1(E),H)

rkE
if and only if

c1(F )

rkF
=

c1(E)

rkE
.

If H is general with respect to e, then the G-twisted semistability does not

depend on the choice of G.

DEFINITION A.2.2

We letMG
H(e)ss (resp.,MG

H(e)s) denote the moduli stack of G-twisted semistable

sheaves (resp., G-twisted stable sheaves). MH(e)μ-ss (resp., MH(e)μ-s) denotes

the moduli stack of μ-semistable sheaves (resp., μ-stable sheaves).

The following is [MW, Lemma 3.6]. For the sake of convenience, we give a proof.

LEMMA A.2.3

Assume that H is not general with respect to e, and let ε be a sufficiently small

Q-divisor such that H + ε is general with respect to e. Then there is a locally free

sheaf G such that MG
H(e)ss =MH+ε(e)

ss.

Proof

We set

(A.3) F(e) :=

{
(F,E)

∣∣∣∣E ∈MH(e)μ−ss, F ⊂E, E/F is torsion-free,

(c1(F ),H)/ rkF = (c1(E),H)/ rkE

}
.

Since F(e) is a bounded set, we have

(A.4) B := max
{∣∣∣χ(E)

rkE
− χ(F )

rkF

∣∣∣ ∣∣∣ (F,E) ∈ F(e)
}
<∞.

Assume that Nε ∈NS(X). Take m≥ (rke)2NB, and take a locally free sheaf G

with c1(G)/ rkG=−mε. Then for (F,E) ∈ F(e),

χ(G,E(nH))

rkE
− χ(G,F (nH))

rkF
(A.5)

=m
(c1(E)

rkE
− c1(F )

rkF
, ε
)
+

χ(E)

rkE
− χ(F )

rkF
≥ 0

if and only if

(1) we have

(A.6)
(c1(E)

rkE
− c1(F )

rkF
, ε
)
≥ 0,
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or

(2) we have

(A.7)
c1(E)

rkE
− c1(F )

rkF
= 0,

χ(E)

rkE
− χ(F )

rkF
≥ 0,

which is the semistability of E with respect to H + ε. Therefore the claim holds.

�

LEMMA A.2.4

Let (X,H) be a polarized K3 surface, and let v = r + ξ + a�X , ξ ∈ NS(X), be

a primitive Mukai vector with 〈v2〉 ≥ −2. Then there is a G-twisted semistable

sheaf E with v(E) = v for any G.

Proof

We first assume that r > 0. If H is general with respect to v, then there is a stable

sheaf E with v(E) = v by [Y1, Theorem 8.1]. Obviously E is G-twisted stable

for any G. If H is not general with respect to v, then Lemma A.2.3 implies that

there is a locally free sheaf G1 such that MG1

H (v)ss =MG1

H (v)s �= ∅. For a G with

MG
H(v)ss =MG

H(v)s, we use [Y2, Proposition 4.1], whose proof is similar to those

of [Y3, Propositions 2.5, 2.7]. If MG
H(v)ss �=MG

H(v)s, then we can find a G′ such

that c1(G
′)/ rkG′ is sufficiently close to c1(G)/ rkG, MG′

H (v)ss = MG′

H (v)s �= ∅
and MG′

H (v)ss ⊂MG
H(v)ss. Thus the claim also holds.

We next assume that r = 0. We take a line bundle G1 on X such that

〈v, v(G1)〉 �= 0 and set v′ := ve−c1(G1). Then for a general H with respect to

v′, [Y5, Corollary 3.5] implies that MG1

H (v)s ∼=MOX

H (v′)s �= 0. Now we can use

the same argument as in the case r > 0 to prove that MG
H(v)ss �= ∅ for any G.

�
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