Perverse coherent sheaves and
Fourier-Mukai transforms on surfaces, |

Kota Yoshioka

Abstract We study perverse coherent sheaves on the resolution of rational double
points. As examples, we consider rational double points on 2-dimensional moduli spaces
of stable sheaves on K3 and elliptic surfaces. Then we show that perverse coherent
sheaves appear in the theory of Fourier—Mukai transforms. As an application, we gen-
eralize the Fourier-Mukai duality for K3 surfaces to our situation.
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0. Introduction

Let 7: X — Y be a birational map such that dim7~*(y) < 1,y € Y. Bridgeland
[Br3] introduced the abelian category P Per(X/Y)(C D(X)) of perverse coher-
ent sheaves in order to show that flops of smooth 3-folds preserve the derived
categories of coherent sheaves. By using the moduli of perverse coherent sheaves
on X, Bridgeland constructed the flop X’ —Y of X — Y. Then the Fourier—
Mukai transform by the universal family induces an equivalence D(X) 2 D(X").
In [VB], Van den Bergh showed that ? Per(X/Y) is Morita equivalent to the
category Coh 4(Y) of A-modules on Y and gave a different proof of Bridgeland’s
result, where A is a sheaf of (noncommutative) algebras over Y. Although the
main examples of the birational contraction are small contractions of 3-folds,
2-dimensional cases seem to be still interesting. In [NY1], [NY2], and [NY3],
Nakajima and Yoshioka studied perverse coherent sheaves for the blowup X — Y
of a smooth surface Y at a point. In this case, by analyzing wall-crossing phe-
nomena, we related the moduli of stable perverse coherent sheaves to the moduli
of usual stable sheaves. The next example is the minimal resolution of a ratio-
nal double point. Let G be a finite subgroup of SU(2) acting on C2, and set

Kyoto Journal of Mathematics, Vol. 53, No. 2 (2013), 261-344

DOI 10.1215/21562261-2081234, © 2013 by Kyoto University

Received August 26, 2011. Revised September 13, 2012. Accepted September 14, 2012.

2010 Mathematics Subject Classification: 14D20.

The author’s work supported by Japan Society for the Promotion of Science Grants-in-aid for Scien-
tific Research numbers 18340010 and 22340010.


http://dx.doi.org/10.1215/21562261-2081234
http://www.ams.org/msc/

262 Kota Yoshioka

Y :=C?/G. Let 7: X — Y be the resolution of Y. Then the relation between the
perverse coherent sheaves and the usual coherent sheaves on X was discussed by
Nakajima. Their moduli spaces are constructed as Nakajima’s quiver varieties in
[N1], and their differences are described by the wall-crossing phenomena in [N2].
Toda [T] also treated special cases. In this and a subsequent paper (see [Y7]), we
are interested in the global case. Thus we consider the minimal resolution 7 : X —
Y of a normal projective surface Y with rational double points as singularities.

The main example of global case comes from Fourier-Mukai transforms on
K3 and elliptic surfaces. Let (X, H) be a pair of a K3 surface X and an ample
divisor H on X. We take a locally free sheaf G on X. Replacing the usual Hilbert
polynomial x(E(nH)) of E by x(GY ® E(nH)), we have a notion of G-twisted
semistability and the coarse moduli space Mﬁ(v), where v € H*(X,Z) is the
Mukai vector of G-twisted semistable sheaves. Since the G-twisted semistability
depends only on ¢1(G)/rkG, we may write Mi(v) = My (v), where w is the
Mukai vector of G. As in the usual Gieseker-Maruyama semistability, it is a
refinement of the slope semistability due to Mumford and Takemoto. Assume that
My (v) contains a w-twisted stable sheaf and dim My (v) = 2. For the moduli
space Mz (v), we can associate a natural Q-divisor H which also appears in the
theory of Donaldson invariants. This H is nef and big and defines a morphism
whose image is contained in the differential geometric compactification (i.e., the
Uhlenbeck compactification) of the moduli of slope stable vector bundles. For
w=v, H is ample and M y;(v) is a normal K3 surface (see [OY, Propositions 1.3,
2.16]). Thus My;(v) is a natural object if we focus on the divisor H.

If H is a general polarization, then Y’ := M, (v) consists of v-twisted stable
sheaves and is a smooth K3 surface. Moreover, if there is a universal family £ on
X x Y’ then we have a Fourier—-Mukai transform ‘I)ivﬁy, :D(X) = D(Y) (see
[Br2], [O]). Even if there is no universal family, we still have a universal family £
as a twisted sheaf and get a Fourier—-Mukai transform <I)§(v Ly :D(X)—=D*Y"),
where « is a representative of a torsion element [a] € H*(Y’,05,) and D*(Y”)
is the bounded derived category of the category of coherent a-twisted sheaves
Coh®(Y"). By choosing a locally free twisted sheaf G on Y’ the Morita equiv-
alence Coh®(Y”) — Coh4(Y”) induces an equivalence D(X) — D4(Y”), where
A=GY ® G is a sheaf of Oy-algebras. We would like to generalize these kinds
of equivalences to the case where Y’ has singularities. In this case, we shall
construct a sheaf of Oy-algebras A and get an equivalence D(X) — D _4(Y”).
Let us briefly explain our construction of the equivalence. We take a minimal
resolution X’ — Y’. For a sufficiently small ¢ € NS(X) ® Q, we set w = veS.
Then there is a projective morphism «’ : My (v) — M (v) which gives a min-
imal resolution of Y. So we set X' := M;(v) Then we have a Fourier-Mukai
transform <I>‘§(v_>X/ :D(X) — D*(X’). For a suitable locally free a-twisted sheaf
G, A:=7,(G¥ ®G) is a sheaf of Oys-algebras, and we have an equivalence
D%(X’) — D4(Y") via the Morita equivalence (E +— Rr,(E ® GY)). In this way,
we have an equivalence (see [Y7, Proposition 2.3.6])

(0.1) D(X) — D*(X’) = D(Y").
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In our previous papers [Y1] and [Y2], we studied the relation of Gieseker—
Maruyama stability and the Fourier—Mukai transforms if Y’ is smooth, that is,
X’ — Y’ is isomorphic. In these papers, we assumed that the universal family £ on
X x X' satisfies that & (3 x- is stable for all € X and X is the moduli space of
stable sheaves on X’. As in the abelian variety and its dual, these properties mean
that we can regard X’ as the dual of X. We call these properties the Fourier—
Mukai duality [Mul]. A nontrivial example of Fourier-Mukai duality was first
constructed by Bartocci, Bruzzo, and Hernandez Ruipérez [BBH]. For a general
member (X, H) of the moduli space of polarized K3 surfaces, Mukai [Mu3], Orlov
[O] and Bridgeland [Br2] showed the Fourier-Mukai duality. Moreover, a recent
paper by Huybrechts [H] showed the Fourier-Mukai duality if MQI]{ (v) consists of
slope stable vector bundles. This was achieved in his study of Bridgeland’s work
[Br4] on the stability conditions for K3 surfaces. Bridgeland’s stability condition
(2, Z) consists of an abelian subcategory 2 of D(X) and a stability function Z :
D(X) — C satisfying some properties. As examples, Bridgeland constructed sta-
bility conditions (U3, Z(s,.,)) associated to (3,w) € NS(X)g x Amp(X)r, where
2 is independent of w and Z(g () = (ePtV=1w 4(e)). Bridgeland characterized
these kinds of stability conditions. Then Huybrechts realized that the Fourier—
Mukai transform induces an equivalence

V1
(0.2) o5 UL, oy 2ty

where B8 = c1(Exx{a})/TkE | xx {2y and B = —c1(E{ayxx/)/ 1k E (21 xxr (s€0
[H, Proposition 4.2]). Combining this equivalence with a classification of irre-
ducible objects of s (in his terminology, irreducible objects mean minimal
objects; see [H, Theorem 0.2]), the Fourier-Mukai duality is easily deduced. Then
inspired by [H], we showed the stability of ®%, v, (E(nH)) (E € My (u)) for suf-
ficiently large n depending on H,v,u (see [Y5, Theorem 1.7]) if My (v) consists
of slope stable vector bundles. Actually we first gave more direct proofs of the
Fourier-Mukai duality and the equivalence (0.2) under the same conditions as
in [H]. Then by using (0.2), we got the above asymptotic result on the stability
of %", \,(E(nH)). We would like to remark that results in [Y1] and [Y2] can
be easily derived by using (0.2) or its variant, although we did not state them in
[Y5] (cf. [H, Section 6]).

In this paper, we establish the Fourier-Mukai duality for X and X’ without
any assumption on X', and generalize all results in [Y5] to our situation (see [Y7,
Theorem 2.5.9, Proposition 2.7.2]). In particular, if Y’ is singular, then we show
that X is a moduli space of stable perverse coherent sheaves with respect to H.
Let (X, H) be a pair of a smooth K3 surface X and H a nef and big divisor on
X which gives a birational contraction 7: X — Y to the normal K3 surface Y.
For the Fourier—Mukai duality, the roles of X and X’ are the same. This means
that it is natural to formulate the Fourier-Mukai duality as a relation between
m: X =Y and 7' : X’ — Y. Thus we also consider the Fourier-Mukai transforms
associated to the moduli spaces of perverse coherent sheaves on X.
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For an elliptic surface X — C' with a section and reducible singular fibers,
the Weierstrass model Y — C' is a normal surface whose singularities are ratio-
nal double points. Hence the category of perverse coherent sheaves associated to
X — Y naturally appears. For the elliptic surface X — C, there are many stable
sheaves F with £ ® Kx = E. Let Y/ be the moduli space of semistable sheaves
containing E. If Y’/ is smooth, then the universal family induces a Fourier—
Mukai transform D(X) — D*(Y’). In general, Y’ is singular. For example, let
Y’ := Mg(0, f,0) be the moduli space of semistable 1-dimensional sheaves E
with ¢1(F) = f and x(E) =0, where H is an ample divisor on X. Then Y’ is
a compactified relative Picard scheme P—icg( sc — C, and it is the Weierstrass
model of an elliptic surface X’ — C. Moreover, X’ is constructed as a moduli
space Mﬁ(o, f,0) of G-twisted semistable sheaves, where G € K(X)g. Then we
have an equivalence (0.1). Thus we can show similar results to those for a K3
surface. In particular, we can formulate the Fourier—Mukai duality by using per-
verse coherent sheaves and study the preservation of Gieseker semistability under
Fourier—Mukai transforms.

Let G be a finite group acting on a projective surface X. Assume that Kx is
the pullback of a line bundle on Y := X/G. Then the McKay correspondence (see
[VB]) implies that Cohg(X) is equivalent to ~! Per(X’/Y’), where X’ — Y is the
minimal resolution of Y. The equivalence is given by a Fourier—Mukai transform
associated to a moduli space of stable G-sheaves of dimension zero. If X is a K3
surface or an abelian surface, then we have many 2-dimensional moduli spaces
of stable G-sheaves. We also treat the Fourier-Mukai transform induced by the
moduli of G-sheaves.

Let us explain the content of the first half part. In Section 1, we consider an
abelian subcategory C of D(X) which is Morita equivalent to Coh4(Y’), where
m: X — Y is a birational contraction from a smooth variety X and A is a sheaf
of (noncommutative) algebras over Y. We call an object of C a perverse coherent
sheaf. Since ~!Per(X/Y) is Morita equivalent to Coh4(Y) for an algebra A
(see [VB]), our definition is compatible with Bridgeland’s definition. We also
study irreducible objects and local projective generators of C. As examples, we
shall give generalizations of P Per(X/Y), p = —1,0. We next explain families of
perverse coherent sheaves and the relative version of Morita equivalence. Then we
can use Simpson’s [S] moduli spaces of stable A-modules to construct the moduli
spaces of stable perverse coherent sheaves. Since Simpson’s stability is not good
enough for the zero-dimensionional objects, we also introduce a refinement of the
stability and construct the moduli space, which is close to King’s [K] stability.
Finally we explain how to modify our arguments in Section 1 to be applicable
to the category of twisted sheaves. This is necessary for applications of Fourier—
Mukai transforms, as we have explained in this introduction.

In Section 2, we study perverse coherent sheaves on the resolution of ratio-
nal double points. We first introduce two kind of categories Per(X/Y,by,...,b,)
and Per(X/Y,bq,...,b,)* associated to a sequence of line bundles on the excep-
tional curves of the resolution of rational singularities and show that they are
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the category of perverse coherent sheaves in the sense in Section 1. They are
generalizations of ~! Per(X/Y) and ° Per(X/Y), respectively.

We next study the moduli of zero-dimensional objects on the resolution of
rational double points. We introduce the wall and the chamber structure and
study the Fourier—Mukai transforms induced by the moduli spaces. Under a suit-
able stability condition for C,, = € X, we show that the category of perverse
coherent sheaves is equivalent to 1 Per(X/Y) (cf. Proposition 2.3.27). We also
construct local projective generators under suitable conditions.

Examples of the categories of perverse coherent sheaves and the relation with
the Fourier—-Mukai transforms will be treated in the second part (see [Y7]).

NOTATION
(i) For a scheme X, Coh(X) denotes the category of coherent sheaves on X

and D(X) denotes the bounded derived category of Coh(X). We denote the
Grothendieck group of X by K(X).

(ii) Let A be a sheaf of Ox-algebras on a scheme X which is coherent as an
Ox-module. Let Coh4(X) be the category of coherent .A-modules on X,
and let D 4(X) be the bounded derived category of Coh4(X).

(iii) Assume that X is a smooth projective variety. Let E be an object of D(X).
Let EY := RHomo, (F,Ox) denote the dual of E. We denote the rank of
E by rk E.

(iv) G-twisted semistability. Let X be a smooth projective variety, and let L
be an ample divisor on X. For G € K(X), rkG >0, and a coherent sheaf E
on X, we define a;(E) by

(0.3) X(G,E® L®™) :;ai(E) (”“)

7

A d-dimensional coherent sheaf E is G-twisted semistable with respect to L
if
F
(0.4) X(GY @ FeL®) < MX(Gv Q@ERL®), n>0,
aq(E)
for all subsheaves F' of E. If FE is 1-dimensional, then the condition is
(c1(L), chgim x—1(F))
(c1(L),chgimx—1(E))
for all subsheaves F' of E. In particular if x(G, E) =0, then the condition is

(0.5) X(G, F) <

X(G, E)

(0.6) X(G,F) <0 for all subsheaves F of E.

Thus the condition does not depend on the choice of L. If G = Ox, then G-
twisted semistability is the usual semistability of Gieseker, Maruyama, and
Simpson.

(v) Integral functor. For two schemes X, Y and an object £ € D(X x Y),
@& .y : D(X) — D(Y) is the integral functor

(0.7) %y ()= Rpy. (€ Sp%(E), EeD(X),
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where px : X XY — X and py : X XY — Y are projections. If <I>§(_>Y is an
equivalence, it is said to be the Fourier—Mukai transform.
(vi) D(X)op denotes the opposite category of D(X). We have a functor

Dx :D(X) — D(X)op,
E— EY.
(vii) Assume that X is a smooth projective surface.

(a) We set HV(X,Z) := EB?:O H?(X,Z). In order to describe the element
x of H®(X,Z), we use two kinds of expressions: x = (xg,21,%2) = T +
&1 + x20x, where xg € Z,xy € H*(X,Z),25 € Z, and [, ox = 1. For z =
(x0,21,%2), we set tkx :=xg and c¢;(x) = 21.
(b) We define a homomorphism
v:K(X)—>ZadNS(X)sZ,
(0.8)
Ew (1kE,c1(E),x(E))
and set K (X)op := K (X)/kery. We denote E mod ker~y by 7(E). K(X)op
has a bilinear form x(, ).
(¢) Mukai lattice [Mu2]. We define a lattice structure (, ) on H*V(X,Z) by

[ 2701

0.9)
= (z1,91) — (zoy2 + T2%0),

where z = (29,71, 72) (resp., y = (Y0,v1,y2)) and ¥ = (29, —x1, x2). It is now
called the Mukai lattice. The Mukai lattice has a weight 2 Hodge structure
such that the (p,q)-part is @, HP "9+ (X). We set
HY(X,Z)ag = H"' (H*(X,C)) N H*(X,Z)
(0.10)
=Z®NS(X)DZ.

Let E be an object of D(X). If X is a K3 surface or rk E =0, we define the
Mukai vector of E as

(0.11) v(E) :==1k(E) + c1(E) + (x(E) —1k(E))ox € H*"(X,Z).
Then for E, F € D(X) such that the Mukai vectors are well defined, we have
(0.12) X(E,F) = —(o(E),o(F)).

1. Perverse coherent sheaves and their moduli spaces

1.1. Tilting and Morita equivalence

Let X be a smooth projective variety, and let 7: X — Y be a birational map. Let
Oy (1) be an ample line bundle on Y, and let Ox (1) := 7*(Oy(1)). In Sections 1.1
and 1.2, we impose the following assumption.
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ASSUMPTION 1.1.1
(1) Take dim7~!(y) <1 for all y € Y, and set

(1.1) Vei={yeY |dimn'(y)=1}.
(2) We have R, (Ox) = Oy; that is, m.(Ox) = Oy and Rl7,(Ox) =0.

More precisely, we impose Assumption 1.1.1(1) from Definition 1.1.10.
Lemma 1.1.11(2) and Proposition 1.1.13 will explain that Assumption 1.1.1(2)
is a reasonable assumption. Then we impose Assumption 1.1.1(2) after Proposi-
tion 1.1.13.

REMARK 1.1.2
Since 7 : X — Y is birational, 7.(Ox) = Oy means that Y is normal.

We are interested in the following type of abelian categories.

DEFINITION 1.1.3
(1) A subcategory C of D(X) is a category of perverse coherent sheaves if the

following conditions are satisfied.
(i) C is the heart of a bounded ¢-structure of D(X).
(ii) There is an object G € C such that
(a) Rm.RHomo, (G,E) € Coh(Y) for all E €C and
(b) Rm.RHomo, (G,E)=0, E €C if and only if E=0.
(2) We say G is a a local projective generator of C if it satisfies (a) and (b).
(3) A perverse coherent sheaf E is an object of C.
(4) For E € D(X), PH'(E) € C denotes the ith cohomology object of E with
respect to the t-structure.

By these properties, we get
(1.2) C= {E eD(X) | Rm.RHomo, (G, E) € Coh(Y)}.

Indeed for E € D(X), (a) implies H!(Rm.(RHomo, (G,PH’(E)))) =0 for i # 0.
Hence the spectral sequence
By = H' (Rr, (RHomo, (G,PH’(E))))
(1.3) PR
= El7 = H'Y (R (RHomo, (G, E)))

degenerates, and (b) implies (1.2).

REMARK 1.1.4

(1) C in Definition 1.1.3 is not determined by =, unlike in [Br4] and [VB],
and does depend on G.

(2) Our definition of a local projective generator is in the global nature of
Coh(X). So it is different from the one in [VB]. Under Assumptions 1.1.1 and
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1.1.6, we can show that G|,-1 (¢ is a local projective generator of a local category
(1.4) {EeD(r1(U)) | RmRHomo__, , (G|z-1(1), E) € Coh(U) }

in Corollary 1.1.18, where U is an open subset of Y. This is the link of two
notions of local projective generators.

As we shall see in Section 1.4, the existence of G in Definition 1.1.3 or the
Morita equivalence (Proposition 1.1.7 below) which follows from the existence of
G is essential for the construction of moduli spaces of stable objects. This is our
motivation to require a local projective generator G in Definition 1.1.3. Then it
is desirable to know what kind of categories G has in Definition 1.1.3. We shall
discuss this problem in Section 1.1.2.

The following is an easy consequence of the properties (a) and (b) of G. For
the sake of convenience, we give a proof.

LEMMA 1.1.5
Let G be a local projective generator of C.

(1) For E €C, there is a locally free sheaf V on'Y and a surjective morphism
(1.5) o (V) G—E
in C. In particular, we have a resolution
(1.6) T (Vo) @G = (Vo) @ G— E—0

of E such that Vi, 1 <0, are locally free sheaves on Y .
(2) Let G' € C be a local projective object of C: Rm.RHomp, (G E) €
Coh(Y) for all E€C. If G is a locally free sheaf, then so is G'.

Proof
(1) By property (a) of G (see Definition 1.1.3), we can take a morphism ¢ :
V = Rm.RHomoe, (G, E) in D(Y) such that V — H°(Rm.RHomo, (G, E)) is
surjective in Coh(Y"). Since
Hom (L7* (Rm.RHomo, (G, E)) ® G,E)
(1.7) = Hom (L7* (Rm.RHomo, (G, E)),RHomo, (G, E))
= Hom (Rm.RHomo, (G, E),Rm.RHomo, (G, E)),
we have a morphism ¢ : 7*(V) ® G — E such that the induced morphism
V = Rm.RHomo, (G, 7*(V) ® G) = Rm,RHomo, (G, E)

is ¢. Then coker ¢ € C satisfies Rm.RHomo, (G, coker ¢) = 0. By our assumption
on G, coker ¢ = 0. Thus ¢ is surjective in C.

(2) We take a surjective homomorphism (1.5) for G’. Let U be an affine open
subset of Y. We note that
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Hom(Gfﬂfl (U)» ker Qs\ﬂ’l (U) [1])

(1.8)

=H'(URm.RHomo, (Gi,rfl(U), ker ¢|.-1(r7))) = 0.
Hence
(19) HOm(GTﬂ_,l (U) s 71'* (V) X G‘ﬂ—fl(U)) — HOm(GTTrf] (U)’ Giﬂ'fl(U))

is surjective. Therefore GTﬂ-*l(U) is a direct summand of 7*(V) @ G|z (py. O

ASSUMPTION 1.1.6
From now on, we add the following equivalent conditions for the definition of our
category of perverse coherent sheaves C in Definition 1.1.3.

(1) There is a local projective generator which is a locally free sheaf.
(2) Every local projective generator is a locally free sheaf.

By this assumption, a local projective generator G satisfies Rim,.(GY ® G) =0
for i > 0 by Definition 1.1.3(a).

PROPOSITION 1.1.7 ([VB, LEMMA 3.2, COROLLARY 3.2.8])
For a local projective generator G of C, we set A:=m,(GY ® G). Then we have
an equivalence

C— COhA(Y),

(1.10)
E— Rr,(GY ®E)

L
whose inverse is F > 7w 1(F) ®@r-1(4) G. Moreover, this equivalence induces an
equivalence D(X) — D4 (Y).

For the convenience of the reader, let us briefly explain the correspondence (1.10).
For F € Coh4(Y), we have a surjective morphism H°(Y, F(n)) ® A(—n) — F,
n > 0. Hence we have a resolution V* — F by locally free A-modules V*. If Vﬁ] =
AZ™ on an open subset of Y, then (77 (V) @,-1(4) G) jx-1(1r) = G|€7Br7ll(U)' Thus
7T_1(F) é)ﬂ—l(A) G is isomorphic to w‘l(V‘) ®7r*1(.A) G. Then 7T'_1(V.) ®7r*1(.A)
G € C follows from the next lemma.

LEMMA 1.1.8

(1) For a morphism V Yw of locally free A-modules on Y, we have a
morphism 7= (V) @r-1(4) G KN 7Y W) @r-1(a) G. Then Rm,(GY @ kery)’) =
kery and R (GY ® im1)’) = im1.

(2) Let U AV AW be an ezact sequence of locally free A-modules on Y .
Then 7T71(U) Qr-1(A) G f) 7T71(V) Qn-1(A4) G E) 7T71(W) Qr-1(A4) G is exact inC.
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Proof
(1) We have exact sequences in C,

0 —im¢’ = 7 (W) @,-1(4) G — coker ¢y’ — 0,
(1.11)
0= kery/ =7 (V) ®r-1(4) G — ime)’ — 0.

Applying Rm,.(GY ® e) to these sequences, we have exact sequences

0 — Rm(GY @im9)) - W — R (GY ® coker)’) — 0,
(1.12)
0— Rm. (G @kery') -V — Rm. (G @imv’) = 0

by Definition 1.1.3(a). Thus claim (1) holds.
(2) We have an exact sequence

0— Rm.(GY ®im¢’)
(1.13)
— R (GY @ ker ') — R (GY @ kery)'/im¢') — 0

Hence (2) follows from (1) and Definition 1.1.3(b). O

L
Finally, by using Lemma 1.1.5 and the construction of 77! (F) ®,-1(4) G, the
equivalence (1.10) follows.

REMARK 1.1.9

(1) For E*®* € D(X), there is a bounded complex E} such that E® 2 E} in
D(X) and E} € Coh(X)NC (see the proof of Lemma 1.3.6 below).

(2) By taking a local projective resolution 7*(V,) ® G of E € C in Lem-
ma 1.1.5, we have

Hompx) (E, Flg])
fHomD(X)(w* )® G, Flg ])
" = Hompy) (Ve, R7.(GY ® F)]q])
=~ Homp(4) (Ve @ A, R, (G¥ @ F)[q))
=~ Homp () (R, (G @ (7*(Va) @ G)), R (GY @ F)[q))
> Homp ) (R7m.(G¥ @ E), R, (G¥ @ F)|q]),

where we put suffixes D(X),D(Y),D(A) for Hom in order to clarify the cate-
gories. In particular, we have an isomorphism of the space of morphisms

(1.15) Hom(E, F) = Hom (R7,(GY @ E), R (GY @ F))
for E,F €C.

(3) We can also explain (1.15) as follows. We take a local projective pre-

sentation 7*(W_1) ® G 4 (W) ® G- F —0 of FeC. For F/ €C and a
locally free sheaf V' on Y, Serre’s vanishing theorem says that Hom(7*(V(—n)) ®
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G, F'[g]) =0 for ¢ # 0 and n > 0. Hence we can take a local projective presenta-
tion 7*(V_1)® G LA ™ (Vo) ® G— E — 0 of E €C such that
Hom (7*(V;) @ G,7*(W;) ® G[q]) = Hom(7*(V;) ® G,im ¢q])

(1.16)
= Hom (7*(V;) ® G, F[q]) =0

for ¢ # 0. Then Hom(FE,F) is the zeroth cohomology group of the complex
Hom(7*(V,) ® G, 7*(W,) ® GG), which is isomorphic to Hom4 (Ve @ A, W, ® A).
Since Vo ® A, W, ® A give locally free presentations of Rm,(GY ® E), Rm.(GY ®
F) in Coh4(Y) and similar properties to (1.16) hold, we see that Rm,(GY & e)
induces (1.15).

As we explained, we assume Assumption 1.1.1(1) from now on.

DEFINITION 1.1.10
For a locally free sheaf G on X, we set

T(G) :={F € Coh(X) | R'm.(G¥ ® E) =0},
(1.17) S(G) := {E € Coh(X) | m.(G¥ ® E) =0},
So(G) := {E € Coh(X) | Rm.(GY © E) =0} = T(G) N 5(G).
If (T'(G),S(G)) is a torsion pair of Coh(X), then
C(G):={EeD(X)|H '(F)€S(G),H(E) e T(G),H'(E) =0,

(1.18) % -1.0)

denotes the tilted category.

LEMMA 1.1.11

Let G be a locally free sheaf on X.

(1) (T(@),S(@)) is a torsion pair of Coh(X) such that G € T(G) if and only if
R'7.(GY ®G)=0 and So(G) = 0.

(2) Assume that (T(G),S(G)) is a torsion pair such that G € T(G). Then the
following assertions hold:

(a) R'm.(Ox)=0;

(b) G s a local projective generator of C(G);

(c) if (T,95) is a torsion pair of Coh(X) such that G€T and S(G)NT =0,
then (T,5) = (T(G),S(Q)).

Proof

(1) The only if part is obvious. So we only prove the if part. For E € Coh(X), let
¢: 7 (m(GY @ E)) ® G — E be the evaluation map. Then we see that m,.(GY ®
coker¢) =0, Rlm,(GY ® im¢) =0, and R'7.(GY ® E) = R'm.(GY ® coker ¢).
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Hence we have a desired decomposition
(1.19) 0—=FE—E—FE,—0,

where E; :=im¢ € T(G) and Ej := coker ¢ € S(G).

(2) (a) Since the trace map G¥ @ G — Ox is surjective, we have a surjective
homomorphism R'm,(GY ® G) — R'm.(Ox). Then (1) implies the claim.

(b) For E € C(G), we have an exact sequence

(120) 0= R'm,(GY®@H YE)) = Rr.(GY®E) = m.(GY @ H(E)) = 0.

Hence R7,.(GY ® E) € Coh(Y) and R, (GY ® E) =0 if and only if R'7,(GY ®
HYE)) = 7.(GY ® H°(E)) = 0, which is equivalent to H '(E),H°(E) €
So(G) = 0. Therefore G is a local projective generator of C(G).

(¢) We first prove that T(G) C T. For an object E € T(G), (b) implies that
there is a surjective morphism ¢ : 7*(V) ® G — E in C(G), where V is a locally
free sheaf on Y. Since ¢ is surjective in Coh(X) and Ge€ T, E € T. Since S(G)N
T =0, we get S(G) C S. Therefore (T,5) = (T(G),S(Q)). O

By the proof of Lemma 1.1.11, we get the following.

COROLLARY 1.1.12

Let G be as in Lemma 1.1.11, and suppose that (T(G), S(Q)) is a torsion pair with
G eT(Q). Let E be a coherent sheaf on X, and let ¢ : 7* (7. (GY @ F)) @G — FE
be the evaluation map. Then By :=im¢ € T(G) and Ey := coker ¢ € S(G). Thus
we have a decomposition of E,

(1.21) 0—im¢ — E — coker ¢ — 0,
with respect to the torsion pair (T'(G),S(G)).

PROPOSITION 1.1.13

Let C be a category of perverse coherent sheaves, and let G be a local projective
generator. Then (T(G),S(G)) is a torsion pair of Coh(X) whose tilting is C.

Proof

We first note that G is a locally free sheaf by Assumption 1.1.6. Since G € C,
we have Rm.(GY ® G) € Coh(Y). By the definition of a local projective genera-
tor, we have So(G) =0. By Lemma 1.1.11, (T(G), S(G)) is a torsion pair. Since
S(@[1],T(G) cC, we get C(G) C C. Conversely for E € C, we have a spectral
sequence

(1.22) EYY=RPr, (GY ® HY(E)) = EX11= R\ 71, (GY Q E).

Since m~1(y) <1 for all y € Y, this spectral sequence degenerates. Hence we
have R, (GY ® HY(E)) =0 for ¢ # —1,0, 7. (G¥ ® H~Y(F)) =0 and R'7.(GY ®
H°(E)) =0. Therefore E € C(G). O
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From now on, we impose Assumption 1.1.1(2), which is reasonable by Proposi-
tion 1.1.13 and Lemma 1.1.11(2).

LEMMA 1.1.14

Let C be a category of perverse coherent sheaves, and let G be a local projective
generator of C. Then

(1) (T(GY),S(GY)) is a torsion pair, and GV is a local projective generator
of C(GV);

(2) if E is a local projective object of C, that is, R'm.(EV ® F) =0 for all
F eC, then EV is a local projective object of C(GV);

(3) (T(GY),S(GY)) is independent of the choice of G;

(4) for E€D(X), Rm.(GY®FE) is a zero-dimensional sheaf on'Y if and only
if R (G® Dx (E)(Kx)[n]) is a zero-dimensional sheaf on' Y, where n = dim X .

By (3), we denote C(G) by CP.

Proof
(1) Since R'71.(GY®G) =0, GV € T(GV). We show that So(G") = 0. Assume
that Rm (G ® E) =0 for a coherent sheaf E on X. Since

H'(Y,Rr.(G®E)(—k)) = H'(X,G ® E(—k))
(1.23) = H"(X,G" @ Dx(E)(Kx) ® Ox(k))"
= H" ' (Y,Rm.(G¥ @ Dx (E)(Kx)) (k)"

for all k € Z and HI(Y,H" *(R7.(GY ® Dx(E)(Kx)))(k)) =0 for k> 0 and
j#0, we get H" {(Y,Rm.(GY ® Dx(E)(Kx))(k)) = H'(Y,H" (R (GY ®
Dx(E)(Kx)))(k)) =0 for k> 0. Therefore Rm.(GY ® Dx(E)(Kx)) = 0.
Since dim7~1(y) <1 for all y € Y, we see that Rm,.(GY @ H (Dx(E)(Kx))) =
Rr.(H (GY®@D(E)(Kx))) =0 (see the proof of Proposition 1.1.13). Since G is a
local projective generator of C(G)=C, H'(Dx(E)(Kx))=0 for all i. Therefore
Dx(E)(Kx) =0, which implies that £ =0.

(2) We note that E is a locally free sheaf on X by Lemma 1.1.5(2). By G €C,
we have Rl7,(EY ® G) = 0, which implies that EV € T(G"). By Corollary 1.1.12,
there is a surjection G ® 7*(W) — EV, where W is a locally free sheaf on Y.
Then there is an inclusion F < G @ 7*(WV). Hence m.(E ® F) =0 for F €
Coh(X) with F € S(GV). Since there is a surjection G @ 7*(V) = E, Rl'm.(E ®
F)=0 for F e T(GY).

(3) Let G’ be a local projective generator of C. Then (1) implies that (T(G""),
S(G")) is also a torsion pair. By (2), GV is a local projective object of C(G'").
In particular, GV € T(G""). Then we have T(GY) C T(G"") by Corollary 1.1.12.
In the same way, we also have T(G'") C T(G"). Therefore the claim holds.
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(4) Assuming that Rm.(GY ® F) is a zero-dimensional sheaf on Y, we shall
show that Rm.(G® Dx (F)(Kx)[n]) is a zero-dimensional sheaf on Y. The argu-
ment is similar to that for (1). By our assumption,

(1.24) Hom (G, E(—m)[k]) = {é{o(me(Gv@E)), :;8

By the Serre duality, we have
(1.25) Hom(G, E(~m)[k]) = Hom(G", (Dx (E)(Kx)[n]) (m)[~H]) "
For m >0, we have
Hom (G, (Dx (E)(Kx)[n]) (m)[~k])
=H(Y,H™*(R7. (G ® (Dx(E)(Kx)[n])))(m)).

Hence H *(Rm.(G ®@ (Dx(E)(Kx)[n])) =0 for k# 0 and H°(Rm.(G ®
(Dx(E)(Kx)[n]))) is a zero-dimensional sheaf. O

We characterize So(G) in terms of the Gieseker semistability of a 1-dimensional
sheaf (see the definition in (0.6)).

LEMMA 1.1.15

Let G be a locally free sheaf on X such that R'm.(G¥Y @ G)=0. Let E be a 1-
dimensional sheaf on a fiber of ™ such that x(G,E)=0. Then Rr.(GY Q F)=0
if and only if E is a G-twisted semistable sheaf on X.

Proof
By the proof of Lemma 1.1.11(1), we can take a decomposition

(1.26) 0—+FE,—-FE—Ey—0

such that R, (GY ® E1) = 1. (GY ® E) and R, (GY ® Ey) = Rlm. (GY ® E)[-1].
Then x(G, E1) > 0> x(G, E2). Hence if E is G-twisted semistable, then 7, (GY ®
E1) =7m.(GY ® E) =0, which also implies that R'm,(GY ® E) = 0. Conversely
if m.(GY ® FE) =R'1.(GY ® E) =0, then 7.(GY ® E') =0 for any subsheaf E’
of E. Hence E is G-twisted semistable. O

COROLLARY 1.1.16
Assume that m: X =Y is the minimal resolution of a rational double point. Let
G be a locally free sheaf on X . Then (T(G),S(G)) is a torsion pair with G € T(G)
if and only if

(i) R'7.(GY®G)=0 and

(ii) there is no G-twisted stable sheaf E such that Tk E=0, x(G¥ ® F) =0,
(c1(E),c1(0x(1))) =0, and (c1(E)?) = 2.

Moreover, (i) is equivalent to 1k G J(¢1(G), D) for D with (D,c1(Ox(1))) =0
and (D?) = —2.
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Proof

Let E be a 1-dimensional G-twisted stable sheaf on X. Then E is a sheaf on the
exceptional locus if and only if (¢1(E),c1(Ox(1))) =0. Under this assumption,
we have x(E, E) = —(c1(E)?) > 0. Since E® Kx = F, we see that y(E,E) < 2.
Hence (c1(E)?) = —2. By Lemma 1.1.15, we get the first part of our claim.
Since x(G,E) = —(c1(GQ),c1(E)) + rkGx(E), we also get the second claim by
[Y6, Proposition 4.6]. O

1.1.1. Irreducible objects of C

LEMMA 1.1.17

Let G be a locally free sheaf on X such that R, (GY @ F) #0 for all nonzero
coherent sheaves F' on a fiber of w. Then for a coherent sheaf E on X, m,(GV ®
E) =0 implies that R'm,(GY @ E|z-1(y)) #0 for all y € 7(Supp(E)).

Proof
Assume that R'7, (GY ® E|z-1(,)) = 0. By Lemma 1.1.24 below, R'm, (G¥ ® E) =
0 in a neighborhood of y. Thus R, (GY ® E) =0 in a neighborhood of 3. Then

L L
Rm.(GY ® E®Lw*(Cy)) =Rm.(GY ® E) ® C,, = 0. Since the spectral sequence

L
E}' = RPr,(H'(GY ® E® Lr*(C,)
T )

— BrH1 = gPH (R, (GY @ E & L (C,)))

degenerates, RPm,(GY ® FE @ 7*(C,)) = 0. By our assumption on G, we have
E|z-1(y) =0, which is a contradiction. O

COROLLARY 1.1.18

Let G be a locally free sheaf on X such that So(G) = 0. For an open subset of Y,
we extend Definition 1.1.10 to G-y € Coh(x=1(U)). Then So(Gz-1(11y) = 0.
In particular, G|.-1(yy is a local projective generator of C(G -1 (7).

Proof

We first note that Lemma 1.1.17 holds for the morphism 7’ : 7=*(U) — U, since
the projectivity of Y is not used in its proof. Since Sy(G) =0, Rr,(GY @ F) #
0 for all nonzero coherent sheaves F on a fiber of 7’. For E € Coh(n~1(U))
with 7, (GY ® E) =0, we have R'7(GY @ E|z-1(y)) #0 for all y € 7'(Supp(E)).
Therefore So(Gx-1(1y) = 0. d

DEFINITION 1.1.19
Let G be a local projective generator of a category of perverse coherent sheaves C.

(1) An object E €C is zero-dimensional, if Rm.(GY ® E) is zero-dimensional
as an object of Coh(Y).

(2) An object E € C is irreducible, if E does not have a proper subobject
except zero.
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(3) For a zero-dimensional object E € C, we take a filtration
(128) OCFiCF,C---CF,=F

such that F;/F;_ are irreducible objects of C. Then €, F;/F;_1 is the Jordan—
Hélder decomposition of E. As is well known, the Jordan—Hoélder decomposition
is unique, though (1.28) is not unique.

REMARK 1.1.20
In Section 1.4, we shall define the dimension of E generally. According to the
definition of the stability in Definition 1.4.1, we also have the following.

(1) A zero-dimensional object E is G-twisted semistable, and a G-twisted
stable object corresponds to an irreducible object.

(2) The Jordan—-Holder decomposition of E is nothing but the standard rep-
resentative of the S-equivalence class of E.

LEMMA 1.1.21
Let G be as in Lemma 1.1.11, and suppose that (T'(G),S(G)) is a torsion pair
with G € T(G).

or y € Yy, let 77 (y)rea be the reduced subscheme of 7 (y). en
F Y., I L be th duced subsch f L Th
X

s y)red s a tree of smooth rational curves.

(2) We have C, EC( ) forallze X.

(3) For Cy,x € 7 (y), the Jordan—Hélder decomposition depends only on
y=m(x).

(4) Let @ Ifja“ be the Jordan—Hélder decomposition of C, (y=m(zx) €

Y, ). Then the irreducible objects of C(G) are
(1.29) Co (zeX\7'(Yz), I,; (yeYr,0<j<s,).

In particular, if Rm.(GY ® E) is a zero-dimensional A-module, then E is gener-

ated by (1.29).

Proof
For (2) we note that R, (GY ® C,) = m.(GY ® C,). Hence C,, € C(G). For (1)
and (3) we have a surjective map

(130) Rlﬂ'*(OX) — RITF*(Oﬂ.—l(y)red).
Since R, (Ox) =0 by Assumption 1.1.1, we get
HY (77 (Y)reds On=1(y),0a) = H (V' R 74 (O1y),00)) =0

Then we see that 77 !(y)rea is a tree of smooth rational curves. Let C;, j =
1,...,t,, be the irreducible component of 7! (y).eq. Since the restriction map
R'7.(GY®G) — R'm.(G¥ ®G\c,,) is surjective, R'm.(GY @G|, ;) = 0. Thus we
can write Gio,, = Oc,,(dy;)®™ © Oc,;(dy; + 1)®%. Since R'm,.(GY ®

yJj

Oc,,(dy;)) =0 and 7.(G¥ ® O, (d yi = 1)) =0, Oc,; (dy;), Oc,; (dy; = 1)[1] €

yJ yj
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C(G). For z € Cy;, we have an exact sequence in Cg,
(1.31) 0— Oc¢,,(dy;) = Cy — Oc,,;(dy; — 1)[1] = 0.

Hence the Jordan-Holder decomposition of C, is constant on Cy;. Since 7~ !(y)
is connected, the Jordan—Ho6lder decomposition of C, is determined by y.
To see (4) let E be an irreducible object of C(G). Then we have

(i) E=FIl}, F € Coh(X), or
(ii) E € Coh(X).

In the first case, since F € S(G), we have 7. (GY ® F) =0. By Lemma 1.1.17,
we have R'7,(GY ® Fz-1(,)) # 0 for y € m(Supp(F)), which implies that there
is a quotient Fj.-1(,) — F’ such that 0 # I’ € S(G) for y € m(Supp(F)). Then
we have a nontrivial morphism F[1] — F’[1], which should be injective in C(G).
Therefore 7(Supp(F)) is a point. In the second case, we also see that 7(Supp(E))
is a point. Therefore R, (GY ® FE) is a zero-dimensional sheaf.

(i) If E= F[1], then since m,(GY ® F') =0, F is purely 1-dimensional. Then
Hom(C,, F[1]) = Hom(D(F)[n — 1], D(C,)[n]) # 0 for x € Supp(F), where n =
dim X. Hence we have a nontrivial morphism I,; — E, y € 7(Supp(F)) N Y,
which is an isomorphism.

(ii) If F € Coh(X), then Hom(E,C,) # 0 for x € Supp(F), which also implies
that E21,; for Supp(F) C 7 (y) or E~C, for Supp(F) C X \ 7 }(Y,). O

REMARK 1.1.22

Since m.(GY @ C,) is a coherent sheaf on the reduced point {y}, the multipli-
cation 7*(t) : I;; — L, t € I, is zero. Thus H'(I,;) are coherent sheaves on the
scheme 7~ 1(y).

LEMMA 1.1.23
Let 1,; € C(G) be irreducible objects in Lemma 1.1.21. Let E be a coherent sheaf
such that w(Supp(E)) ={y} C Yxr.

(1) For E €T(G), there is a filtration
(1.32) OCFiCcFC---CF,=F

such that for every Fy,/Fy_1, there is I,; € T(G) and a surjective homomorphism
ij — Fk/Fk—l m COh(X)
(2) For E € S(G), there is a filtration

(1.33) OCFhCFC---CF,=F

such that, for every Fy,/Fj_1, there is I,;[—1] € S(G) and an injective homomor-
phism Fy,/Fy_1 — 1,;[—1] in Coh(X).
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Proof
(1) Since E € T(G), E contains I;; in C(G). Let F' be the quotient in C(G). Then
we have an exact sequence

(1.34) 0—H *1,;)—»0—H YF)— H1,;) = E— H(F)—0.

Hence I,; € T(G) and H(F) € T(G). We set Fy :=im(I,; — E) in Coh(X).
Since E/Fy € T(G) and Supp(E/F;) C 7~ 1(y), by the induction on the support
of E, we get the claim.

(2) Since E € S(G), there is a quotient E[1] — I,; in C(G). Let F' be the
kernel in C(G). Then we have an exact sequence

(1.35) 0—-H YF)-FE—H'1,;)— H(F)—0— H1,;) = 0.

Hence I,;[—1] € S(G) and H™'(F) € S(G). We set E' :=im(E — H~'(I,;)) in
Coh(X). Then E’ is a subsheaf of I,;[—1], and E is an extension of E’ by
H~Y(F) e S(G). Since Supp(H *(F)) C 7~ (y), by the induction on the support
of E, we get the claim. O

LEMMA 1.1.24
1) The natural homomorphism m* (. (L-1 — I.—1(,) s surjective. In par-
(¥) ()
ticular, Hom (I -1(,),0c,;(—1)) =0 for all j.
(2) We have Eth(Oﬂ-—l(y)7OCyj(fl)) =0 for all j. In particular,

Hl (X, HOMOX (Oﬂ-—l(y), Ocyj (—1))) = HO (X, EIt}QX (Oﬂ-—l(y)7 Ocyj (—1))) =0.

(3) For a coherent sheaf E on X, R'm.(E) =0 at y if and only if
RI'IT*(Elﬂ-—l(y)):O.

Proof
Since I-1(y) =im(7*(I,) = Ox), (1) holds. (2) Since Hom(Ox,O¢,,; (—1)[k]) =
0 for all j and k, the first claim follows from the exact sequence

(136) O%Iﬂ.—l(y) —>Ox—)0ﬂ.—1(y)—>0.

Since H?(X, Homo (Or-1(y), Oc,,(—1))) =0, the second claim follows from the
local-global spectral sequence.

(3) The proof is similar to [Is1]. Assume that R'm,(E|z-1(,)) =0. We take
a locally free sheaf V on Y such that V' — I, is surjective. Then (1) implies
that 7*(V) — I.-1(,) is surjective. Hence we have a surjective homomorphism
T (VE)QOr-1(y) — I;tl(y)/l;‘ff Then we see that R'm, (E® Ox /I

(v)
0. By the theorem of formal functions, we get the claim.

i)
0

LEMMA 1.1.25

Let 1,; € C(G) be irreducible objects in Lemma 1.1.21. Let E be a coherent sheaf
on X. If Hom(E,L,;[—1]) =0 for all 1,;[—1] € S(G), then E € T(G).
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Proof

We note that Hom(E|,-1,),L,;[-1]) =0 for all I,;[-1] € S(G). By Lem-
ma 1.1.23(2), Ejz-1(,) € T(G). Then R'm,(GY ® E|r-1(y)) = 0. By Lemma 1.1.24,
R7,(GY ® E) =0 in a neighborhood of . Since y is any point of Y, R'7.(GY ®
E) =0, which implies that E € T(G). O

PROPOSITION 1.1.26
Assume that #Yr < co. Let I,; € C(G) be irreducible objects in Lemma 1.1.21.

(1) We set
5= {I,;[-1] ’yEijzo,...,sy} N Coh(X),
(1.37) T :={E € Coh(X) |Hom(E,c)=0,c€ X},
S:={E € Coh(X) | E is a successive extension of subsheaves of c € L}.

Then (T,S) is a torsion pair of Coh(X) whose tilting is C(G). In particular,
C(G) is characterized by 3.
(2) For the category CP in Lemma 1.1.14 for C =C(G), C(G)P is charac-
terized by
P = {(Dx(1y;) ® Kx[n])[-1] | y € Yz, =0,...,5,} N Coh(X)

(1.38)
= DX({ij|y€ Ye,j=0,...,84} ﬂCoh(X)) ® Kx[n—1],

where n =dim X.

Proof
(1) For E € Coh(X), we consider ¢: G@7m*(m.(GY ® F)) — E. We set Ey :=im¢
and E5 := coker ¢. Since Hom(G,1,;[—1]) =0 for all I;;, G € T. Hence E; € T.
We shall show that Fy € S. By Corollary 1.1.12, Ey € T(G), E2 € S(G). Since
Supp(E2) C 77 1(Yy), Lemma 1.1.23(2) implies that E; € S. Therefore (T,S) is
a torsion pair of Coh(X). We also see that (7,S) = (T(G), S(G)). Thus (1) holds.
(2) By Lemma 1.1.14(4), Dx(I,;) ® Kx[n] are the irreducible objects of
C(G)P. Hence the claim follows from (1). O

1.1.2. Local projective generators of C

We shall give a criterion for a two-term complex of coherent sheaves to be a
local projective generator of a category of perverse coherent sheaves. Since the
existence of a local projective generator is the most essential part of our theory,
we also discuss a certain torsion pair (see Definition 1.1.28(2)) to define a category
of perverse coherent sheaves.

DEFINITION 1.1.27
Let C be an abelian subcategory of D(X). For y € Y, we set

(1.39) Cy:={E€cC|n(Supp(H'(E))) ={y}.i € Z}.
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DEFINITION 1.1.28

In Section 1.1.2, let (7,S) be a torsion pair of Coh(X) such that the tilted

category C satisfies one of the following conditions.

(1) There is a local projective generator G € T of C; that is, C is a category of
perverse coherent sheaves, or

(2) C satisfies the following conditions:

(a) #Yr < oo and every object of Cy, y €Y is of finite length;
(b) m(Supp(E)) C Y, for E€S.

The condition #Y, < oo is a technical condition. Other conditions of (2) are
satisfied for a category of perverse coherent sheaves.

DEFINITION 1.1.29
Assume that F'C E in C and £ €C,, y €Y implies ' €C,. Then L;,j € J, =
{0,1,...,s,} denote the irreducible objects of C,.

If ye Y\ Yy, then s, =0 and E,0=C, (7(z) =y).

LEMMA 1.1.30

Let Cy; (j=1,...,t,) be the irreducible components of m=(y)rea, y € Yr. Assume
that C satisfies Definition 1.1.28(2). Then the following assertions hold:

(1) C,eC forallze X;

(2) let L be a line bundle on Cy;; then L € T or L € S; moreover, there is
n € Z such that Oc,;(n) € S and O¢,;(n+1) € T;

(3) the claims of Lemma 1.1.21, Lemma 1.1.23, and Lemma 1.1.25 hold.

Proof

We first show that the assumption of Definition 1.1.29 holds. Let F' be a subob-
ject of E and E € C,. Then we have a morphism H~!'(E/F) — H°(F). Suppose
that H~*(E/F)jy # 0 for the open set U := X \ m~!(y). Since E € C,, we have
an isomorphism H~'(E/F);;y — H°(F);y. Since Supp(H Y(E/F)) C 7' (Yx)
by (b), we have a decomposition H ' (E/F) = Dy er. Supp(r-1(2/F))) V> Where
T (Supp(Vy)) = {y'}. In particular, we can regard H~*(E/F)|y as a subsheaf
of H71(E/F). Then we have a nonzero homomorphism H°(F) — HO(F)|U —
H_l(E/F)|U — H~Y(E/F). Since (T, S) is a torsion pair, H*(F) — H~Y(E/F) is
a zero map. This is a contradiction. Therefore Supp(H ~'(E/F)), Supp(H°(F)) C
7~ 1(y), which implies the claim.

By Definition 1.1.27(2), irreducible objects are E = C,,z € X \ 7~ (Y;), or
irreducible objects of Cy,y € Y. For a point = € 7=(Y;), assume that C, ¢
T. Since C, is an irreducible object of Coh(X) and (T,S) is a torsion pair,
C; € S. We take a curve Cy; with € Cy;. Then for any line bundle L on Cy;,
Hom(L,C,) = C implies that L € S for all line bundles L on Cy;. Indeed let
Lt be the subsheaf of L such that Ly € T and L/Lr € S. Then C, € S implies
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that Hom(Ly,C,) =0. Hence Ly =0. Since L(—nz) € S for all positive integers
n, L[1] € C, is not of finite length. Therefore C, € T for z € 7~ (Y;). Thus (1)
holds.

(2) Let L be a line bundle on C,;. Then we have a decomposition

(1.40) 0—+Li—+L—Ly—0

such that L; € T and Ly € S. We note that (1) implies that every torsion O¢, ;-
module belongs to T'. If L # 0, then Ly is a torsion O, ;-module, which implies
that Ly =0 and Le T. If Ly =0, then L = Ly € S. Thus the first claim holds.
Assume that O¢,;, € T. If O¢,,(—n) € T for all n >0, then O¢,, is not of
finite length. Hence there is a positive integer n such that O¢,,(—n) € S and
Oc,,;(—n+1) € T. We next assume that O¢c,, € S. If O¢,;(n) € S for all positive
integers n, then the exact sequence in C,,

(1.41) 0—0Oc¢,, (n)/(/)cw. —Oc¢,, [1] — Oc,, (n)[1] =0,

implies that O¢,;[1] € C, is not of finite length. Therefore there is a positive
integer n such that O¢, . (n—1)€ S and O¢,;(n) € T.

(3) By (1), we get Lemma 1.1.21(2). We also get Lemma 1.1.21(3) from its
proof and (2). The other claims of Lemmas 1.1.21 and 1.1.23 are obvious. For
0#FE €S, (i) and Lemma 1.1.23 imply that there is a coherent sheaf I,;[—1] € S
such that Hom(FE,I,;[—1]) # 0. Hence Lemma 1.1.25 also holds. O

We shall give a criterion (Proposition 1.1.33) for a two-term complex to be a
local projective generator of C. Since objects in C are two-term complexes, our
criterion is applicable to these objects.

LEMMA 1.1.31
Let E be an object of D(X) such that H(E) =0 fori# —1,0. IfExt'(E,C,) =0,
then E is a free sheaf in a neighborhood of x.

Proof
Since F fits in the exact triangle
(1.42) T="YE) = E—72%E) = (r="1Y(E))[1],

we have an exact sequence

0— Eaty, (HY(E),C,)
(1.43)
— Eaty (E,Cy) = Homo, (H'(E),C,) — Extyy (H(E),Cy).

Since Ext'(E,C,) = HY(X,&xth (E,C.)), Exty, (E,C;) = 0. Then
Exty (HO(E),C,) =0, which implies that H°(E) is a free sheaf in a neigh-
borhood of z. Then Ext), (H°(E),C,)=0 for i > 0. Hence Homo, (H(E),
C,) =0. Therefore H~*(E) =0 in a neighborhood of z. O
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LEMMA 1.1.32

Let G1 be a locally free sheaf of rank r on X such that

(1.44) (a) Hom(G1,Iy[p]) =0, p#0, (b) x(G1,I;)>0
for ally,j.

(1) If0£E €S, then m.(GY ® E) =0 and R'm.(GY ® E) #0.

(2) If R'7.(GY ® E) =0, then E€T.

(3) If 0 # E € T and Supp(E) C 7~ (y), then m.(GY ® E) # 0 and
Ri7.(GY ® E)=0. In particular, x(G1,E) > 0.

Proof

(1) We note that G; € T by Lemma 1.1.25. We first treat the case where C
is the category of perverse coherent sheaves. We consider the homomorphism
7 (1. (GY ® E))®G1 — E. Thenim ¢ € TN.S = 0. Since 7, (GY ®im ¢) = 7. (GY ®
E), we get m.(GY ® E) =0. Let F #0 be a coherent sheaf on a fiber, and take
the decomposition

(1.45) 0—-IFN—>F—=F,—0

with Fy € T, F; € S. Since Fy, F5[1] € C, the condition x(G1,1,;) > 0 implies that
X(G1,F1) >0 or x(G1, F2) <0, which imply that 7, (GY ® F1) # 0 or R'm.(GY ®
F») #0. Since m.(GY ® Fy) is a subsheaf of m.(GY ® F) and R'7.(GY @ F?)
is a quotient of R'm.(GY ® F), we get Rm.(GY ® F) # 0. Then we can apply
Lemma 1.1.17 to E and get R'm.(GY ® Ejr-1(y)) # 0 for y € (Supp(E)). Since
R'7,(GY ® E) = R'm.(GY ® E|r-1(y)) # 0 is surjective, we get the claim.

We next assume that #Y, < oo. Then E[1] is generated by I,,;. Hence (1.44)
implies that x(G1, E[1]) >0 and Rm.(GY ® E[1]) € Coh(Y). Hence R'm,(GY ®
E)#0 and 7, (GY @ E) =0.

(2) For E € Coh(X), we take a decomposition

(1.46) 0—-F —FE—FEy—0

such that Ey € T and Eq € S. If R, (GY ® E) = 0, then (1) implies that Eq = 0.

(3) By Lemma 1.1.23, we may assume that E is a quotient of L,;, L,; €
T in Coh(X). Since I,; is irreducible, ¢ : I,; — E is injective in C. We set
F :=ker(I,; — E) in Coh(X). Then F € S and F[1] is the cokernel of ¢ in C.
Hence 7, (GY ® F) =0 by (1). By our assumption, m,(GY ®1,;) #0, I,; € T, and
R'7,(GY ®1,;) = 0. Therefore our claim holds. O

PROPOSITION 1.1.33
Let Gy be an object of D(X) such that H'(G1) =0 for i # —1,0 and satisfies
(1.47) (a) Hom(G1,Iy[p]) =0, p#0, (b) x(Gi1,L) >0
forallyeY and j=0,1,...,s,.

(1) G1 is a locally free sheaf on X.
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(2) We have R'm.(GY ® G1) =0.

(3) For E € Coh(X), E€T if and only if R'm.(GY ® E)=0, and E€ S if
and only if 7.(GY @ E)=0.

(4) G1 is a local projective generator of C.

Proof
(1) The claim follows from Lemma 1.1.31 and (a).

(2) It is sufficient to prove that R'm,(GY ® Gyjz-1(,)) =0 for all y € Y.
By Lemma 1.1.25, Gy € T'. Since Supp(Gijr-1(y)) = 7~ 1(y) and Gijr1(y) €T,
Lemma 1.1.23(1) implies that G |,-1(,) € T is a successive extension of quotients
of I,; € T. Hence it is sufficient to prove R7.(GY ® Q) =0 for all quotients Q
of I;; € T. By our assumption on Gy, we have R'm, (GY @ 1,;) =0 for I,; € T
Therefore the claim holds.

(3) By Lemma 1.1.32(2), we get

(1.48) T(G1)NS(G1) CTNS(Gy)={EeT|m.(GY ® E)=0}.

If TN S(Gy)=0, then Lemma 1.1.11(1) implies that G; is a local projec-
tive generator of C(Gy). Since G; € T by (2), Lemma 1.1.11(3) also implies
that C = C(G1). Therefore we shall prove that T'N S(G;) = 0. Assume that
E € T satisfies m.(GY ® E) =0. We first prove that R'm.(GY ® E) = 0. By
Lemma 1.1.24, it is sufficient to prove R'm.(GY ® Ejr-1(y) =0 for all y €Y.
This follows from Lemma 1.1.32(3). Hence Rm.(GY ® E) =0. Then we see that
R7.(GY ® Ejz-1¢,)) = 0 for all y €Y by the proof of Lemma 1.1.17. Since
Ejr-1(y) € T, Lemma 1.1.32(3) implies that Ej;-1,) =0 for all y € Y. There-
fore £ =0.

(4) This is a consequence of (3) and Lemma 1.1.11(2). O

REMARK 1.1.34
According to (4), C satisfying Definition 1.1.28(2) is a category of perverse coher-
ent sheaves, if there is G7 in Proposition 1.1.33.

REMARK 1.1.35

In the condition (1.47), assume that G, satisfies Hom(G1,1,;[p]) =0 (p = £1)
only. Then we also see that G is locally free by Lemma 1.1.31. Since dim 7~ (y) <
1 for all y € Y, we have Hom(G1,1,;[p]) = 0 for p # 0. Thus condition (a) follows.
Then the proofs of Lemma 1.1.32 and Proposition 1.1.33 imply that R, (GY ®
G1)=0 and Rm.(GY @ F) € Coh(Y) for F €C.

The following claim shows that R'm,(GY ® G1) =0 is a fairly strong condition.
Since R'7,(GY ® G1) =0 is an open condition, it also says that a small defor-
mation of a local projective generator is also a local projective generator.
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LEMMA 1.1.36
Let G1 be a locally free sheaf of rank r on X such that
(149) X(Gl,ij) > 0.

Then Hom(G1,1,;[k]) =0,k #0, if and only if R'm.(GY ® G1) =0.

Proof

The only if part was already proved in Proposition 1.1.33. Assume that
R'm,.(GY ® G1) = 0. We first prove that Gy € T. Assume that G; ¢ T. Then
there is a surjective homomorphism G; — E in Coh(X) such that E € S. If C
has a local projective generator G, then m,(GY ® E)=0. By Lemma 1.1.17, we
have Rlm,(GY ® E|z-1(y)) #0 for a point y € Y. Hence we may assume that
Supp(E) C 7~ 1(y). In the second case, since #Y, < oo, we may also assume that
Supp(E) C 7~ !(y). Then E[1] is generated by I,;, 0 < j <s,. By our assump-
tion, x(G1, E[1]) > 0. Hence Ext'(Gy, E) # 0, which implies that R'm,(GY ®
G1) # 0. Therefore G; € T. For I,; € T, we consider the homomorphism ¢ :
™ (m.(GY ® I;)) ® G1 — I;;. Since I; is an irreducible object, ¢ is surjec-
tive in C, which implies that ¢ is surjective in Coh(X). Hence Ext'(G1,1,;) = 0.
Since dim 71 (y) < 1, we also get Ext"(G1,1,;) = 0 for k > 2. Therefore Hom(G,
I,;[k]) =0 for k0. For I;; € S[1], dim7~!(y) < 1 and the locally freeness of G4
imply that Ext'(G1,1,;) = 0. Since Gy € T, we also get Hom(G',1,;[—1]) =0 for
all irreducible objects of C. ]

1.2. Examples of perverse coherent sheaves
Let m: X — Y be a birational map in Section 1.1. Let G be a locally free sheaf
on X such that R'7,.(GY ® G) =0, that is, G € T(G). We set A :=7,.(GY ® G)

L
as before. Let F' be a coherent A-module on Y. Then R, (771 (F) ®@7-1(a)
G)® GY) 2 F as an A-module. By using the spectral sequence, we see that
1 L
(1.50) R (GY @ HI (7™M (F) @14y G)) =0, p+q#0,

and we have an exact sequence

o 0— R'n.(GY @ H ' (7 1(F) éw*l(A) G))
1.51
S P A (G @ HO (7 (F) $p104) G)) 0.

We set
L
(1.52) TN (F) @p-1(4) Gi=H® (77 (F) ®z-1(4) G) € Coh(X).

If So(G) # 0, then obviously (T(G),S(G)) is not a torsion pair of Coh(X) (cf.
Lemma 1.1.11). We shall construct torsion pairs associated to (T'(G), S(G)). We
set

S:=S(G),

(1.53)
T:={EeT(G)|Hom(E,c) =0 for c € So(G)}.
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REMARK 1.2.1
We have G € T Indeed for ¢ € So(G), Hom(G,c) = HO(Y, 7. (GY ®¢)) = 0.

LEMMA 1.2.2
For E € Coh(X), let ¢ : 7 (7 (GY @ E)) ®z—1(4) G — E be the evaluation map.

(1) We have Rr.(GY @ ker¢) =0, m.(GY ® coker¢p) =0, and R'7.(GY ®
E) = R'm,(GY ® coker ).

(2) (T,9) is a torsion pair of Coh(X), and the decomposition of E is given
by
(1.54) 0—im¢ — F — coker¢ — 0,

im¢p €T, coker¢p € S.
Proof
(1) For the morphisms
M (GYQE) — 1 (G @r ! (1(GY ®E)) ®r-104) G),
(15 T(lev ® ) 1 (G @7 (1 (GY @ E)) ®r-1(4) G) — . (GY ® E),
the composition
. (G¥ ® E) 2o (GY@r ! (1 (GY ®E)) ®r-104)G)

71-*(1@_\/)®¢) W*(GV ®E)

(1.56)

is the identity. By (1.51), A and 7. (lgv ® ¢) are isomorphic. Hence we get
imm,(lgv ® ¢) = m(GY @ im¢) = 7, (GY ® E). Since R, (GYV @ 1 (GY @
E)) @r-1(4) G) =0, we get R, (GY @ ker ¢) = 0. Since R'm,(GY ® im¢) =0, we
also get the remaining claims.

(2) We shall prove that im¢ € T'. If im ¢ ¢ T, then there is a homomorphism
1 :im¢ — F such that F' € S. Replacing F' by im, we may assume that v is
surjective. Since v o ¢ is surjective, Hom(G, F') # 0, which is a contradiction.
Therefore im ¢ € T'. Obviously we have SNT = {0}. Therefore (T,5) is a torsion
pair. O

DEFINITION 1.2.3
Let C(G) denote the tilting of Coh(X) with respect to the torsion pair (T, 5)
above.

This definition is a generalization of Definition 1.1.10. In the sense of Defini-
tion 1.1.3, C(G) is the category of perverse coherent sheaves. Indeed, we have the
following.

LEMMA 1.2.4 ([VB, PROPOSITION 3.2.5])
The category C(G) has a local projective generator.
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Proof

Let Ox (D) be a very ample line bundle on X such that 7*(7.(GY ® G(D))) ®
G — G(D) is surjective. We set L := G(D). We take a locally free resolution
0— L_1— Lo— L — 0 such that R'm.(Ly ® G) =0. Then

(1.57) R, (LY @ G)[1] = Cone(m,(Ly ® G) = (LY, ® G)).

We take a surjective homomorphism V — 7, (LY ® G) from a locally free sheaf V'
on Y. Then we have a morphism 7*(V)® L — L7*(Rm. (LY @ G))[1]® L — G[1],
which induces a surjective homomorphism V — R, (LY ® G). Hence we have a
morphism

(1.58) L—Gl]er (V)Y
such that the induced homomorphism
(1.59) V = m (Homo, (G[1],G[1])) ® V = R'm. (LY ® G)

is surjective. We set E := Cone(L — G[1]@7*(V)V)[—1]. Then E is a locally free
sheaf on X, and ¢: 7*(7.(GY ® E)) ® G — E is surjective by our choice of L. By
(1.59) and our assumption, we have R!7,.(EY ®G) = 0. For F € T(G), we consider
the evaluation map ¢ : 7 (7. (GY ® F')) ® G — F. The proof of Lemma 1.1.11(1)
implies that cokery € So(G). By the definition of T, cokery = 0. Thus ¢ is
surjective. Hence Rl7.(EY ® F) =0 for F € T(G).

For F € S(QG), the surjectivity of ¢ implies that m.(EVQF) =0.If F ¢ So(G),
then R'7.(GY ® F) # 0, which implies that R'7,(EY ® F) # 0. Assume that
F € So(G). Then since Rm,(GY @ F) =0 for F € Sy(G), we have Rim,(EY @
F) = R'7 (LY ® F). Assume that R'7 (LY ® F) =0 and F # 0. We take a
point y € w(Supp(F)). Since Ox (D) is very ample, we can take a smooth divisor
C € |Ox(D)| such that 7=1(y) N C consists of finitely many points. We may
assume that C' N Supp(Fjr-1(y)) # (. Then we have an exact sequence

O—>LV—>GV—>G|VC—>O.

Since C'— Y is generically finite, it is finite over an open neighborhood U of y.
Since Supp(F) N7~ 1 (U)NC # 0, we have G¥ @ Flr—11)nc # 0. Hence 7, (GY ®

L
Fi¢) # 0. On the other hand, our assumptions imply that R, (F ® Oc®GY) =0.
Since the spectral sequence

L L
(1.60) E%!= RPm,(HY(F & O¢ @ GY)) = ELH = HPH (R, (F & Oc @ GV))

degenerates, we have m.(F ® Oc ® G¥) =0, which is a contradiction. Hence
Rim, (LY ® F) #0 for all nonzero F € So(G). Then Gy := G @ E satisfies

m(GY ®F)#0, R'm.(GY®F)=0, 0#£FecT(G),
(1.61)

m(GY®F)=0, R'7m.(GY®F)#£0, 0#F¢cS(G).

Therefore G is a local projective generator of C(G). O
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We also define another torsion pair associated to (T(G), S(G)):

5* :={F € S(G) | Hom(c, E) = 0 for c € So(G)},
(1.62)
T :=T(G).

LEMMA 1.2.5
(T*,S5*) is a torsion pair of Coh(X), and the tilted category has a local projective
generator. We denote the category by C(G)*.

Proof
We set

Sy :=S8(GY),
Ty :={EeT(G")|Hom(E,c)=0 for c € So(G)}.

Then (73,51) is a torsion pair of Coh(X), and Lemma 1.2.4 implies that the
tilted category C(GY) has a local projective generator GV @ E;, where E; is a
locally free sheaf on X such that ¢ : 7*(7. (G ® E1)) @ G¥ — F} is surjective and
R'm.(GY ® EY)=0. By Lemma 1.1.14, (T, SP) is a torsion pair of Coh(X).
We prove that C(G)* =C(GY)P by showing that (T, SP) = (T*,5%). By the
surjectivity of ¢, we have

(1.64) TP ={E€Coh(X)|R'm(GY®E)=R'n(E1®E)=0} =T".

For a coherent sheaf E with m.(GY ® E) =0, we consider ¢ : 7*(m.(E1 Q@ E)) ®
EY — E. Then imy € TP = T* and cokery € SP. Since 7,(GY ® im1)) = 0,
im1) € So(Q). Therefore if E € S*, then im 1) = 0, which means that F € S{. Con-
versely if E € SP, then So(G) C TP implies that E € S*. Therefore (TP, SP) =
(T*,5%). O

(1.63)

LEMMA 1.2.6
We set Soy :={E € So(G) | m(Supp(F)) = {y}}. Then So,[1] is generated by
{L,; | 1,; € So(G)[1]}, where C =C(G).

Proof

For an exact sequence

(1.65) 0—-FE —-E—E;,—0

in C, we have an exact sequence

(1.66) 0— Rm.(GY®E) = Rm.(GY @ E) = R, (GY ® E3) =0

in Coh(Y). If E € Sp(G)[1], then Rm.(GY @ E1) = Rm.(GY ® E3) = 0. Then
Rr.(GY ® HY(Ey)) = Rr.(GY ® H1(Ey)) =0 and Rm.(GY ® H°(E)) =
R7.(GY ® H°(E;)) = 0. By the definition of T, H°(E;) = H(FE) = 0. Hence
E1, Es € Sp(G)[1]. Therefore the claim holds. |

By the construction of C(G) and C(G)*, we have the following.
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PROPOSITION 1.2.7
We set A:=m.(GY ® G). Then we have morphisms

C(G) — Coh4(Y),

(1.67)
Ew— Rm.(GY®FE)
and
C(G)* — Cohy(Y),
(1.68)

E v R (GY @ E).

Let 7271 : D(X) — D(X) be the truncation morphism such that H?(rZ~1(E)) =
0 for p< —1 and HP(7271(E)) = HP(E) for p > —1. By (1.50), we have

HY (57 (F) 100 G) € S0(C). q#—1,0,
(1.69)

S(F) =72~} (1 (F) G po10a) G) €C(G).

Thus we have a morphism ¥ : Coh4(Y) — C(G) such that Rm,.(GY @ X(F))=F
for F'€ Coha(Y).

REMARK 1.2.8

We have a morphism g : 3(Rm.(GY ® E)) — E. It is not an isomorphism unless
G is a local projective generator of C(G). For E € T, Lemma 1.2.2 implies that
g is injective and coker g € So(G)[1].

1.2.1. PPer(X/Y), p=—1,0, and their generalizations
We give examples such that So(G) # {0}. For y € Yy, we set Z, := 7~ '(y) and
Cyj, 3 =1,...,t,, the irreducible components of Z,. As we shall see later, we
have ¢, = s,. By Assumption 1.1.1 and Lemma 1.1.21, C}; are smooth rational
curves and Ox € T(Ox). Then So(Ox) contains Oc,;(—1), y € Yz, and C(Ox)
is nothing but the category ~!Per(X/Y) defined by Bridgeland. We also have
C(Ox)* =C(0%)P ="Per(X/Y). We shall study C(G) such that So(G) contains
line bundles on Cy;, y € Y. For this purpose, we first prepare some properties
of So(Ox) and C(Ox).

The following lemma shows that we do not need to specify the ample divisor
for the (Ox-twisted) semistability of F with x(E)=1.

LEMMA 1.2.9

Let E be a 1-dimensional sheaf such that Supp(E) C Z, and x(E)=1. Then the
(Ox -twisted) semistability of E is independent of the choice of an ample line
bundle L on X.

Proof
By (0.4), F is (Ox-twisted) semistable if and only if x(F) <0 for all proper
subsheaves F' of E. Hence the semistability is independent of L. O
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LEMMA 1.2.10

(1) Let E be a semistable 1-dimensional sheaf such that Supp(E) C Z, and
X(E) =1. Then there is a curve D C Z,, and E = Op. Conversely, if Op is
1-dimensional, x(Op) =1, and n(D) = {y}, then Op is stable. In particular, D
is a subscheme of Z,.

(2) Og, is stable.

Proof
(1) Since x(F) =1, m«(E) # 0. Since 7, (F) is zero-dimensional, we have a homo-
morphism C, — 7.(E). Then we have a homomorphism ¢: Oz, =7*(C,) — E.
We denote the image by Op. Since R'm,(Ox) =0, we have H'(X,Op) = 0.
Hence x(Op) > 1. Since E is semistable, ¢ must be surjective.
Conversely, we assume that Op satisfies x(Op) = 1. For a quotient Op —
Oc, HY(X,0¢) =0 implies that x(O¢) > 1, which implies that Op is stable.
(2) We have an exact sequence

0—1Iz, - Ox —7*(Cy)—0.

Since 7, (Ox) = Oy and R'm,(Iz,) =0 (see Lemma 1.1.24), we have a sur-
jective homomorphism Oy — 7. (7*(C,)). Hence we get an isomorphsim C, —
7. (7" (Cy)). Therefore x(Oz,) =1. By (1), Oz, is stable. O

LEMMA 1.2.11

(1) Let E be a stable purely 1-dimensional sheaf such that 7(Supp(F)) ={y}
and x(E)=0. Then E=O¢,,(—1).

(2) Let E be a 1-dimensional sheaf such that Rm (E) =0. Then E is a
semistable 1-dimensional sheaf with x(E) = 0. In particular, E is a successive
extension of Oc,,(—1), y€Y, 1<j<t,.

Proof
(1) We set n :=dim X. We take a point x € Supp(E). Then Exty, (Cy, E) =

L
C, ® E[—n + 1]. Since E is purely 1-dimensional, depthy,  E; =1. Hence the

L
projective dimension of E at  is n— 1. Then TorSX,(C,, E) = H*(C, @ E[-n+
1]) # 0. Since Ext*(C,, F) = H(X, Exty  (Cy, E)) #0, we can take a nontrivial
extension

(1.70) 0-E—F—C,—0.

If F is not semistable, then since x(F') =1, there is a quotient F — F’ of F
such that F” is a stable sheaf with x(F’) <0. Then F — F’ is an isomorphism,
which is a contradiction. By Lemma 1.2.10, F' = Op. We take an integral curve
C C D containing x. Since Op — C, factors through O¢, we have a surjective
homomorphism F — O¢(—1). By the stability of E, E =~ O¢(—1).

(2) Let F' be a subsheaf of E. Then we have 7, (F') =0, which implies that
X(F) <0. Therefore E is semistable. O
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We shall slightly generalize ~! Per(X/Y). Let G be a locally free sheaf on X.

ASSUMPTION 1.2.12
There are line bundles O¢, ; (by;) on C,; such that Rm,(GY ® O¢,, (by;)) =0 for
allye Y, and j=1,2,...,%,.

LEMMA 1.2.13
(1) Let E be a locally free sheaf of rank r on X such that E\c,, = (9%;. Then E

is the pullback of a locally free sheaf on'Y .
(2) We have GV @ G = 7*(7.(GY ® G)). In particular, R*m.(G¥ @ G) = 0.

Proof
1) We consider the map ¢ : H*(E|; ) ® Oz — E, . For any point z € Z,,, we
|Zy Y |Zy Y
have an exact sequence

(1.71) 0= F,—0z,—-C,—0

such that Rm.(F;) =0. By Lemma 1.2.11(2) and our assumption, we have
R, (E®F,)=0. Hence H*(E|z,) — H°(E{,}) is isomorphic and H'(E|z,) = 0.
Therefore ¢ is a surjective homomorphism of locally free sheaves of the same rank,
which implies that ¢ is an isomorphism. By R!7.(E)=0 (see Lemma 1.1.24(3))
and the surjectivity of 7 (m.(Iz,)) — Iz,, R'm.(E ® Iz,) = 0. Hence m.(E) —
m«(E)z,) is surjective. Then we can take a homomorphism O — . (E)y in
a neighborhood of y such that OF" — m«(E|z,) is surjective. Then we have
a homomorphism 7*(OF") — Ej;-1(7) which is surjective on Z,. Since 7 is
proper, replacing U by a small neighborhood of y, we have an isomorphism
w*(O(e?’") — Ejz—1(v). Therefore E is the pullback of a locally free sheaf on Y.
(2) Since GY ® Oc,, (by;) is a locally free sheaf on Cy; with Rm.(GY ®
Oc,,(by;)) = 0, we have GY ® Oc,,(by;) = Oc,,(—1)®™C. Hence Gic,, =

Oc,,(1)®™C @ O¢,, (by;). Hence G¥ ® G¢,, = (’)gng)2. By (1), we get the

first claim. Then Assumption 1.1.1 implies R, (GY ® G) =0. O
LEMMA 1.2.14

For E € Coh(X), we have

(1.72) T (1(GY @ E)) ®@r-1(4) G ®0x G 27771, (GY @ E).

Proof

By Lemma 1.2.13, we get
77_1(7T*(Gv ® E)) @r-1(4) G Qo GY
7 (1(GY @ B)) @rmay 7 (1(G @0y GY)) @21 (0y) Ox
> (m(GY ® E)) ®r-1(0y) Ox
=" (m.(GY @ E)).
Therefore the claims hold. |

1%

(1.73)
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LEMMA 1.2.15
Let y € Y. Then the A-module 7.(GY ® C,) does not depend on the choice of
ren (y). We set

(1.74) Ay =11 (GY @ Cy)) ®r-1(a) G, xE€Z,.
Proof
For the exact sequence
(1.75) 0— Og,,(by;) = Oc,, (by; +1) = C, — 0,
we have 7,(GY ® Oc,, (by; + 1)) = m.(GY ® C,). Hence 7,.(GY ® C,) does not
depend on the choice of x € Z,. O
LEMMA 1.2.16

(1) Ay is a unique line bundle on Z, such that Ayc,. = Oc,,(by; +1) for
=121,

(2) We have G¥ ® A, = O%rkg.

Proof

By Lemma 1.2.14, G¥ ® A, 2 7*(1.(G¥ @ C,)) & O%rka. Thus (2) holds. Since
Gz, is a locally free sheaf on Z,, A, is a line bundle on Zy. Then A? kG o
detGz,. Since the restriction map Pic(Z,) — [[;Pic(Cy;) is bijective and
Pic(Cy;) = Z, Gc,, = Oc,, (by; +1)®™ implies claim (1). O

LEMMA 1.2.17
For a coherent sheaf E with Supp(E) C Z,,, x(G,E) € ZrkG.

Proof

We note that K (Z,) is generated by O¢, , (b,;) and C,.. For E with Supp(E) C Z,,
we have a filtration 0 C Fy C F» C --- C F,, = E such that F;/F;_, € Coh(Z,).
Hence the claim follows from x(G,Oc¢,; (by;)) =0 and x(G,C,) =1k G. O

Thanks to Lemma 1.2.17, we see that the G-twisted semistability of E with
X(G, E) =1kG is independent of the choice of an ample line bundle L and is
equivalent to the G-twisted stability (see the proof of Lemma 1.2.9).

LEMMA 1.2.18

(1) Let E be a G-twisted, semistable 1-dimensional sheaf such that Supp(E) C
Zy and x(G,E) =1k G. Then there is a subscheme C of Z, such that x(Oc) =1
and E= A, ® Oc. Conversely, for a subscheme C of Z, such that Oc is 1-
dimensional, x(Oc) =1, E= A, ® O¢ is a G-twisted stable sheaf with x(G,E) =
rk G, and 7(Supp(F)) ={y}.

(2) Ay is G-twisted stable.
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Proof
(1) We choose an exact sequence

(1.76) 0-K—-FE—C,—0.

Since E is a G-twisted semistable 1-dimensional sheaf with x(G,E) = rkG,
K is a G-twisted semistable sheaf with x(G,K)=0. If m.(GY ® K) # 0, then
we have a nonzero homomorphism ¢ : 7~ (m,(GY @ K)) ®-1(4y G — K such
that 7,(GY ® im¢) = 7, (GY ® K). Since R'7,.(GY ® im¢) =0, x(G,im¢) > 0,
which is a contradiction. Therefore 7.(GY ® K) =0. Hence & : 1.(G¥Y ® E) —
7.(GY ® C,) is injective. Since dim H°(Y,7.(GY ® E)) > x(G,E) = kG, £ is
an isomorphism. Then we have a homomorphism ¢ : A, — E. Since 7. (GY ®
im) = . (G¥ ® E) and R'm,(GY @ im¢) =0, we get im¢ = E. Since E® AL,
AP = Homo, (Ay,0z,) is a quotient of O, , there is a subscheme C' of Z,
such that E® A = O¢. Since x(G,E) = x(G,A, ® O¢) = x(OZ™Y), we have
x(Oc)=1.

Conversely, for £ ® AZ = O¢ such that O¢ is 1-dimensional, C' C Z,,, and
X(O¢) =1, we consider a quotient E — F. Then FF = A, ® Op, D C C. Since
R'7n.(GY®F)=0and G¥® A, ® Op = OF™%, we get x(G,F) > rkG. From
this fact, we first see that F is purely 1-dimensional, and then we see that it is
G-twisted stable.

(2) This follows from (1) and x(Oz,) =1. O

LEMMA 1.2.19

Let E be a G-twisted stable purely 1-dimensional sheaf such that w(Supp(E)) =
{y} and x(G,E)=0. Then E= A, ® Oc,,(—1) = O¢,, (by;).

Proof

L
We set n:=dim X. We take a point 2 € Supp(E). Then Exty, (Cp, E) =C, ®
E[—n+1]. Since F is purely 1-dimensional, depthox’z FE. = 1. Hence the projec-

L
tive dimension of E at  is n—1. Then Tor9*,(C,, E) = H(C, ® E[-n+1]) #0.
Since Ext'(C,, E) = H(X, Exty (Cy, E)) #0, we can take a nontrivial exten-
sion

(L.77) 0-F—-F—C,—0.

If F' is not G-twisted semistable, then since x(G, F) =rkG, there is a quotient
F — F’ of F such that F’ is a G-twisted stable sheaf with x(G,F’) <0. Then
E — F' is an isomorphism, which is a contradiction. By Lemma 1.2.18, F is a
quotient of A,. Thus we may write "= A, ® Op, where D is a subscheme of Z,,.
We take an integral curve C' C D containing z. Since Op — C, factor through
Oc¢, we have a surjective homomorphism F — A, ® Oc(—1). By the stability of
E,E=A,®0c(-1). |
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LEMMA 1.2.20
Let E be a 1-dimensional sheaf such that x(G,E) =0 and 7n(Supp(E)) = {y}.
Then the following conditions are equivalent:

(1) Rm.(GY® E)=0.
(2) FE is a G-twisted semistable 1-dimensional sheaf with w(Supp(F)) = {y}.
(3) E is a successive extension of Ay ® Oc, (—1), 1 <j<t,.

Proof

Lemma 1.1.15 gives the equivalence of (1) and (2). The equivalence of (2) and
(3) follows from Lemma 1.2.19. O
LEMMA 1.2.21

Let E be a 1-dimensional sheaf such that m,(GY @ E) =0. Then there is a homo-
morphism E — A, ® Oc,,(—1). In particular, E is generated by subsheaves of
Ay ® (’)Cw.(—l), yeYr, 1<5 <1,

Proof

Since 7(Supp(FE)) is zero-dimensional, we have a decomposition E = @, E;,
Supp(E;) NSupp(E;) =0, i # j. So we may assume that 7(Supp(F)) is a point.
We note that x(G,E) <0. If x(G,E) =0, then x(R'7.(GY ® E)) = 0. Since
dimF =1 and m.(GY ® E) =0, we get dimm(Supp(F)) = 0. Then we have
R'7,.(GY ® E) = 0. Hence the claim follows from Lemma 1.2.20. We assume
that (G, E) <0. We set n:=dim X. Let

(178) OCFiCFkC---CF,=F

be a filtration such that E; := F;/F;,_;, 1 <i <s, are G-twisted stable and
x(G,E;)/(chp—1(E;),L) < x(G,E;_1)/(chp_1(E;—1),L), where L is an ample
divisor on X. Since 7, (GY ® E) = 0 for any G-twisted stable 1-dimensional sheaf
E on a fiber with x(G, E) <0, replacing E by a G-twisted stable sheaf E;, we
may assume that E is G-twisted stable. We take a nontrivial extension

(1.79) 0-E—-F—=>C,—0.

Then F' is purely 1-dimensional, and x(G,F) = x(G,E) + kG <0 by Lem-
ma 1.2.17. Assume that there is a quotient F' — F’ of F' such that F’ is a G-
twisted stable sheaf with x(G, F’)/(ch,—1(F"),L) < x(G,F)/(ch,_1(F),L) <0.
Then ¢ : E — F' is surjective over X \ {z}. Hence x(G,F’)/(ch,_1(F"),L) >
\(G,m 6)/(chy1(m6), L) 2 X(G, E)/(chn_1(E), L). Since (chp_1(F'),L) <
(chp,—1(F),L) = (chp—1(E),L), we get x(G,F’") > x(G,E)(ch,—1(F"),L)/
(ch,—1(E),L) > x(G,E). If x(G,F")=x(G, E), then ¢ is an isomorphism. Since
the extension is nontrivial, this is a contradiction. Therefore F is G-twisted
semistable or x(G,F’) > x(G,E). Thus we get a homomorphism ¢ : E — E’
such that E’ is a stable sheaf with x(G, E) < x(G,E’) <0 and v is surjective in
codimension n — 1. By the induction on x(G, E), we get the claim. O
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LEMMA 1.2.22
For a point y € Yy, let E be a 1-dimensional sheaf on X satisfying the following
two conditions:

(i) Hom(E,A, ® Oc,,(-1)) =Ext'(E,A, ® Oc,,(—1)) =0 for all j;
(ii) There is an exact sequence

(1.80) 0-F—-FE—-C,—0

such that F is a G-twisted semistable 1-dimensional sheaf with 7(Supp(F)) =
{v}, x(G,F)=0, and x € Z,,.

Then E = A,. Conversely, E := A, satisfies (i) and (ii).

Proof
We first prove that A, satisfies (i) and (ii). For the exact sequence

(1.81) 0—-F —A,—-C,—0,

we have Rm.(G,F’) = 0. Hence (ii) holds by Lemma 1.2.20; (i) follows from
Lemma 1.1.24. Conversely we assume that E satisfies (i) and (ii). By (ii), m.(GY ®
E) 2 71.(GY ® C,) and R'71.(GY ® E) =0. By (i), Lemma 1.2.2, and Lem-
ma 1.2.20, 71 (m(GY ® E)) ®-1(4) G — E is surjective. Hence we have an
exact sequence

(1.82) 0—>F —A,—FE—Q0,

where F’ is a G-twisted semistable 1-dimensional sheaf with x(G, F’) = 0. Since
Ext'(E, 4, ® Oc,,(—1)) =0 for all j, A,~ E & F’, which implies that A, = E.
(|

PROPOSITION 1.2.23 ([VB, PROPOSITION 3.5.7])
(1) Ay and Ay ® O¢,,(=1)[1] (j=1,...,t,) are irreducible objects of C(G);
(2) C,, 7(x) =y €Yy, is generated by irreducible objects in (1).

Proof
(1) Assume that there is an exact sequence in C(G):

(1.83) 0—E; — A, — E;—0.

Since H~'(E1) =0, By € T and 7.(GY @ Ey) = m (GY @ A,) = CP™ . Hence
we have a nonzero morphism A, — E;. Since Hom(4,,4,) = C, E; =2 A, and
Ey=0. For A, ® Oc,;(—1)[1], assume that there is an exact sequence in C(G):

(1.84) 0—E—A,®0¢,, (-1)[1] = E; — 0.

Since H%(E,) =0, we have F2[—1] € S. Then Lemma 1.2.21 implies that we have
a nonzero morphism Ey — A, ® O¢,, (—1)[1]. Since Hom(4, ® O¢,,(—1)[1], A, ®
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Oc,,; (=1)[1]) = C, we get Ey = 0. Therefore A, ® Oc, ; (—1)[1] is irreducible; (2) is
obvious by Lemma 1.2.22. O

By Proposition 1.2.23 and Lemma 1.1.21, we have the following.

COROLLARY 1.2.24
We set

(C:m W(x):y¢yﬂ'aj:0a
(185) Iy] = Ay7 Yy € Yﬂ'ﬂj = 07
Ay®@0c,, (-1D[1], yeYr,j=1,...,5

Then they are the irreducible objects of C(G), and s, is equal to the number of
1-dimensional irreducible components of ©=*(y); that is, s, =0 for y €Y \ Yy
and sy =ty fory €Yy,

We give a characterization of T'=T(G).

PROPOSITION 1.2.25
(1) For E € Coh(X), the following are equivalent:

(a) E€T(G);
(b) Hom(E, A, ® Oc,,(—1)) =0 for all y,j;
(¢) ¢:7 1 (mu(GY @ E)) @r—1(a) G — E is surjective.

(2) If (c) holds, then ker ¢ € So(G).

Proof
(1) This is a consequence of Lemmas 1.2.2 and 1.1.25.
(2) The claim follows from Lemma 1.2.2. O

We note that G @ Homo, (Ay,0z,) = O%rkc. Then we have Homo, (Ay,
Ozy) gﬂ'il(ﬂ'*(G@)Cx)) Qr-1(A) GV. We set

Ca, m(x) =y &Y j=0,
(1'86) IZ]’ = Ay & wz, [1]3 yeYr,j=0,

Ay®0¢,;(—1), yeYr,j=1,...,5y,

where s, is the number of 1-dimensional irreducible components of 7=!(y) as
above. Then we also have the following.

PROPOSITION 1.2.26 ([VB, PROPOSITION 3.5.8])
We have the following:

(1) I, j=0,...,s,, are irreducible objects of C(G)* =C(G¥)P;
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(2) Cy, m(x) =y €Yy, is generated by I .. In particular, irreducible objects
of C(G)* are

(1.87) I

L yEK]:O,l,,Sy

LEMMA 1.2.27
For a point y € Yy, let E be a 1-dimensional sheaf on X satisfying the following
two conditions:

(i) Hom(4, ® Oc,,(~1),E) =Ext' (A, ® O¢,,(—1), E) =0 for all j;
(ii) there is an exact sequence

(1.88) 0-E—-F—=C,—0

such that F is a G-twisted semistable 1-dimensional sheaf with m(Supp(F)) =
{y}, x(G,F)=0 and z € Z,,.

Then E= A, @wz, .

Proof

We set n:=dimX. For a purely 1-dimensional sheaf E on X, RHomo, (F,
Kx[n —1]) € Coh(X) and RHome, (E,Kx[n —1]) = Homo. (F,we) if E is a
locally free sheaf on a curve without embedded primes. Hence the claim follows
from Lemma 1.2.22. O

1.3. Families of perverse coherent sheaves

We shall explain families of complexes which correspond to families of A-modules
via Morita equivalence. Let f: X — S and g: Y — S be flat families of projective
varieties parameterized by a scheme S, and let 7: X — Y be an S-morphism.
Let Oy (1) be a relatively ample line bundle over ¥ — S. From Section 1.3 to
Section 1.6, we assume the following.

ASSUMPTION 1.3.1

(i) The morphism f: X — S is a smooth morphism; X — S is a smooth
family.

(ii) There is a locally free sheaf G on X such that G, :=G|;-1(5), s € 5, are
local projective generators of a family of abelian categories Cs C D(X).

(iii) We have dim7~!(y) <1 for all y € Y; that is, 7 satisfies Assump-
tion 1.1.1.

Then C; is a tilting of Coh(X5).

REMARK 1.3.2
Assumptions (i), (i), and (iii) imply that

(iv) R'm.(GY @ G)=0;
(v) we have
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(1.89) {F € Coh(X) | R7.(G¥ ® E) =0} =0.
Thus G defines a tilting C of Coh(X).

Indeed if E € Coh(X) satisfies Rm.(GY ® E) =0, then the projection formula
L L

implies that Rm,(GYQE @ Lf*(Cy)) = Rm(GV®FE) ® Lg*(Cs) =0 forall s € S.
L L

Then R, (GY @ HP(E @ Lf*(Cy))) =0 for all p and s € S. By (ii), HP(E ®

Lf*(Cs)) =0 for all p and s € S. Therefore (v) holds; (iv) is obvious. Conversely

if (i), (iil), (iv), and (v) hold, then (ii) holds. So we may replace (ii) by (iv)

and (v).

REMARK 1.3.3
We do not require the birationality of w. If 7w is finite and f is smooth, then
conditions (ii) and (iii) hold.

For a morphism T"— S, we set X7 :=X xgT,Yr:=Y xgT, and 7y :=7 X idr.

DEFINITION 1.3.4

(1) A family of objects in Cy, s € S, means a bounded complex F'® of coherent
sheaves on X such that F are flat over S and F? € C; for all s € S.

(2) A family of local projective generators is a locally free sheaf G on X such
that G5 := G |y-1(4), s €S, are local projective generators of a family of abelian
categories Cs.

REMARK 1.3.5
If F? € Coh(X;) for all s € S, then F* is isomorphic to a coherent sheaf on X
which is flat over S.

LEMMA 1.3.6
For a family F* of objects in Cs, s € S, there is a complex F'* such that

(i) FieC,, s,
(i) F* are flat over S, and
(ifi) F* = F*.

Proof
We set d:=dim Xg,s € S. For the bounded complex F*, we take a locally free
resolution of Ox,

(1.90) 0=>V_g— =V 1=2V—->0x—0

such that R*m, ((G¥V @ VY, ® F7),) =0, k>0, for 0<i<d—1 and all 5. Since
X —Y is projective, we can take such a resolution. Then RFr,((GY ® VY, ®
F7)) =0, k>0, for all j. Therefore we have an isomorphism F* =V @ F*
such that (V' @ F*)" are S-flat and (VY @ F*), =@, ,_, VY, ® F{ € C, for all

7

ses. O
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PROPOSITION 1.3.7
(1) Let F* be a family of objects in Cs, s € S. Then we get

(1.91) F* = Cone(E; — E»),

where E; € Coh(X) are flat over S and (F;)s €Cs, s€ S.
(2) Let F* be a family of objects in Cs, s € S. Then we have a complex

(192) G(—n1)®f*(U1)—>G(—n2)®f*(U2)—>F°—>O

whose restriction to s € S is exact in Cy, where Uy,Us are locally free sheaves
on S.

(3) Let F be an A-module flat over S. Then we can attach a family E of
objects in Cy, s €S, such that Rr,(GY @ E) = F. The correspondence is functo-
rial, and E is unique in D(X). We denote E by 7= (F) @r-1(4) G.

Proof

(1) We may assume that Lemma 1.3.6(i)—(iii) hold for F'*. We take a sufficiently
large n with Hom ¢ (G(—n), F7[i]) =0, i > 0, for all j. Then W7 := Hom(G(—n),
FJ) are locally free sheaves. Let W*® := RHom¢(G(—n), F*) be the complex
defined by W7, j € Z. Then we have a morphism G(—n) ® f*(W?*) — F*. Since
F?eC,, s€ S, Hom(Gs(—n), F2[i]) =0 for i # 0 and all s € S. Then the base-
change theorem implies that U := Homy(G(—n), F'®*) is a locally free sheaf on .S
and Homy(G(—n), F'*)s = Hom(G(—n)s, F?). Hence G(—n)® f*(W*) = G(—n)®
f*(U), which defines a family of morphisms

(1.93) G(—n)® f*(U)— F*.

Since F? €C; for all s € S, Rm,.(GY ® F*) is a coherent sheaf on Y which is flat
over S, and g*g.(m.(GY @ F*)(n)) = m.(GY @ F'*)(n) is surjective in Coh(Y") for
n>>0. Since W* 2 g, (7. (GY ® F*)(n)), the homomorphism

(1.94) 1.(GY @ G)(—n) @ g*(U) = m.(G" @ F*)
in Coh(Y") is surjective for n > 0. Thus we have a family of exact sequences
(1.95) 0=E*—=G(—n)® f"(U)—F*—=0

in Cs, s € S. Since G € Coh(X), we have E*® € Coh(X) which is flat over S; (2) is
a consequence of the proof of (1).
(3) We take a resolution of F,

- g (U ) @ A=)
(1.96)

o U-_) @ A=) S ¢*(Us) @ A(—ng) — F — 0,

where U; are locally free sheaves on S. Then we have a complex

. d:; f (U—2) ® G(—nz2)
(1.97)

T U @G-m) S f*(Us) © G(—no).
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By the Morita equivalence (see Proposition 1.1.7), we have imds_i = kerd;”l
in Cs for all s € S. Let cokerd=2? be the cokernel of d=2 in Coh(X). Then by
Lemma 1.3.8 below, cokerd~? is flat over S, (cokerd—2)s = coker(d; ?) € Cs, and

(1.98) E:= Cone(cokercﬁlﬁ_2 — [*(Uo) @ G(—ng))

is a family of objects in Cs. By the construction, we have E, = 7~ 1(F}) Qr-1(A,)
Gs. Tt is easy to see that the class of E in D(X) does not depend on the choice
of the resolution (1.96) (cf. [BS, Lemma 14]). O

LEMMA 1.3.8
Let E*, 0<i<3, be coherent sheaves on X which are flat over S. Let

(1.99) B L g2 s
be a complex in Coh(X).

(1) If kerd! = imd? in Coh(Xy), then (imd')s — E? is injective. In par-
ticular, if kerd} =imd? in Coh(Xs) for all s € S, then cokerd',imd' kerd! in
Coh(X) are flat over S and imd® =kerd!.

(2) Assume that E¢ € Cs for all s € S. We denote the kernel, cokernel, and
the image of d. in Cs by kerc_ d,cokerc, dt, and ime, di, respectively. If Ei € Cs
and kerc, di =ime, di7t, i =1,2, in Cs for all s, then imc, di~1 coincide with the
image of di=1 in Coh(Xy) for i =1,2 and kerc, d. coincides with the kernel of
d} in Coh(X,). In particular, E* : E2/d"(EY) — E3 is a family of objects in Cs,
and we get an exact triangle:

(1.100) kerd’ — E* — E° — kerd°[1]
where ker d® is the kernel of d° in Coh(X), which is flat over S.

Proof
(1) Let K be the kernel of ¢ : (imd'), — E?. Then we have an exact sequence
(1.101) (kerd"), — ker(d!) = K — 0.

Since the image of E? — (kerd!), — E! is d2(E?) = ker(d}), K = 0. The other
claims easily follow from this.

(2) By our assumption, ime, d’ = cokerc, di™! for i = 1,2. Since img, d’
is a subobject of El for i =0,1,2, im¢, di € Coh(X,) for i = 0,1,2 and
H~(cokerc, di™t) = H(ime, di) = 0 for i = 1,2. Then H%(ime, di1) —
HO(E?Y) is injective for i = 1,2, which implies that im¢, di~! is the image of
di~! in Coh(Xy) for i = 1,2. By the exact sequence

(1.102) 0— H (kerc, dt) — H*(EY) — H (im¢, d}) — 0

and the injectivity of HO(im¢, dl) — H°(E?), kerc, d! is the kernel of d! in
Coh(Xs). Then the other claims follow from (1). O
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1.8.1. Quot schemes
LEMMA 1.3.9

Let A be an Oy -algebra on Y which is flat over S. Let B be a coherent A-
module on Y which is flat over S. There is a closed subscheme Quot“g’/l;/s of

Q:= Quotg/y/s parameterizing all quotient As-modules F' of By with x(F(n)) =
P(n).

Proof
Let Q and K be the universal quotient and the universal subsheaf of B ®oy Og:

(1.103) 0=+K—=B®os Og—Q—0.
Then we have a homomorphism
(1.104) K®os A= B®og Og ®os A— B®ogs Og — Q

induced by the multiplication map B ®o, Og ®os A = B ®og Og. Let Z =
Quot B /Y /s be the zero locus of this homomorphism. Then for an S-morphism
T—Q,K®ps Or is an A®ps Or-submodule of B®og Or if and only if T — @
factors through Z. O

COROLLARY 1.3.10

Let G’ be a family of objects in Cs, s € S. Then there is a quot scheme QuotG,/X/S
parameterizing all quotients G, — E in Cs, where P is the Gs-twisted Hilbert
polynomial of the quotient object E,s € S.

Proof

We set A :=m.(GY ®0, G). Then A is a flat family of Oy-algebras on Y, and
we have an equivalence between the category of Ap-modules F' flat over T and
the category of families E of objects in C;,t € T, by F — 71'1_~1(F) ®r-1(4r) GT-
So the claim follows from Lemma 1.3.9 (cf. B=m.(G" @ G)). O

1.4. Stability for perverse coherent sheaves
For a nonzero object E € Cs, x(Gs, E(n)) = x(Rm.(GY @ E)(n)) >0 for n>>0
and there are integers a;(E) such that

(1.105) X(Ge, E(n Zal (n“)

DEFINITION 1.4.1 (SIMPSON)
Assume that C; is a tilting of Coh(Xy) for all s€ S.
(1) An object E €C; is d-dimensional if a4(E) >0 and a;(E) =0, i > d.
(2) An object FE € C; of dimension d is Gs-twisted semistable if
ad(F)
aa(E)

(1.106) x(Gs, F(n)) < x(Gs, E(n)), n>0,

for all proper subobjects F of E.
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(3) An object E € C; of dimension d is u-semistable if E' does not contain a
subobject F' # 0 with aq(F) =0 and

ad(F
a(E)

~

(1.107) aa-1(F) <

da—1(E),

Q

for all proper subobjects F of E.

REMARK 1.4.2
(1) If dim E > dim7(Z,) and E is G4-twisted semistable, then H~1(E) =0.
Indeed H1(E)[1] is a subobject of E with

(1.108) deg x(Gs, H ' (E)(n)) < dim7(Z,) < deg x(Gs, E(n)).
(2) Assume that E € Coh(X,) NCs. For an exact sequence

(1.109) 0F—>FE—F —0

in C,, we have an exact sequence in Coh(Xj),

(1.110) H Y (F) 5 HY(F) - HY(E) —» H(F") = 0.

Since x (G, HY(F)(n)) < x(Gs, (coker ¢)(n)), in order to check the semistability
of E, we may assume that H~(F') = 0.

PROPOSITION 1.4.3
. . -—C,P . . .
There 1s a coarse moduli scheme My, g — S of Gs-twisted semistable objects

E € Cs with the Gs-twisted Hilbert polynomial P. M_}C{/Z s a projective scheme
over S.

Proof

The claim is due to Simpson [S, Theorem 4.7]. We set A := 7, (GY @ G). If we set
Ag=0Oy and Ay = A for k > 1, then a sheaf of A-modules is an example of A-
modules in [S]. Let Q* be an open subscheme of Quotﬁin)@‘//ws consisting of
semistable Ag-modules on Yy, s € S, where V' is a vector space of dimension P(n).
Then we have the moduli space M;\/}; — S of semistable A,-modules on Yy as a
geometric invariant theory (GIT) quotient Q*°// GL(V'), where we use a natural
polarization on the embedding of the quot scheme into the Grassmannian. By a

—A,P ., . . .

standard argument due to Langton, we see that My-/g is projective over S. Since
the semistable Ag-modules correspond to Gg-twisted semistable objects via the
Morita equivalence (see Proposition 1.3.7), we get the moduli space M)C(/PS — 9,
which is projective over S. (]

We consider a natural relative polarization on M?{/IDS Let Q°° be the open sub-
scheme ocfguotCG’(Iin)@)V/X/S > Qumjin)@\//y/s as in the above proof. Thus we
have MX’/S =Q*//GL(V). Let Q be the universal quotient on @ x X. Then

Q|{qyxx 18 G-twisted semistable for all ¢ € Q*. By the construction of the mod-
uli space, we have a GL(V)-equivariant isomorphism V' — pgs««(GY ® Q(n)). We
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set

Em;n = dethssI (GV ® Q(’I’L + m))@P(n)

(1.111) ® det poest (GY ® Q(n)) # )

= detpg=1 (GY ® Q(n + m))®P(n) ® det VE(—P(mtn))

We note that Rm.(GY ® Q) gives the universal quotient A-module on Y x
Quotj’(ljn) QV/Y/S" By the construction of the moduli space, we get the following.

LEMMA 1.4.4
Form>n>0, L, ,, is the pullback of a relatively ample line bundle on M}C(/l;

Assume that S = Spec(C) and dim X = 2. We take H € |Ox(1)].

DEFINITION 1.4.5

(1) For e € K(X)top, Mﬁ(e) is the moduli space of G-twisted semistable
objects E of C with 7(E) =e and M§(e) the open subscheme consisting of
G-twisted stable objects.

(2) Let My (e)*ss (resp., M%(e)*, M%(e)®) be the moduli stack of u-
semistable (resp., G-twisted semistable, G-twisted stable) objects E of C with
T(E)=e.

We set 7o :=rke and &y :=c¢;(e). Then we see that

ch(P(n)GY ((n+m)H) — P(n+m)GY(nH))

:m[(rkG)ro

2

(1.112) —n(n+m)((tkG)H — (c1(G), H) ox) }

(I‘kG)To
2

(H)(k Gex ) .

(H*){(m —2n)chG"

+(H7 (tkG)&o —roci(G) — KX)

X (-Cth+M

LEMMA 1.4.6

We take ¢ € K(X) with ch(¢) =roH + (&0, H)ox and assume that o > 0. Assume
that 7(G) € Ze. If x(e,e) =0 and E= E ® Kx for a G-twisted stable objects E
with 7(E) = e and M%(e)*s is smooth at E, then detpg=1(Q @ (V) =
detpos=1(QY ® )V is the pullback of an ample line bundle L(C) on Mg(e).

Proof

We first show that det pgs:1(Q® EY) = Ogs= as a PGL(V)-equivariant line bundle
for E € M§(e)* with EXE® Kx. We set U :={q€ Q% | Q(gyxx # E}. Then
Hom(Q|{g1xx, E) = Hom(E, Qys1xx) =0 for x € U. Since x(e,e) =0, we also
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have Ext!(E, Qayxx) = 0. Hence detpg=(Q ® EY)y = Oy. Since
codimgss (Q* \ U) > 2 and @Q* is smooth in a neighborhood of Q% \ U, we have
det pg=1(Q® EY) = Og== as a PGL(V)-equivariant line bundle. We set 7(G) = Xe,
A € Zsg. Since 1o K x =0, we have (H, 1k G)&y —roc1 (G) — %KX) =0. Then
we get P(n)GY((n+m)H) — P(n+m)GY (nH)=mn(n+m)X{¥ mod Ze". By
Lemma 1.4.4, we get our claim. (I

REMARK 1.4.7

If E~2 F® Kx and M%(e)* is smooth at E, then for an irreducible component
M of MY (e)® containing E, we see that M is smooth and E = E ® Kx for all
EeM.

Indeed for E' € M, we have dim Ext*(E’, E') = 1 +dim Hom(F', B’ @ Kx). If
Hom(E',E' ® Kx) =0 for E' € M, then dimExt'(E’, E') =1 and M is smooth
of dimension zero at E’. Since M is irreducible and M is smooth of dimension 1
at F, we have Hom(F', F'® Kx) # 0 for all E' € M. Then we have F' 2 E' @ Kx
and dim Ext'(E’, E") = 2, which implies that M is smooth.

For a family £ of G-twisted semistable objects on X parameterized by .S, we have
a morphism f:S5 — Mg (e) such that f(s) is the S-equivalence class of &{)xx-
Then we have detpgi (€ @ ¢Y) = f*(L(C)).

Indeed we have a morphism S — [Q%/ GL(V)] = MY (e)*; that is, we have
a principal GL(V)-bundle h: P — S and a GL(V)-equivariant morphism f :
P — Q% which induces a GL(V')-equivariant isomorphism (h x 1x)*(€) = (f x
1x)*(Q). Hence we have det psi(€ @ ¢Y) = f*(L(€)).

More generally we assume that £ is a family of G-twisted semistable objects
as twisted objects, that is, £ is a collection of families & on S; x X such that

(i) S=U,S; is an open covering of S;
(ii) there are isomorphisms ¢;; : &j(s,ns;)xx = Ej|(s,ns;)xx; and
(ili) @ri 0 @jk 0 @i; is a multiplication (see Section 1.7).

By these conditions, the collection of line bundles detpg, (& ® ¢V) € Pic(S;)
defines a line bundle on S. We denote this line bundle by det pgi(€ ® ¢Y).

LEMMA 1.4.8
For the morphism f:S %Mg(e) such that f(s) is the S-equivalence class of
E|{syxx, we have an isomorphism

detpsi(E¥ ® ¢)Y = detpsi(E @ CV) = £*(L(C)).

Proof

For the proof, we take an object F' € C such that W; := pg,.(€; ® F) are locally
free. For the twisted sheaf W := ({W;},{yi;}) we consider the projective bundle
¢ :P(W)— S. We set P;:= ¢ 1(S;). Since Op,(1) defines a twisted sheaf on
P =P(W), we have a family of untwisted objects £ such that (¢ x 1)* (g, xx) =
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Elpxx ® Op,(1). For the family &', we have a morphism f”: P %Mfl(e) such
that det pp1(E' @¢V) = /" (L(¢)). We note that ¢* : Pic(S) — Pic(P) is injective.
So we regard Pic(S) as a subset of Pic(P). It is easy to see that det ppi (£’ @ (V) =2
¢*(det psi(€ ®¢V)). Hence the claim holds. O

DEFINITION 1.4.9
Assume that rke > 0.

(1) P(e) is the set of subobjects E' of E € My (e)** such that

(1.113) (Cl(GfEE)’H) _ (Cl(GfE?)’H)~

(2) For E’ € P(e), we define a wall W C NS(X) ® R as the set of a €
NS(X) ® R satisfying
4G 9E) oG eF)\ (G 9E) (G’ oE) _
(1.114) (a, rk F - rk B/ ) ( ) =0

Since {T(E') | E' € P(e)} is a finite set, | Wgr is finite. If o € NS(X) ® Q does
not lie on any Wgr, we say that « is general. If a local projective generator G’
satisfies & 1= ¢1(G')/rkG" — ¢1(G)/1k G ¢ |z Wgr, then we also say that G’ is
general.

rk B rk B/

LEMMA 1.4.10
If G is general, that is, if 0 ¢ Jp Wgr, then for E' € P(e),
E’ E’

x(G.e) _x(G,E) e _T(£)

1.11 = = _
( 5) rke rk B/ rke rkFE’

€ K(X)op ® Q.
In particular, if e is primitive, then Mg(e) = M§ (e) for a general G.

1.5. A generalization of stability for zero-dimensional objects

It is easy to see that every zero-dimensional object is Gs-twisted semistable. Our
definition is not sufficient in order to get a good moduli space. So we introduce
a refined version of twisted stability.

DEFINITION 1.5.1
Let G,G’ be families of local projective generators of C,. A zero-dimensional
object E is (G5, GL)-twisted semistable if

X(G5, Br) _ (G, E)
X(GS’El) o X(Gst)
for all proper subobjects Fy of E.

(1.116)

By a modification of Simpson’s construction of moduli spaces, we can construct
the coarse moduli scheme of (G, G, )-twisted semistable objects. From now on,
we assume that S = Spec(C) for simplicity.
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LEMMA 1.5.2
Let G be a locally free sheaf on X which is a local projective generator of C.

(1) Assume that there is an exact sequence in C,
(1.117) 0—-E —>Vy—->V—- =V, -E—=0

such that V; are local projective objects of C. If r > dim X, then E’ is a local
projective object of C.

(2) For E € K(X), there is a local projective generator G’ of C such that
E=G"— NG(—n), where N and n are sufficiently large integers.

Proof

(1) We first prove that H!(Rm,RHome, (E,F)) =0,i>dim X +1, for all F € C.
Since C is a tilting of Coh(X) (see Proposition 1.1.13), H(E) = H'(F) =0 for
1 # —1,0. By using a spectral sequence, we get

(1.118) H (Rm.RHomo, (H™?(E)[p], H*(F)[q])) =0

for i > dim X + 1. Hence we get H!(Rm.RHomo, (E,F)) =0, i >dimX + 1.
Then we see that

(1.119)  H'(Rm.RHomo, (E',F)) =2 H*"t(Rr,RHomo, (E,F)) =0

for all integer with ¢ > max{dim X —r,0} = 0. Therefore E’ is a local projective
object.

(2) We first prove that there are local projective generators G, Go such that
E =G, — G3. We may assume that E € C. We take a resolution of F,

0= B = G(—n,) N & G(—n,_1) Nt
(1.120)
— G(—ng)®No 5 E 0.

If » > dim X, then (1) implies that E’ is a local projective object. We set r:=
2]0+1 ‘We set G1 = E/@ @;0:0 G(*Tlgj)@sz and GQ = ;0:0 G(*Tlgj_‘_l)@N%*l .
Then GG; and G4 are local projective generators, and ' = G; — G3. We take a
resolution

(1.121) 0—=Gh—G(—n)™N -Gy —0
such that G5 € C. Then we see that Rm.RHomo, (G5, F) € Coh(Y) for any

FeC. Since E = (G1 ®Gh) — G(—n)®N and Gy @ G} is a local projective gen-
erator, we get our claim. (I

DEFINITION 1.5.3

Let A be an element of K(X)® Q, and let G be a local projective generator. A
zero-dimensional object E is (G, A)-twisted semistable if

VAF) _ X(A )

X(G,F) ~ x(G,E)

for all proper subobjects F' of F.

(1.122)
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By Lemma 1.5.2, we write N'A =G’ — NG(—n) € K(X), where G’ is a local
projective generator and n, N, N’ > 0. Then
X(G', E) — N X(4, E)
x(G, E) x(G, E)
Hence E is (G, G')-twisted semistable if and only if E is (G, A)-twisted semistable.
Thus we get the following proposition.

(1.123) +N.

PROPOSITION 1.5.4
Assume that dim X = 2. Let A be an element of K(X)® Q, and let G be a local
projective generator. Let v be a Mukai vector of a zero-dimensional object.

(1) There is a coarse moduli scheme Mg’j(l)(v) of (G, A)-twisted semistable
objects of C.
(2) If v is primitive and A is general in K(X)®Q, then Mgf(l)(v) consists

of (G, A)-twisted stable objects. Moreover, Mgf(l)(v) is a fine moduli space.

REMARK 1.5.5

As is well known, if there is F € K(X) with x(E,v) = 1, then there is a universal
family. If particular, for v = gox, we have a universal family. If v # pox, then the
moduli space is a point. So obviously we have a universal family.

REMARK 1.5.6

If v(E) =px and 1tk A =0, then E is (G, A)-twisted semistable if and only if
X(A, E’) <0 for all subobjects E’ of E in C. Thus the semistability does not
depend on the choice of G.

REMARK 1.5.7

In Section 1.7, we deal with the twisted sheaves. In this case, we still have the
moduli spaces of zero-dimensional stable objects, but Mgf(l) (0x) does not have
a universal family.

DEFINITION 1.5.8
./\/lg’j(l)(v)ss denotes the moduli stack of (G, A)-twisted semistable objects E
with v(E) =wv.

1.6. Construction of the moduli spaces of .4-modules of dimension zero

By Proposition 1.1.7, we have an equivalence C — Coh 4(Y"). We set B :=m,.(GV®
G’). Then B is a local projective generator of Coh4(Y"). For all F € Coh4(Y),
RHom (B, F) =Hom (B, F) and RHom (B, F) =0 if and only if F =0. In
particular, we have a surjective morphism

(1.124) ¢:Homa(B,F)®4B—F.
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For F € Coh4(Y), we set
(1.125) XA(B,F) :=x(RHoma(B,F)).
For F € Cohy(Y), 77 HF) @r-1(4) G is (G, G’)-twisted semistable if

xa(B, F1) _ xa(B, F)

() T x(F)
for all proper sub-A-modules F; of F. We define the (A, B)-twisted semistability
by this inequality.

(1.126)

PROPOSITION 1.6.1

There is a coarse moduli scheme of (A, B)-twisted semistable A-modules of dimen-
$10M zero.

Proof of Proposition 1.6.1

Let F' be an A-module of dimension zero. Then Hom 4 (B, F') ® B — F is surjec-
tive. Hence all zero-dimensional objects F' are parameterized by a quot scheme
Q:= Quoté&/y/c, where m = x(F) and dimV = x4(B,F). Let V® Og ® B —
F be the universal quotient. For simplicity, we set F, := Fj(s1xy, ¢ € Q. For a
sufficiently large integer n, we have a quotient V @ H°(Y,B(n)) — H'(Y, F(n)).
We set W := H°(Y,B(n)). Then we have an embedding

(1.127) QuotyZ 1y e = Gr(V @ W,m).

This embedding is equivariant with respect to the natural action of PGL(V).
The following is well known.

LEMMA 1.6.2

Let a: VW = U be a point of & :=Gr(V @ W,m). Then « belongs to the set
8% of semistable points if and only if

dimU < dimo(Vh @ W)

dimV — dim V;

for all proper subspaces Vi #£ 0 of V. If the inequality is strict for all Vi, then o
is stable.

(1.128)

We set
(1.129) Q> :={qe Q| F, is (A, B)-twisted semistable}.

For g € @Q%, V — Homy (B, F) is an isomorphism. We only prove that Q% =
®% N Q. Then Proposition 1.6.1 easily follows.

For an A-submodule F; of F, we set Vi := Homy (B, Fy). Then we have a
surjective homomorphism V; ® B — Fj. Conversely, for a subspace V; of V| we
set F1 :=im(Vy; ® B— F). Then V; — Hom4 (B, F}) is injective.

We set

(1.130) F={im(Vi®B—F,)|qeQ,VicV}.
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Since § is bounded, we can take an integer n in the definition of W such that
Vi@W — HO(Y, F) is surjective for all F; € §. Assume that F, is (A, B)-twisted
semistable. For any Vi CV, we set Fy :=im(V; ® B — F;). Then a(V; @ W) =
HO(Y, Fy). Hence

dima(V; @ W) < x(F1)
(1.131) dim V; ~ dimHom 4 (B, F})
' _ X(R)  X(F) _ dima(Vaw)
XA(B,F1) = xa(B,Fy) dimV ’
Thus g € &%.

We take a point ¢ € &% N Q. We first prove that ¢ : V — Hom4 (B, F,) is an
isomorphism. We set V3 :=ker¢. Since V; B — F, is zero, we get a(V1 @ W) = 0.
Then
dimU < dima(Vh @ W)
dimV — dim V;
which is a contradiction. Therefore % is injective. Since dim V' = dim Hom 4 (B,

Fq), ¥ is an isomorphism. Let Fy # 0 be a proper A-submodule of F,. We set
Vi :=Hom (B, F1). Then
x(F1) dima(Vi @ W) _ dima(V e W) X(Fq)

1.1 > > = .
(1.133) dimHom4 (B, Fy) — dim V; - dimV xa(B,Fy)

(1.132)

:07

Hence F is (A, B)-twisted semistable. If ¢ is a stable point, then we also see that
Fq is (A, B)-twisted stable.

1.7. Twisted case

1.7.1. Definition

Let X =J; X; be an analytic open covering of X, and let 8= {8;;, € H*(X; N
X; N Xy, 0%)}, a Cech 2-cocycle of O%. We assume that (3 defines a torsion
element [3] of H?(X,0%).

DEFINITION 1.7.1
A coherent S-twisted sheaf E consists of ({E;},{¢:;}) such that

(i) E; is a coherent sheaf on Xj;
(i) @ij : Eijx,nx, = Ejjx,nx, is an isomorphism;
—1.

(111) Pji = Pij 5

(iv) @ri 0 @)k © @i; = Bijridx,nx,;nx, -

Let G be a locally free S-twisted sheaf of rank r, and let P :=P(G") be the asso-
ciated projective bundle over X (cf. [Y4, Section 1.1]). Let w(P) € H*(X,Z/rZ)
be the characteristic class of P (see [Y4, Definition 1.2]). Then [3] is trivial if
and only if w(P) € im(NS(X) — H?(X,Z/rZ)) (see [Y4, Lemma 1.4]).

Let Coh” (X) be the category of coherent [-twisted sheaves on X, and
let D?(X) be the bounded derived category of Coh”(X). Let K?(X) be the
Grothendieck group of Coh”(X). Then similar statements in Lemma 1.1.11 hold
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for Coh”(X). Then all results in Sections 1.3 and 1.4 hold. In particular, if a
locally free [-twisted sheaf G defines a torsion pair, then we have the mod-
uli of G-twisted semistable objects. Replacing ¢ € K(X) by ¢ € K#(X) with
c1(¢) =79H and x(G® (V) =0, Lemma 1.4.6 also holds.

1.7.2. Chern character

We have a homomorphism
chg : DP(X) = H®(X,Q),

ch(GY® E)

Veh(GV®G)
Obviously chg(E) depends only on the class in K#(X). Since

h((GY @ E)Y @ (GY® F))

1.1 he(E)Y chg(F) =< (B

(1.135) chg(E)Y cha(F) (GG ch(EY ® F),

we have the following Riemann—Roch formula:

(1.134)
E—

(1.136) X(E,F) = /X cha(E)Y chg(F)tdy.

Assume that X is a surface. For a torsion G-twisted sheaf FE, we can attach
the codimension 1 part of the scheme-theoretic support Div(E) as in the usual
sheaves. Then we see that

(1.137) chg(E) = (0, [Div(E)],a), a€cQ,

where [Div(E)] denotes the homology class of the divisor Div(E), and we regard it
as an element of H%(X,Z) by the Poincaré duality. More generally, if £ € D?(X)
satisfies rk H'(E) = 0 for all i, then

(1.138) ch(E) = (0,3 (~1)! [Div(H'(E))],a), acQ.
i
We set ¢1(E) :=>,(—1)"Div(H'(E))].
REMARK 1.7.2
If H3(X,7Z) is torsion free, then we have an automorphism 7 of H*(X,Q) such
that the image of 1o chg is contained in ch(K (X)) C Z® H*(X,Z) ® H*(X,

(1/2)Z) and (1.136) holds if we replace chg by nochg (cf. [Y4]). We first note
that
(1.139)  ch(K(X))={(r,D,a)|r€Z,De H*(X,Z),a— (D,Kx)/2€ Z}.
Replacing the statement of [Y4, Lemma 3.1] by

c2(BY @ E)+1r(r—1) (w(E), KX)
(1-:140) =—(r—1)((w(E)?) —r(w(E),Kx)) mod 2r,

we can prove a claim similar to [Y4, Lemma 3.3].
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LEMMA 1.7.3
Let E be a pB-twisted sheaf of tk E=0. Then
(1.141) [X(G,E) mod rZ] = —w(P) N [Div(E)],

where we identified Hy(X,Z/rZ) with Z/rZ.

Proof
Since x(G, E) and [Div(FE)] are additive, it is sufficient to prove the claim for pure
sheaves. If dim E = 0 as an object of Coh”(X), then 7 | x(G, E) and Div(E) = 0.
Hence the claim holds. We assume that E is purely 1-dimensional. Then F is a
twisted sheaf on C :=Div(E). Since C is a curve, there is a S-twisted line bundle
L on C, and we have an equivalence

¢ : Coh?(C) — Coh(C),
(1.142)

E—-E®LY.

Then we can take a filtration 0 C F; C F, C -+ C F,, = E of E such that Div(F;/
F;_1) are reduced and irreducible curves and F;/F;_; are torsion-free S-twisted
sheaves of rank 1 on Div(F;/F;_1). Replacing E by F;/F;_1, we may assume
that F is a twisted sheaf of rank 1 on an irreducible and reduced curve C' =
Div(E). Then x(G, E) = x(¢(Gi)" @9 (E)) = [ e1(4(Gie)¥) +rx((E)). Since
w(P)jc =w(Pc) =ci1(¢(Gc)) modrZ, [x(G,E) modrZ]=—-w(P)N[C]. O

COROLLARY 1.7.4
For an object E of D?(X), assume that tk H'(E) =0 for all i. Then

(1.143) [X(G,E) mod rZ] = —w(P) N [Div(E)].
Moreover if ¢c1(E) =0, then chg(F) € Zox .

Proof
The second claim follows from [ chg(E) = x(G,E)/r = (x(G,E)/r) [y ox. O

2. Perverse coherent sheaves for the resolution of rational double points

2.1. Perverse coherent sheaves on the resolution of rational singularities
Let Y be a projective normal surface with at worst rational singularities, and let
m: X — Y be the minimal resolution. Let p;, : =1,2,...,n be the singular points
of Y, and let Z; := 7 1(p;) = 2221 a;;C;; be their fundamental cycles. By the
assumption, we have R'm,(Ox) =0, and C;; are smooth rational curves on X.
Let 3 be a 2-cocycle of O% whose image in H%(X,0%) is a torsion ele-
ment. For S-twisted line bundles L;; on Cj;j, we shall define abelian categories
Per(X/Y,{L;;}) and Per(X/Y,{L;;})*. Let A,, be the unique line bundle on Z;
such that A, o, = Lij(1) (see Lemma 1.2.16).

PROPOSITION 2.1.1
(1) There is a locally free sheaf G such that R, (GY @ L;;) =0 for all i, .
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(2) C(Q) is the tilting of Coh” (X)) with respect to the torsion pair (T, S) such
that
S = {E € CohB(X) | E is generated by subsheaves of Lij},
(2.1)
T :={E € Coh’(X) | Hom(E, L;;) = 0}.
(3) C(G)* is the tilting of CohB(X) with respect to the torsion pair (T*,S*)
such that
Ss*:={E¢€ Coh” (X) | E is generated by subsheaves of Ap, @ wz, },

(2.2)
T* = {E € Coh’(X) | Hom(E, 4, ® wz,) =0}.

For the proof of (1), we shall use the deformation theory of a coherent twisted
sheaf.

DEFINITION 2.1.2
For a coherent S-twisted sheaf E on a scheme W, Def(W, E) denotes the local
deformation space of F fixing det E.

For a complex E € D?(X), let
(2.3) Ext’(E, E)o := ker (Ext'(E, E) 3 H(X,0x))

be the kernel of the trace map. If Ext?(E, E)o = 0, then Def(W, E) is smooth
and the Zariski tangent space at E is Ext'(E, E)o. The following is well known.

LEMMA 2.1.3
Let D be a divisor on X. For E € Coh?(X) with rk E > 0, we have a torsion-free
B-twisted sheaf E' such that T(E') = 7(E) — n1(C,) and Ext*(E’, E'(D))o = 0.

Proof

For a locally free [S-twisted sheaf F, we consider a general surjective homo-
morphism ¢: E — @, C,,, z; € X. If n is sufficiently large, then E’ :=ker ¢
satisfies the claim. O

LEMMA 2.1.4
Let C be an effective divisor on X. For (r,L) € Z~o x Pic(C), the moduli stack
of locally free sheaves E on C such that (rk E,det E) = (r, L) is irreducible.

Proof

For a locally free sheaf E on C' we consider ¢ : H*(X,E(k)) ® Oc(—k) — E.
Assume that ¢ is surjective. Then there is a subvector space V. C HY(X, E(k)) of
dimV =7 —1 such that ¢ : V® O¢c(—k) — E is injective for any point of C'. Then
coker®) is a line bundle which is isomorphic to det(E) ® Oc((r — 1)k). Hence
E is parameterized an affine space Extéc (L®Oc((r—1)k),0c(—k)@V) =
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HY(C,LY(—rk) ® V). Since the surjectivity of ¢ is an open condition and ¢ is
surjective for k> 0, we get our claim. O

Proof of Proposition 2.1.1

(1) For a locally free S-twisted sheaf G on X, we set g;; := x(G1,L;j;). Let
ae®;, @2’:1 Q[Ci;] be a Q-divisor such that tkG1(a, Cy;) = g;5. We take a
locally free sheaf A € Coh(X) such that ¢1(A)/rkA=a. Then x(G1 ® A, L;j) =
rk A(gi; —tkG1 (e, Ci5)) =0 for all ¢, j. By Lemma 2.1.3, there is a torsion-free -
twisted sheaf G on X such that 7(G) = 7(G1 ® A) — k7(C,) and Hom(G,G(Kx +
Cij))o =0 for all 7, j. We consider the restriction morphism

(24) ¢ij : Def(X, G) — Def(Cij, Glcij )

Since Ext*(G,G(—Ci;))o = 0, we get Ext*(G, G)o = 0. Thus Def(X, G) is smooth.
We also have the smoothness of Def(C;;,G\c,,), by the local freeness of G|c,, -
We consider the homomorphism of the tangent spaces

(2.5) EXt%/)X (G,G)o —>EX’C}QC” (G\Cij’Gwij)O'

Then it is surjective by Extz(G,G(—Cij))o = 0. Therefore ¢ is submersive. By
the equivalence ¢ : Coh?(Cj;) — Coh(Cj;) in (1.142), we have an isomorphism
Def(Cij,Gwij) — Def(C’ij,gp(G‘CU)). Since X(G,L”) = O, det(G\CU ® L;/j) =
Oc,,; (rkG). Then Lemma 2.1.4 implies that G deforms to a S-twisted sheaf such
that G|c,, = Lij(l)@rkG. Since these conditions are open, there is a locally free
pB-twisted sheaf G such that G|¢,, = L;;(1)®™¢ for all i, j. By taking the double
dual of G, we get (1).

(2) Note that L;; = A, ® Oc;;(—1). By Propositions 1.2.23 and 1.1.26, we
get the claim. For (3), we use Propositions 1.2.26 and 1.1.26. O

DEFINITION 2.1.5

(1) We set Per(X/Y,{L;;}) :=C(G) and Per(X/Y,{L;;})* :=C(G)*.

(2) If B is trivial, then we can write L;; = O¢,,(bi;). In this case, we set
Per(X/Y,by,...,b,) :=Per(X/Y,{L;;}) and Per(X/Y,by,...,b,)" :=Per(X/Y,
{Li;})*, where b; := (b1, biz, ..., bir, ).

REMARK 2.1.6
If b; = (—1,-1,...,—1) for all 4, then Per(X/Y,by,...,b,) = "1 Per(X/Y).

DEFINITION 2.1.7
We set
Ao(bl) = A;Dw

(2.6)
Ao(bz)* = A;Dz‘ Qwz,.

We collect easy facts on Ag(b;) and Ag(b;)* which follow from Lemmas 1.2.22
and 1.2.27.
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LEMMA 2.1.8
(1) (a) For E= Ay(b;), we have
(2.7) Hom(E, Oc,, (bi;)) =Ext' (E,Oc,, (bij)) =0, 1<j<t,

and there is an exact sequence

(2.8) 0 F E Ca 0

such that F' is a successive extension of Oc,,(bij) and x € Z;.
(b) Conversely, if E satisfies these conditions, then E = Ag(b;).
(2) (a) For E= Ap(b;)*, we have

(2.9) Hom(Oc,, (bi;), E) = Ext' (O¢,, (bi;), E) =0, 1<j<t,
and there is an exract sequence

(2.10) 0 E F Ca 0

such that I is a successive extension of Oc,;(bi;) and x € Z;.
(b) Conversely, if E satisfies these conditions, then E = Ag(b;)*.

2.2. Moduli spaces of zero-dimensional objects

Let 7: X — Y be the minimal resolution of a normal projective surface Y, and
let p1,po,...,pn be the rational double points of Y as in Section 2.1. We set
Z :=J; Z;. Let G be a locally free sheaf on X which is a tilting generator of the
category C :=C(G) in Lemma 1.1.11. For o € NS(X) ® Q, we define a-twisted
semistability as (G, A)-twisted stability in Definition 1.5.3 with vy(A4) = (0,«,0),
where ~ is the homomorphism (0.8). Since rk A =0, v(A) is nothing but the
Mukai vector v(A) of A. In this subsection, we shall study the moduli of a-
twisted semistable objects. For brevity, we say that a-twisted semistability is
a-semistability.

DEFINITION 2.2.1
For simplicity, we set X ::Mgf(l)(gx). We also set XY := Mg’;"(l)(gx)ss.

Zero-semistability means that the inequality (1.122) holds for A = 0. Hence every
zero-dimensional object is zero-semistable, and we have a natural morphism 7, :
X = X0 We also see that zero-stable objects correspond to irreducible objects
of C.

LEMMA 2.2.2

For a zero-dimensional object E of C, there is a proper subspace T(E) of Ext2(E,
E) such that all obstructions for infinitesimal deformations of E belong to T(E).

Proof
Let E be a zero-dimensional object of C. We first assume that there is a curve
C € |Kx| such that C' N Supp(F) =0. Then H°(X,Kx) — Hom(FE, E(Kx)) is
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nontrivial, which implies that the trace map
(2.11) tr: Ext*(E,E) — H*(X,0x)

is nontrivial. Since the obstruction for infinitesimal deformations of E lives in
kertr, T(E) = ker tr is a proper subspace of Ext?(F, E). For a general case, we use
the covering trick. Let D be a very ample divisor on Y such that there is a smooth
curve B € |2D| with BN 7 (Supp(F)U Z) =0 and |Ky + D| contains a curve C
with C' N w(Supp(E)UZ) = (). Since 7 is isomorphic over Y \ 7(Z), we may regard
B and C as divisors on X. Let ¢: Y =Y be the double covering branched
along B, and set X = X xy Y. We also denote X — X by ¢. Then |K%|=
|¢p* (K x 4+ D)| contains ¢*(C'). Since ¢ is étale over Y\ B, we have a decomposition
7 (E) = By ® Ey, and Ext?(E, F) — Ext*(E;, E;) are isomorphisms for i = 1,2.
Under these isomorphisms, T(E) is mapped into T'(F;). Since tr; : Ext? (B, E;) —
H 2()? ,O%) are nontrivial, kertr; are proper subspaces of Eth(Ei,Ei). Hence
T(E) is a proper subspace of Ext?(E, F). O

PROPOSITION 2.2.3

(1) For a zero-dimensional object E of C, EQ Kx = E. In particular, Ext?(E,
E)=~Hom(E, E)".

(2) For a zero-dimensional Mukai vector v, Mg;(a(l)(v) is smooth of dimen-
sion (v?) + 2.

Proof

(1) Since Kx =7*(Ky) and dim7(Supp(E)) =0, we get F® Kx = E. (2) For

Ee MG (1)( v), we have Hom(E, E') = C. Then Lemma 2.2.2 implies that T'(E) =

0. Since dimExt!(E, E) = (v?) + 2, MG O‘(l)(v) is smooth of dimension (v?) + 2.
O

REMARK 2.2.4
There is another argument to prove the smoothness due to Bridgeland [Brl]. We
shall use the argument later. So for stable objects, we do not need Lemma 2.2.2,

but it is necessary for the study of properly semistable objects (see Proposi-
tion 2.2.8).

LEMMA 2.2.5
Assume that o € NS(X) ® Q satisfies

(a,D)#0 for all D € NS(X) with (D?) = -2 and
(c1(0x(1)),D) =0.
Then X© Mo’ (1)( x); that is, X consists of a-stable objects.

(2.12)

Proof
Assume that F € X® is S-equivalent to @le FE;, where E; are a-stable objects.
Then (o, ¢1(E;)) =0, (c1(Ox(1)),c1(E;)) =0, and (c1(E;)?) = (v(E;)?) > —2 for
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all 4. Since (v(E;),v(E;)) >0 for E; # Ej and 3~ (v(E;),v(E;)) = (v(E)?) =0,

(i) (v(E;)?)=—2 for an i, or
(i) (v(E;)?) =0 for all i.

By our choice of «, case (i) does not occur. In the second case, we see that v(E;) =
a;0x, a; € Z. Since (G, E;) =rkGa; > 0, we have a; > 0. Then ox = (3, a:)ox
implies ¢t = 1. Therefore F is a-stable. (]

LEMMA 2.2.6

Let £ be an object of D(X x X') such that % s, : D(X) = D(X') is an equiva-
lence, & x x{z} €C for all 2’ € X', and v(€x x(o1}) = 0x . Then every irreducible
object of C appears as a direct summand of the S-equivalence class of & x x a1} -

Proof

Let E be an irreducible object of C. If Supp(E) ¢ Z, then we have a non-
trivial morphism E — C,, z ¢ Z. Since (C);x\z = Coh(X \ Z), C, is an irre-
ducible object. Hence E = C,. Since X(&|x x {2/}, Csz) = 0 and <I>§(VHX, is an equiv-
alence, there is a point 2’ € X’ such that Hom(& x x{2},Cs) # 0 or Hom(C,,
Exx{z}) # 0. Since v(Cp) = v(E|xx{ar}) = 0x, We get Cp = Exy(ay. If
Supp(E) C |J; Zi, then we still have X(&xx (2}, E) =0, since & xxy = Co,
x ¢ Z, for a point 2’ € X’. Then we have Hom(& x (.1}, E) # 0 or Hom(E,
E xx{z'}) # 0. Therefore our claim holds. O

LEMMA 2.2.7
If a is general, then X is irreducible.

Proof

Let X’ be a connected component of X%, and let £ be a universal family on
X x X'. By Proposition 2.2.3, £ xx(2} ® Kx = & xx(sy for all 2’ € X’. Then
we have an equivalence ®§ ., : D(X) — D(X’). By the same argument as in
the proof of Lemma 2.2.6, we see that every E € X belongs to X'. O

PROPOSITION 2.2.8

We have that X° is a locally complete intersection stack of dimension 1 and
irreducible. In particular, X° is a reduced stack.

Proof

Let @Q be an open subscheme of a perverse quot scheme such that X° is a GIT
quotient of a suitable GL(N)-action. Then X is the quotient stack [@/ GL(N)].
Let £ be the family of zero-dimensional objects of C on @ x X. For any point
q € Q, we set ny :=dimHom (K sy x x, €1 xx) and ng :=dim T'(j41x x ), where
K is the universal subobject on @ x X. Then an analytic neighborhood of
@ is an intersection of ny hypersurfaces in C™. Hence dim(@ > n; — ny and
dim[Q/ GL(N)] > —x(E/{qyx x> {qyxx) + 1 =1. We take a general o and set
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Q" := {q € Q| {gyxx is not a-semistable}. By the proof of [OY, Proposi-
tion 2.16], we see that dim[@"/GL(N)] = 0. Since [(Q\ Q")/ GL(N)] is the mod-
uli stack of a-stable objects, it is a smooth and irreducible stack of dimension 1.
Hence [Q/GL(N)] is a locally complete intersection stack of dimension 1 and
irreducible. In particular [Q)/ GL(N)] is a reduced stack. O

LEMMA 2.2.9
Let E be a zero-semistable object with v(E) = ox. Then Supp(m.«(GY @ E)) is a
point of Y.

Proof

For E, we have a decomposition E = ®§=1 E; such that Supp(m.(GY ® E))),
i=1,...,t are distinct t-points of Y. We set v(E;) = (0,D;,a;). Since D, are
contained in the exceptional loci, 0 = (v(E)?) = >".(D?) implies that (D?) =0
for all 4. Thus we have v(E;) = a;0x for all i, which implies that ox = (>, a;)ox-
Since x(G, E;) > 0, we have a; > 0. Therefore ¢t = 1. O

By Lemma 1.1.21, we get the following.

LEMMA 2.2.10

(1) We have C, € C for all x € X. In particular, we have a morphism ¢ :
X — XY by sending x € X to the S-equivalence class of Cy;

(2) ©(Z;) is a point.

PROPOSITION 2.2.11
There is an isomorphism 1) : X° =Y such that o : X =Y coincides with .
In particular, X° is a normal projective surface.

Proof

We keep the notation in the proof of Proposition 2.2.8. By Lemma 2.2.9, F :=
m(GY ® €) is a flat family of coherent sheaves on Y such that Supp(F,) is
a point for every ¢ € (). Since the characteristic of the base field is zero, we
have a morphism @ — S"Y, where r =rkG (cf. [F1], [F2]). Since the image is
contained in the diagonal Y, we have a morphism @ — Y. Hence we have a
morphsim 1 : X® — Y. By the construction of ¢ and v, T =1 o ¢. Since ¢ and
1) are projective birational morphisms between irreducible surfaces, ¢ and v are
contractions. By using Lemma 2.2.10, we see that 1 is injective. Hence 1 is a
finite morphism. Since Y is normal, 1 is an isomorphism. (]

LEMMA 2.2.12

(1) Assume that p; €Y corresponds to EB‘;;O Ef;a” via 1, where E;; are
zero-stable objects. Then C,,x € Z;, are S-equivalent to @]s’zo Ef?a”. We also
have E;; € Cp, .
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(2) Let E €C be a zero-twisted stable object. Then E is one of the following:
(2.13) C, (xeX\2), E; (1<i<n,0<j<s,).

(3) Every zero-dimensional object is generated by (2.13).

Proof

By Proposition 2.2.11 and Lemma 2.2.9, (1) holds. We shall apply Lemma 2.2.6
to E=0a € D(X x X). Then (2) is a consequence of (1). It also follows from
Lemma 1.1.21(3); (3) follows from (2). O

REMARK 2.2.13

If C="'Per(X/Y), then m.(€) is a flat family of coherent sheaves on Y such
that 7*(£)|{q1xy is a point sheaf. Then we have a morphism @ — Y. Thus we
do not need the reducedness of @) in this case.

Thanks to Lemma 2.2.12, we introduce the following definition.

DEFINITION 2.2.14

(1) E;; (ie., Ip,; in Definition 1.1.29), 0 < j <'s;, denotes the zero-stable
objects of C,,;

(2) aij, 0 < j <s;, are positive integers such that B’ Ega” and C, (z € Z;)
are S-equivalent.

LEMMA 2.2.15
Assume that o € NS(X) ® Q satisfies (2.12). Then Kxao is the pullback of a line
bundle on X°.

Proof

Let £ be the universal family on X* x X. Let pg: S x X — S be the projection.
Since X is smooth, the base-change theorem implies that Ext;Xa (&,8),i=
0,1,2, are locally free sheaves on X® and compatible with base changes. Since
Extlljxa (€,€) is the tangent bundle of X%, we show that there is a symplectic
form on Ext]})ch (€,€). For any point y € Y, we take a very ample divisor Dy
on Y such that y ¢ Ds, |Ky + D3| contains a divisor Dy with y ¢ D;. We set
U:=Y \(D1UDs). Then U is an open neighborhood of y such that Ky is trivial
over U. Let 51 be the pullback of D; to X. Then we have Kx = Ox (ﬁl — 52)

We set V :=m_1(v»~1(U)). We shall prove that (i) the alternating pairing
(2.14) Ext, (€,€) x Ext) (£,€) = BExt. (£,€)

is nondegenerate and (ii) Extgv (£,€) 2 Oy. Since Extzl,xa

bundle, this means that Ky = Oy,. Thus the claim holds.
We first note that there are isomorphisms

(2.15) Ext} (&,&)=Ext} (£,6(Dy)) 2Ext} (£,£(Dy— Do), i=0,1,2,

(€,€) is the tangent
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which is compatible with the base change. By the Serre duality, the trace map
tr: Ext®(€,,&(Kx)) — H?(X,Kx) is an isomorphism for y € V. Hence (ii)
holds, where &, := £|1xx. By the Serre duality, the pairing Ext1(5y75y) X
Ext'(&,,&,(Kx)) = Ext*(&,,&,(Kx)) = H*(X, Kx) is nondegenerate. Combin-
ing this with (2.15), we get (i). O

DEFINITION 2.2.16

We set Z :=m, ' (D, Ega”) =mytoy~Y(p;) and Z*:=J, Z¢.

LEMMA 2.2.17 (CF. [OY, LEMMA 2.4])

Assume that —(a,c1(E;;)) >0 for all j > 0. Let F be a zero-semistable object

such that v(F) = v(Eio ® @, E;‘?—b"), 0<b; <a.

(1) If v(F) # ox, then F is S-equivalent to E;o © €D
zero-stability.

(2) Assume that F is S-equivalent to E;o ® P
ditions are equivalent:

>0 Ef?bj with respect to

>0 E;‘?bj. Then the following con-

(a) F is a-stable;
(b) F is a-semistable;
(c) Hom(E;;, F) =0 for all j > 0.

(3) Assume that F' is a-stable. For a nonzero homomorphism ¢ : F — E;;, j >0,
¢ 1s surjective and F' :=ker ¢ is an a-stable object.
(4) If there is a nontrivial extension

(2.16) 0—-F—F'"—E;—0

and by + 0,1 < a;k, then F” is an a-stable object, where d;;, =0,1 according
as j#k, j=k.

Proof

(1) Since E:=F &P, Eg(aij_bj) is a zero-semistable object with v(E) =
ox and Supp(m.(GY ® E)) = Supp(m(GY @ F)) U{p;}, Lemma 2.2.9 and Propo-
sition 2.2.11 imply that the S-equivalence class of E corresponds to p; € Y.
Hence E is S-equivalent to @ >0 E;‘;a”, which implies that F' is S-equivalent to
Ein® @0 B

(2) It is sufficient to prove that (c) implies (a). Let ¢ : F'— I be a quotient
of F. Since I and kert are zero-dimensional objects, they are zero-semistable.
Since Hom(E;j,ker+) =0 for j >0, (1) implies that Ejg is a subobject of ker1.
Hence v(I) =3_,.,bjvij, which implies that F is a-stable.

(3) Since Ejj is irreducible, ¢ is surjective. By (1), ker¢ also satisfies the
assumption of (2). Let ¢ : ker ¢ — I be a quotient object. Since Hom(E;x, F') =0
for k>0, (2) implies that ker ¢ is a-stable.

(4) Since v(F) # ox, (1) implies that F” satisfies the assumption of (2). If
Hom(E;;, F") # 0 for k> 0, then Hom(E;, F) = 0 implies that k¥ = j and we
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have a splitting of the exact sequence. Hence Hom(FE;, F") =0 for k > 0. Then
(2) implies the claim. O

COROLLARY 2.2.18
Assume that —(a,c1(Ey5)) >0 for all j>0. We set v:=v(Ej @ B;-, E;c;bj)’
0 S bj S Qij, with <112> =-2.

(1) We have dimHom(E, E;;) = max{ (v,v
(2) If —(v,0(Ei)) > 0, then MES (v) =
v(Eij))v(Eij).

v(Eij)), 0}

’L
ga (w), where w=v + (v,

Proof

(1) For E € MG O‘(l)( v), we set n:=dimHom(E, E;;). Then we have a surjec-
tive morphism ¢ : F — Ef?”. Then F :=ker ¢ is a-stable. Since —2 < (v(F)?) =
(W(E)?) — 2n(n + (0,0(Fyy)), n = —(v,0(Eyg)) or n=0.

(2) If —(v,v(E;;)) >0, then dimHom(E, E;;) = (v v(E;j)), ExtP(E, E;j) =
0, p> 0, and we have a morphism o : Mg’a(l)( ) — MO’O‘(D( w) by sending E €
Mgo‘( )(v) to F:=ker(F — E®Hom(E, E;;)¥). Conversely, for F € M (1)( w),
(v(F), U(E”)> —(v,v(E;j;)) > 0. Hence Hom(F, E;;) = 0, which 1mphes that
dim Ext!(E;;, F) = (v(F),v(E;;)) and the universal extension gives an a-stable
object E with v(E) =v. Therefore we also have the inverse of o. O

We come to the main result of this subsection.

THEOREM 2.2.19 (CF. [OY, THEOREM 0.1])

(1) We have X° 2Y, and the singular points p1,pa,...,pn of X° correspond
to the S-equivalence classes of properly zero-twisted semistable objects.

(2) Assume that o satisfies that (a, D) # 0 for all D € NS(X) with (D?) = —2
and (c1(0Ox(1)),D) =0. Then X = Mgf(l)(gX); that is, the a-semistability
and the a-stability are equivalent. In particular, T, : X* — X© is the minimal
resolution of the singularities.

(3) Let @;;O Efj»a” be the S-equivalence class corresponding to p; as in Defi-
nition 2.2.14. Then the matriz (—(v(Eij),v(Ei))); x>0 is of affine type A, D, E.
Assume that a;o =1 (cf. Lemma A.1.1(1)). Then the singularity of X° at p;
is a rational double point of type A,D,E according to the type of the matrix
(=(v(Eij), v(Eir)))jh>1-

(4) We have s; =t;, that is

#{irreducible objects of Cp,, } = #{irreducible components of Z;} + 1.

Proof

(1) By Proposition 2.2.11, X° =Y. Since ¢ : X — X© is surjective, y € Y
corresponds to the S-equivalence class of C,, z € 7~ !(y). By Lemma 2.2.10, C,,
x € 7 1(p;), is not irreducible. Hence p; corresponds to a properly zero-semistable
object. For a smooth point y € Y, C,, # € 7~ 1(y), is irreducible. Therefore the
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second claim also holds. The proof of (2) is a consequence of Proposition 2.2.3
and Lemma 2.2.15.
(3) We note that

xX(G, Eij) > 0,
(2.17) < 7U(EZJ)>: )
< (EZJ)> =
(v(Eij),v(Ex)) > (Eu # Exp).

As we see in Example A.1.3 in the appendix, we can apply Lemma A.1.1(1) to
our situation. Hence the matrix (—(v(Es;), v(Eir)));k>0 is of affine type A,D.E.
Then we may assume that a;o =1 for all <. By Lemma A.1.1(2), we can choose
an o with —(v(E;;),«) >0 for all j > 0. Let £% be the universal family on
X x X, The claim (3) is a consequence of the following lemma. The claim (4)
is a consequence of (3) and the uniqueness of the minimal resolution. Since the
first part of (3) implies that the rank of (—(v(E;;),v(Eix))); k>0 is s, (4) also
follows from Zj:o LE;; = (2321 Z0c¢,,)+ZC,, where we identify Coh”(Z;) with
Coh(Z;) via (1.142). O

REMARK 2.2.20

For a satisfying —(v(E;;), ) > 0 for all j > 0, Lemma 2.2.22 also shows that
7% : X — X0 is the minimal resolution.

DEFINITION 2.2.21
From now on, we assume that a;o = 1 for all 1.

LEMMA 2.2.22

Let & be a universal family on X x X*. Assume that o satisfies —(v(E;;), ) >0
for all 7> 0.

(1) We set
(2.18) Cp = {m"eX“ |H0m(S‘XX{ma},Eij)7é0}7 j>0.
Then C’i‘"j is a smooth rational curve.

(2) We have
(2.19) z8 ={z" e X~ ’Hom(Eio,5|Xx{za})7é0}:UCa

J
(3) We have that |J; Cf; is simple normal crossing and (Cf, Cf.) = (v(Eij),
v(Ei))-

Proof

(1) By our choice of a, Hom(FEjj, & x x {zo}) = 0 for all 2% € X If Cf% =), then
X(EijangX{zo‘}) = 0 implies that Hom(€|XX{Ia},Eij) = EXt1(8|XX{za},Eij) =0.
Then ®% . (Eij) =0, which is a contradiction. Therefore Cf% # (). In order to
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prove the smoothness, we consider the moduli space of coherent systems
(2.20)  N(ox,v(Ey;)):={(E,V)|E€X* V CHom(E, E;;),dimcV =1}.

We have a natural projection ¢: N(ox,v(E;;)) — X* whose image is Cy;. For
(E,V) e N(ox,v(E;;)), we have a homomorphism § : E — E;; @ V. The Zariski
tangent space at (E,V) is Hom(E,E — E;; ® VV). By Lemma 2.2.17(3), & is
surjective and ker¢ € Mgf(l)(QX —v(E;j)). In particular, Hom(E,E — E;; ®
VV) =2 Ext!(E,ker€). Conversely, for F € Mg)’(a(l)(gx —v(E;;)) and a nontrivial

extension
(2.21) 0—>F—E—E;—0,

Lemma 2.2.17(4) implies that £ € X and E — E;; defines an element of N(px,
v(E;;)). By Corollary 2.2.18(1) and our choice of o, Hom(F, E;;) = Hom(E;;,
F) = 0. Hence dimExt'(E;;, F) = 2. Since Mg}’:‘(l)(gx —v(E;;)) is a reduced
one point, we see that N(ox,v(E;;)) is isomorphic to P!. We show that ¢ :
N(ox,v(E;;)) = X® is a closed immersion. For (E,V) € N(ox,v(E;;)),
dimHom(E, E;;) = dimHom(ker§, E;;) + 1 =1. Hence ¢ is injective. We also see
that ¢, : Ext'(E, ker¢) — Ext!(E, E) is injective. Therefore ¢ is a closed immer-
sion.

(2) By our choice of a, Hom(Ejo, £ x x {zo}) # 0 for 2% € Z. Conversely, if
Hom(Eio, €| x x{z>}) # 0, then Lemma 2.2.9 implies that Supp(m.(GY ®
Exx{ze})) = {pi}. Since Supp(m.(GY ® & xx{ze})) depends only on the
S-equivalence class of £ x x (g}, We have ¢(m,(2%)) = p;. Thus 2* € Z7*. There-
fore we have the first equality. By the choice of «, we also get ZX C Uj i
If Hom(&|x x {zo}, Eij) #0, j >0, then we see that Supp(m. (G @ & x x{z})) =
{p:}, which implies that * € Z. Thus the second claim also holds.

(3) Since (—(v(Eij),v(Eik)))jk>1 is of ADE-type, by using Corollary 2.2.18,
we can show that Mg)’f‘(l)(v) = Mg)’(a(l)(v(Eio)) for v =v(Ei0 ® ;- Eijbj),
0 < b; < ayj, with (v?) = —2. In particular, they are nonempty. Then by simi-
lar arguments in [OY, Proposition 2.9], we can also show that |J; Cf; is simple
normal crossing and (Cf, Cf) = (v(Eij;),v(Eix)). (For another proof, see Corol-

lary 2.3.12.) O

2.3. Fourier-Mukai transforms on X
We keep the notation in Section 2.2. Assume that X< consists of a-stable objects.

pSCN

Let £¢ be a universal family on X x X“. We have an equivalence ®% /v, :

D(X)— D(X®*). If F* is another universal family, then we see that

(2.22) O§ xe 0 Pk =932 0% -2, L Pie(x*).

Let '™ be the closure of the graph of the rational map 7! o7

I‘Ot Xa

o) |-

X —— Y
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LEMMA 2.3.1
(1) We may assume that Ex(xo\z0) = Ora|xx(xo\z2)-

(2) €% is characterized by Efy , (xa\ 7o) and det @gf:);(u(G).

Proof

(1) We note that &, ya\za) = (Ore ® pka(L))|xx(xo\z2), Where L €
Pic(X*\ Z*). We also denote an extension of L to X* by L. Then £*® p%a (L)
is a desired universal family.

(2)  Assume that &, (xa\za)y = (€Y @ pka(l))|xx(xa\ze) and
det ¢ (@) 2 det d§ 5257 (@). Then Lixer z0 = Oxay o and LETE =
Oxa. In order to prove L = Oxa, it is sufficient to prove the injectivity of the
restriction map

(2.24) r: Pic(X®) = Pic(X*\ 2%) x [ [ Pic(Cg).
0,J
If L xa\ze = Oxa\ z=, then we can write L = Ox (3, ;7i;Cf;). Since the intersec-

tion matrix ((Cf}, Cf},))jk is negative definite, deg(Ljcq ) =32, rir(Cfy,, CF) =0

for all ¢, j implies that r;; =0 for all 4, j. Thus r is injective. |

DEFINITION 2.3.2
We set A® := ‘I’Sf_fm [2].

LEMMA 2.3.3

Let Ox(C) and Oxa(C) be the pullbacks of a line bundle Oy (C) on'Y. Then
Ao (Ox(C) ® 0) = (OXa (C) ® o) o A,

Proof

Let D be an effective divisor on X such that DN Z = (. It is sufficient to prove
that

(2.25) E*® (Ox(—D)X Oxa (D)) =&

We note that £% = Ora over X\ Z%. Obviously the claim holds over X%\ Z¢.
By Lemma 2.3.1, we shall show that det A*(G(D)) = det(A“(G)(D)). We have
an exact triangle

(2.26) (E4)" = (E€)7(D) = (£%)p(D) = (£%)"[1].

Since (So‘)l\b(D) = Oa|p(D)[—2], we have an exact triangle

(2.27) A%(G) = A%(G(D)) = Gyp(D) — A%(G)[1].
Hence we get det A%(G(D)) = (det A%(G))((rk G)D) 2 det(A*(G)(D)). O
PROPOSITION 2.3.4

(1) We set G := A%(G). Then G is a locally free sheaf, and Rrq(G*Y @
Ga> = ﬂa*(Gav ® Ga)
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(2) For the zero-stable objects E;;, A*(E;;)[k] is a sheaf, where k=—1 or 0
according as (o, c1(E;j)) <0 or (o, c1(E;ij)) > 0.

(3) We set A := T (G*Y @ G). Then A® is a reflexive sheaf on'Y . Under
the identification X*\ Z* =2 X \ Z, G|aXa\Za corresponds to G|x\z. Hence we
have an isomorphism A= A%,

(4) We identify Coha(Y) with Cohy=(Y) via A= A*. Then we have a com-
mutative diagram

¢ 2 A
(228) Rm.Homo (G, )l J{Rﬂa*Homoxa (G=,)
Coha(Y) ——— Cohaa(Y)

In particular, G* gives a local projective generator of A*(C).
(5) We set

5= {A%(E;;)[-1] )
*:={E € Coh(X®) | Hom(E,c) =0,c€ S*},

(2.29)
8% :={E € Coh(X®)| E is a successive extension

of subsheaves of c € SO‘}.

Then (T,8%) is a torsion pair of Coh(X®), and A¥(C) is the tilting of Coh(X%)
with respect to (T<,8%).

(6) Let G' be a local projective generator of C. For e € K(X )iop, A induces
an isomorphism /\/l (€)= ng(f ) (A*(e))™

Proof

(1) We note that Hom(E, (a4, Gli]) = Hom(G, 5|XX{$Q}[ —1])¥ =0 for
1 #2 and z¢ € X“. By the base-change theorem, G* is a locally free sheaf. By
using Lemma 2.3.3 and the ampleness of Oy (1), we have

H(Y, R'm0. (G ® G*)(n))
= Hom (A%(G), A%(G)(n)[i])
= Hom(Ao‘ O‘( (n))[d])
= Hom(G, G(n)[i]) =H°(Y,R'm.(G¥ ®G)(n)) =0
for n>> 0 and i # 0. Therefore Ri7,(G*Y @ G*) =0, i # 0, and the claim holds.
(2) If (o, e1(Eij)) <0, then Hom(Ef , (ay, Eij[2]) = Hom(Eij, €% o pay)” =
0 for % € X. Since Hom(ES |0y, Eij) = 0if 2@ ¢ Z, we see that A“(E;;)[—1]
is a torsion sheaf whose support is contained in Z;*.
If (a,c1(E;j)) > 0, then Hom(E‘XX{ma},E ) =0 for z* € X% Since
Hom(E E;;[2]) =0 if z* ¢ Z, we sece that A*(E;;) is a torsion sheaf

| X x{z>}>
whose support is contained in Z.

(2.30)
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(3) By claim (1) and [E, Lemma 2.1], A® is a reflexive sheaf. Since £¢ is
isomorphic to Ora over X\ Z%, we get A%(G)|xa\ zo = nlo 7(Gx\z)- Hence
the second claim also follows.

(4) For E € C, we first prove that Rma.(G*Y ® A%(E)) € Coh 4« (Y). As in
the proof of (1), we have

H' (Y, R (G @ A*(E)) (n)) = Hom (G*, A%(E)(n)[i])
=Hom(G, E(n)[i]) =0

for i # 0, n>> 0. Therefore H' (R« (G*Y @ A%(E))) =0 for i # 0. For E €C, we
take an exact sequence

(2.32) G(—m)®M = G(—n)®N = E —0.

(2.31)

Then we have a diagram

A(=m)®M ——— A(-n)®N —— 1. (GV®E) — 0

(2.33) ﬁ l”
AX(—m)®M ——— A=) ——— 7, (G*Y @ AY(E)) —— 0

which is commutative over Y*:=Y \ {p1,p2,...,pn}, where ¢ and ¢ are the iso-
morphisms induced by A = A% Let j:Y* — Y be the inclusion. Since
Homo, (A, A%) = j.j*Homo, (A, A%) is an isomorphism, (2.33) is commuta-
tive, which induces an isomorphism ¢ : 7, (GY ® E) — 74, (G*Y @ A*(E)). 1t is
easy to see that the construction of ¢ is functorial and defines an isomorphism
Rm.Homo, (G, ) 2 RrgHomoo (G, ) o A*.

(5) Since A* is an equivalence, A*(E;;) are irreducible objects of A*(C). By
Propositions 1.1.13 and 1.1.26, we get the claim.

(6) We note that the proof of (1) implies that A®*(G’) is a local projective
generator of A%(C). By Lemma 2.3.3, x(G’, E(n)) = x(A*(G"), A*(E)(n)). Hence
the claim holds. ]

REMARK 2.3.5

If C=""1Per(X/Y), then Ox € ! Per(X/Y) and A%(Ox) is a line bundle
on X% Hence we may assume that A%(Ox) = Oxo. Then Hom(Oxo,
A¥(Oc,;(—1))[n]) = 0 for all n. Thus A*(O¢,,(—1))[n] is a successive extension of
Oc¢;, (—1). We also get Hom(Oxa,A%(Ogz,)) = C and Hom(Oxa, A%(Og,)[n]) =0
for n #0.

Since A® is an equivalence with A%(gx) = px«, we have the following corollary.

COROLLARY 2.3.6
For a general o, the equivalence

AY:C — A%(C)
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induces an isomorphism
G, G A
A% Mof(l) (ox)* — Moxa(l()ﬂ)(QX“ )%,

where B € 0% .

2.8.1. Wall and chambers

For the zero-stable objects E;; in Theorem 2.2.19, we set v;; := v(E;;). By
Lemma 2.2.6, {E;;} is the set of irreducible objects E with Supp(E) C |J,; Z;. Let
g; be the finite-dimensional Lie algebra whose Cartan matrix is (—(vi;, Vik)jk>1)
and

(2.34) R;:= {u = anjvij

7>0

(u?) = —2,n;j > 0}.

Then R; is identified with the set of positive roots of g;. In particular, R; is a
finite set.

DEFINITION 2.3.7
Let v be the Mukai vector of a zero-dimensional object F, which is primitive.
For u € |J; R;, we define the wall as

1. <U,Oé> _ <’U,O[>
(2.35) Wu~—{ ENS(X)®R | 7@ <v,v(G)>}'

A connected component of NS(X) @R\ |J, Wy, is called a chamber.

REMARK 2.3.8
If v=px, then W, =u".

LEMMA 2.3.9
Let v be the Mukai vector of a zero-dimensional object E, which is primitive.

(1) Mg’;(l)(v) consists of a-twisted stable objects if and only if o ¢ |J, W
We say that « is general with respect to v.
(2) If « is general with respect to v, then the wvirtual Hodge number of

Mg}’(a(l)(v) does not depend on the choice of a. In particular, the nonemptyness

of Mg)’(a(l)(v) does not depend on the choice of a.

Proof

(1) For F € Mg’;(l)(v), we assume that E is S-equivalent to EBf:l E;,
where FE; are a-stable. If (v(E;)?) =0 for all i, then v(E;) € Zsoox. Hence
v= Zle v(E;) is not primitive. Therefore we may assume that (v(FE;)?) = —2.
By the a-stability of E;, Supp(F;) C Z; for an i. Since E; is generated by
{Eij | 0 <3< Si}, ’U(El) S @;7:0 Zzoﬂij. Then we see that ’U(El) €+R; +Zox-
Therefore the claim holds.

(2) The proof is similar to that of [Y3, Proposition 2.6]. O
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LEMMA 2.3.10

(1) Let wy :=wv;0 + 25:1 nijvij, nij >0, be a Mukai vector with (w?) > —2.
Then there is an a-twisted stable object E with v(E) =w; for a general .

(2) Let we € R; be a nonzero Mukai vector. Then there is an a-twisted stable
object E with v(E) =wsy for a general .

Proof

(1) By Proposition 2.3.16 below and Corollary 2.3.6, we may assume that
C =Per(X'/Y,by,...,b,). The claim follows from Lemma 2.3.19 below and Lem-
ma 2.3.9(2). Instead of using Lemma 2.3.19, we can also use Corollary 2.2.18 to
show the claim for a special a.

(2) Weset wy :=>_%" ) aijvij —wg. Then wy is the Mukai vector in (1). We can
take a general element o € NS(X) ® Q such that (a,w;) =0. Then « is general
with respect to w; and we have a a-twisted stable object E with v(E) =w;. We
consider X' such that o is sufficiently close to a and (a/,v(E)) > 0. Since A%’
is an equivalence, there is a morphism ¢: F — 5|CE;,}xX’ where y € X By our
choice of «a, coker ¢ is an a-twisted stable object with v(coker ¢) = wsy. Then the
claim follows from Lemma 2.3.9(2). O

2.3.2. A special chamber
We take a € o% with —(v(E;;),a) >0, j > 0.

LEMMA 2.3.11
For j >0, A%(E;;)[-1], j >0, is a line bundle on Cf;. We set A*(E;;) =
Oce (b5)[1].

Proof

We note that A*(E; ) é} Cae = RHom(E( (0, Eij[2]). Then HE(A(E;;) (}L§>
Cye) =0 for k # —1,—-2. Hence HF(A®(E;;)) =0 for k # —1,—-2 and
H~2(A*(E;;)) is a locally free sheaf. By the proof of Theorem 2.2.19(3),
Supp(H*(A“(E;;))) C O for all k. Hence H?(A*(E;;)) =0, which implies
that A%(Eq;)[—1] € Coh(X®). Since Hom(Cye,A%(Ej;)[—1]) = Hom(E, (a4
E;;[-1]) =0, A*(E;;)[—1] is purely 1-dimensional. We set C':= Div(A®(E;;)[—1]).
Then (C?) = (v(A*(Ey;)[-1])%) = (v(Ey;)?) = —2, which implies that C' = Cg.
Therefore A(E;;)[—1] is a line bundle on Cf}. O

COROLLARY 2.3.12
(1) We have (Cf,C50) = (v(Eij), v(Eiry)).
(2) {Cg} is a simple normal crossing divisor.

Proof
(1) By Lemma 2.3.11, (Cf,Cg;) = (v(A%(Ey)),v(A%(Eiy))) = (v(Eij),
v(Ey;)). Then (2) also follows. O
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We have that Ejq is a subobject of & x y gy for 2@ € Zf*, and we have an exact
sequence

(2.36) 0= Eig = Exxfaey = F—0, 2%€Z7,

where F' is a zero-semistable object with gr(F) = @]3:1 Ef;a” . Then we get an
exact sequence

(2.37) 0= AY(F)[-1] =2 A%(E;jp) = Cpa =0

in Coh(X®). Thus A%(E;) € Coh(X%).

DEFINITION 2.3.13
We set Afy := A%(Ejo) and Af; := A%(Ej;) = Ocg (b5;)[1] for j > 0.

LEMMA 2.3.14

(1) We have Hom(AS, A% [-1]) = Ext' (A%, A% [—1]) =0.

(2) We set b := (b5},b%,...,03% ). Then Afy = Ag(bf). In particular,
Hom(A%),Cya) =C for x* € Z2.

Proof
(1) We have
Hom (Af, A [k]) = Hom (A (Eio), A“(Eyj)[k
238) om(Afy, Af[k]) = Hom (A% (Eio), A (Eij)[F])
= Hom (E;o, Ei;[k]) =0
for k=-1,0.

(2) By (2.37) and (1), we can apply Lemma 1.2.22 and get A% = Ag(b$) =
Api' O
REMARK 2.3.15
Assume that o € vy satisfies —(v(Ejj),a) <0, j > 0. Then ®(E;;)[2] = Oce (b;),
j >0, and ®(E;)[2] = Ao(b})[1] belong to Per(X*/Y,b¥,...,bl!)*, where b} :=
(s, b))

By Proposition 2.3.4, we have the following result.

PROPOSITION 2.3.16
If —{a,v(E;;)) >0 for all j >0, then A* induces an equivalence

C — Per(X*/Y,b{,...,bo),
where by = (b3, ..., b3 ).

X 7

PROPOSITION 2.3.17
Assume that there is a € Q)L( such that C,, are [B-stable for all x € X.

(1) We set F:=E*Y[2]. Then we have an isomorphism
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Go A A A
X = MG (0xe) = (XN ),
(2.39) §
z— FRC,.
N _x, We hcweC:‘I);Z[EJX(Per(Xa/Y,b‘f,...,bf{)).
(2) We also have an isomorphism

Since @;ZD]X =X

(G*)Y,—DxaoA*(B)
(2.40) o Moxew 7 THexe)

L
r—EYRC,,

where Mécil)(vl’)_DXQOAa(m(gXa) is the moduli of stable objects of A*(C)P.

Thus X and X® are Fourier—Mukai dual.

Proof
(1) This is a consequence of Corollary 2.3.6.

(2) This is a consequence of (1) and the isomorphism Mgi’z(l)(gxa)ss —

ME) 7Px O (g0 defined by E v Do (E)[2). O

The following proposition explains the condition of the stability of C,.

PROPOSITION 2.3.18
There exist X' and v such that C = AV (Per(X'/Y,b1,...,by)) with X = (X')7 if
and only if there is a B € o% such that C, are (3-stable for all v € X.

Proof

For X = (X')7, v-stability of SHX' «{z} and Corollary 2.3.6 imply the S-stability of
C,, where §:= A7(y). Conversely, if C, are S-stable for all x € X, then Propo-
sition 2.3.17(1) implies the claim, where X’ := X in Proposition 2.3.16 and

7= A%(B). O
We give two examples of C satisfying the stability condition of C,.

LEMMA 2.3.19

(1) Assume that C = Per(X/Y,by,...,by). If —(a,v(Oc,,(bi;)[1])) >0 for
all >0, then X =2 X“ by sending x € X to C, € X*. Moreover Ay, ® Oc such
that O¢ is a purely 1-dimensional Oz, -module with x(Oc) =1 are a-stable.

(2) Assume that C = Per(X/Y,by,...,by)*. If —(a,v(Oc,, (bi;))) <O for all
j >0, then X = X¢ by sending x € X to C, € X°.

Proof
We only prove (1). Since C,, z € X \ U]_, Z; is irreducible, it is a-stable for
any «. For x € Z;, assume that there is an exact sequence

(2.41) 0—-FE —-C,—Ey—0
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such that E; #0, Ey #0 and —(a,v(E1)) = x(v~(a), E1) > 0. We note that
—(a,v(E;;)) >0 for all j > 0. Since (o, 0x) =0, (o, v(Ao(b;))) = —Zj>0 a;;{a,
v(Eij)). As a zero-semistable object, E is S-equivalent to ;. Oc,, (bij)[l]@a;j7
a;; < aj. Since Hom(Oc,, (bi;)[1],C,) = 0, this is impossible. Therefore C, is a-
twisted stable. Then we have an injective morphism ¢ : X — X% by sending
x € X to C,. By using the Fourier-Mukai transform @?(éx :D(X) - D(X), we
see that ¢ is surjective. Since both spaces are smooth, ¢ is an isomorphism. The
last claim also follows by a similar argument. (I

2.3.3. Relation with the twist functor (see [ST])
Let F be a spherical object of D(X), and set
(2.42) & :=Cone(FY R F — Ox)[1].

Then Tr := ®% _, v is an autoequivalence of D(X).

LEMMA 2.3.20

Let I1: D(X) — D(Y) be a Fourier—-Mukai transform. Then
(243) HOTF gTH(F) oll.

Proof

Let E€ D(X x Y) be an object such that I = ®% ,,.. It is sufficient to prove
I(E) = Trypy(E). We set X; := X, i=1,2. We note that FY = Hom,(Ox, X
F,0p), where p: X; x X5 — X is the projection and A C X; x X5 the diagonal.
Then

(2.44) & = Cone(Hom,,(Ox, K F,00) K F — Ox)[1].

Let px, : Y x X9 = Xo,py : Y X X2 =Y, and ¢: X; XY — X, be the projections.
We have a morphism

(2 45) I{OI'Ilp((/)X1 X F, OA) — Homq/ (OXl X (E ®pi§<2(F)), ((QX1 |X|E)‘A/>
' — Hom, (Ox, ® Rpy. (E @ p, (F)),E),

where A=A xY and ¢’ : X1 x Y x X5 — X is the projection. We also have a
commutative diagram in D(Y x X3):

Hom,(Ox, R F,0o)XI(F) —*— E
(2.46) ’vl H
Hom,(Ox, ROE_(F),E)RII(F) —— E

Since II is an equivalence, 7 is an isomorphism. Since II(£) = Cone(a)[1] and

Tri(r) (E) = Cone(B)[1], we get 11(E) = Trypy (E). O

COROLLARY 2.3.21

Assume that Supp(H(F)) C Z for alli. Let D be the pullback of a divisor on'Y .
Then Tp(E(D)) = Tp(E)(D).
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Proof
We apply Lemma 2.3.20 to IT = @?(i()l?). Since II(F) 2 F, we get our claim. [

PROPOSITION 2.3.22
Assume that G¥ ®@ G satisfies R, (GY ® G) = 0. Assume that G' :=Tr(G) is a
locally free sheaf up to shift.

(1) We have R, (G" @ ') =0 and 7, (G’ @ G') 27, (G @ G).

(2) We set A :=7,(G" @ Q). We identify Coha(Y) with Coh (Y) via

~

A= A, Then we have a commutative diagram

Per(X/Y,bi,...,b,) —%— Tp(Per(X/Y,by,...,b,))

(2.47) Rr.Homo, (G, )J lRw*HomoX(G’, )
COhA(Y) fr—— COh_AI (Y)

Proof

The proof is almost the same as that of Proposition 2.3.4. ]

For an a € H+ ® Q, let F be an a-stable object such that

(i) (v(F)?)=-2and

(i) {(a,v(F))=0.
By (i), F is a spherical object. By the same proof of [OY, Proposition 1.12], we
have the following result.

PROPOSITION 2.3.23
We set a* := +ev(F) + a, where 0 < e < 1. Then Tr induces an isomorphism
xe o oxet
(2.48)
E—Tp(E)

which preserves the S-equivalence classes. Hence we have an isomorphism

(2.49) X o x

Combining Proposition 2.3.23 with Lemma 2.3.20, we get the following corol-
lary.
COROLLARY 2.3.24
Assume that o belongs to exactly one wall defined by F. Then Tr induces an
isomorphism X — X" Under this isomorphism, we have

et o e e
(2.50) O =Tpodfl . =85 0Ty

£* V]2
where A := ‘I’;H;QU(F)'
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2.8.4. More results on the structure of C

Let C be the category of perverse coherent sheaves in Lemma 1.1.11. Assume
that there is 8 € NS(X) ® Q such that C, is S-stable for all z € X. By Proposi-
tion 2.3.18, C = A*(Per(X'/Y,by,...,by,)). So we first assume that C = Per(X/Y,
by,...,b,) and set

(2.51) B o= {OCij(bij)[l], Jj>0,
Y Ao(b), j=0.

We set v := v(E;;). Let ug be an isotropic Mukai vector such that rg :=rkug >0,
(ug,v;5) =0 for all ¢, j. We set
n Si

(2.52) Li=Tug+» > Zvj;.

i=1 ;=0

Then L is a sublattice of H*(X,Z), and we have a decomposition

(2.53) L= (Zuo ® Zox) L (é@zwj).

i=1 j=1
We set

Ti = é; ZCij,
j=1

(2.54) N
T .= @ T:.
i=1
Then we have an isometry

w:@@ZU”%T

i=1 j=1
(2.55)
v eq(v).

Combining the isometry Zug ® Zox — Zro ® Zox (xug+ zox — xro + z0x ), we
also have an isometry

n S;
(256) ’IZ(ZUOEBZQ)()J_ (@@ZUU) —)(Z’Fo@zgx)J_T

i=1 j=1
Let g; (resp., g;) be the finite-dimensional Lie algebra (resp., affine Lie algebra)
associated to the lattice @jzl Zv;; (resp., @jzo Zv;j). Let g (resp., g) be the Lie
algebra associated to @;_; @, Zvi; (resp., i, D; Zvi;). Since the centers
of g and g; are 1-dimensional, g is smaller than €D, g;.

Let W(g;) (resp., W(g)) be the Weyl group of g; (resp., g), and let W; (resp.,

W) be the set of Weyl chambers of W (g;) (resp., W(g)). Since g =D, gi,
W(g) =11, W(g:), and W =T]"_, W;. By the action of W(g), Quo + Qox is
fixed. Let W (g;) (resp., W(g)) be the Weyl group of g; (resp., g). We have the
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following decompositions:

W (i) =Ti @ W(g:),
(2.57) R

W(g) =T >xW(g),
and the action of D € T on L is the multiplication by e”. Indeed

Toc,, (biy+1) © Toc,, (b =€~
as an isometry of L.
We shall study the category A%(C). We may assume that o € NS(X) @ Q is

a=) . a; with a; € T; ® Q. Via the identification 1, we have an action of W on
T ® Q. We set

Ccfind .= {a e T, OR | (a,Cy) > 0,1 <j < s},
(2.58)

Cfund = H Cifund'
i=1
Cfnd s the fundamental Weyl chamber. If a € €T then Lemma 2.3.19 implies

that C, is a-stable for all z € X. By the action of W(g,;), we have W, =
W (g;)Cfmd. We also set

(2.59) chmd e i={aeT®R|(a,C;) >0,1<j < s, (o, Z;) < 1}.
By the isometry 1;_1, we have
(@, Cij) = =™ (@), vy5)

(2.60) = —<( =yl (a) + 7)9)(),%>

rk Uuo

_ _<e(cl(u0)/rkuo)—i-a7 Uij>

for j > 0and 1— (o, Z;) = 143251 @y (eler(vol/mkuorter 4, ) — —(elerluo)/riuo)ta,
v;0). Hence we have

(2.61) Cfund {a cTQR | _<e(cl(uo)/rkuo)+a7vij> > 0}-

alcove

Applying Corollary 2.3.24 successively, we get the following result.

PROPOSITION 2.3.25

If a € T®Q belongs to a chamber C =1];_, Ci, C; CT; ®Q, then there are rigid
objects Fi,...,F, € C such that X = X and (IJ‘;:(:X =Tp, 0TF, ,0---0Tp.
Thus A* = (®%, )" induces an isometry w(a) of L.

Then we have a map
¢:W—W()/T,
(2.62)
C(a) — [w(a) mod T,

where C'(«) is the chamber containing .
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LEMMA 2.3.26
The map ¢ W — W (g)/T =W (g) is bijective.

Proof

There is an element «g in the fundamental Weyl chamber such that a =
5, (). Hence w(a)(C(a)) = C(ag). Thus ¢ is injective. Since #W; =
#W (g:), ¢ is bijective. O

We set
(2.63) T*:={DeT®Q|(D,Cy) €L}

Then W :=T* x W (g) is the extended Weyl group. By the action of W, we can
change (by,...,b,) to any sequence (bf,...,b}).

PROPOSITION 2.3.27

Let C be the category in Lemma 1.1.11, and assume that there is B € NS(X)®Q
such that C, is B-stable for all x € X. Then C is equivalent to ~! Per(X/Y). In
particular, Per(X/Y,by,...,b,) = "1 Per(X/Y).

Proof
We may assume that C = Per(X/Y,bq,...,b,). We set

v(Oc,; (=D]), >0,

(264) uij = {U(Ozi)’ j _ O

By the theory of affine Lie algebras, there is an element w € W (g) such that

(2.65) w({BeTOR| —(e”,v;;) >0,i,j > 0})
={BeT@R| (e ,u;)>0,i,j>0}.

Then we have
{wvy) | 0<j<si}={uy; |0<j< s}

for all 4.

For each ¢, there is an integer j; such that (1) ci(w(vsj,)) is effective and
(2) —c1(w(vij)), j # ji are effective. By Lemma 2.3.26, we have w = e’ ¢(a),
D,a €T. Since v(A*(E;;) ® Ox(D)) = ePv(A*(E;;)) = eP¢(a)(vij), Proposi-
tion 2.3.4(2) implies that —(c, ¢1(E;;)) > 0 unless j = j;. By Lemmas 2.2.22 and
2.3.11, A*(E;j)[—1], j # ji, is a line bundle on a smooth rational curve and
A®(E;;,) is a line bundle on Z;. Thus

{A*(Eij) @ Ox(D) | j #ji} = {Oc,,(=D)[1] | 0 < j < 54},
Aa(E’iji) ® OX(D) = OZL
By Proposition 2.3.4(5), we get A%(C) ® Ox (D)= ~!Per(X/Y). O

(2.66)
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REMARK 2.3.28

For the derived category of coherent twisted sheaves, we also see that the equiv-
alence classes of Per(X/Y,{L;;}) do not depend on the choice of {L;;}.

2.4. Construction of a local projective generator
We return to the general situation in Section 2.1. We shall construct local pro-
jective generators for Per(X/Y,{L;;}).

PROPOSITION 2.4.1

Let 3 be a 2-cocycle of O% defining a torsion element of H*(X,0%). Assume
that E € KP(X) satisfies

0§7X(E7L1])7 1§,7§3u

=Y aix(E, Lij) <r
i

(2.67)

for all i.

(1) There is a locally free B-twisted sheaf G on X such that R'm.(GY ®
G) =0, Rm.(GY ® F) € Coh(Y) for F € Per(X/Y,{L;;}), G is p-stable, and
7(G) =7(E) - k7(Cy), k> 0.

(2) There is a locally free B-twisted sheaf G on X such that Rim.(GY @ G) =
0, Rm.(GY ® F) € Coh(Y) for F € Per(X/Y,{L;;}), and 7(G) = 27(E).

(3) Moreover, if the inequalities in (2.67) are strict, then G in (1) and (2)
are local projective generators of Per(X/Y,{L;;}).

COROLLARY 2.4.2
Assume that (r,€) € Z~o ® NS(X) satisfies

0<(&Cy5)—r(bi; +1), 1<j<s,

D aii(6,Cij) =Y aij(biy+1) <7
J j

(2.68)

for alli.

(1) For any sufficiently large co € Z, there is a local projective generator G
of Per(X/Y,by,...,b,) such that G is a p-stable sheaf with respect to H and
(rkG,c1(GQ),c2(G)) = (r,&,¢ca).

(2) For any e € K(X)op with (tke,ci(e)) = (r,€), there is a local projective
generator G such that 7(G) = 2e.

Proof of Proposition 2.4.1

(1) We assume that H is represented by a smooth connected curve with
ZNH=0,where Z =", Z;. We take a torsion-free sheaf E such that Ext*(E,
E(—Z — H))o =0 by using Lemma 2.1.3. By the construction of F, we may
assume that F is locally free on Z U H. We consider the restriction morphism of
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the local deformation spaces
(2.69) ¢:Def(X,E) — Def(Z,E|z) x Def(H, B\ ).

Then Def(X, E) and Def(Z, Ez) x Def(H, E| ) are smooth, and ¢ is submersive.
In particular, by using Lemma 2.4.3 below, we see that F deforms to a locally free
B-twisted sheaf G such that G is p-stable with respect to H and Hom(G, L;;) =
Ext!(G, Ap,)=0 for all i, j. By Remark 1.1.35, Proposition 2.4.1(1) holds.

(2) By (1), we have locally free sheaves E;, i = 1,2, such that Rl7.(E) ®
E;)) =0, Rm.(G) ® F) € Coh(Y) for F € Per(X/Y.{L;;}), 7(E;) = 7(E) —
kim(Cy), and ki + ko = k2(H?)rk E. Then G = Ey(kH) © Eo(—kH) satisfies the

claim.

(3) The claim follows from Proposition 1.1.33. O
LEMMA 2.4.3

(1) Eyz deforms to a locally free 3-twisted sheaf such that
(2.70) H°(Cyj,EY @ L;j) = H'(Z;,E¥Y @ A,,) =0
for alli,j.

(2) E\g deforms to a p-stable locally free 3-twisted sheaf on H.

Proof

(1) Since E|z = D, E|z,, we shall prove the claims for each E|z,. Since
H?(Z,0%) = {1}, there is a [-twisted line bundle £ on Z; which induces
an equivalence ¢ : Coh®(Z) = Coh(Z) in (1.142). Since Pic(Z;) — Z% (L —
H‘;;l deg(L|c,;)) is an isomorphism, we may assume that ¢(L;;) = Oc,,(~1).
Thus we may assume that 3 is trivial and L;; = O¢,;(—1). In this case, we have
Ap, = Oz,. Then we have deg(E|c,,) >0 for all j >0 and deg(E|z,) <. Let
D be an effective Cartier divisor on Z; such that (D,C;;) = deg(F|c,;). Then
OZi (D) > det E\ZW and

(2.71) K :=ker(H°(Oz,np) ® Oz, = Oz,np)

is a locally free sheaf on Z; such that H'(Z;, K) =0 and H°(Cy;, K¢, (—1)) =0.
Since kK = dimH(Oz,np) = deg(D) = deg(E|z,) < r, we set F:= K &
Oezai(rkE_rkK). Since F' is a locally free sheaf with (rk F,det(FV)) = (tk E|z,,
det(E)|gz,)), we get the claim by Lemma 2.1.4 and the openness of the condi-
tion (2.70).

(2) This is well known. O

COROLLARY 2.4.4

Let C be the category of perverse coherent sheaves on X, and let Fi;, 1 <i<n,
0 < j <s;, be the zero-stable objects in Definition 2.2.14. For an element E €
K(X) satisfying x(E, E;;) >0 for all i,j, there is a local projective generator G
of C such that 7(G) =27(E).



336 Kota Yoshioka

Proof

We consider the equivalence A® in Proposition 2.3.16. Then since x(A*(E),
A*(E;;)) > 0 for all 4,7, Proposition 2.4.1 implies that there is a local projec-
tive generator G* of A%(C) such that 7(G%) = 27(A“(E)). We then also set
G :=(A*)"1(G*) € C. Then

H°(X,H*G & C.)) = H*X,G & C.)

= Hom(C,,G[k + 2])
(2.72)
= Hom (A*(C,),G*[k +2])

= Hom(Go‘,Aa(Cx)[—k])v =0

for all z € X and k # 0, where we used the fact that A® is an equivalence and
[Br2, Theorem 1.1] to show that A*(C,)(Kxa) = A¥(C,). The same claim also
follows from Lemma 2.2.15 and the proof of Lemma 2.3.3.

Therefore G is a locally free sheaf on X. Since G* is a local projective
generator of A%(C) and A® is an equivalence, G is a local projective generator
of C. |

PROPOSITION 2.4.5

We set v = (r,€,a) € HV(X,Z)ag, 7 > 0. Assume that ({,D) ¢ rZ for all D €
D, ; Z[Cij] with (D?%) = —2. Then there is a category of perverse coherent sheaves
C(v) and a locally free sheaf G on X such that G is a local projective generator
of C(v) with v(G) =2v. We also have a local projective generator G' of C(v) such
that G’ is p-stable with respect to H and v(G') =v —box, b>> 0. Moreover, there
is B € ox such that C, € C(v) is B-stable for all x € X.

Proof

We set C =Per(X/Y,by,...,b,) and keep the notation as above. By our assump-
tion, (v,u) ¢ rZ for all (—2)-vectors v € L. Then there is w € W(g) such that
v=w(vy) and vy /r belongs to the fundamental alcove, that is, —(vs/r,v;;) >0
for all 4,5. By Lemma 2.3.26, we have an element o such that w = eP¢(a),
D €T. By Proposition 2.4.1, there is a local projective generator Gy of C such
that v(Gy) =2v;. We set C(v) := A%(C) @ Ox (D). Then G := A*(Gy) is a local
projective generator of C(v) ® Ox(—D). Hence G := G*(D) is a local projective
generator of C(v) such that v(G) = 2v. The last claim follows from Proposi-
tion 2.3.18. |

REMARK 2.4.6
If v is a Mukai vector of a twisted sheaf, then replacing Per(X/Y,bq,...,b,) by
Per(X/Y,{L;;}), the same claim holds.

2.5. Deformation of a local projective generator
Let f: (X, L) — S be a flat family of polarized surfaces over S. For a point s¢ € 5,
we set X := X,,. Let H be a relative Cartier divisor on X such that H := H,,
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gives a contraction f: X — Y to a normal surface Y with Rm,.(Ox) = Oy. We
construct a family of contractions f: X — ) over a neighborhood of sg.

Replacing H by mH, we may assume that H'(X,Ox(mH)) = H'(Y,
Oy (mH)) =0 for m > 0. We shall find an open neighborhood Sy of sy such
that R'f.(Oxs, (mH)) =0, i>0,m >0, and f.(Oxs (mH)) is locally free. We
consider the exact sequence

(2.73) 0— Ox(mH) — Ox ((m+1)H) = O ((m+1)H) — 0.

Since H — S is a flat morphism, the base-change theorem implies that
Rif(Ox(mH)) = R f(Ox((m + 1)H)) (i > 0) is surjective if (m + 1)(H?) >
(H?) + (H,Kx). We take an open neighborhood Sy of sy such that
R f(Oxg, (mHM)) =0, i>0,(H,Kx)/(H?) >m > 0. Then the claim holds. We
replace S by Sy and set Y :=Proj(€D,,, f«(Ox(mH))). Then Y is flat over S and
Vs, 2 Y. By the construction, Y — S is a flat family of normal surfaces.

Let Z:={r € X |dim7~!(m(z)) > 1} be the exceptional locus. Then {(Z;,
Ls)|s €S} is abounded set. Hence D :={D € NS(X;)|s€ S, (D,Hs) =0} is a
finite set. Replacing S by an open neighborhood of sy, we may assume that D € D
is a deformation of Dy € NS(X) (i.e., D belongs to NS(X) via the identification
H?(X,,Z) = H*(X,7)).

LEMMA 2.5.1

Assume that there is a locally free sheaf G on X such that R'm.(GY @ G) =0
and tkG 1 (c1(G)s,, D) for all (—2)-curves with (D,Hs,) =0. Then replacing S
by an open neighborhood of so, we may assume that kG 1 (c1(GQ)s, D) for all
(—2)-curves with (D,Hs)=0. Thus G is a family of tilting generators.

As an example, we consider a family of K3 surfaces. Let X be a K3 surface,
and let 7: X — Y be a contraction. Let p;, i =1,2,...,n be the singular points,
and let Z;:=3" j a;;C;; be their fundamental cycles. Let H be the pullback of
an ample divisor on Y. Assume that (r,£) € Zso x NS(X) satisfies r 1 (£, D) for
all (—=2)-curves D with (D,H) = 0. By Proposition 2.4.5, there is a category
of perverse coherent sheaves C and a local projective generator G of C such
that G is u-stable with respect to H and (rkG,c1(G)) = (r,€). Replacing G by
G ® L®™ and L € Pic(X) and C by C ® L®™, we assume that £ is ample. If
(Q¢ + QH) N H+ does not contain a (—2)-curve, then we have a deformation
(X, L) — S of (X,£) such that H, is ample for a general s € S. Since G is simple,
replacing S by a smooth covering S’ — S, we also have a deformation G of G
over S. By shrinking S, we may assume that G is a family of tilting generators.
Then we can construct a family of moduli spaces f: M(QXH)/S(W) — 5 of G-
twisted semistable objects on X, s € S (for the twisted cases, see steps (3),
(4) of the proof of [Y4, Theorem 3.16]). By our assumption, a general fiber of
f is the moduli space of Gs-twisted semistable sheaves, which is nonempty by
Lemma A.2.4. Hence we get the following lemma.



338 Kota Yoshioka

LEMMA 2.5.2
Assume that v is primitive and (v?) > —2. Then f is surjective. In particular,

—g
M (x 30)/5(V)so # 0.

REMARK 2.5.3

We note that R:={C € NS(X) | (C,H)=0,(C?) = -2} is a finite set. If p(X) >
3, then (Jo ez (QH +QC) is a proper subset of NS(X) ® Q. Hence (Q +QH) N
R =10 for a general £. In general, we have a deformation (X,L£) — S of (X,¢)
such that G is a family of tilting generators and p(Xs) > 3 for infinitely many
points s € S.

REMARK 2.5.4
By the usual deformation theory of objects, we note that M(QX,H)/S(U> — S is
a smooth morphism. If M(QX)H)/S(U)SD = M(gX H)/S(’U)SD, then we have a smooth

deformation M(QX,H)/S(U) — S of M(gx,y)/s(v)so- In particular, H(gxﬂ)/s(v)%
deforms to a usual moduli of semistable sheaves.

COROLLARY 2.5.5

Let vo = (r,€,a) be a primitive isotropic Mukai vector such that r J (&, D) for all
(—2)-curves D with (D, H)=0. Let C be the category in Proposition 2.4.5. Then
M7 (vo) # 0.

Proof

By Lemma 2.5.2 and Remark 2.5.3, we see that My, (vg) # 0. By the same proof
as that of [OY, Lemma 2.17], we see that My < (vg) # 0 for a general . Then
M?+a(vo) is a K3 surface. In the same way as in the proof of [OY, Proposi-
tion 2.11], we see that M} (vo) # 0. O
Appendix

A.1 Elementary facts on lattices

LEMMA A.1.1

Assume that L = Z" has an integral bilinear form (, ) and a linear map f :
L®Q— Q. Let v be a primitive element of L such that (v,v) =0, (v,w) = (w,v)
Jor any w. We set vt :={z € L| (v,z) =0}. Assume that (, ), is symmetric,
that there is an element u € L ® Q such that (u,v) =0 and that (v Nut)/Zv is
negative definite.

(1) Ifv=>3"_,av;, a; € Zso, such that

(i) v; €vtnut, i=0,1,...,s,

(
(iil) (vs,v5) >0 fori#j, and
(iv) f(v;) >0 for 0<i<s.
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Then the matriz (—(vi,v;)i;) is of affine type A D,E, and 1 € {ao, a1,

N
(2) Assume that v has two expressions

s t
1! I
(A1) v= E a;v; = E a;v;, a4, a; € Lo,
i=0 i=0

such that v;,vi € vt Nut, (v2) = ((v)?) = =2, f(v), f(v)) >0, and (wy,

wg) >0 for different wy,wq € V1 U Va, where Vi :={vg,v1,...,v5} and Vo :=
{vh, 01, v}, Vi=Va, or @, Zv; L P, Zvj.

Proof
(1) We shall show that the dual graph of {vg,v1,...,vs} is connected. If we have a
decomposition v = (3, aivi) +(3_;cp, aivi) such that (vi,v;) =0forie I, j€
Iy, then 0= (v?) = (3;c;, @ivi)® + (X ;cp, aivi)®. Hence Yo, a;vi, ) ;cp, aivi €
Zwv, which implies that the graph is connected by (iv). Then the standard argu-
ments show the claims.

(2) We set :={i|v;eVi} and J:={i|v; ¢ Vi}. Then v = (}_,c;ajv;) +
(D iesaivi). i€ J, then 0= (v;,v) =3, a;(v;,v;) > 0. Hence v; € (P, Zv;)*.
Then 0= (v*) = ((XC;e; aivi)?) + ((Xies aivi)®). Hence 35, paiv, 3¢ s ajvi €
Zwv, which implies that I =0 or J=0. If J =0, then Vo, C V4, and we see that

Vi =Vo. If I =0, then all v] belong to @, Zv,. Thus @, Zv; L P, Zv,. O
REMARK A.1.2
If the dual graph of {vg, v1,...,vs} is connected, then we do not need the existence

of w and f to show (1). Thus if v=>""_, a;v;, a; € Z~, such that

(i) v;€vt,i=0,1,...,s,

(i) (v7)=-2,
(iii) (vi,v;) >0 for i # j,

then the matrix (—(v;,v;);,;) is of affine type g,ﬁ,ﬁ and 1 € {ag,a1,...,as} (cf.
[Ko, proof of Theorem 6.2]).

If the dual graphs of {vg,v1,...,vs} and {v{,v],...,v;} are connected, then
(2) also holds under the assumption v;,v] € v+, (v?) = ((v})?) = =2, and (w1,
wg) > 0 for different wq,ws € V4 U Va.

EXAMPLE A.1.3

Let X be a smooth projective surface, and let H be a divisor on X with (H?) > 0.
We set L :=ch(K(X)) and (z,y) := — [y 2Vytdx, =,y € L. Then px = ch(C,)
is primitive in L. Since C; ® Kx = Cy, (0x,7) = (z,0x). Moreover, (, )4
is symmetric. Since (0% Nch(Op)t)/Zox =2 {D € NS(X); | (H,D) =0}, it is
negative definite, where NS(X) is the torsion-free quotient of NS(X).



340 Kota Yoshioka

A.2 Existence of twisted semistable sheaves
Let X be a smooth projective surface, and let H be an ample divisor on X. Let
e € K(X)iop be a toplogical invariant of a coherent sheaf on X.

DEFINITION A.2.1

A polarization H on X is general with respect to e if for every p-semistable sheaf
E with 7(F) = e and a subsheaf F'#0 of E,
(a(F),H) _(aa(E),H) a(F) _al(k)

A2 = if and only if = .
(A-2) rk I rk E Handonty rk I rk B

If H is general with respect to e, then the G-twisted semistability does not
depend on the choice of G.

DEFINITION A.2.2

We let MG (€)™ (resp., MY (e)*) denote the moduli stack of G-twisted semistable
sheaves (resp., G-twisted stable sheaves). M (e)*® (resp., My(e)**) denotes
the moduli stack of p-semistable sheaves (resp., p-stable sheaves).

The following is [MW, Lemma 3.6]. For the sake of convenience, we give a proof.

LEMMA A.2.3
Assume that H is not general with respect to e, and let € be a sufficiently small

Q-divisor such that H + € is general with respect to €. Then there is a locally free
sheaf G such that M$ (€)% = My ;.(e)*.

Proof
We set

(A3)  Fle):= {(F, E)

EecMpy(e)~ FCE, E/F is torsion-free,
(ci(F),H)/tkF=(c;,(FE),H)/tk E '
Since F(e) is a bounded set, we have
X(E) _ x(F)
tkE 1k F
Assume that Ne € NS(X). Take m > (tke)? N B, and take a locally free sheaf G
with ¢1(G)/1k G = —me. Then for (F,E) € F(e),
X(G,E(nH))  x(G,F(nH))

(A4) B:= max{

\ ‘ (F,E) ef(e)} < oo

(4.8) " (E) (r;{ (E) (F)
ci(E ci(F X(E X
— >
m( rk B rk I ’6) rk E rk I 20

if and only if

(1) we have

(A.6) (Cl(E) _al) €) 20,
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or
(2) we have
a(B)  a(F) X(E)  x(F)
(A7) tk E rk F 0 tkE  rtkF — 0
which is the semistability of E with respect to H + €. Therefore the claim holds.
O
LEMMA A.2.4

Let (X, H) be a polarized K3 surface, and let v =1+ & + apx, £ € NS(X), be
a primitive Mukai vector with (v?) > —2. Then there is a G-twisted semistable
sheaf E with v(E)=v for any G.

Proof

We first assume that r > 0. If H is general with respect to v, then there is a stable
sheaf E with v(E) =wv by [Y1, Theorem 8.1]. Obviously E is G-twisted stable
for any G. If H is not general with respect to v, then Lemma A.2.3 implies that
there is a locally free sheaf G such that M$ (v)% = M (v)® # 0. For a G with
MG (v)% = MG (v)*, we use [Y2, Proposition 4.1], whose proof is similar to those
of [Y3, Propositions 2.5, 2.7]. If M (v)* # M%(v)*, then we can find a G’ such
that ¢ (G’)/rk G’ is sufficiently close to ¢1(G)/1kG, MS (v)*® = MG (v)* # 0
and MS (v)* € MS (v)*. Thus the claim also holds.

We next assume that » = 0. We take a line bundle G; on X such that
(v,0(G1)) # 0 and set v’ :=ve~“(G1). Then for a general H with respect to
v, [Y5, Corollary 3.5] implies that M$! (v)® = M$¥ (v/)® # 0. Now we can use
the same argument as in the case 7 > 0 to prove that M% (v)** # ) for any G.

O
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