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Abstract We consider the Cauchy problem in L2 for first-order systems. A necessary

condition is that the system must be uniformly diagonalizable or, equivalently, that it

admits a bounded symmetrizer. A sufficient condition is that it admits a smooth (Lips-

chitz) symmetrizer, which is true when the system is diagonalizable with eigenvalues of

constantmultiplicities. Counterexamples show that uniformdiagonalizability is not suf-

ficient in general for systems with variable coefficients, and they indicate that the sym-

plectic properties of the set Σ of the singular points of the characteristic variety are

important. In this article, we give a new class of systems for which the Cauchy problem

is well-posed in L2. The main assumption is that Σ is a smooth involutive manifold and

the system is transversally strictly hyperbolic.

1. Introduction

In this article, we give a new class of first-order systems

(1.1) L(t, x,Dt,Dx) =Dt −
d∑

j=1

Aj(t, x)Dxj =Dt −A(t, x,Dx)

which are strongly hyperbolic, which means by definition that for all lower-order

terms B the Cauchy problem for L+B with initial data on the surface {t= 0}
is well-posed in C∞. Here we use the notation D =−i∂ for partial derivatives.

Strong hyperbolicity is satisfied as soon as the Cauchy problem is well-posed

in L2 and satisfies resolvent estimates of the form

(1.2) γ‖u‖L2 �
∥∥(L+ iγν)u

∥∥
L2 , for γ ≥ γ0,

where ν denotes the conormal to the initial surface, or semigroup estimates of

the form

(1.3)
∥∥u(t)∥∥

L2 �
∥∥u(0)∥∥+

∫ t

0

∥∥Lu(t′)∥∥
L2 dt

′.

In these cases, additional zeroth-order terms are bounded in L2 and absorbed by

choosing γ large or by Gronwall’s lemma. Note that (1.3) implies (1.2).
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A necessary condition for (1.2) is that the system L(t, x,Dt,Dx) must be

uniformly diagonalizable, which means that there is a family of matrices T (t, x, ξ)

such that T and T−1 are uniformly bounded and T−1AT is diagonal. There are

other equivalent formulations, for instance, that there is a bounded family of

symmetrizers, that is, a family of Hermitian symmetric matrices S(t, x, ξ) such

that S and S−1 are uniformly bounded and SA is symmetric (see, e.g., [4]).

For systems with constant coefficients, strong hyperbolicity is equivalent to

uniform diagonalizability (see [5], [14]). This is not true for general systems with

variable coefficients. In fact, there are examples of uniformly diagonalizable sys-

tems for which the Cauchy problem is ill-posed in C∞ (and thus not strongly

hyperbolic; see [4], [13], [7]). However, strong hyperbolicity is known for diago-

nalizable systems with constant multiplicities and, more generally, for systems

which admit smooth symmetrizers S(t, x, ξ). In [7], the required smoothness has

been decreased to Lipschitz regularity in (t, x, ξ) for ξ �= 0. A necessary condition

for L to be strongly hyperbolic is that the geometric multiplicity of any multiple

eigenvalue τ of L(t, x, τ, ξ) is not less than half of the algebraic multiplicity plus

1, and strong hyperbolicity is known for a class of systems which generalize single

effectively hyperbolic operators and which are not symmetrizable (see [11], [12]).

How to characterize strongly hyperbolic systems is an interesting problem

which is not yet settled. This article brings a new piece to the understanding of

this question.

Before stating our main result, let us introduce some notation. We will work

within the following framework.

ASSUMPTION 1.1

The coefficient matrices Aj(t, x) are C∞ and constant outside a compact set.

They act in an N -dimensional space denoted by E. Moreover, for all (t, x, ξ) the

eigenvalues of A(t, x, ξ) =
∑

ξjAj(t, x) are real and semisimple.

In particular, L is hyperbolic in the time direction and diagonalizable. We denote

by C the characteristic variety of L, that is, the set of (t, x, τ, ξ) ∈ T ∗
R

1+d\{0}
such that detL(t, x, τ, ξ) = 0. Note that Assumption 1.1 implies that, at charac-

teristic points,

(1.4) dimKerL(t, x, τ, ξ) =multiplicity of the eigenvalue τ .

If ρ = (t, x, τ , ξ) is a regular point of C, then Assumption 1.1 implies that, on

a neighborhood of ρ, C is given by an equation τ = μ(t, x, ξ) and that μ is an

eigenvalue of constant multiplicity of A(t, x, ξ) for (t, x, ξ) close to (t, x, ξ), since

μ(t, x, ξ) is the unique eigenvalue close to τ .

As mentioned above, variable multiplicities form an important obstacle to

strong hyperbolicity, and we have to impose conditions at singular points. Recall

first the invariant definition of the localized system Lρ at ρ ∈ C:

(1.5) Lρ(ρ̇) =�ρ

(
L′(ρ) · ρ̇

)
ıρ,
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where ıρ is the injection of kerL(ρ) into E, �ρ is the projection from E onto

E/ rangeL(ρ), and L′ is the derivative of L. Because kerL(ρ)∩ rangeLρ = {0} by

Assumption 1.1, Lρ can also be seen as a matrix with values in Hom(KerL(ρ)).

Recall that Lρ is hyperbolic in the time direction and, more generally, that the

cone of hyperbolic directions of Lρ contains the cone of hyperbolic directions

of L.

We make the following natural assumption on the set Σ of singular points

of C.

ASSUMPTION 1.2

We assume that Σ ⊂ C is a smooth C∞-manifold in T ∗
R

1+d\{0} and that, on

each component of Σ, the dimension of kerL(ρ) is constant.

LEMMA 1.3

When Assumptions 1.1 and 1.2 are satisfied, Lρ(ρ̇) = 0 when ρ ∈ Σ and ρ̇ ∈
Tρ(Σ).

This lemma will be proved in Section 4. It implies that the symbol Lρ can be seen

as being defined on T ∗
R

d+1/TρΣ, that is, on directions ρ̇ which are transverse

to Σ. Note that, because Lρ is hyperbolic in the direction dt, this direction is

not characteristic for Lρ and thus is transverse to Σ. The first natural case to

consider is when Lρ is strictly hyperbolic in these transverse directions.

ASSUMPTION 1.4

For all ρ ∈Σ, Lρ(ρ̇) is strictly hyperbolic in the time direction on T ∗
R

d+1/TρΣ.

This condition is called linear splitting in [8]. In some sense, the three assumptions

above describe the simplest and most regular structure for eigenvalue crossing

along a variety Σ. However, these conditions are not sufficient to imply strong

hyperbolicity. The counterexample in [7] and the analysis in [12] based on effective

hyperbolicity indicate that the symplectic properties of Σ play an important

role. In particular, the counterexample in [7] is based on a reduction to the

harmonic oscillator, and this relies on the property that the symplectic form is

not identically 0 on TΣ. In this article, we go in the opposite direction, and we

can now formulate our main assumption.

ASSUMPTION 1.5

All ρ ∈Σ have a neighborhood on which one of the following conditions is satis-

fied:

(i) Σ is of codimension 2 in T ∗
R

1+d\{0},
(ii) Σ is of codimension 3 in T ∗

R
1+d\{0} and dimkerL(ρ) = 2,

(iii) Σ is an involutive submanifold of T ∗
R

1+d\{0}.

We can now state our main result.
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THEOREM 1.6

Consider a first-order system L as in (1.1) satisfying Assumptions 1.1, 1.2, 1.4,

and 1.5. Then the Cauchy problem for L with initial data on {t= 0} is well-posed

in L2. In particular, L is a strongly hyperbolic system.

Indeed, only Assumption 1.5(iii) is new. In the first two cases, as noted in [8], [7],

and [10], there is a smooth microlocal symmetrizer S(t, x, ξ). This will be recalled

in the proof of the theorem. On the contrary, in general, there is no smooth sym-

metrizer under Assumption 1.5(iii). Indeed, Assumption 1.4 implies that there is

a symmetrizer S(t, x, ξ, ξ′) which is homogeneous of degree 0 and smooth with

respect to the transversal variables ξ′ �= 0. Thus, under Assumptions 1.1, 1.2, and

1.4, the system is uniformly diagonalizable, but in general, the symmetrizer is

singular at Σ. Because of this singularity, we cannot use the classical pseudodif-

ferential calculus. But, using the precise description of the singularity, we can use

instead a second microlocalization, and this is where Assumption 1.5(iii) comes

in.

Theorem 1.6 is proved in Section 3. The main step is to obtain semigroup

estimates of the form (1.3) on [0, T ]×R
d. Since the assumptions are also satisfied

by the adjoint system L∗, we have similar estimates for the backward Cauchy

problem for L∗ and, thus, the existence of weak solutions in L2 for the direct

problem. By Friedrich’s lemma they are strong solutions and satisfy the energy

estimate. Differentiating the equation, we see that they are as smooth as the data.

The geometric formulations of the assumptions imply that they remain satisfied

after all spacelike changes of variables, implying local uniqueness, finite speed of

propagation, and local existence and uniqueness for the Cauchy problem.

The proof of the main L2 estimate is microlocal. Near (0, x, ξ), one can per-

form a smooth reduction of the system into blocks Ak associated to the distinct

eigenvalues τk of A(0, x, ξ). If ρk = (0, x, τk, ξ) is a regular point of C, then near

(0, x, ξ), Ak has a unique real eigenvalue and the estimate is well known. If ρk ∈Σ,

then under Assumptions 1.5(i) and 1.5(ii) there is a smooth symmetrizer and the

L2 microlocal energy estimate follows. Under Assumption 1.5(iii) we can reduce

the problem to a model case of the form

(1.6) Lmod(t, x,Dt,Dx) =Dt −
l∑

j=1

Aj(t, x,Dx)Dxj ,

where the Aj ’s are classical pseudodifferential operators of order 0. In this model,

the involutive manifold is Σmod = {τ = ξ1 = · · · = ξl = 0}. This model is ana-

lyzed in Section 5. The key is that, by Assumption 1.4, there is a symmetrizer

S(t, x, ξ, ξ′) which can be quantified so that the error Im(LmodS) is bounded

in L2. The reduction to the model case is made using a Fourier integral operator

which quantifies a canonical transformation which maps the involutive mani-

fold Σ to the model case Σmod. However, since we are considering the Cauchy

problem, we need to preserve time in this reduction. The details are given in

Section 4.
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2. The microlocal symbolic analysis

In preparation for the proof of Theorem 1.6, we analyze first the properties of the

symbol L(t, x, τ, ξ) = τ Id−A(t, x, ξ). Let (t, x, ξ) ∈R
1+d×R

d\{0}. We denote by

τk the distinct eigenvalues of A(t, x, ξ), so that the points ρk = (t, x, τk, ξ) belong

to the characteristic variety C.
For (t, x, ξ) in a small conical neighborhood ω of (t, x, ξ), there is a smooth

invertible matrix P (t, x, ξ), homogeneous of degree 0 in ξ, such that P−1AP is

block diagonal,

(2.1) P−1(t, x, ξ)A(t, x, ξ)P (t, x, ξ) = diag
(
Ak(t, x, ξ)

)
,

where the eigenvalues of the blocks Ak are close to τk, and its dimension rk is

the multiplicity of τk.

There are several cases.

(1) If ρk is a regular point of C, then locally near ρk, C is given by a smooth

equation τ = μ(t, x, ξ) and

(2.2) Ak(t, x, ξ) = μ(t, x, ξ) Id .

(2) If ρk ∈Σ is a singular point, then we can write

Ak(t, x, ξ) = μ(t, x, ξ) Id+A′
k(t, x, ξ),

where A′
k is traceless. By Assumption 1.2, near ρk, τ − μ and A′ vanish on Σ,

and therefore, Σ is given by the equations

(2.3) τ = μ(t, x, ξ), qj(x, ξ) = 0, j = 1, . . . , l.

Therefore, A has the form

(2.4) Ak(t, x, ξ) = μ(t, x, ξ) Id+

l∑
j=1

Ak,j(t, x, ξ)qj(x, ξ).

The localized system at ρk, L
′
ρk
(ρ̇), is conjugated to

(2.5) (τ̇ + μ̇) Id+
∑

Ak,j q̇j ,

where μ̇= ṫ∂tμ+ ẋ∂xμ+ ξ̇∂ξμ and with a similar definition for q̇j . This clearly

proves Lemma 1.3. Because the dqj ’s are independent, Assumption 1.4 implies

and, indeed, is equivalent to the following.

LEMMA 2.1

For all η ∈Rl\{0}, the eigenvalues of
∑

ηjAkj(t, x, ξ) are real and simple.

PROPOSITION 2.2

There is a conical neighborhood ω of (t, x, ξ), and there is a symmetric matrix

S(t, x, ξ, η), C∞ for (t, x, ξ) ∈ ω, with η ∈ R
l\{0}, homogeneous of degree 0 in

both ξ and η, such that S is positive definite, S−1 is bounded, and

(2.6) Im
(
S

(
t, x, ξ, q(x, ξ)

)
Ak(t, x, ξ)

)
= 0.
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Proof

For (t, x, ξ) ∈ ω and η ∈R
l, introduce the symbol

(2.7) Ak(t, x, ξ, η) =

l∑
j=1

ηjAk,j(t, x, ξ).

By the lemma, for |η|= 1, the eigenvalues of Ak(t, x, ξ, η) are simple. By pertur-

bation, this property remains true for (t, x, ξ) close to (t, x, ξ), and therefore, by

shrinking ω if necessary, following [9] one can find a smooth matrix P(t, x, ξ, η)

for (t, x, ξ) ∈ ω and η �= 0, homogeneous of degree 0 in ξ and in η, such that

(2.8) PAkP−1 = diag(β1, . . . , βrk)

is diagonal with entries βj(t, x, ξ, η). Then

(2.9) S = P∗P

is self-adjoint and positive definite, and it satisfies (2.6), since for η = q(t, x, ξ)

the eigenvalues of Ak(t, x, ξ, q(t, x, ξ)) =Ak(t, x, ξ) are real. �

We now discuss the consequences of Assumption 1.5.

LEMMA 2.3

If Assumption 1.5(i) or 1.5(ii) is satisfied at ρk, then there is a conical neigh-

borhood ω of (t, x, ξ) and there is a smooth positive definite matrix Sk(t, x, ξ) for

(t, x, ξ) ∈ ω, homogeneous of degree 0 in ξ, such that SkAk is self-adjoint.

Proof

In these cases we can find a smooth microlocal symmetrizer. For the explicit

expression of the symmetrizers we refer to [10] and [7]. �

PROPOSITION 2.4

If Assumption 1.5(iii) is satisfied at ρk, then there is a canonical transformation

Ψ= ρ �→ ρ̃ in a neighborhood of ρk such that t̃= t and Σ̃ = Ψ(Σ) is given by the

equations

(2.10) τ̃ = 0, ξ̃1 = · · ·= ξ̃l = 0.

Proof

We construct Ψ in two steps. First we consider the flow of Hτ−μ, the Hamilton

vector field of τ − μ,

(2.11) Ψ1 = exp
(
(t− t)Hτ−μ

)
: ρ �→ ρ1.

It is a canonical transformation defined on a conical neighborhood of ρk such

that t1 = t and which transforms τ −μ into τ1. Therefore, Σ1, the image of Σ, is

given by equations

(2.12) τ1 = 0, q1,1 = · · ·= q1,l = 0.
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Since Σ1 is involutive, the Poisson brackets of these equations and, in particular,

∂t1q1,j vanish on Σ. Because ∂t1q1,j is independent of τ1 and the dx,ξ q̃1,j ’s are

linearly independent, this means that there are smooth homogenous functions

mj,k such that

(2.13) ∂t1q1,j = ∂tg1,j =
∑

mj,kq1,k.

By denoting by Q1 the vector with components q1,j and by M the matrix with

entries mj,k, this means that ∂tQ1 =MQ1. Introduce P (t, x, ξ) such that

∂tP =−PM, P|t=0 = Id .

Hence, ∂t(PQ1) = 0 and Q̃1 = PQ1 depends only on (x, ξ). This shows that Σ1

is given locally by the equations

(2.14) τ1 = 0, q̃1,j(x, ξ) = 0.

In other words, near ρk,

(2.15) Σ1 =
{
(t, x,0, ξ); (x, ξ) ∈Σ1

}
,

where Σ1 is given by the equations q̃1,j(x, ξ) = 0. Moreover, Σ1 is involutive in

T ∗Rd, and there is a canonical transformation Ψ2 in T ∗Rd which transforms q̃1,j
into ξj for j = 1, . . . , l. We extend it to T ∗

R
1+d by leaving (t1, τ1) invariant, and

the composed transformation Ψ2 ◦Ψ1 has the desired properties. �

3. Proof of Theorem 1.6

As recalled in Section 1, it is sufficient to prove the following energy estimate.

THEOREM 3.1

Under the assumptions of Theorem 1.6, there are T > 0 and C such that, for all

smooth functions u, one has

(3.1)
∥∥u(t)∥∥

L2 ≤C
∥∥u(0)∥∥+C

∫ t

0

∥∥Lu(t′)∥∥
L2 dt

′.

To prove this, we construct a finite partition of unity on T ∗Rd

(3.2) 1 = χ∞(x) +

n∑
j=0

χj(x, ξ)

and prove the estimate (3.1) for each piece u∞ = χ∞u and uj = χj(x,Dx)u sep-

arately. Indeed,∥∥Luj(t)
∥∥
L2 �

∥∥Lu(t)∥∥
L2 +

∥∥u(t)∥∥
L2 ,

∥∥uj(0)
∥∥
L2 �

∥∥u(0)∥∥
L2 ,

so adding the estimates for uj we get that

∥∥u(t)∥∥
L2 ≤C

∥∥u(0)∥∥+C

∫ t

0

∥∥Lu(t′)∥∥
L2 +C

∫ t

0

∥∥u(t′)∥∥
L2 dt

′,

which, by Gronwall’s lemma, implies (3.1).
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We choose χ∞ equal to 1 for |x| ≥ R with R so large that L= L∞ =Dt −
A∞(Dx) has constant coefficients on the support of χ∞. Our assumptions imply

that L (and thus L∞) is uniformly diagonalizable. Hence, there is a bounded

symmetrizer S∞(ξ) for A∞(ξ), and the L2-estimate for u∞ follows by using the

Fourier transform.

We choose χ0 supported in |ξ| ≤ 2. Then ‖∂tχ0u‖L2 = O(‖u‖L2 + ‖Lu‖L2),

and the estimate for χ0(x,Dx)u immediately follows.

Thus, by the compactness of {|x| ≤ R} × Sd−1, we are reduced to proving

the following estimate.

PROPOSITION 3.2

Under the assumptions of Theorem 1.6, for all (x, ξ) ∈ T ∗Rd\{0}, there are T > 0

and a conical neighborhood ω of (x, ξ) such that for all pseudodifferential symbols

χ(x, ξ) of degree 0 supported in ω, there is a constant C such that, for all smooth

functions u,

(3.3)
∥∥χ(x,Dx)u(t)

∥∥
L2 ≤C

∥∥u(0)∥∥+C

∫ t

0

(∥∥Lu(t′)∥∥
L2 dt

′ +
∥∥u(t′)∥∥

L2

)
dt′.

Proof

(a) From now on, we fix (x, ξ) ∈ T ∗
R

d\{0}. We convert the symbolic analysis of

Section 2 into a pseudodifferential calculus. Let P (t, x, ξ) be such that (2.1) holds

in a conical neighborhood ω of (0, x, ξ). Let χ be supported in ω′ = ω ∩ {t= 0},
and introduce v = P−1(t, x,Dx)χ(x,Dx)u and its component vk corresponding

to the decomposition (2.1). Let

(3.4) Lkvk :=Dtvk −Ak(t, x,Dx)χ̃(x,Dx)vk,

where χ̃ is supported in ω′ and is equal to 1 on a neighborhood of the support

of χ. Because the commutators are bounded in L2, one has

(3.5)
∥∥Lkvk(t)

∥∥
L2 �

∥∥Lu(t)∥∥
L2 +

∥∥u(t)∥∥
L2 .

We claim that it is sufficient to prove the following energy estimate for each vk
separately:

(3.6)
∥∥vk(t)∥∥L2 ≤C

∥∥vk(0)∥∥+C

∫ t

0

(∥∥Lkvk(t
′)

∥∥
L2 dt

′ +
∥∥vk(t′)∥∥L2

)
dt′.

Indeed, with (3.5), it implies that

∥∥v(t)∥∥
L2 ≤C

∥∥u(0)∥∥+C

∫ t

0

(∥∥Lu(t′)∥∥
L2 dt

′ +
∥∥u(t′)∥∥

L2

)
dt′.

Moreover, χ(x,Dx)u= (χ̃P )(t, x,Dx)v+Ru, where R is of degree −1, and hence,∥∥χ(x,Dx)u(t)
∥∥
L2 ≤

∥∥v(t)∥∥
L2 +

∥∥u(t)∥∥
H−1 .

Finally, we note that the errors in H−1 are also controlled, using that

(3.7)
∥∥∂tu(t)∥∥H−1 �

∥∥Lu(t)∥∥
L2 +

∥∥u(t)∥∥
L2
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and

(3.8)
∥∥u(t)∥∥

H−1 ≤
∥∥u(0)∥∥

H−1 +

∫ t

0

∥∥∂tu(t′)∥∥H−1 dt
′.

Therefore, it only remains to prove (3.6).

(b) If ρk is a regular point in C or if ρk ∈Σ and Assumption 1.5(i) or 1.5(ii)

is satisfied, then there is a symmetrizer Sk(t, x, ξ) for Ak in a possibly smaller

neighborhood ω. One can choose γ such that the energy

Re
(
χ̃Sk(t, x,Dx)vk, vk

)
L2 + γ

((
1 + |Dx|2

)−1
vk, vk

)
L2

is positive definite and equivalent to ‖vk‖L2 . Differentiating in time and using

the classical pseudodifferential calculus, one obtains (3.6).

(c) If ρk ∈Σ and Assumption 1.5(iii) is satisfied, then we know by Proposi-

tion 2.4 that there is a canonical transformation Ψ on a neighborhood of ρk such

that the symbol of Lk is transformed to

τ̃ Id+
l∑

j=1

ξ̃jÃj(t̃, x̃, ξ̃),

revealing the model operator

(3.9) L̃=Dt̃ −
l∑

j=1

Ãj(t̃, x̃,Dx̃)Dx̃j .

In this case, the estimate (3.6) follows from the following two results.

PROPOSITION 3.3

There are T > 0, a conical neighborhood ω of (x, ξ), and a smooth family of

elliptic Fourier integral operators F = Ft, for t ∈ [0, T ], associated to the canonical

transformation Ψ and such that for all pseudodifferential symbols χ(x, ξ) of degree

0 supported in ω,

(3.10) (FLk − L̃F )χ(x,Dx)

is bounded in L2, uniformly in time.

PROPOSITION 3.4

If χ̃ is supported in a small conical neighborhood of (x̃, ξ̃) where Ψ(ρk) = (0, x̃,0, ξ̃),

then there is a constant C such that, for all w ∈H1([0, T ]×R
d),

(3.11)
∥∥χ̃(x̃,Dx̃)w(t)

∥∥
L2 ≤C

∥∥w(0)∥∥
L2 +C

∫ t

0

∥∥L̃w(t′)∥∥
L2 dt

′.

Indeed, decreasing the neighborhoods if necessary, we can assume that χ̃ = 1

on the image of the support of χ. We apply this estimate to w = Fχ(x,Dx)vk,

noting that, by (3.10) and the uniform boundedness of F in L2, one has∥∥L̃w(t)∥∥
L2 �

∥∥Lkvk(t)
∥∥
L2 +

∥∥vk(t)∥∥L2 .
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Moreover, by the microlocal ellipticity of F on the support of χ, we have∥∥χ(x,Dx)vk(t)
∥∥
L2 ≤

∥∥χ̃(x̃,Dx̃)w(t)
∥∥
L2 +

∥∥vk(t)∥∥H−1 .

Since ‖(1−χ(x,Dx))vk(t)‖L2 is bounded by the right-hand side of (3.6), combin-

ing these estimates and arguing as in (3.8) to absorb the H−1 error, we obtain

(3.6) under Assumption 1.5(iii). �

It remains to prove the two propositions above. This is done in the next two

sections.

4. Reduction to the model

In this section, we prove Proposition 3.3. Recall that the canonical transformation

Ψ is composed of Ψ1 and Ψ2. The first is defined, for t ∈ [0, T ], by (2.11). The

symbol μ is defined on a small conical neighborhood ω of (0, x, ξ); for simplicity,

we modify it so that it is defined on [0, T ]× T ∗
R

d and so that it is supported

in ω and equal to μ in a smaller neighborhood ω′ with |ξ| ≥ 1. Decreasing T if

necessary, consider the Fourier integral operator

(4.1) F1u(t, x) =

∫
eiϕ(t,x,ξ)û(t, ξ)dξ,

where ϕ(t, x, ξ) solves for t ∈ [0, T ] the eikonal equation (see [6], [2], [3], [1])

(4.2) ∂tϕ= μ(t, x, ∂xϕ), ϕ(0, x, ξ) = x · ξ.

It is associated to the canonical transformation Ψ1. We can consider it also as

a family of Fourier integral operators F1,t on R
d associated to canonical trans-

formations Ψ1,t, which are obviously defined from Ψ1. Moreover, this operator is

elliptic. Therefore, we have the following result (see, e.g., [1], [3]).

LEMMA 4.1

There is a constant C such that, for u smooth, v = F1u satisfies∥∥v(t)∥∥
L2 ≤ C

∥∥u(t)∥∥
L2 ,(4.3) ∥∥u(t)∥∥

L2 ≤ C
∥∥v(t)∥∥

L2 +C
∥∥u(t)∥∥

H−1 .(4.4)

Moreover,

(4.5)
∥∥Dtv(t)− F1

(
Dt + μ(t, x,Dx)

)
u(t)

∥∥
L2 ≤C

∥∥u(t)∥∥
L2 ,

and if a(t, x,Dx) is a pseudodifferential operator of order 1, then

(4.6)
∥∥b(t, x,Dx)v(t)− F1a(t, x,Dx)u

∥∥
L2 ≤C

∥∥u(t)∥∥
L2 ,

where

(4.7) b(t, x, ξ) = a
(
Ψ−1

1,t (t, x, ξ)
)
.
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Let χ be supported in a small conical neighborhood of (x, ξ). The lemma implies

that F1 transforms Lk =Dt −Ak(t, x,Dx)χ(x,Dx) into

(4.8) Dt −
∑

A1,j(t, x,Dx)q1,j(t, x,Dx) +B(t, x, ∂x),

where B(t) is uniformly bounded in L2 and, under the notation introduced in

(2.12), q1,j is the function deduced from qj by Ψ1. We have shown that the

q1,j ’s are independent of t and that there is a canonical transformation Ψ2 which

transforms them into ξj . Therefore, there is an elliptic Fourier integral operator

F2 on R
d, bounded in L2, such that∥∥F2q1,j(x,Dx)χ1(x,Dx)v−DxjF2χ1(x,Dx)v

∥∥
L2 � ‖v‖L2 ,(4.9) ∥∥χ1(x,Dx)v

∥∥
L2 �

∥∥F2χ1(x,Dx)v
∥∥
L2 +

∥∥χ1(x,Dx)v
∥∥
H−1 ,(4.10)

where χ1 is supported in a small conical neighborhood of (x, ξ) and one can

assume that χ1 = 1 on the image of ω by Ψ1 for 0≤ t≤ T . Here we note that∥∥(
1− χ1(x,D)

)
F1χ(x,D)v

∥∥
Hs � ‖v‖Hs−1 ,

for s= 0,1 and for any χ supported in ω.

Combining this with the lemma above, we see that the composed operator

F2 ◦ χ1F1 satisfies the properties listed in Proposition 3.3, which is now proved.

5. Analysis of the model system

In this section we prove Proposition 3.4. The symbol of the model operator (5.1)

has the form

(5.1) A(t, x, ξ) =

l∑
j=1

ξjAj(t, x, ξ)

with some 1 ≤ l < d, where the Ak’s are classical pseudodifferential symbols of

degree 0, independent of (t, x) for (t, x) outside a compact set. The coefficients are

defined on a neighborhood of (x, ξ); for convenience, we extend the coefficients

Aj to [0, T ]× T ∗
R

d by multiplying them by some cutoff function χ(t, x, ξ). We

still denote these extended symbols by Aj . Introduce

(5.2) A(t, x, ξ, η) =

l∑
k=1

ηkAk(t, x, ξ).

By Proposition 2.2, we know that the following condition is satisfied.

ASSUMPTION 5.1

There is a symmetric matrix S(t, x, ξ, η), C∞ in (t, x) and constant outside a

compact set, homogeneous of degree 0 and C∞ in both ξ �= 0 and η �= 0, such that

S is positive definite, S−1 is bounded, and S(t, x, ξ, ξ′)A(t, x, ξ) is symmetric,

where ξ′ = (ξ1, . . . , ξl).

Proposition 3.4 is a direct consequence of the following estimate.
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PROPOSITION 5.2

Under Assumption 5.1, there is a constant C such that, for all u ∈H1([0, T ]×
R

d),

(5.3)
∥∥u(t)∥∥

L2 ≤C
∥∥u(0)∥∥

L2 +C

∫ t

0

∥∥Lu(t′)∥∥
L2 dt

′.

To prove this estimate, we use a symbolic calculus where symbols of degree (m,k)

satisfy, for all multi-indices α and β,

(5.4) |∂α
x ∂

β′

ξ′ ∂
β′′

ξ′′ a| ≤Cαβ

(
1 + |ξ|

)m−|β′′|(
1 + |ξ′|

)k−|β′|
,

where ξ = (ξ′, ξ′′), ξ′ = (ξ1, . . . , ξl), and ξ′′ = (ξl+1, . . . , ξd) for some constant Cαβ

independent of (x, ξ). The set of all such a(x, ξ) is denoted by Sm,k, which is

nothing but S(m,g) with (see [3, Chapter XVIII] for the definition of S(m,g)

and the associated pseudodifferential calculus)

g = |dx|2 + |dξ′|2
1 + |ξ′|2 +

|dξ′′|2
1 + |ξ|2 , m=

(
1 + |ξ|

)m(
1 + |ξ′|

)k
.

The key remark is that the symbol (5.1) belongs to S0,1, so that the classical

proof of the L2-energy estimate works with symmetrizers in S0,0, which is exactly

the case of S(t, x, ξ, ξ′). Let us proceed to the details.

We use Weyl’s quantification op(a) for symbols, but any other quantification

would do since we consider only the principal terms. The rules of the symbolic

calculus we need are collected in the following lemma and follow from the general

calculus developed in [3].

LEMMA 5.3

(i) Operators op(a) with a ∈ S0,0 are bounded in L2.

(ii) If a ∈ S0,1 and b ∈ S0,0, then op(a) ◦ op(b)− op(ab) is bounded in L2.

(iii) If S is an n× n self-adjoint matrix of symbols in S0,0 such that for all

(x, ξ) ∈ T ∗
R

d with |ξ′| ≥ 1 and all vectors u ∈C
n one has

(5.5) c|u|2 ≤
(
S(x, ξ)u,u

)
for some c > 0, then op(S) is self-adjoint in L2(Rd;Cn) and there is a constant

C such that for all u ∈ L2(Rd)

(5.6)
c

2
‖u‖2L2 ≤

(
op(S)u,u

)
L2 +C

∥∥(
1 + |Dx′ |2

)−1/2
u
∥∥2

L2 .

Moreover, the bounds are uniform if the symbols (a, b,S) remain in bounded sets

of the given classes S0,m.

Proof of Proposition 3.4

Let χ0 ∈ C∞
0 (Rl) be supported in |η| < 2 and such that χ0(η) = 1 for |η| < 1.

Denote χ= 1− χ0. Introduce

S0(t, x, ξ) = S(t, x, ξ, ξ′)χ(ξ′) + χ0(ξ
′).
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This is a self-adjoint matrix of symbols in S0,0, depending on the parameter t,

which satisfies (5.5). Thus, by using (5.6), there are γ > 0 and c > 0 such that

the operator op(S(t)) associated to the symbol

S(t, x, ξ) = S0(t, x, ξ, ξ
′) + γ

(
1 + |ξ′|2

)−1

satisfies for all t ∈ [0, T ] and u ∈ L2(Rd)

(5.7) c‖u‖2L2 ≤
(
op

(
S(t)

)
u,u

)
L2 .

We fix γ such that this property is satisfied. Using Lemma 5.3(i), we see that

there is another constant C such that

(5.8)
(
op

(
S(t)

)
u,u

)
L2 ≤C‖u‖2L2 .

For u ∈C1([0, T ];H1(Rd)), we consider the energy

E(t) =
(
op

(
S(t)

)
u,u

)
L2 ≈

∥∥u(t)∥∥2

L2 .

The definition of op(S(t)) shows that, for smooth functions,[
∂t,op

(
S(t)

)]
= op

(
∂tS(t)

)
.

Moreover, ∂tu= i(Lu+op(A)u+Bu), where B is bounded in L2. Therefore, by

dropping the parameter t to simplify notation,

∂tE = − 2 Im
(
op(S)Lu,u

)
L2 +

(
op(∂tS)u,u

)
L2

− 2 Im
(
op(S) op(A)u,u

)
L2 − 2 Im

(
op(S)Bu,u

)
L2 .

(5.9)

By the symbolic calculus, op(∂tS), op(S)B, and op(S) op(A) − op(SA) are

bounded in L2, uniformly in time. Because S symmetrizes A, the definition of S

implies that

Im
(
S(t, x, ξ)A(t, x, ξ)

)
∈ S0,0,

and therefore, Im(op(SA)) is bounded in L2. This implies that the last three

terms in (5.9) are O(‖u‖L2). Integrating and using (5.7) and (5.8) yields

∥∥u(t)∥∥2

L2 ≤C
∥∥u(0)∥∥2

L2 +C

∫ t

0

(∥∥Lu(t′)∥∥
L2

∥∥u(t′)∥∥
L2 +

∥∥u(t′)∥∥2

L2

)
dt′.

The estimate (5.3) follows for smooth functions. It extends to u ∈H1 by density.

�

REMARK 5.4

The proof of the estimate (5.3) relies only on the existence of the symmetrizer S
satisfying the properties listed in Lemma 5.3, not on strict hyperbolicity.
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