
Cohomology and L-values

Hiroyuki Yoshida

Abstract In a paper published in 1959, Shimura presented an elegant calculation of the
critical values of L-functions attached to elliptic modular forms using the first cohomol-
ogy group. We will show that a similar calculation is possible for Hilbert modular forms
over real quadratic fields using the secondcohomologygroup.Wepresent explicit numer-
ical examples calculated by this method.
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0. Introduction

In a celebrated paper [Sh1] published in 1959, Shimura showed that ratios of
critical values of the L-function attached to an elliptic modular form can be
calculated explicitly using the cohomology group. This method was developed
into the theory of modular symbols by Manin [Man]. Though there were great
advances during the next half-century in understanding the relationship of auto-
morphic forms and group cohomologies, it seems that no explicit calculations of
L-values using cohomology groups were performed beyond the one-dimensional
case. The purpose of this paper is to show that we can use cohomology groups
effectively for calculations of L-values even in higher-dimensional cases.

To explain our ideas and results, it is best to review first the calculation in
[Sh1]. Let H be the complex upper half-plane. Let Γ be a Fuchsian group, and let
Ω be a cusp form of weight k ≥ 2 with respect to Γ. Put l = k − 2, and let ρl be
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the symmetric tensor representation of GL(2,C) of degree l on a vector space V .
We regard V as a Γ-module. Put ρ = ρl. We consider a V -valued differential form
on H:

d(Ω) = Ω(z)
[
z

1

]l

dz.

Here
[

z
1

]l denotes the column vector of dimension l+1 whose components are zl,
zl−1, . . . ,1. We have d(Ω) ◦ γ = ρ(γ)d(Ω) for every γ ∈ Γ. Here d(Ω) ◦ γ denotes
the transform of d(Ω) by γ. Take a point of the complex upper half-plane or a
cusp of Γ, and denote it by z0. For γ ∈ Γ, we consider the integral

(1) f(γ) =
∫ γz0

z0

d(Ω).

Then f satisfies the 1-cocycle condition:

f(γ1γ2) = f(γ1) + ρ(γ1)f(γ2).

The cohomology class of f in H1(Γ, V ) does not depend on the choice of z0. Let
p ∈ Γ be a parabolic element, and let z′

0 be the cusp fixed by p. Then we have

f(p) =
(
ρ(p) − 1

)∫ z0

z′
0

d(Ω).

Thus f(p) looks like a coboundary, which is the parabolic condition on f .
Now let Γ = SL(2,Z) and z0 = i∞. Put

σ =
(

0 1
−1 0

)
, τ =

(
1 1
0 1

)
.

Then we find

(2) f(στ) = −
(∫ i∞

0

Ω(z)zt dz
)

0≤t≤l
= −

(
it+1R(t + 1,Ω)

)
0≤t≤l

,

where R(s,Ω) = (2π)−sΓ(s)L(s,Ω) with the L-function L(s,Ω) of Ω. Since
(στ)3 = 1 and σ2 = 1, the 1-cocycle condition gives[

1 + ρ(στ) + ρ
(
(στ)2

)]
f(στ) = 0,

(3)
[1 + ρ(σ)]f(σ) = [1 + ρ(σ)]f(στ) = 0.

In other words, f(στ) is annihilated by the elements 1 +στ +(στ)2 and 1 +σ of
the group ring Z[SL(2,Z)]. This gives constraints on the critical values of L(s,Ω).
For k = 12 and Ω = Δ, Shimura obtained

R(8,Δ) =
5
4
R(6,Δ), R(10,Δ) =

12
5

R(6,Δ), and so on.

In this paper, we will treat the case of Hilbert modular forms over a real
quadratic field F . Let OF be the ring of integers of F , and let Γ be a congruence
subgroup of SL(2, OF ). Let Ω be a Hilbert modular cusp form of weight (k1, k2)
with respect to Γ. We assume 2 ≤ k2 ≤ k1 and put li = ki − 2, i = 1, 2. The first
step is to attach an explicitly given 2-cocycle of Γ to Ω. This is given in the
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author’s book [Y3] as follows. Let ρ = ρl1 ⊗ ρl2 , and let V be the representation
space of ρ. We consider a V -valued differential form on H2:

d(Ω) = Ω(z)
[
z1

1

]l1

⊗
[
z2

1

]l2

dz1 dz2, z = (z1, z2) ∈ H2.

We have

(4) d(Ω) ◦ γ = ρ(γ)d(Ω), γ ∈ Γ.

Take a point w = (w1,w2) on H2. For γ1, γ2 ∈ Γ, we consider the integral

(5) f(γ1, γ2) =
∫ γ1w1

γ1γ2w1

∫ γ′
1w2

w2

d(Ω).

Here γ′
1 denotes the conjugate of γ1 by Gal(F/Q). Then f is a 2-cocycle of Γ

taking values in V . The cohomology class of f ∈ H2(Γ, V ) does not depend on
the choice of w. Let p ∈ Γ be a parabolic element, and let (w∗

1 ,w∗
2) be the cusp

fixed by p. Since Ω is a cusp form, we may replace w2 by w∗
2 . By this procedure,

we find the parabolic condition satisfied by f .
Next let Γ = SL(2, OF ), and let ε be the fundamental unit of F . We assume

that l1 ≡ l2 mod 2 and replace Γ by PSL(2, OF ). Put

σ =
(

0 1
−1 0

)
, μ =

(
ε 0
0 ε−1

)
.

We choose w1 = iε−1, w2 = i∞. Then we have

f(σ,μ) = f(σ,σ) = −
∫ iε

iε−1

∫ i∞

0

d(Ω).

For 0 ≤ s ≤ l1, 0 ≤ t ≤ l2, we put

Ps,t =
∫ iε

iε−1

∫ i∞

0

Ω(z)zs
1z

t
2 dz1 dz2.

The ((l1 + 1)(l2 + 1))-components of f(σ,μ) are given by −Ps,t. We have

(6) Pm,m−(k1−k2)/2 = (−1)m+1i−(k1−k2)/2(2π)(k1−k2)/2R(m + 1,Ω)

where R(s,Ω) = (2π)−2sΓ(s)Γ(s − (k1 − k2)/2)L(s,Ω) with the L-function L(s,Ω)
of Ω. The formula (6) gives a generalization of (2); (5) and (6) were known to
the author nine years ago.

The L-value L(m,Ω), m ∈ Z, is a critical value if and only if

l1 − l2
2

+ 1 ≤ m ≤ l1 + l2
2

+ 1.

Since all of them appear as components of f(σ,μ), we expect that we can
deduce information on critical values once we know the second cohomology group
H2(Γ, V ) well. Before we are able to materialize this hope, we need to answer the
following conceptual question: Can we annihilate the effect of adding a cobound-
ary to f? We can give an affirmative answer to this question by using the para-



372 Hiroyuki Yoshida

bolic condition. Put

P =
{(

u v

0 u−1

) ∣∣∣∣ u ∈ O ×
F , v ∈ OF

}
/{±12} ⊂ Γ.

Then we have

(7) f(pγ1, γ2) = pf(γ1, γ2) for every p ∈ P,γ1, γ2 ∈ Γ.

This is the parabolic condition on f when Γ = PSL(2, OF ). A 2-cocycle which
satisfies (7) is called a parabolic 2-cocycle. In Section 3, we will prove the following.

THEOREM

Let i = 1 or 2. Then

dimHi(P,V ) =

{
0 if l1 
= l2 or N(ε)l1 = −1,

1 if l1 = l2 and N(ε)l1 = 1.

Now, suppose that we add a coboundary to f , keeping the parabolic condition (7).
In Section 4, using this theorem for the case i = 1, we will show the following.
If l1 
= l2, the components of f(σ,μ) related to the critical values do not change.
If l1 = l2, the same assertion holds except for the critical values on the edges:
L(1,Ω) and L(l1 + 1,Ω). Therefore we can deduce information on critical values
L(m,Ω) once we know a parabolic 2-cocycle corresponding to Ω.

The final step is to find constraints on f(σ,μ) which generalize (3). This is
technically the most difficult step. Let OF = Z + Zω, and put

τ =
(

1 1
0 1

)
, η =

(
1 ω

0 1

)
.

It is known (see [V]) that Γ is generated by σ, μ, τ , and η. Let F be the free
group on four letters σ̃, μ̃, τ̃ , η̃. Define a surjective homomorphism π : F −→ Γ
by π(σ̃) = σ, π(μ̃) = μ, π(τ̃) = τ , π(η̃) = η, and let R be the kernel of π. Then
we have Γ = F /R and (cf. Section 1.4)

(8) H2(Γ, V ) ∼= H1(R,V )Γ/ Im
(
H1(F , V )

)
.

Here we have

H1(R,V )Γ =
{
ϕ ∈ Hom(R,V )

∣∣ ϕ(grg−1) = gϕ(r), g ∈ F , r ∈ R
}
.

We write

ε2 = A + Bω, ε2ω = C + Dω.

We have relations:

(i) σ2 = 1,
(ii) (στ)3 = 1,
(iii) (σμ)2 = 1,
(iv) τη = ητ ,
(v) μτμ−1 = τAηB ,
(vi) μημ−1 = τCηD.
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For t ∈ O ×
F , we have

(vii) σ

(
1 t

0 1

)
σ =

(
1 −t−1

0 1

)
σ

(
−t 1
0 −t−1

)
.

The relation (ii) follows from (vii) by taking t = 1. We call the relation group R

minimal if it is generated by the elements corresponding to (i) ∼ (vii) and their
conjugates. We see that μ, τ , and η generate P and that (iv) ∼ (vi) are their
fundamental relations.

Now, let ϕ ∈ H1(R,V )Γ be a corresponding element to f . Adding an element
of Im(H1(F , V )), we may assume that ϕ(σ̃2) = 0. Then we find (cf. (5.3))

f(σ,μ) = −ϕ
(
(σ̃μ̃)2

)
.

Our problem is reduced to finding constraints on ϕ((σ̃μ̃)2). We have an obvious
constraint σμϕ((σ̃μ̃)2) = ϕ((σ̃μ̃)2), but of course it is not enough.

To proceed further, we assume that l1 and l2 are even and change ρ to
ρ′ = ρ′

l1
⊗ ρ′

l2
, where ρ′

l(g) = ρl(g)det(g)−l/2, and regard V as a PGL(2, OF )-
module. The Γ-module structure does not change. We put

ν =
(

ε 0
0 1

)
, δ =

(
−1 0
0 1

)
.

These two elements act on Γ as outer automorphisms and induce automorphisms
of H2(Γ, V ) of order 2. Hence H2(Γ, V ) decomposes into four pieces under their
actions. Let Γ∗ be the subgroup of PGL(2, OF ) generated by Γ and ν. The
transfer map gives an isomorphism of the plus part of H2(Γ, V ) under the action
of ν onto H2(Γ∗, V ). For simplicity suppose that we can take ω = ε. Then σ,
ν, and τ generate Γ∗. Let F ∗ be the free group on three letters σ̃, ν̃, τ̃ . Define
a surjective homomorphism π∗ : F ∗ −→ Γ∗ by π∗(σ̃) = σ, π∗(ν̃) = ν, π∗(τ̃) = τ ,
and let R∗ be the kernel of π∗. Then we have Γ∗ = F ∗/R∗ and

(8∗) H2(Γ∗, V ) ∼= H1(R∗, V )Γ
∗
/ Im

(
H1(F ∗, V )

)
.

Let f ∗ be the transfer of f to Γ∗, and let f+ be the restriction of f ∗ to Γ. Then
f+ is the projection of f to the plus part. (We perform this procedure on the
cocycle level.) We have

f ∗(σ,μ) = f+(σ,μ) = (1 + ν)f(σ,μ).

In Γ∗, σ, ν, and τ satisfy the relations (i), (ii), and (iii∗): (σν)2 = 1; (iv∗):
τντν−1 = ντν−1τ ; (v∗): ν2τν−2 = τA(ντν−1)B . Let P ∗ be the subgroup of Γ∗

generated by P and ν. We see that P ∗ is generated by ν and τ and that (iv∗)
and (v∗) are the fundamental relations between generators ν and τ . Let ϕ∗ ∈
H1(R∗, V )Γ

∗
be a corresponding element to f ∗. By the parabolic condition on

f , we may assume that ϕ∗ vanishes on the elements of R∗ corresponding to
(iv∗) and (v∗). Adding an element of Im(H1(F ∗, V )), we may also assume that
ϕ∗(σ̃2) = 0. Then we have (cf. (6.6))

f ∗(σ,μ) = −(1 + ν−1)ϕ∗(
(σ̃ν̃)2

)
,
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and two quantities

A = ϕ∗(
(σ̃ν̃)2

)
, B = ϕ∗(

(σ̃τ̃)3
)

remain to be determined. The Hecke operators act on H2(Γ∗, V ). We can analyze
its action on the right-hand side of (8∗) and will give a simple formula for it. The
quantity A is related to the critical values of L(s,Ω). We may assume that the
class of f ∗ is in the plus space of H2(Γ∗, V ) under the action of δ. Then A must
satisfy the constraints

(9) (σν − 1)A = 0, (δ − 1)A = 0.

We will execute the determination of A for F = Q(
√

5) and F = Q(
√

13).
First assume F = Q(

√
5). In this case, we can show that R is minimal and that

R∗ is generated by the elements corresponding to the relations (i), (ii), (iii∗),
(iv∗), (v∗), and their conjugates. Calculating the action of the Hecke operator
T (2) on the right-hand side of (8∗), we find a certain element x ∈ F ∗ such that
π∗(x)3 = 1. We can give an explicit formula expressing ϕ∗(x3) in terms of A

and B. In every case examined, we find by numerical computations that we may
assume that B = 0 by adding an element of Im(H1(F ∗, V )). Therefore

(10) (x − 1)ϕ∗(x3) = 0

gives a new constraint on A. Let Z+
A be the subspace of V consisting of all A

which satisfy (9) and (10), and let B+
A be the subspace of Z+

A which repre-
sents the contribution from Im(H1(F ∗, V )). Again in every case examined, we
find by numerical computations that dimSl1+2,l2+2(Γ) = dimZ+

A/B+
A . If this is

one-dimensional, we can deduce information on L-values by calculating Z+
A . In

general, calculating the action of T (2) on Z+
A/B+

A and taking eigenvectors, we
can obtain many examples on L-values. Actually, by considering f+, we are los-
ing half of the information on critical values (cf. Section 5.6). To treat all critical
values, we need to consider f −, the projection of f to the minus part of H2(Γ, V )
under the action of ν. To handle f − is a somewhat more complicated task, and
we leave the explanation of it to the text. Next let F = Q(

√
13). The procedure

is almost the same. Let p be the prime ideal generated by 4 −
√

13. Calculating
the action of the Hecke operator T (p), we obtain a certain element x ∈ F ∗ such
that π∗(x) is of order 3. Then the constraint (x − 1)ϕ∗(x3) = 0 obtained from
x is sufficient. Here, remarkably, we can perform rigorous calculations without
proving that R is minimal. (This is actually true also for the case F = Q(

√
5).)

We have used Pari [PARI] for the numerical calculations in Sections 6 and 7.
To calculate the ratios of critical values of L-functions, there is another

method initiated by Shimura [Sh2] which employs the Rankin–Selberg convo-
lution and differential operators. A comparison of this method and the cohomo-
logical method will be discussed in Section 8.

Now let us explain the organization of this paper briefly. In Section 1, we
review several facts on cohomology of a group which will be repeatedly used in
later sections. In Section 2, we will review Hilbert modular forms. We prove (5)
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and (6). In Section 3, we will study cohomology groups of P and will prove the
theorem stated above. In Section 4, we will examine the parabolic condition on
a cocycle applying results in Section 3. We will prove the nonvanishing of the
cohomology class of f under mild conditions. In Section 5, we will study the
decomposition of H2(Γ, V ) under the action of outer automorphisms of Γ. It
decomposes into four pieces under this action. In Section 6, we will study the
case F = Q(

√
5) in detail and will give many examples. In Section 7, we will

study the case F = Q(
√

13). We devote Section 8 to the comparison of the two
methods mentioned above. In Section 9, we will show that it is possible to deduce
some information on the components of the cocycle f(Ω) which are not related
to critical values in certain cases.

A more detailed version of this paper (except for Section 9) is available (see
[Y4]).

NOTATION

For an associative ring A with identity element, A× denotes the group of all
invertible elements of A. Let R be a commutative ring with identity element.
We denote by M(n,R) the ring of all (n × n)-matrices with entries in R. We
define GL(n,R) = M(n,R)×, SL(n,R) = {g ∈ GL(n,R) | detg = 1}. The quotient
group of GL(n,R) (resp., SL(n,R)) by its center is denoted by PGL(n,R) (resp.,
PSL(n,R)). Let G be a group. The subgroup of G generated by g1, . . . , gn ∈ G is
denoted by 〈g1, . . . , gn〉. When G acts on a module M , MG denotes the submodule
of M consisting of all elements fixed by G. For an algebraic number field F , OF

denotes the ring of integers of F . For a ∈ OF , the ideal aOF generated by a is
denoted by (a). We denote by EF the group of units of F ; that is, EF = O ×

F .
When F is totally real and α ∈ F , α � 0 means that α is totally positive. We
denote by H the complex upper half-plane. The set of all positive real numbers
is denoted by R+.

1. Preparations on cohomology groups

In this section, we will review group cohomology. Most of the results, except for
the results presented in Section 1.5, can be found in standard textbooks such as
Cartan and Eilenberg [CE], Serre [Se1], and Suzuki [Su].

1.1
Let G be a group, and let M be a left G-module. We set C0(G,M) = M , and
for 0 < n ∈ Z, let Cn(G,M) be the abelian group consisting of all mappings of
Gn into M . We define the coboundary operator dn : Cn(G,M) −→ Cn+1(G,M)
by the usual formula

(dnf)(g1, . . . , gn+1) = g1f(g2, . . . , gn+1) + (−1)n+1f(g1, . . . , gn)
(1.1)

+
n∑

i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1).
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We set

Zn(G,M) = Ker(dn), Bn(G,M) = Im(dn−1).

Here we understand B0(G,M) = {0}. An element of Cn(G,M) (resp., Zn(G,M),
resp., Bn(G,M)) is called an n-cochain (resp., n-cocycle, resp., n-coboundary).
The cohomology group Hn(G,M) is that of the complex {Cn(G,M), dn}; that
is, Hn(G,M) = Zn(G,M)/Bn(G,M).

Let G′ be a group, and let M ′ be a left G′-module. Let ϕ : G −→ G′ be
a group homomorphism, and let ψ : M ′ −→ M be a homomorphism of abelian
groups. We assume that ϕ and ψ are compatible; that is,

ψ
(
ϕ(g)m′) = g

(
ψ(m′)

)
, m′ ∈ M ′, g ∈ G.

For f ∈ Cn(G′,M ′), define ωnf ∈ Cn(G,M) by the formula

(1.2) (ωnf)(g1, g2, . . . , gn) = ψ
(
f(ϕ(g1), ϕ(g2), . . . , ϕ(gn))

)
.

Then ωn sends Zn(G′,M ′) (resp., Bn(G′,M ′)) into Zn(G,M) (resp., Bn(G,M))
and induces a homomorphism Hn(G′,M ′) −→ Hn(G,M).

Now let N be a subgroup of G. Let g ∈ G. We define

ϕ(n) = gng−1, n ∈ g−1Ng, ψ(m) = g−1m, m ∈ M.

Then ϕ is an isomorphism of g−1Ng onto N ; ϕ and ψ are compatible. Hence we
obtain an isomorphism of Hp(N,M) onto Hp(g−1Ng,M), which is induced by
sending f ∈ Zp(N,M) to f ′ ∈ Zp(g−1Ng,M):

(1.3) f ′(n1, n2, . . . , np) = g−1f(gn1g
−1, gn2g

−1, . . . , gnpg
−1).

1.2
Let H be a subgroup of G of finite index. An explicit form of the transfer map
T : Hn(H,M) −→ Hn(G,M) is given as follows (cf. Eckmann [E], [Y4]).

PROPOSITION 1.1

Let G be a group, let H be a subgroup of finite index, and let M be a left G-
module. Let G =

⊔r
i=1 xiH be a coset decomposition. Let f ∈ Zn(H,M) be an

n-cocycle representing c ∈ Hn(H,M). Then an n-cocycle f̃ ∈ Zn(G,M) which
represents T (c) ∈ Hn(G,M) is given by

f̃(g1, g2, . . . , gn) =
r∑

i=1

xif(x−1
i g1xpi(1), x

−1
pi(1)

g2xpi(2), . . . , x
−1
pi(n−1)gnxpi(n)).

Here xpi(l) is chosen so that

x−1
i g1xpi(1) ∈ H, x−1

pi(l−1)glxpi(l) ∈ H, 2 ≤ l ≤ n.

Let Res : Hn(G,M) −→ Hn(H,M) be the restriction homomorphism. Then we
have the well-known result:

(1.4) T ◦ Res(c) = [G : H]c, c ∈ Hn(G,M).
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1.3
We consider the action of Hecke operators on cohomology groups. Let G̃ be a
group, and let G be a subgroup. Let M be a G̃-module. We assume that G and
tGt−1 are commensurable for every t ∈ G̃. For t ∈ G̃, we put

Gt = G ∩ t−1Gt.

Let

conj : Hn(G,M) −→ Hn(t−1Gt,M)

be the isomorphism induced by (1.3). Let Res be the restriction map from
Hn(t−1Gt,M) to Hn(Gt,M), and let T : Hn(Gt,M) −→ Hn(G,M) be the trans-
fer map. Then we define

(1.5) [GtG ] = T ◦ Res ◦ conj.

(It is not difficult to check that the right-hand side of (1.5) depends only on
the double coset GtG and that (1.5) defines a homomorphism of the Hecke ring
H(G, G̃)∗ into End(Hn(G,M)).) An explicit form of this operator when n = 2 is
given as follows (cf. [Y4]).

PROPOSITION 1.2

Let c ∈ H2(G,M), and let f ∈ Z2(G,M) be a 2-cocycle representing c. Let GtG =⊔d
i=1 Gβi be a coset decomposition. Then a 2-cocycle h ∈ Z2(G,M) representing

[GtG ](c) is given by

h(g1, g2) =
d∑

i=1

β−1
i f(βig1β

−1
j(i), βj(i)g2β

−1
k(j(i))).

Here, for 1 ≤ i ≤ d, we choose j(i) and k(i) such that

βig1β
−1
j(i) ∈ G, βig2β

−1
k(i) ∈ G.

1.4
Let G be a group, and let M be a left G-module. Let N be a normal subgroup
of G. Then we have the Hochschild–Serre spectral sequence

(1.6) Ep,q
2 = Hp

(
G/N,Hq(N,M)

)
=⇒ Hn(G,M).

In low dimensions, this gives an exact sequence

0 −−−−→ H1(G/N,MN ) −−−−→ H1(G,M) −−−−→ H1(N,M)G/N

−−−−→ H2(G/N,MN ) −−−−→ H2(G,M).
(1.7)

Now we describe a method to calculate H2(G,M), which is originally due
to MacLane (cf. [K, Section 50]). Taking a free group F , we write G = F /R. Let
π : F −→ G be the canonical homomorphism such that Ker(π) = R. We regard

∗For the definition of the Hecke ring, see [Sh5, Chapter 3, Section 1].
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M as an F -module by gm = π(g)m, g ∈ F , m ∈ M . Since

(1.8) Hi(F ,M) = 0, i ≥ 2,

(1.7) yields an exact sequence

0 −−−−→ H1(G,M) −−−−→ H1(F ,M) −−−−→ H1(R,M)G

−−−−→ H2(G,M) −−−−→ 0.

Therefore we have

(1.9) H2(G,M) ∼= H1(R,M)G/ Im
(
H1(F ,M)

)
.

Since R acts on M trivially, we have B1(R,M) = 0 and H1(R,M) = Hom(R,M).
Therefore we have

H1(R,M)G =
{
ϕ ∈ Hom(R,M)

∣∣ ϕ(grg−1) = gϕ(r), g ∈ F , r ∈ R
}
.

The isomorphism (1.9) is explicitly given as follows. For g ∈ F , we put
π(g) = ḡ. Take a 2-cocycle f ∈ Z2(G,M). The mapping (g1, g2) −→ f(ḡ1, ḡ2) is
an M -valued 2-cocycle of F . By (1.8), there exists a 1-cochain a ∈ C1(F ,M)
such that

(1.10) f(ḡ1, ḡ2) = g1a(g2) + a(g1) − a(g1g2), g1, g2 ∈ F .

Let ϕ = a | R, the restriction of a to R. We may assume that f is normalized;
that is,

f(1, g) = f(g,1) = 0 for all g ∈ G.

If r1, r2 ∈ R, then, by (1.10), we have

a(r2) + a(r1) − a(r1r2) = 0.

Therefore we get ϕ ∈ Z1(R,M) = Hom(R,M). By (1.10), we have

(1.11) a(gr) = ga(r) + a(g), g ∈ F , r ∈ R.

Again by (1.10), we have

a(grg−1) = gra(g−1) + a(gr) − f(ḡ, ḡ−1)

= ga(g−1) + ga(r) + a(g) − f(ḡ, ḡ−1)

for g ∈ F , r ∈ R. Using (1.10) with g1 = g, g2 = g−1 and noting a(1) = 0, we
obtain

(1.12) ϕ(grg−1) = gϕ(r), g ∈ F , r ∈ R.

This formula shows that ϕ belongs to H1(R,M)G. Suppose that a′ is another 1-
cochain satisfying (1.10). Put ϕ′ = a′ | R, a′ = a + b. Then b ∈ Z1(F ,M). Hence
the classes of ϕ and ϕ′ in H1(R,M)G/ Im(H1(F ,M)) are the same. Suppose
that we add the coboundary of a 1-cochain c to f . Then (1.10) holds when we
replace a(g) by a(g) + c(ḡ). Then a | R does not change. Thus we have defined a
homomorphism

ω : H2(G,M) −→ H1(R,M)G/ Im
(
H1(F ,M)

)
.

We can verify without difficulty that ω is a surjective isomorphism.
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1.5
Let f ∈ Z2(G,M) be a normalized cocycle. Take a ∈ C1(F ,M) which satisfies
(1.10), and put ϕ = a | R ∈ H1(R,M)G. For every g ∈ G, we choose g̃ ∈ F such
that π(g̃) = g. The formula (1.10) can be written as

f(g1, g2) = g1a(g̃2) + a(g̃1) − a(g̃1g̃2), g1, g2 ∈ G.

By (1.11), we have

a
(
g̃1g2(g̃1g2)−1g̃1g̃2

)
= g1g2ϕ

(
(g̃1g2)−1g̃1g̃2

)
+ a(g̃1g2).

Then, using (1.12), we have

a(g̃1g̃2) = a(g̃1g2) + ϕ
(
g̃1g̃2(g̃1g2)−1

)
.

Therefore we obtain

(1.13) f(g1, g2) = g1a(g̃2) + a(g̃1) − a(g̃1g2) − ϕ
(
g̃1g̃2(g̃1g2)−1

)
, g1, g2 ∈ G.

This formula shows that, adding a coboundary to f , we may assume that

(1.14) f(g1, g2) = −ϕ
(
g̃1g̃2(g̃1g2)−1

)
.

Conversely we note the following lemma.

LEMMA 1.3

Let ϕ ∈ H1(R,M)G. For g1, g2 ∈ G, define f(g1, g2) by (1.14). Then f ∈
Z2(G,M). If 1̃ = 1, f is normalized.

Proof
The cocycle condition is

g1f(g2, g3) − f(g1g2, g3) + f(g1, g2g3) − f(g1, g2) = 0.

We have

g1ϕ
(
g̃2g̃3(g̃2g3)−1

)
− ϕ

(
g̃1g2g̃3(g̃1g2g3)−1

)
+ ϕ

(
g̃1g̃2g3(g̃1g2g3)−1

)
− ϕ

(
g̃1g̃2(g̃1g2)−1

)
= ϕ

(
g̃1g̃2g̃3(g̃2g3)−1g̃−1

1

)
+ ϕ

(
g̃1g̃2g3(g̃1g2g3)−1

)
+ ϕ

(
g̃1g2g3g̃

−1
3 (g̃1g2)−1

)
+ ϕ(g̃1g2g̃

−1
2 g̃−1

1 )

= ϕ
(
g̃1g̃2g̃3(g̃2g3)−1g̃−1

1

)
+ ϕ

(
g̃1g̃2g3g̃

−1
3 (g̃1g2)−1

)
+ ϕ(g̃1g2g̃

−1
2 g̃−1

1 )

= ϕ
(
g̃1g̃2(g̃1g2)−1

)
+ ϕ(g̃1g2g̃

−1
2 g̃−1

1 ) = 0.

Hence the cocycle condition holds. The latter assertion is obvious. This completes
the proof. �

We write the action of Hecke operators on the right-hand side of (1.9) explicitly.
Let the notation be the same as in Sections 1.3 and 1.4. Let f ∈ Z2(G,M) be
a normalized 2-cocycle of the cohomology class c. Let h be the 2-cocycle given
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by Proposition 1.2 which represents the class [GtG ](c). Clearly h is normalized.
There exists a 1-cochain b ∈ C1(F ,M) such that

h(ḡ1, ḡ2) = g1b(g2) + b(g1) − b(g1g2), g1, g2 ∈ F .

PROPOSITION 1.4

Let ϕ ∈ H1(R,M)G, and let a normalized 2-cocycle f ∈ Z2(G,M) be given by
(1.14). Suppose that gj ∈ G are given for 1 ≤ j ≤ m. For every j, we define a
permutation on d letters pj ∈ Sd by

βigjβ
−1
pj(i)

∈ G, 1 ≤ i ≤ d.

We define qj ∈ Sd inductively by

q1 = p1, qk = pkqk−1, 2 ≤ k ≤ m.

We assume that b(g̃j) = 0 for 1 ≤ j ≤ m. Then we have

b(g̃1g̃2 · · · g̃m)

=
d∑

i=1

β−1
i ϕ

(
˜βig1β

−1
q1(i)

˜βq1(i)g2β
−1
q2(i)

· · ·(1.15)

× ˜βqm−1(i)gmβ−1
qm(i)(

˜βig1g2 · · · gmβ−1
qm(i))

−1
)
.

Proof
If m = 1, the left-hand side of (1.15) is zero and the right-hand side is zero since
ϕ(1) = 0. We assume that m ≥ 2 and the formula is valid for m − 1. Then, by
Proposition 1.2 and (1.14), we have

b(g̃1g̃2 · · · g̃m−1g̃m)

= g1g2 · · · gm−1b(g̃m) + b(g̃1g̃2 · · · g̃m−1) − h(g1 · · · gm−1, gm)

=
d∑

i=1

β−1
i ϕ

(
˜βig1β

−1
q1(i)

· · · ˜βqm−2(i)gm−1β
−1
qm−1(i)

( ˜βig1g2 · · · gm−1β
−1
qm−1(i)

)−1
)

+
d∑

i=1

β−1
i ϕ

(
˜βig1g2 · · · gm−1β

−1
qm−1(i)

× ˜βqm−1(i)gmβ−1
qm(i)(

˜βig1g2 · · · gmβ−1
qm(i))

−1
)

=
d∑

i=1

β−1
i ϕ

(
˜βig1β

−1
q1(i)

· · · ˜βqm−1(i)gmβ−1
qm(i)(

˜βig1g2 · · · gmβ−1
qm(i))

−1
)

since b(g̃m) = 0. This completes the proof. �
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We have

b(g1g2) = g1b(g2) + b(g1) − h(ḡ1, ḡ2), g1, g2 ∈ F .

We may take b(g) = 0 for a fixed set of generators of F , and we can apply the
above formula to determine the value of b(g) according to the length of g ∈ F .
But Proposition 1.5 is useful beyond this case, as will be seen after Section 5.

2. Hilbert modular forms

2.1
In this subsection, we follow the exposition given in Shimura [Sh3]. Let F be a
totally real algebraic number field of degree n. Let dF denote the difference of F

over Q, and let {σ1, σ2, . . . , σn} be the set of all isomorphisms of F into R. For
ξ ∈ F , we put ξ(ν) = ξσν . For z = (z1, z2, . . . , zn) ∈ Hn, we put

eF (ξz) = exp
(
2πi

n∑
ν=1

ξ(ν)zν

)
.

Let k = (k1, k2, . . . , kn) ∈ Zn. For g =
(

a b
c d

)
∈ GL(2,R)+ and z ∈ H, we put gz =

(az + b)/(cz + d), j(g, z) = cz + d, where GL(2,R)+ = {g ∈ GL(2,R) | detg > 0};
GL(2,R)n

+ acts on Hn. For a function Ω on Hn, g = (g1, . . . , gn) ∈ GL(2,R)n
+ and

z = (z1, . . . , zn) ∈ Hn, we define a function Ω|kg on Hn by the formula

(Ω|kg)(z) =
n∏

ν=1

det(gν)kν/2j(gν , zν)−kν Ω(gz).

We embed GL(2, F ) into GL(2,R)n by

GL(2, F ) �
(

a b

c d

)
�→

((
a(1) b(1)

c(1) d(1)

)
, . . . ,

(
a(n) b(n)

c(n) d(n)

))
∈ GL(2,R)n.

Let Γ be a congruence subgroup of SL(2, OF ). A holomorphic function Ω on
Hn is called a Hilbert modular form of weight k with respect to Γ if

Ω|kγ = Ω

holds for every γ ∈ Γ, and the usual conditions hold at cusps when F = Q.
For every g ∈ SL(2, F ), Ω|kg has a Fourier expansion of the form (Ω|kg)(z) =∑

ξ∈L ag(ξ)eF (ξz), where L is a lattice in F . We have ag(ξ) = 0 if ξ 
= 0 is not
totally positive. We call Ω a cusp form if the constant term ag(0) vanishes for
every g ∈ SL(2, F ). We denote the space of Hilbert modular forms (resp., cusp
forms) of weight k with respect to Γ by Mk(Γ) = Mk1,k2,...,kn(Γ) (resp., Sk(Γ) =
Sk1,k2,...,kn(Γ)).

Hereafter until the end of this subsection, we assume that Γ = SL(2, OF ) and
0 
= Ω ∈ Sk(Γ). The Fourier expansion of Ω takes the form

(2.1) Ω(z) =
∑

0�ξ∈d
−1
F

a(ξ)eF (ξz).
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Since
(

u 0
0 u−1

)
∈ Γ for u ∈ EF , we have

uk
∑

0�ξ∈d
−1
F

a(ξ)eF (ξu2z) =
∑

0�ξ∈d
−1
F

a(ξ)eF (ξz),

where we put uk =
∏n

ν=1(u
(ν))kν . Therefore we have

(2.2) a(u2ξ) = uka(ξ), u ∈ EF .

In particular, taking u = −1, we have

(2.3)
n∑

ν=1

kν ≡ 0 mod 2.

For the sake of simplicity, we assume that

(A) uk > 0 for every u ∈ EF .

Put

k0 = max(k1, k2, . . . , kn), k′
ν = k0 − kν , k′ = (k′

1, k
′
2, . . . , k

′
n).

We define the L-function of Ω by

(2.4) L(s,Ω) =
∑
ξE2

F

a(ξ)ξk′/2N(ξ)−s, ξk′/2 =
n∏

ν=1

(ξ(ν))k′
ν/2.

Here the summation extends over all cosets ξE2
F with ξ satisfying 0 � ξ ∈ d

−1
F .

By (2.2) and (A), we see that the sum is well defined. The series (2.4) converges
when �(s) is sufficiently large. We put

(2.5) R(s,Ω) = (2π)−ns
n∏

ν=1

Γ
(
s − k′

ν

2

)
L(s,Ω).

By the standard calculation, we obtain the integral representation

(2.6)
∫
Rn

+/E2
F

Ω(iy1, iy2, . . . , iyn)
n∏

ν=1

y
s−k′

ν/2−1
ν dyν = (2π)

∑n
ν=1 k′

ν/2R(s,Ω)

when �(s) is sufficiently large. By a suitable transformation of this integral,
we can show that R(s,Ω) is an entire function of s and satisfies the functional
equation

(2.7) R(s,Ω) = (−1)
∑n

ν=1 kν/2R(k0 − s,Ω).

2.2
In [Y3, Chapter V, Section 5], we gave an explicit method to attach a cohomology
class to a Hilbert modular form. We will review it in this subsection. For 0 ≤ l ∈ Z
and

[
u
v

]
∈ C2, put [

u

v

]l

= t(ulul−1v · · · uvl−1vl).
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Define a representation ρl : GL(2,C) −→ GL(l + 1,C) by

ρl(g)
[
u

v

]l

=
(

g

[
u

v

])l

.

Let Γ be a congruence subgroup of SL(2, OF ). Let l1, l2, . . . , ln be nonnegative
integers. Let V be the representation space of ρl1 ⊗ ρl2 ⊗ · · · ⊗ ρln . Let Ω ∈
Ml1+2,l2+2,...,ln+2(Γ) be a Hilbert modular form of weight (l1+2, l2+2, . . . , ln+2).
Define a holomorphic V -valued n-form d(Ω) on Hn by

(2.8) d(Ω) = Ω(z)
[
z1

1

]l1

⊗
[
z2

1

]l2

⊗ · · · ⊗
[
zn

1

]ln

dz1 dz2 · · · dzn.

We put ρ = ρl1 ⊗ ρl2 ⊗ · · · ⊗ ρln .
Let g = (g1, . . . , gn) ∈ GL(2,R)n

+. Under the action of g on Hn, d(Ω) trans-
forms to d(Ω) ◦ g, where

d(Ω) ◦ g = Ω
(
g(z)

)[
g1z1

1

]l1

⊗ · · · ⊗
[
gnzn

1

]ln

(dz1 ◦ g1) · · · (dzn ◦ gn).

By an easy calculation, we obtain

(2.9a) d(Ω) ◦ g =
n∏

ν=1

(detgν)−lν/2ρ(g)d(Ω|kg), g ∈ GL(2,R)n
+ ∩ GL(2, F ).

In particular, we have

(2.9b) d(Ω) ◦ γ = ρ(γ)d(Ω), γ ∈ Γ.

We discuss the case n = 2 in detail. Take w = (w1,w2) ∈ H2. For z = (z1,

z2) ∈ H2, we put

(2.10) F (z) =
∫ z1

w1

∫ z2

w2

d(Ω),

a period integral of Eichler–Shimura type. Let H denote the vector space of all
V -valued holomorphic functions on H2. For ϕ ∈ H and γ ∈ Γ, we define a function
γϕ on H2 by

(2.11) (γϕ)(z) = ρ(γ)ϕ(γ−1z).

Then H becomes a left Γ-module. Since

∂

∂z1

∂

∂z2
(γF − F ) = 0,

we can write

γF − F = g(γ; z1) + h(γ; z2),

where g(γ; z1) ∈ H (resp., h(γ; z2) ∈ H) is a function which depends only on z1

(resp., z2) (cf. [Y3, Lemma 5.1, p. 208]). We regard g and h as 1-cochains in
C1(Γ, H). Then clearly we have (d1 in Section 1.1 is abbreviated to d)

dg(γ1, γ2; z1) + dh(γ1, γ2; z2) = 0.
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Put

f(Ω)(γ1, γ2) = dg(γ1, γ2; z1).

We abbreviate f(Ω) to f . We see that f(γ1, γ2) ∈ V is a constant. Furthermore,
in H, f is a coboundary. Hence f satisfies the cocycle condition

(2.12) γ1f(γ2, γ3) − f(γ1γ2, γ3) + f(γ1, γ2γ3) − f(γ1, γ2) = 0.

The 2-cocycle f determines a cohomology class in H2(Γ, V ).
Let us give an explicit formula for f . For x ∈ F , let x′ denote the conjugate

of x over Q. For γ =
(

a b
c d

)
∈ Γ, let γ′ =

(
a′ b′

c′ d′

)
. We regard γ, γ′ ∈ SL(2,R). Then,

for γ ∈ Γ, we have

F
(
γ(z)

)
= F (γz1, γ

′z2) =
∫ γz1

w1

∫ γ′z2

w2

d(Ω)

=
∫ γz1

γw1

∫ γ′z2

γ′w2

d(Ω) +
∫ γz1

γw1

∫ γ′w2

w2

d(Ω) +
∫ γw1

w1

∫ γ′z2

w2

d(Ω)

=
(
ρl1(γ) ⊗ ρl2(γ

′)
)
F (z) +

∫ γz1

γw1

∫ γ′w2

w2

d(Ω) +
∫ γw1

w1

∫ γ′z2

w2

d(Ω).

Substituting z for γ−1z in this formula, we get

(2.13)
(
ρl1(γ) ⊗ρl2(γ

′)
)
F (γ−1z) −F (z) = −

∫ z1

γw1

∫ γ′w2

w2

d(Ω) −
∫ γw1

w1

∫ z2

w2

d(Ω).

We may take

g(γ; z1) = −
∫ z1

γw1

∫ γ′w2

w2

d(Ω),(2.14)

h(γ; z2) = −
∫ γw1

w1

∫ z2

w2

d(Ω).(2.15)

For γ1, γ2 ∈ Γ, we have

f(γ1, γ2) = (γ1g)(γ2; z1) − g(γ1γ2; z1) + g(γ1; z1),(2.16)

f(γ1, γ2) = −
{
(γ1h)(γ2; z2) − h(γ1γ2; z2) + h(γ1; z2)

}
.(2.17)

By (2.14) and (2.16), we have

f(γ1, γ2) =
(
ρl1(γ1) ⊗ ρl2(γ

′
1)

)
g(γ2;γ−1

1 z1) − g(γ1γ2; z1) + g(γ1; z1)

= −
(
ρl1(γ1) ⊗ ρl2(γ

′
1)

)∫ γ−1
1 z1

γ2w1

∫ γ′
2w2

w2

d(Ω)

+
∫ z1

γ1γ2w1

∫ γ′
1γ′

2w2

w2

d(Ω) −
∫ z1

γ1w1

∫ γ′
1w2

w2

d(Ω)

= −
∫ z1

γ1γ2w1

∫ γ′
1γ′

2w2

γ′
1w2

d(Ω) +
∫ z1

γ1γ2w1

∫ γ′
1γ′

2w2

w2

d(Ω) −
∫ z1

γ1w1

∫ γ′
1w2

w2

d(Ω)
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=
∫ z1

γ1γ2w1

∫ γ′
1w2

w2

d(Ω) −
∫ z1

γ1w1

∫ γ′
1w2

w2

d(Ω)

=
∫ γ1w1

γ1γ2w1

∫ γ′
1w2

w2

d(Ω)

using (2.9b). Thus we obtain an explicit formula

(2.18) f(γ1, γ2) =
∫ γ1w1

γ1γ2w1

∫ γ′
1w2

w2

d(Ω).

By (2.9b), (2.18) can be written as

(2.19) f(γ1, γ2) =
(
ρl1(γ1) ⊗ ρl2(γ

′
1)

)∫ w1

γ2w1

∫ w2

γ′ −1
1 w2

d(Ω).

Suppose that w1 is replaced by w∗
1 , w2 remaining the same. Then g(γ; z1)

changes to g(γ, z1) + a(γ), where

a(γ) =
∫ γw∗

1

γw1

∫ γ′w2

w2

d(Ω).

Hence f(γ1, γ2) changes to f(γ1, γ2) + γ1a(γ2) − a(γ1γ2) + a(γ1). Suppose that
w2 is replaced by w∗

2 , w1 remaining the same. Then h(γ; z2) changes to h(γ, z2)+
b(γ), where

b(γ) =
∫ γw1

w1

∫ w∗
2

w2

d(Ω).

By (2.17), f(γ1, γ2) changes to f(γ1, γ2) − γ1b(γ2)+b(γ1γ2) − b(γ1). Therefore the
cohomology class of f does not depend on the choice of the “base points” w1, w2.

Put Γ = Γ/({ ±12} ∩ Γ). By (2.18), we see that f can be regarded as a 2-
cocycle of Γ taking values in V . Depending on the context, we consider f as a
2-cocycle on Γ. We see that the cocycle f is normalized; that is,

(2.20) f(1, γ) = f(γ,1) = 0 for every γ ∈ Γ.

Now assume that Ω is a cusp form. Then the cocycle f = f(Ω) satisfies
the “parabolic condition.” Namely, let q ∈ Γ be a parabolic element, and let
w∗ = (w∗

1 ,w∗
2) be the fixed point of q′. Since Ω is a cusp form, we may replace

w2 by w∗
2 .† Let f ∗ be the cocycle obtained from (w1,w

∗
2). We have

f ∗(γ1, γ2) = f(γ1, γ2) − γ1b(γ2) + b(γ1γ2) − b(γ1)

with a 1-cochain b and f ∗(q, γ) = 0. Therefore

f(q, γ) = qb(γ) − b(qγ) + b(q), γ ∈ Γ;

†For every g ∈ SL(2, F ), we have the Fourier expansion (Ω|kg)(z) =
∑

0�ξ∈L ag(ξ)eF (ξz)

where L is a lattice in F . We have the estimate |ag(ξ)| ≤ Mξk1/2ξ′k2/2 with a positive constant

M depending on Ω and g (cf. [Sh7, Proposition A6.4, p. 280]). Using this estimate, it is not
difficult to check the absolute convergence of the integral (2.10) defining F (z) when w2 is

replaced by w∗
2 .
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that is, f(q, γ) is of the form of a coboundary whenever q is parabolic. A similar
argument applies to f(γ, q).

2.3
We investigate closely the relation between the critical values of the L-function
L(s,Ω) and the cocycle f(Ω). Until the end of this subsection, we assume Γ =
SL(2, OF ). Let ε be the fundamental unit of F . We put

σ =
(

0 1
−1 0

)
, μ =

(
ε 0
0 ε−1

)
.

We regard σ and μ as elements of Γ. Taking γ1 = γ2 = γ3 = σ in (2.12), we obtain

(2.21) σf(σ,σ) = f(σ,σ)

in view of (2.20). As the base points, we choose

w1 = iε−1, w2 = i∞.

By (2.18), we get

(2.22) f(σ,μ) = f(σ,σ) = −
∫ iε

iε−1

∫ i∞

0

d(Ω).

Put

P =
{(

u v

0 u−1

) ∣∣∣∣ u ∈ EF , v ∈ OF

}
⊂ Γ.

By (2.18), we get

(2.23) f(p, γ) = 0 for every p ∈ P,γ ∈ Γ

since we have pw2 = w2 for p ∈ P . Taking γ1 = p ∈ P in (2.12), we obtain

(2.24) f(pγ1, γ2) = pf(γ1, γ2) for every p ∈ P,γ1, γ2 ∈ Γ.

This is the parabolic condition for Γ = SL(2, OF ) and will play a crucial role in
the succeeding sections.

For 0 ≤ s ≤ l1, 0 ≤ t ≤ l2, we put

(2.25) Ps,t =
∫ iε

iε−1

∫ i∞

0

Ω(z)zs
1z

t
2 dz1 dz2.

The components of f(σ,σ) are given by −Ps,t. The condition σf(σ,σ) = f(σ,σ)
is equivalent to

(2.26) Ps,t = (−1)l1+l2−s−tPl1−s,l2−t.

Put k1 = l1 + 2, k2 = l2 + 2. By (2.3), we have

(2.27) l1 ≡ l2 mod 2.

We assume that l1 ≥ l2. Then we have

k0 = k1, k′
1 = 0, k′

2 = k1 − k2.
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Since E2
F = 〈ε2〉, a fundamental domain of R2

+/E2
F is given by [ε−1, ε] × R+. By

(2.6), we obtain

(2.28)
∫ ε

ε−1

∫ ∞

0

Ω(iy1, iy2)ys−1
1 y

s−(k1−k2)/2−1
2 dy1 dy2 = (2π)(k1−k2)/2R(s,Ω)

when �(s) is sufficiently large. We can verify that the integral converges locally
uniformly for s ∈ C. Take m ∈ Z, and put s = m, t = m − (k1 − k2)/2. Then
0 ≤ s ≤ l1, 0 ≤ t ≤ l2 hold if and only if

(2.29)
k1 − k2

2
≤ m ≤ k1 + k2

2
− 2.

For an integer m in this range, we have

Pm,m−(k1−k2)/2 =
∫ iε

iε−1

∫ i∞

0

Ω(z)zm
1 z

m−(k1−k2)/2
2 dz1 dz2

= i2m−(k1−k2)/2+2

∫ ε

ε−1

∫ ∞

0

Ω(iy1, iy2)ym
1 y

m−(k1−k2)/2
2 dy1 dy2.

Therefore we obtain

(2.30) Pm,m−(k1−k2)/2 = (−1)m+1i−(k1−k2)/2(2π)(k1−k2)/2R(m + 1,Ω)

by (2.28). By the functional equation (2.7), this is equal to

(−1)m+1i−(k1−k2)/2(2π)(k1−k2)/2(−1)(k1+k2)/2R(k1 − m − 1,Ω).

Since k1 − m − 2 satisfies (2.29), we obtain

(2.31) Pm,m−(k1−k2)/2 = (−1)(k1−k2)/2Pk1−m−2,(k1+k2)/2−m−2

using (2.30). We see that (2.31) is consistent with (2.26). Note that (2.29) is the
condition for L(m + 1,Ω) to be a critical value (cf. [Sh3, (4.14)]).

2.4
Let Ω ∈ Mk(Γ), and let f = f(Ω) ∈ Z2(Γ, V ) be the 2-cocycle attached to Ω
defined by (2.18). In this subsection, we will write the action of Hecke operators
on the cohomology class of f(Ω) explicitly. We denote f(Ω) also by fΩ.

Let F be a totally real number field of degree n, and let Γ be a congruence
subgroup of SL(2, OF ). Let � be a totally positive element of F , and let

(2.32) Γ
(

1 0
0 �

)
Γ =

d⊔
i=1

Γβi

be a coset decomposition. Let Ω ∈ Mk(Γ). We define the Hecke operator T (�)
by

(2.33) Ω | T (�) = N(�)k0/2−1
d∑

i=1

Ω|kβi.

Clearly T (�) does not depend on the choice of the coset decomposition (2.32).
We have Ω | T (�) ∈ Mk(Γ); it is a cusp form if Ω is. By (2.9a), we have
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(2.34) d
(
Ω | T (�)

)
=

n∏
ν=1

(�(ν)(k0+kν)/2−2
d∑

i=1

ρ(βi)−1
(
d(Ω) ◦ βi

)
.

Put

(2.35) c =
n∏

ν=1

(�(ν))(k0+kν)/2−2.

Until the end of this subsection, we assume that n = 2. We define (cf. (2.10))

(2.36) FΩ|T (�)(z) =
∫ z1

w1

∫ z2

w2

d
(
Ω | T (�)

)
, z = (z1, z2).

By the procedure given in Section 2.2, we can calculate the 2-cocycle attached to
Ω | T (�). We omit the details (cf. [Y4]). The result is as follows. For γ1, γ2 ∈ Γ,
we put

(2.37) βiγ1 = δ
(1)
i βj(i), δ

(1)
i ∈ Γ, βiγ2 = δ

(2)
i βk(i), δ

(2)
i ∈ Γ, 1 ≤ i ≤ d.

Then, modulo coboundary, we have

(2.38) fΩ|T (�)(γ1, γ2) = c
d∑

i=1

β−1
i fΩ(βiγ1β

−1
j(i), βj(i)γ2β

−1
k(j(i))).

This formula is consistent with Proposition 1.2.

2.5
Assume that the class number of F in the narrow sense is 1. Suppose that Ω
is a Hecke eigenform. Then the L-function L(s,Ω) defined by (2.4) essentially
coincides with the Euler product given in [Sh3] or in Jacquet and Langlands [JL],
but there is a subtle difference; we explain it briefly for the reader’s convenience.

We write dF = (δ) with δ � 0. Let Ω ∈ Sk1,k2(Γ), Γ = SL(2, OF ), and let

Ω(z) =
∑

0�α∈OF

c(α)eF

(α

δ
z
)

be the Fourier expansion. We have a(α/δ) = c(α) (cf. (2.1)). We set

Δ =
{
α ∈ M(2, OF )

∣∣ detα � 0
}
.

Let m be an integral ideal of F , and take m � 0 so that m = (m). Then we define

T (m) =
∑

α∈Δ,detα=m

ΓαΓ,

which is an element of the abstract Hecke ring H(Γ,Δ) (cf. [Sh5, p. 54]). Let
T (m) =

⊔e
i=1 Γβi be a coset decomposition. Assume that k1 ≥ k2. We define the

action of T (m) on Ω by

Ω | T (m) = N(m)k1/2−1
e∑

i=1

Ω|kβi.

Then Ω | T (m) ∈ Sk(Γ); we can verify easily that it does not depend on the choices
of m and βi.
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Assume that Ω is a nonzero common eigenfunction for all Hecke operators
T (m). We put

Ω | T (m) = λ(m)Ω.

We assume that Ω is normalized so that c(1) = 1. Then calculating similarly to
[Sh5, pp. 79–80], we have†

λ(m) = c(m)(m(2))(k1−k2)/2.

Then we obtain

(2.39) L(s,Ω) = (δ(2))(k1−k2)/2Ds
F

∏
p

(
1 − λ(p)N(p)−s + N(p)k1−1−2s

)−1
.

Here p extends over all prime ideals of F , and DF = N(δ) is the discriminant of F .
When 0 � � ∈ OF generates a prime ideal p, we denote T (�) defined by

(2.33) also by T (p).

3. Cohomology of P

In this section, we will study cohomology groups of P . Main results are The-
orems 3.7 and 3.9, which give the vanishing of H1(P,V ) and H2(P,V ) when
l1 
= l2. Hereafter in this paper, we assume that [F : Q] = 2. We also assume
l1 ≡ l2 mod 2 and l2 ≤ l1.

3.1
Put Γ = PSL(2, OF ). In this section, we define subgroups P and U of Γ by

P =
{(

t 0
u t−1

) ∣∣∣∣ t ∈ EF , u ∈ OF

}
/{±12},

U =
{(

±1 0
u ±1

) ∣∣∣∣ u ∈ OF

}
/{±12}.

We write OF = Z + Zω. Let ε be the fundamental unit of F , and let

ε2 = A + Bω, ε2ω = C + Dω.

Then we see that ε2 is an eigenvalue of
(

A B
C D

)
and that

(
A B
C D

)
∈ SL(2,Z). We

put

u1 =
(

1 0
1 1

)
, u2 =

(
1 0
ω 1

)
∈ U, t =

(
ε−1 0
0 ε

)
.

We have

(3.1) tu1t
−1 = uA

1 uB
2 , tu2t

−1 = uC
1 uD

2 .

We put

(3.2) Z =
{
(U1,U2) ∈ V × V

∣∣ (u1 − 1)U2 = (u2 − 1)U1

}
.

†Correction to [Y4]: In [Y4, (2.46)], (m(2))(k1−k2) should read (m(2))(k1−k2)/2.
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It is easy to see that by the mapping

Z1(U,V ) � f −→
(
f(u1), f(u2)

)
∈ Z,

we have an isomorphism Z1(U,V ) ∼= Z . Put

(3.3) B =
{(

(u1 − 1)b, (u2 − 1)b
) ∣∣ b ∈ V

}
.

Then we have B1(U,V ) ∼= B ⊂ Z .
We have V = V1 ⊗ V2, V1 = Cl1+1, V2 = Cl2+1. Let {e1,e2, . . . ,el1+1} (resp.,

{e′
1,e

′
2, . . . ,e

′
l2+1}) be the standard basis of V1 (resp., V2). The following four

lemmas deal with linear algebra. The proofs are not difficult and can be found
in [Y4]. We omit them.

LEMMA 3.1

We have dimV U = 1, and V U is spanned by el1+1 ⊗ e′
l2+1.

LEMMA 3.2

Let g =
((

1 0
c1 1

)
,
(

1 0
c2 1

))
∈ SL(2,C)2. We assume that c1 
= 0, c2 
= 0. Then the

dimension of the subspace of V consisting of all vectors fixed by g is l2 +1. (Note
that we have assumed l1 ≥ l2.)

LEMMA 3.3

Let u =
(

1 0
c 1

)
, 0 
= c ∈ F . Then we have

ei ⊗ e′
j ∈ Im(u − 1) for 1 ≤ j ≤ l2 + 1 if i ≥ l2 + 3 − j.

Here Im(u − 1) denotes the image of the linear mapping V � v �→ (ρ(u) −
ρ(1))v ∈ V .

LEMMA 3.4

We have

Im(u1 − 1) + Im(u2 − 1) =
(l2+1⊕

j=2

C(e1 ⊗ e′
j)

)
⊕

(l1+1⊕
i=2

l2+1⊕
j=1

C(ei ⊗ e′
j)

)
.

In particular, dim(Im(u1 − 1) + Im(u2 − 1)) = dimV − 1.

By Lemma 3.1, we have

(3.4) dim B = dimV − 1.

Consider the surjective linear mapping

Z � (U1,U2) �→ (u2 − 1)U1 ∈ Im(u1 − 1) ∩ Im(u2 − 1).

The kernel of this mapping consists of (U1,U2) such that U1 ∈ Ker(u2 − 1), U2 ∈
Ker(u1 − 1). Hence by Lemma 3.2, we have

(3.5) dim Z = dim
(
Im(u1 − 1) ∩ Im(u2 − 1)

)
+ 2l2 + 2.
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By (3.4) and (3.5), we obtain

(3.6) dimH1(U,V ) = dim
(
Im(u1 − 1) ∩ Im(u2 − 1)

)
+ 2l2 + 3 − dimV.

LEMMA 3.5

We have dimH1(U,V ) = 2.

Proof
We have

dim
(
Im(u1 − 1) ∩ Im(u2 − 1)

)
= dim

(
Im(u1 − 1)

)
+ dim

(
Im(u2 − 1)

)
− dim

(
Im(u1 − 1) + Im(u2 − 1)

)
.

By Lemma 3.2, we have dim(Im(ui − 1)) = dimV − (l2 + 1), i = 1, 2. Then by
Lemma 3.4, we get

dim
(
Im(u1 − 1) ∩ Im(u2 − 1)

)
= dimV − 2l2 − 1.

The assertion follows from (3.6). �

3.2
In this subsection, we will prove the following two theorems.

THEOREM 3.6

The eigenvalues of the action of t on H1(U,V ) are εl1+2(ε′)−l2 and ε−l1−2(ε′)l2 .
In particular, H1(U,V )P/U = 0.

THEOREM 3.7

We have

dimH1(P,V ) =

{
0 if l1 
= l2 or N(ε)l1 = −1,

1 if l1 = l2 and N(ε)l1 = 1.

Here N(ε) denotes the norm of ε.

Taking G = P , N = U , M = V in (1.7), we obtain the exact sequence

0 −−−−→ H1(P/U,V U ) −−−−→ H1(P,V ) −−−−→ H1(U,V )P/U −−−−→ 0,

since P/U ∼= Z. Therefore Theorem 3.7 follows immediately from Theorem 3.6,
since dimH1(P/U,V U ) is easily seen to be equal to zero (resp., 1) if l1 
= l2 or
N(ε)l1 = −1 (resp., if l1 = l2 and N(ε)l1 = 1), in view of Lemma 3.1.

Proof of Theorem 3.6
First we recall the following fact on the action of t on Hq(U,V ) (cf. (1.3)). Let
f ∈ Zq(U,V ), and let f̄ ∈ Hq(U,V ) be the cohomology class represented by f . Put

g(n1, n2, . . . , nq) = t−1f(tn1t
−1, tn2t

−1, . . . , tnqt
−1), ni ∈ U,1 ≤ i ≤ q.

Then g ∈ Zq(U,V ) and f̄ �→ ḡ is the action of t.
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As in Lemma 3.4, let

W = Im(u1 − 1) + Im(u2 − 1) =
(l2+1⊕

j=2

C(e1 ⊗ e′
j)

)
⊕

(l1+1⊕
i=2

l2+1⊕
j=1

C(ei ⊗ e′
j)

)
.

We have

V = C(e1 ⊗ e′
1) ⊕ W.

We may assume that l1 > 0 since our assertion is clearly true if l1 = l2 = 0.
Put t1 = e1 ⊗ e′

l2+1. Let us show that for

t2 = ω(e1 ⊗ e′
l2+1) +

l1+1∑
i=2

xi(ei ⊗ e′
l2+1)

with suitably chosen xi ∈ C, we have

(3.7) (u2 − 1)t1 = (u1 − 1)t2.

To this end, for i ≥ 1, put

Wi =
l1+1⊕
k=i

C(ek ⊗ e′
l2+1).

We have

(u2 − 1)(e1 ⊗ e′
l2+1) = (ωe2 + ω2e3 + · · · ) ⊗ e′

l2+1,

(u1 − 1)(ei ⊗ e′
l2+1) =

(
iei+1 +

(
i + 1
i − 1

)
ei+2 + · · ·

)
⊗ e′

l2+1.

We see that

(u2 − 1)t1 ≡ (u1 − 1)t2 mod W3.

For x2 = (ω2 − ω)/2, we have

(u2 − 1)t1 ≡ (u1 − 1)t2 mod W4.

In this way, we can determine xi successively so that (3.7) holds. Let f1 ∈
Z1(U,V ) be the 1-cocycle which corresponds to the point (t1, t2) ∈ Z .

Put t3 = el1+1 ⊗ e′
1. Similarly to the above, we can show that for

t4 = ω′(el1+1 ⊗ e′
1) +

l2+1∑
j=2

yj(el1+1 ⊗ e′
j),

the relation

(3.8) (u2 − 1)t3 = (u1 − 1)t4

holds when yj are suitably chosen. Let f2 ∈ Z1(U,V ) be the 1-cocycle which
corresponds to the point (t3, t4) ∈ Z .

Let f̄i be the class of fi in H1(U,V ), i = 1, 2. Let us show that {f̄1, f̄2} gives
a basis of H1(U,V ). To this end, assume that αf1 +βf2 ∈ B1(U,V ) for α, β ∈ C.
Then there exists b ∈ V such that the following hold:
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(i) αt1 + βt3 = (u1 − 1)b,
(ii) αt2 + βt4 = (u2 − 1)b.

Put

b =
l1+1∑
i=1

l2+1∑
j=1

xij(ei ⊗ e′
j).

On the left-hand side of (i), the coefficient of the tensor e1 ⊗ e′
l2+1 is α and the

coefficients of e1 ⊗ e′
j are 0 for 1 ≤ j ≤ l2. We have

(u1 − 1)(e1 ⊗ e′
j) = j(e1 ⊗ e′

j+1) +
l2+1∑

l=j+2

zl(e1 ⊗ e′
l) + A,

where zl ∈ Z and A is a term which does not contain e1 ⊗ e′
l. Therefore we have

x11 = · · · = x1l2−1 = 0. By comparing the coefficients of the tensor e1 ⊗ e′
l2+1 on

both sides of (i), we obtain

α = l2x1l2 .

By comparing the coefficients of the tensor e1 ⊗ e′
l2+1 on both sides of (ii), we get

αω = l2ω
′x1l2 .

Hence we obtain x1l2 = 0, α = 0. Similarly, by comparing the coefficients of the
tensor el1+1 ⊗ e′

1 for both sides of (i) and (ii), we obtain β = 0.
Let f ′

1 be the image of f1 under the action of t, and let (U ′
1,U

′
2) ∈ Z be the

point corresponding to f ′
1. Then we have

U ′
1 = f ′

1(u1) = t−1f1(tu1t
−1) = t−1f1(uA

1 uB
2 ) = t−1[uA

1 f1(uB
2 ) + f1(uA

1 )],

U ′
2 = f ′

1(u2) = t−1f1(tu2t
−1) = t−1f1(uC

1 uD
2 ) = t−1[uC

1 f1(uD
2 ) + f1(uC

1 )].

For i = 1, 2, we have f1(ui) = ti and

f1(un
i ) = (1 + ui + · · · + un−1

i )ti if n > 0,(3.9)

f1(u−n
i ) = −(u−1

i + · · · + u−n
i )ti if n > 0.(3.10)

From these formulas, we see easily that the coefficient of e1 ⊗ e′
l2+1 in tU ′

1 is A+
Bω. Hence the coefficient of e1 ⊗ e′

l2+1 in U ′
1 is εl1(ε′)−l2(A+Bω) = εl1+2(ε′)−l2 .

Similarly we see that the coefficient of e1 ⊗ e′
l2+1 in U ′

2 is ωεl1+2(ε′)−l2 .
Now let

f ′
1 ≡ γf1 + δf2 mod B1(U,V )

with γ, δ ∈ C. Then there exists c ∈ V such that

(iii) γt1 + δt3 − U ′
1 = (u1 − 1)c,

(iv) γt2 + δt4 − U ′
2 = (u2 − 1)c.

Put c =
∑l1+1

i=1

∑l2+1
j=1 yij(ei ⊗ e′

j). Comparing the coefficients of e1 ⊗ e′
l2+1 on

both sides of (iii), we obtain

γ − εl1+2(ε′)−l2 = l2y1l2 .
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Comparing the coefficients of e1 ⊗ e′
l2+1 on both sides of (iv), we obtain(

γ − εl1+2(ε′)−l2
)
ω = l2y1l2ω

′.

From these two formulas, we obtain y1l2 = 0, γ = εl1+2(ε′)−l2 . Similarly, compar-
ing the coefficients of el1+1 ⊗ e′

1 on both sides of (iii) and (iv), we obtain δ = 0.
Thus we have shown

(3.11) f ′
1 ≡ εl1+2(ε′)−l2f1 mod B1(U,V ).

Next let f ′
2 be the image of f2 under the action of t, and let (U ′

3,U
′
4) be the

point of Z corresponding to f ′
2. Here U ′

3 = f ′
2(u1), U ′

4 = f ′
2(u2). Then we have

U ′
3 = f ′

2(u1) = t−1f2(tu1t
−1) = t−1f2(uA

1 uB
2 ) = t−1[uA

1 f2(uB
2 ) + f2(uA

1 )],

U ′
4 = f ′

2(u2) = t−1f2(tu2t
−1) = t−1f2(uC

1 uD
2 ) = t−1[uC

1 f2(uD
2 ) + f2(uC

1 )].

The coefficient of el1+1 ⊗ e′
1 in tU ′

3 is A+Bω′ = ε−2. The coefficient of el1+1 ⊗ e′
1

in tU ′
4 is C + Dω′ = ε−2ω′. By an argument similar to the above, we obtain

(3.12) f ′
2 ≡ ε−l1−2(ε′)l2f2 mod B1(U,V ).

This completes the proof of Theorem 3.6. �

3.3
In this subsection, we will prove the following two theorems.

THEOREM 3.8

We have dimH2(U,V ) = 1, and t acts on it as the multiplication by εl1(ε′)l2 .

THEOREM 3.9

We have H2(P,V ) = 0 except for the case when l1 = l2 and N(ε)l1 = 1. If l1 = l2
and N(ε)l1 = 1, then we have dimH2(P,V ) = 1.

First we will prove the part of Theorem 3.8 concerning the dimension.

LEMMA 3.10

We have dimH2(U,V ) = 1.

Proof
Let U1 be the subgroup of U generated by u1. We have the exact sequence

(3.13) 0 −−−−→ U1 −−−−→ U −−−−→ U2 −−−−→ 0

and the associated spectral sequence (cf. (1.6))

(3.14) Ep,q
2 = Hp

(
U2,H

q(U1, V )
)

=⇒ Hn(U,V ).

Let En = Hn(U,V ), and let {F i} denote the filtration on En induced by (3.14).
We have F p(En)/F p+1(En) ∼= Ep,n−p

∞ . Since U2
∼= Z, we have E2,q

2 = E2,q
∞ = 0.
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Since F 3(E2) = 0, we get F 2(E2) = 0. Since U1
∼= Z, we have Ep,2

2 = Ep,2
∞ = 0.

Hence we get E2/F 1(E2) = 0. We have F 1(E2)/F 2(E2) ∼= E1,1
∞ . Therefore it is

sufficient to show that dimE1,1
∞ = 1.

We consider

E1,1
2 = H1

(
U2,H

1(U1, V )
)
.

The map Z1(U1, V ) � f �→ f(u1) ∈ V induces the isomorphism

(3.15) H1(U1, V ) ∼= V/ Im(u1 − 1).

The action of u ∈ U2 on the right-hand side of (3.15) is given by

V/ Im(u1 − 1) � v mod Im(u1 − 1) −→ u−1v mod Im(u1 − 1) ∈ V/ Im(u1 − 1).

Since ū2 = u2 mod U1 is a generator of U2, we have

H1
(
U2,H

1(U1, V )
) ∼=

(
V/ Im(u1 − 1)

)
/ Im(ū2 − 1) ∼= V/

(
Im(u1 − 1)+Im(u2 − 1)

)
.

By Lemma 3.4, we obtain

dimH1
(
U2,H

1(U1, V )
)

= dimE1,1
2 = 1.

Since E3,0
2 = 0, we have E1,1

∞ = E1,1
2 . This completes the proof. �

Proof of Theorem 3.8
We set τ = u1, η = u2. Let F be the free group on two free generators τ̃ and η̃,
and let π : F −→ U be the surjective homomorphism such that

π(τ̃) = τ, π(η̃) = η.

Let R be the kernel of π. For a, b ∈ F , let [a, b] = aba−1b−1 be the commutator
of a and b. We see easily that

R = 〈x[τ̃ , η̃ ]x−1 | x ∈ F 〉, R = [F , F ].

We have the isomorphism (cf. (1.9))

(3.16) H2(U,V ) ∼= H1(R,V )U/ Im
(
H1(F , V )

)
.

We have

(3.17) H1(R,V )U =
{
ϕ ∈ Hom(R,V )

∣∣ ϕ(grg−1) = gϕ(r), g ∈ F , r ∈ R
}
.

Hence ϕ ∈ H1(R,V )U is completely determined by ϕ([τ̃ , η̃ ]). For b ∈ H1(F , V ),
we have

b([τ̃ , η̃ ]) = (1 − η)b(τ̃) + (τ − 1)b(η̃).

Let W be the subspace Im(u1 − 1) + Im(u2 − 1) of V (cf. Lemma 3.4). For ϕ ∈
Im(H1(F , V )), the formula above shows that ϕ([τ̃ , η̃ ]) can take an arbitrary vec-
tor in W . In particular, it follows that dimH2(U,V ) ≤ 1. Since dimH2(U,V ) = 1
by Lemma 3.10, we see that there exists ϕ1 ∈ H1(R,V )U such that ϕ1([τ̃ , η̃ ]) =
e1 ⊗ e′

1. This ϕ1 corresponds to a generator of H2(U,V ).
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Let f ∈ Z2(U,V ). For g ∈ F , we put ḡ = π(g). There exists a ∈ C1(F , V )
such that (cf. (1.10))

(3.18) f(ḡ1, ḡ2) = g1a(g2) + a(g1) − a(g1g2), g1, g2 ∈ F .

The corresponding element ϕ ∈ H1(R,V )U to f is obtained as the restriction of
a to R. Now let ξ be an automorphism of F . Since ξ stabilizes R = [F , F ], ξ

induces an automorphism of U = F /R, which we denote by ξ̄. We have

ξ̄(ḡ) = ξ(g), g ∈ F .

From (3.18), we obtain

(3.19) f
(
ξ̄(ḡ1), ξ̄(ḡ2)

)
= ξ(g1)a

(
ξ(g2)

)
+ a

(
ξ(g1)

)
− a

(
ξ(g1)ξ(g2)

)
, g1, g2 ∈ F .

LEMMA 3.11

For γ =
(

a b
c d

)
∈ SL(2,Z), let ξ(γ) be the automorphism of U defined by ξ(γ)(τ) =

τaηc, ξ(γ)(η) = τ bηd. Then there exists an automorphism ξ̃(γ) of F such that

ξ(γ) = ξ̃(γ). Moreover, ξ̃(γ) can be taken so that

(3.20) ϕ
(
ξ̃(γ)(g)

)
≡ ϕ(g) mod W

holds for every ϕ ∈ H1(R,V )U and every g ∈ [F , F ].

Proof
For γ1, γ2 ∈ SL(2,Z), we have ξ(γ1γ2) = ξ(γ1)ξ(γ2). For two automorphisms ξ1,
ξ2 of F , we have ξ1ξ2 = ξ̄1ξ̄2. Therefore to show the first assertion, it is sufficient to
verify it for generators γ1 =

(
1 1
0 1

)
, γ2 =

(
0 1

−1 0

)
of SL(2,Z). Clearly the formulas

ξ̃(γ1)(τ̃) = τ̃ , ξ̃(γ1)(η̃) = τ̃ η̃, ξ̃(γ2)(τ̃) = η̃−1, ξ̃(γ2)(η̃) = τ̃ define automorphisms
ξ̃(γ1) and ξ̃(γ2) of F satisfying the requirements.

To show the latter assertion, we first note that

(3.21) uv ≡ v mod W for every u ∈ U and every v ∈ V .

Let ϕ ∈ H1(R,V )U . Since ξ̃(γ) can be taken from the subgroup of Aut(F ) gen-
erated by ξ̃(γ1) and ξ̃(γ2), it is sufficient to show (3.20) for these generators.
Moreover, since ϕ(x[τ̃ , η̃ ]x−1) = xϕ([τ̃ , η̃ ]) for x ∈ F , it is enough to verify (3.20)
for g = [τ̃ , η̃ ] in view of (3.21). For ξ̃(γ1), we have

ϕ
(
ξ̃(γ1)([τ̃ , η̃ ])

)
= ϕ(τ̃ [τ̃ , η̃ ]τ̃ −1) = τϕ([τ̃ , η̃ ]) ≡ ϕ([τ̃ , η̃ ]) mod W

by (3.21). For ξ̃(γ2), we can check (3.20) similarly since ξ̃(γ2)([τ̃ , η̃ ]) = η̃−1[τ̃ , η̃ ]η̃.
This completes the proof of Lemma 3.11. �

Applying Lemma 3.11 to γ =
(

A B
C D

)
, we see that there exists an automorphism

ξt of F such that (cf. (3.1))

ξ̄t(u) = tut−1, u ∈ U.

Under the action of t, f is transformed to the 2-cocycle f ′ ∈ Z2(U,V ) where

f ′(h1, h2) = t−1f(th1t
−1, th2t

−1), h1, h2 ∈ U.
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By (3.19), we obtain

t−1f(tḡ1t
−1, tḡ2t

−1)
(3.22)

= g1t
−1a

(
ξt(g2)

)
+ t−1a

(
ξt(g1)

)
− t−1a

(
ξt(g1)ξt(g2)

)
, g1, g2 ∈ F .

This formula shows that a 1-cochain a′ ∈ C1(F , V ) which splits f ′ is given by

a′(g) = t−1a
(
ξt(g)

)
, g ∈ F .

Now suppose that f (resp., f ′) ∈ Z2(U,V ) corresponds to ϕ (resp., ϕ′) ∈
H1(R,V )U . We have

(3.23) ϕ′([τ̃ , η̃ ]) = t−1ϕ
(
ξt([τ̃ , η̃ ])

)
.

We may assume that ϕ = ϕ1; that is, ϕ([τ̃ , η̃ ]) = e1 ⊗ e′
1. Then by (3.20), we

obtain

ϕ′([τ̃ , η̃ ]) ≡ t−1ϕ([τ̃ , η̃ ]) ≡ εl1(ε′)l2ϕ([τ̃ , η̃ ]) mod W.

This completes the proof of Theorem 3.8. �

Proof of Theorem 3.9
Set T = P/U . Then T is generated by t mod U . We consider the spectral sequence

(3.24) Ep,q
2 = Hp

(
T,Hq(U,V )

)
=⇒ Hn(P,V ).

Let En = Hn(P,V ), and let {F i} denote the filtration induced by (3.24). Since
T ∼= Z, we have Ep,q

2 = 0 for p ≥ 2, q ≥ 0. Hence F 2(E2)/F 3(E2) ∼= E2,0
∞ = 0.

Since F 3(E2) = 0, we obtain F 2(E2) = 0. By Theorem 3.6, we have E1,1
2 =

H1(T,H1(U,V )) = 0. Hence we have F 1(E2)/F 2(E2) ∼= E1,1
∞ = 0. Therefore we

obtain

(3.25) dimH2(P,V ) = dimE2/F 1(E2) = dimE0,2
∞ .

Now assume l1 
= l2 or N(ε)l1 
= 1. By Theorem 3.8, we have H2(U,V )T = 0.
Hence we get E0,2

2 = E0,2
∞ = 0. Next assume that l1 = l2 and N(ε)l1 = 1. By

Theorem 3.8, we have dimE0,2
2 = dimH2(U,V )T = 1. We clearly have E0,2

2
∼=

E0,2
∞ . This completes the proof. �

4. On the parabolic condition

In this section (in particular, Section 4.1), we will show that it is possible to
deduce information on critical values of L-functions once we know a correspond-
ing 2-cocycle which satisfies the parabolic condition.

From this section until the end of the paper, we define subgroups of Γ by

P =
{(

u v

0 u−1

) ∣∣∣∣ u ∈ EF , v ∈ OF

}
/{±12},

U =
{(

±1 v

0 ±1

) ∣∣∣∣ v ∈ OF

}
/{±12}
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restoring the notation to that of Section 2. We see that Theorems 3.7 and 3.9
and the fact that H1(P,V )P/U = 0 stated in Theorem 3.6 are valid, considering
the isomorphism P � p �→ tp−1 ∈ tP and noting that g �→ ρ(g) and g �→ ρ(tg−1)
are equivalent as representations of SL(2,C)2.

4.1
Let V1 (resp., V2) be the representation space of ρl1 (resp., ρl2). We take a basis
{e1,e2, . . . ,el1+1} of V1 so that ρl1

((
a 0
0 1

))
ei = al1+1−iei. Similarly we take a basis

{e′
1,e

′
2, . . . ,e

′
l2+1} of V2 so that ρl2

((
a 0
0 1

))
e′

i = al2+1−ie′
i. We assume that l1 ≥ l2,

l1 ≡ l2 mod 2. We put k1 = l1 + 2, k2 = l2 + 2, k = (k1, k2). Let Ω ∈ Sk(Γ). We
assume that l1 is even if N(ε) = −1. (This assumption is (A) in Section 1.)

We recall the formulas

f(γ1, γ2) =
∫ γ1w1

γ1γ2w1

∫ γ′
1w2

w2

d(Ω), w1 = iε−1,w2 = i∞,(4.1)

f(σ,μ) = −
∫ iε

iε−1

∫ i∞

0

d(Ω).(4.2)

The formula (2.30) shows that the coefficients of ei ⊗ e′
i−(l1−l2)/2 in f(σ,μ),

(l1 − l2)/2 + 1 ≤ i ≤ (l1 + l2)/2 + 1, are related to the critical values of L(s,Ω).
The parabolic condition on the cocycle f is

(4.3) f(pγ1, γ2) = pf(γ1, γ2) for every p ∈ P,γ1, γ2 ∈ Γ.

Now suppose that we add the coboundary of b ∈ C1(Γ, V ),

b(γ1γ2) − γ1b(γ2) − b(γ1),

to f . We assume that the resulting 2-cocycle is normalized and still satisfies the
parabolic condition (4.3). Then b(1) = 0, and using the parabolic condition, we
obtain

pγ1b(γ2) + b(pγ1) − b(pγ1γ2) = pγ1b(γ2) + pb(γ1) − pb(γ1γ2)

for p ∈ P . Taking γ2 = γ−1
1 and writing γ1 as γ, we find that b must satisfy the

condition

(4.4) b(pγ) = pb(γ) + b(p), p ∈ P,γ ∈ Γ.

Put A = f(σ,μ). After adding the coboundary of b, A changes to A + b(σμ) −
σb(μ) − b(σ). By (4.4), we have

b(σμ) = b(μ−1σ) = μ−1b(σ) + b(μ−1), b(μ−1) = −μ−1b(μ).

Therefore A changes to

A + (μ−1 − 1)b(σ) − (σ + μ−1)b(μ).

By (4.4), we have b | P ∈ Z1(P,V ). Suppose that l1 
= l2. By Theorem 3.7, we have

b(μ) = (μ − 1)b, b ∈ V.
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Since (σ + μ−1)(μ − 1) = (μ−1 − 1)(σ − 1), we see that A changes to

A + (μ−1 − 1)[b(σ) + (1 − σ)b].

This formula shows that the components of A related to the critical values do
not change by adding a coboundary, since μ−1(ei ⊗ e′

i−(l1−l2)/2) = N(ε)l1(ei ⊗
e′

i−(l1−l2)/2). Next suppose that l1 = l2. By Theorem 3.7 and by the exact se-
quence below it, we have

b(μ) = (μ − 1)b + b0, b ∈ V,b0 ∈ V U .

Hence A changes to

A + (μ−1 − 1)[b(σ) + (1 − σ)b] − (σ + μ−1)b0.

Since b0 ∈ V U , this formula shows that the components of A related to the crit-
ical values do not change except for two critical values L(1,Ω) and L(l1 + 1,Ω)
at the edges.

4.2
Let Z̄2(Γ, V ) be the subgroup of Z2(Γ, V ) consisting of normalized 2-cocycles.
Put

B̄2(Γ, V ) =
{
f = db

∣∣ b ∈ C1(Γ, V ), b(1) = 0
}
.

Then we have

Z̄2(Γ, V ) ∩ B2(Γ, V ) = B̄2(Γ, V ),

and therefore

Z̄2(Γ, V )/B̄2(Γ, V ) ⊂ Z2(Γ, V )/B2(Γ, V ).

Since every 2-cocycle can be normalized by adding a coboundary, we have

H2(Γ, V ) = Z̄2(Γ, V )/B̄2(Γ, V ).

Put

(4.5) Z2
P(Γ, V ) =

{
f ∈ Z̄2(Γ, V )

∣∣ f satisfies the parabolic condition (4.3)
}
,

B2
P(Γ, V ) =

{
f ∈ B̄2(Γ, V )

∣∣ f = db, b ∈ C1(Γ, V ),
(4.6)

b(pγ) = pb(γ) + b(p), p ∈ P,γ ∈ Γ
}
.

An element of Z2
P (Γ, V ) is called a normalized parabolic 2-cocycle. The next

lemma can easily be verified.

LEMMA 4.1

We have

Z2
P(Γ, V ) ∩ B̄2(Γ, V ) = B2

P(Γ, V ).

By Lemma 4.1, we have

Z2
P(Γ, V )/B2

P(Γ, V ) ⊂ Z̄2(Γ, V )/B̄2(Γ, V ) = H2(Γ, V ).
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We define the parabolic part H2
P(Γ, V ) of H2(Γ, V ) by

(4.7) H2
P(Γ, V ) = Z2

P(Γ, V )/B2
P(Γ, V ).

4.3
As another application of Theorem 3.7, we show the nonvanishing of the coho-
mology class attached to a Hecke eigenform.

LEMMA 4.2

Assume that l1 is even if N(ε) = −1. Let f ∈ Z2
P (Γ, V ) be a normalized parabolic

2-cocycle. For (l1 − l2)/2 + 1 ≤ i ≤ (l1 + l2)/2 + 1, let ci be the coefficient of
ei ⊗ e′

i−(l1−l2)/2 in f(σ,μ). Assume that ci 
= 0 for some i if l1 
= l2 and that ci 
= 0
for some i 
= 1, l1 + 1 if l1 = l2. Then the cohomology class of f is nontrivial.

Proof
Suppose that the cohomology class of f is trivial. Then there exists b ∈ C1(Γ, V )
such that

f(γ1, γ2) = γ1b(γ2) + b(γ1) − b(γ1γ2), γ1, γ2 ∈ Γ.

By a computation similar to that given in Section 4.1, we obtain

(4.8) f(σ,μ) = (1 − μ−1)b(σ) + (σ + μ−1)b(μ).

First we consider the case l1 
= l2. Since b | P ∈ Z1(P,V ) and H1(P,V ) =
0 (see Theorem 3.7), there exists b ∈ V such that b(μ) = (μ − 1)b. Then we
have

f(σ,μ) = (1 − μ−1)[b(σ) + (1 − σ)b].

We have μ−1(ei ⊗ e′
i−(l1−l2)/2) = N(ε)l1(ei ⊗ e′

i−(l1−l2)/2). Hence ci vanishes for
all i. This is a contradiction, and the proof is complete in this case.

Next we consider the case l1 = l2. By Theorem 3.7, there exist b ∈ V and
b0 ∈ V U such that

b(μ) = (μ − 1)b + b0.

Then we have

f(σ,μ) = (1 − μ−1)[b(σ) + (1 − σ)b] + (σ + μ−1)b0.

Since b0 ∈ V U , this formula shows that ci = 0 if i 
= 1, l1 + 1. This is a contradic-
tion and completes the proof. �

PROPOSITION 4.3

Let k = (k1, k2), k1 ≥ k2, k1 ≡ k2 ≡ 0 mod 2. Let Ω ∈ Sk(Γ), and let f = f(Ω)
be the normalized parabolic 2-cocycle attached to Ω (cf. (4.1)). We assume that
the class number of F in the narrow sense is 1 and that Ω is a nonzero Hecke
eigenform. If k1 
= k2, we assume k2 ≥ 4. If k1 = k2, we assume k2 ≥ 6. Then the
cohomology class of f in H2(Γ, V ) is nontrivial.
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Proof
Let k1 = l1 + 2, k2 = l2 + 2. By (2.30), we see that the coefficient ci of ei ⊗
e′

i−(l1−l2)/2 in f(σ,μ) is L(l1 +2 − i,Ω) times a nonzero constant for (l1 − l2)/2+
1 ≤ i ≤ (l1 + l2)/2+1. It is well known that L(s,Ω) 
= 0 for �(s) ≥ (k1 +1)/2 (cf.
[Sh3, Proposition 4.16]). For i = (l1 − l2)/2+1, ci is nonzero times L((k1+k2)/2 −
1,Ω). Since (k1 + k2)/2 − 1 ≥ (k1 + 1)/2 if k2 ≥ 3, our assertion follows from
Lemma 4.2 if k1 
= k2. Assume k1 = k2. For i = 2, ci is nonzero times L(k1 − 2,Ω).
Since k1 − 2 ≥ (k1 + 1)/2 if k1 ≥ 5, our assertion in this case also follows from
Lemma 4.2. �

4.4
With a free group F , we write Γ = F /R. Let π : F −→ Γ be the canonical homo-
morphism with Ker(π) = R. For g ∈ F , we put π(g) = ḡ. We regard V as an
F -module by gv = ḡv, g ∈ F , v ∈ V . By (1.9), we have

(4.9) H2(Γ, V ) ∼= H1(R,V )Γ/ Im
(
H1(F , V )

)
.

We examine the part of the right-hand side of (4.9) which corresponds to
H2

P(Γ, V ). Put P = π−1(P ). Let f ∈ Z2
P(Γ, V ). Take a 1-cochain a ∈ C1(F , V )

which satisfies (1.10). Then we have

f(p̄ḡ1, ḡ2) = pg1a(g2) + a(pg1) − a(pg1g2), p ∈ P , g1, g2 ∈ F .

By the parabolic condition on f , this is equal to

p
(
g1a(g2) + a(g1) − a(g1g2)

)
.

Hence we have

a(pg1g2) − a(pg1) = pa(g1g2) − pa(g1), p ∈ P , g1, g2 ∈ F .

Taking g1 = g−1
2 = g, we obtain

(4.10) a(pg) = pa(g) + a(p), p ∈ P , g ∈ F .

Conversely if a satisfies (4.10), then f satisfies the parabolic condition.
Let ϕ = a | R. We note that a satisfies (1.11) and ϕ ∈ H1(R,V )Γ. For every

s ∈ P , we take an element s̃ ∈ P such that π(s̃) = s. We fix the choice of s̃. Then
we write a(s̃) as ã(s). By (1.11), we have

(4.11) a(s̃r) = sϕ(r) + ã(s), s ∈ P, r ∈ R.

Now for s1, s2 ∈ P and r1, r2 ∈ R, we have

a(s̃1r1s̃2r2) = a
(
(s̃1s2)(s̃1s2)−1s̃1s̃2s̃

−1
2 r1s̃2r2

)
= s1s2ϕ

(
(s̃1s2)−1s̃1s̃2s̃

−1
2 r1s̃2r2

)
+ ã(s1s2)

= s1s2

[
ϕ(s̃−1

2 r1s̃2) + ϕ(r2) + ϕ
(
(s̃1s2)−1s̃1s̃2

)]
+ ã(s1s2)

= s1ϕ(r1) + s1s2ϕ(r2) + ϕ
(
s̃1s̃2(s̃1s2)−1

)
+ ã(s1s2),

using (1.11), (1.12), and (4.11). On the other hand, by (4.10), we have
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a(s̃1r1s̃2r2) = s1a(s̃2r2) + a(s̃1r1)

= s1

(
s2ϕ(r2) + ã(s2)

)
+ s1ϕ(r1) + ã(s1).

Comparing two results, we obtain

(4.12) ϕ
(
s̃1s̃2(s̃1s2)−1

)
= s1ã(s2) + ã(s1) − ã(s1s2).

The condition (4.12) can be interpreted as follows. The group extension

1 −−−−→ R −−−−→ P −−−−→ P −−−−→ 0.

defines the factor set

(4.13) (s1, s2) −→ s̃1s̃2(s̃1s2)−1

of P taking values in R. Mapping this factor set by ϕ, we obtain a 2-cocycle of P

taking values in V (cf. Lemma 1.3). Then (4.12) means that this 2-cocycle splits.
The converse holds (see [Y4] for a proof), and we have the following proposition.

PROPOSITION 4.4

On the right-hand side of (4.9), the subgroup which corresponds to H2
P(Γ, V ) con-

sists of the class of ϕ ∈ H1(R,V )Γ for which the 2-cocycle (s1, s2) �→
ϕ(s̃1s̃2(s̃1s2)−1) of P taking values in V splits.

By Theorem 3.9, we have H2(P,V ) = 0 if l1 
= l2. Hence the next proposition
follows.

PROPOSITION 4.5

If l1 
= l2, then we have H2(Γ, V ) = H2
P(Γ, V ).

It is known that there are no holomorphic Eisenstein series of weight (k1, k2)
if k1 
= k2 (see [Sh6, Proposition 2.1]). We can interpret this proposition as the
cohomological counterpart of this fact.

REMARK 4.6

In view of the results of Matsushima and Shimura [MS], Hida [Hi1], [Hi2], and
Harder [Ha], we should be able to prove that dimH2

P (Γ, V ) = 4dimSl1+2,l2+2(Γ).
The author has not worked out the details yet. The parabolic cohomology group
is also discussed in [Hi2].

5. Decompositions of H2(Γ, V )

5.1
Let F be a real quadratic field, and let Γ = PSL(2, OF ). We define elements σ,
μ, τ , and η of Γ by

σ =
(

0 1
−1 0

)
, μ =

(
ε 0
0 ε−1

)
, τ =

(
1 1
0 1

)
, η =

(
1 ω

0 1

)
.
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Here we choose an ω such that OF = Z + Zω. Let F be the free group on four
letters σ̃, μ̃, τ̃ , η̃. Let π : F −→ Γ be the homomorphism such that

π(σ̃) = σ, π(μ̃) = μ, π(τ̃) = τ, π(η̃) = η.

By Vaserštein [V], π is surjective. Let R be the kernel of π. For γ ∈ Γ, we choose
a γ̃ ∈ F so that π(γ̃) = γ. For γ = σ, μ, τ , and η, we choose γ̃ so that the notation
will be consistent. We choose 1̃ = 1. For other γ, we will specify the choice of γ̃

later (cf. (5.2) and Section 6.2).
Let f ∈ Z2(Γ, V ) be a normalized 2-cocycle. There exists a ∈ C1(F , V ) which

satisfies

f(γ1, γ2) = γ1a(γ̃2) + a(γ̃1) − a(γ̃1γ̃2).

A corresponding element ϕ ∈ H1(R,V )Γ to f is given by ϕ = a | R. As was shown
in Section 1.5, adding a coboundary to f , we may assume that f ∈ Z2(Γ, V ) is
given by

(5.1) f(γ1, γ2) = −ϕ
(
γ̃1γ̃2(γ̃1γ2)−1

)
, γ1, γ2 ∈ Γ.

Let FP be the subgroup of F generated by μ̃, τ̃ , and η̃. Let πP be the
restriction of π to FP , and let RP be the kernel of πP . We see that RP is
generated by the elements corresponding to the relations (iv), (v), (vi) given
in the introduction and their conjugates. Suppose that f satisfies the parabolic
condition (4.3). Then, by (4.12), we see that we may assume that ϕ | RP = 0 in
addition to (5.1), adding a coboundary to f if necessary.

Conversely assume that ϕ | RP = 0. Take a complete set of representatives
Δ for P \Γ, and fix it. We have

Γ =
⊔

δ∈Δ

Pδ.

For γ = pδ, p ∈ P , δ ∈ Δ, we define

(5.2) γ̃ = p̃δ̃.

In (5.1), write γ1 = p1δ1, p1 ∈ P , δ1 ∈ Δ, γ1γ2 = p2δ2, p2 ∈ P , δ2 ∈ Δ. Let p ∈ P .
Then we have

p̃γ1 = p̃p1δ̃1 = p̃p1(p̃ p̃1)−1p̃ γ̃1, p̃γ1γ2 = p̃p2p̃
−1
2 γ̃1γ2.

Hence, by (5.1), we have

f(pγ1, γ2) = −ϕ
(
p̃p1(p̃ p̃1)−1p̃ γ̃1γ̃2

{
p̃p2(p̃ p̃2)−1p̃γ̃1γ2

}−1)
= −ϕ

(
p̃ γ̃1γ̃2(γ̃1γ2)−1p̃−1

)
= −pϕ

(
γ̃1γ̃2(γ̃1γ2)−1

)
= pf(γ1, γ2).

Therefore f satisfies the parabolic condition (4.3).
The value f(σ,μ) of the cocycle is related to the critical values of the L-

function. By (5.1), we have

f(σ,μ) = −ϕ
(
σ̃μ̃(σ̃μ)−1

)
= −ϕ

(
σ̃μ̃( ˜μ−1σ)−1

)
.
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We assume that σ ∈ Δ. Then we have

f(σ,μ) = −ϕ
(
σ̃μ̃σ̃−1(μ̃−1)−1

)
,

since ˜μ−1σ = μ̃−1σ̃. As μ̃−1μ̃ ∈ RP , we have

f(σ,μ) = −ϕ(σ̃μ̃σ̃−1μ̃) = −ϕ(σ̃μ̃σ̃−2σ̃μ̃) = −ϕ
(
σ̃μ̃σ̃−2(σ̃μ̃)−1σ̃μ̃σ̃μ̃

)
= −σμϕ(σ̃−2) − ϕ(σ̃μ̃σ̃μ̃).

Therefore we obtain

(5.3) f(σ,μ) = −ϕ
(
(σ̃μ̃)2

)
+ σμϕ(σ̃2).

5.2
Let us consider the action of Hecke operators. Let � be a totally positive element
of F . Let

Γ
(

1 0
0 �

)
Γ =

d⊔
i=1

Γβi

be a coset decomposition. We put (cf. (2.35))

c =
2∏

ν=1

(�(ν))(k0+kν)/2−2.

Let f ∈ Z2(Γ, V ), and put g = cT (�)f . The explicit form of g is given as follows
(cf. Proposition 1.2 and (2.38)). Let

βiγ1 = δ
(1)
i βj(i), δ

(1)
i ∈ Γ, βiγ2 = δ

(2)
i βk(i), δ

(2)
i ∈ Γ,

for 1 ≤ i ≤ d. Here j and k are permutations on d letters. Then

(5.4) g(γ1, γ2) = c

d∑
i=1

β−1
i f(βiγ1β

−1
j(i), βj(i)γ2β

−1
k(j(i))).

We assume that f ∈ Z2
P (Γ, V ) and that it is given by (5.1) with ϕ ∈ H1(R,V )Γ

satisfying ϕ | RP = 0. Then we have

(5.5) g(γ1, γ2) = −c

d∑
i=1

β−1
i ϕ

(
˜βiγ1β

−1
j(i)

˜βj(i)γ2β
−1
k(j(i))(

˜βiγ1γ2β
−1
k(j(i)))

−1
)
.

Let ψ ∈ H1(R,V )Γ be a corresponding element to g. We give an explicit form
of ψ. There exists b ∈ C1(F , V ) such that

g(x̄1, x̄2) = x1b(x2) + b(x1) − b(x1x2), x1, x2 ∈ F ,

and ψ is given as the restriction of b to R. Here x̄ = π(x), x ∈ F . We assume that
(�) is a prime ideal. Then d = N(�) + 1, and {βi} can be taken as{(

1 u

0 �

)
, u mod �,

(
� 0
0 1

)}
.
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Take p ∈ P , and let βipβ−1
j(i) ∈ Γ for 1 ≤ i ≤ d. Then we see easily that

(5.6) βipβ−1
j(i) ∈ P, 1 ≤ i ≤ d.

By (5.5), (5.6), and ϕ | RP = 0, we find

(5.7) g(p1, p2) = 0, p1, p2 ∈ P.

We have

b(x1x2) = x1b(x2) + b(x1) − g(x̄1, x̄2), x1, x2 ∈ F ,

and we can use this formula to determine the value b(x), x ∈ F , by the induction
on the length of the element x. As the initial conditions, we may assume that

b(μ̃) = 0, b(τ̃) = 0, b(η̃) = 0, b(σ̃) = 0.

Then, by (5.7), we see that

(5.8) b | FP = 0.

The next Proposition is a special case of Proposition 1.4.

PROPOSITION 5.1

Suppose that γj ∈ Γ are given for 1 ≤ j ≤ m. For every j, we define pj ∈ Sd by

βiγjβ
−1
pj(i)

∈ Γ, 1 ≤ i ≤ d.

We define qj ∈ Sd inductively by

q1 = p1, qk = pkqk−1, 2 ≤ k ≤ m.

We assume that γj ∈ P or γj = σ for every j. Then we have

b(γ̃1γ̃2 · · · γ̃m)

= c

d∑
i=1

β−1
i ϕ

(
˜βiγ1β

−1
q1(i)

˜βq1(i)γ2β
−1
q2(i)

· · ·(5.9)

× ˜βqm−1(i)γmβ−1
qm(i)(

˜βiγ1γ2 · · · γmβ−1
qm(i))

−1
)
.

5.3
For the practical computation, it is convenient to decompose H2(Γ, V ) into a
direct sum of subspaces under the action of the automorphisms of Γ. We put

Z =
{(

u 0
0 u

) ∣∣∣∣ u ∈ EF

}
,

which is the center of GL(2, OF ). Then we have

Z · SL(2, OF )/Z ∼= SL(2, OF )/
{

±
(

1 0
0 1

)}
= PSL(2, OF ) = Γ.
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By this isomorphism, we regard Γ as a subgroup of PGL(2, OF ) = GL(2, OF )/Z.
Hereafter we assume that l1 and l2 are even. When l is even, we define a repre-
sentation ρ′

l of GL(2,C) by

ρ′
l(g) = ρl(g)det(g)−l/2, g ∈ GL(2,C).

Then ρ′
l is trivial on the center. We put ρ′ = ρ′

l1
⊗ ρ′

l2
. By gv = ρ′(g)v, g ∈

GL(2, OF ), v ∈ V , we regard V as a left GL(2, OF )-module. Since ρ′(z) = id,
z ∈ Z, we can regard V as a PGL(2, OF )-module. Since ρ′ | Γ = ρ | Γ, the Γ-
module structure of V is the same as before.

We have

PGL(2, OF )/PSL(2, OF ) ∼= EF /E2
F

∼= Z/2Z ⊕ Z/2Z.

By conjugation, PGL(2, OF ) acts on H2(Γ, V ), and it decomposes into a direct
sum of four subspaces. We put

ν =
(

ε 0
0 1

)
, δ =

(
−1 0
0 1

)
.

We see that PGL(2, OF ) is generated by ν and δ over PSL(2, OF ). We first
examine the action of ν. For f ∈ Z2(Γ, V ), define ẽf ∈ Z2(Γ, V ) by (cf. (1.3))

(5.10) ẽf(γ1, γ2) = ν−1f(νγ1ν
−1, νγ2ν

−1), γ1, γ2 ∈ Γ.

Then ẽ induces an automorphism e of H2(Γ, V ). Since ν2 = μ, ẽ2 is obtained
from the inner automorphism by μ. Hence e2 = 1. By (5.10), we see that ẽf is
a parabolic cocycle if f is parabolic. Therefore, by the action of e, we have the
decompositions

H2(Γ, V ) = H2(Γ, V )+ ⊕ H2(Γ, V )−, H2
P (Γ, V ) = H2

P (Γ, V )+ ⊕ H2
P (Γ, V )−.

Here we put

H2(Γ, V )± =
{
c ∈ H2(Γ, V )

∣∣ ec = ±c
}
,

H2
P (Γ, V )± =

{
c ∈ H2

P (Γ, V )
∣∣ ec = ±c

}
.

Explicitly the decomposition is given by

f =
1
2
[
(1 + ẽ )f + (1 − ẽ )f

]
, f ∈ Z2(Γ, V ).

PROPOSITION 5.2

Let k = (k1, k2), k1 ≥ k2, k1 and k2 are even. Let Ω ∈ Sk(Γ), and let f = f(Ω)
be the normalized parabolic 2-cocycle attached to Ω by (4.1). We assume that
the class number of F in the narrow sense is 1 and that Ω is a nonzero Hecke
eigenform.

(1) If k1 
= k2, we assume k2 ≥ 6. If k1 = k2, we assume k2 ≥ 8. Then the
cohomology class of (1 + ẽ )f in H2(Γ, V ) is nontrivial.

(2) If k1 
= k2, we assume k2 ≥ 4. If k1 = k2, we assume k2 ≥ 6. Then the
cohomology class of (1 − ẽ )f in H2(Γ, V ) is nontrivial.
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Proof
We apply Lemma 4.2 in a way similar to the proof of Proposition 4.3. We use
the same notation as there. By (5.10), we have

(ẽf)(σ,μ) = ν−1f(νσν−1, νμν−1) = ν−1f(μσ,μ) = ν−1μf(σ,μ) = νf(σ,μ).

We have

ν(ei ⊗ e′
i−(l1−l2)/2) = N(ε)l1/2+1−i(ei ⊗ e′

i−(l1−l2)/2)

= N(ε)k1/2−i(ei ⊗ e′
i−(l1−l2)/2).

By the assumption, we have N(ε) = −1. The range of i is k1/2 − l2/2 ≤ i ≤
k1/2 + l2/2. We see that L(l1 + 2 − i,Ω) is nonvanishing if i 
= k1/2. To conclude
the nonvanishing of the cohomology class of (1 + ẽ )f , it suffices to find an even
integer j such that 0 < j ≤ l2/2 if k1 
= k2 and 0 < j ≤ l2/2 − 1 if k1 = k2. Such
a j exists under the condition stated in (1). To conclude the nonvanishing of
the cohomology class of (1 − ẽ )f , it suffices to find an odd integer j such that
0 < j ≤ l2/2 if k1 
= k2 and 0 < j ≤ l2/2 − 1 if k1 = k2. Such a j exists under the
condition stated in (2). This completes the proof. �

We put

Γ
∗

=
{
γ ∈ GL(2, OF )

∣∣ det(γ) = εn, n ∈ Z
}
, Γ∗ = ZΓ

∗
/Z.

Then Γ∗ is generated by ν over Γ, and we have [Γ∗ : Γ] = 2. Let

Res : H2(Γ∗, V ) −→ H2(Γ, V ), T : H2(Γ, V ) −→ H2(Γ∗, V )

be the restriction map and the transfer map, respectively.

PROPOSITION 5.3

We have

(1) Res(H2(Γ∗, V )) = H2(Γ, V )+,
(2) T (H2(Γ, V )+) = H2(Γ∗, V ),
(3) Ker(T ) = H2(Γ, V )−.

We omit the proof since it is easy.

5.4
We have

H2(Γ, V ) ∼= H1(R,V )Γ/ Im
(
H1(F , V )

)
.

Let us consider the action of e on the right-hand side under this isomorphism.
We use the same notation as in Section 5.1. Let ξ be the automorphism of Γ
defined by ξ(γ) = νγν−1, γ ∈ Γ. Put

ε = A + Bω, εω = C + Dω.
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Then we have
(

A B
C D

)
∈ GL(2,Z). We have

νσν−1 = σμ−1, νμν−1 = μ, ντν−1 = τAηB, νην−1 = τCηD.

Using Lemma 3.11, we can check that there exists an automorphism ξ̃ of F which
satisfies

(5.11) π
(
ξ̃(g)

)
= ξ

(
π(g)

)
, g ∈ F .

Now let f ∈ Z2(Γ, V ), and take a ∈ C1(F , V ) so that

f
(
π(g1), π(g2)

)
= g1a(g2) + a(g1) − a(g1g2), g1, g2 ∈ F .

Then we have

(ẽf)
(
π(g1), π(g2)

)
= ν−1f

(
ξ(π(g1)), ξ(π(g2))

)
= ν−1f

(
π(ξ̃(g1)), π(ξ̃(g2))

)
= g1ν

−1a
(
ξ̃(g2)

)
+ ν−1a

(
ξ̃(g1)

)
− ν−1a

(
ξ̃(g1g2)

)
for g1, g2 ∈ F . Put

a′(g) = ν−1a
(
ξ̃(g)

)
, g ∈ F .

Then we have

(ẽf)
(
π(g1), π(g2)

)
= g1a

′(g2) + a′(g1) − a′(g1g2), g1, g2 ∈ F .

Thus we obtain the following proposition.

PROPOSITION 5.4

Let f ∈ Z2(Γ, V ), and let ϕ ∈ H1(R,V )Γ be a corresponding element. Then a
corresponding element ψ of H1(R,V )Γ to ẽf is given by

ψ(r) = ν−1ϕ
(
ξ̃(r)

)
, r ∈ R.

We can check easily that the map ϕ −→ ψ induces a map from H1(R,V )Γ/

Im(H1(F , V )) to itself and gives an automorphism of order 2.

5.5
For the actual computation, the cohomology group H2(Γ∗, V ) is easier to handle
than H2(Γ, V ). By the action of δ, we can further decompose H2(Γ∗, V ) so that

H2(Γ∗, V ) = H2(Γ∗, V )+ ⊕ H2(Γ∗, V )−.

Let d̃ (resp., d) denote the action of δ on Z2(Γ∗, V ) (resp., H2(Γ∗, V )).

PROPOSITION 5.5

Let k = (k1, k2), k1 ≥ k2, k1 and k2 are even. Let Ω ∈ Sk(Γ), and let f = f(Ω)
be the normalized parabolic 2-cocycle attached to Ω by (4.1). We assume that
the class number of F in the narrow sense is 1 and that Ω is a nonzero Hecke
eigenform. Take f ∗ ∈ Z2(Γ∗, V ) so that f ∗ | Γ = (1+ ẽ )f .† If k1 
= k2, we assume

†The cocycle f ∗ = T̃ (f) satisfies this condition.
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k2 ≥ 6. If k1 = k2, we assume k2 ≥ 8. Then the cohomology class of (1 + d̃)f ∗ in
H2(Γ∗, V ) is nontrivial.

We omit the proof since it is similar to that of Proposition 5.2.
Until the end of this subsection, we assume that σ, ν, and τ generate Γ∗.

(This assumption is satisfied if OF = Z+Zε.) Let F ∗ be the free group on three
letters σ̃, ν̃, and τ̃ . We define a surjective homomorphism π∗ of F ∗ onto Γ∗ by

π∗(σ̃) = σ, π∗(ν̃) = ν, π∗(τ̃) = τ

and let R∗ be the kernel of π∗. We see that δ commutes with σ and ν and
δτδ−1 = τ −1. We can define an automorphism x �→ xδ of F ∗ by (σ̃)δ = σ̃, (ν̃)δ = ν̃,
(τ̃)δ = τ̃ −1. Then we have

π∗(xδ) = δπ∗(x)δ−1, x ∈ F ∗.

The following proposition can be shown in a way similar to Proposition 5.4.

PROPOSITION 5.6

Let f ∈ Z2(Γ∗, V ), and let ϕ ∈ H1(R∗, V )Γ
∗

be a corresponding element. Then a
corresponding element ψ of H1(R∗, V )Γ

∗
to d̃f is given by

ψ(r) = δ−1ϕ(rδ), r ∈ R∗.

Let ϕ ∈ H1(R∗, V )Γ
∗
. We define ϕδ ∈ H1(R∗, V )Γ

∗
by the formula

(5.12) ϕδ(r) = δ−1ϕ(rδ).

Then we can check easily that (ϕδ)δ = ϕ and H1(R∗, V )Γ
∗

decomposes into a
direct sum of ±1 eigenspaces under the action of δ:

(5.13) H1(R∗, V )Γ
∗

= H1(R∗, V )Γ
∗,+ ⊕ H1(R∗, V )Γ

∗,−.

5.6
Let l1 and l2 be nonnegative even integers. We assume that l1 ≥ l2. Let Ω ∈
Sl1+2,l2+2(Γ). Define L(s,Ω) and R(s,Ω) by (2.4) and (2.5), respectively. The
functional equation is (cf. (2.7))

R(s,Ω) = (−1)(l1+l2)/2R(l1 + 2 − s,Ω).

For an integer m, L(m,Ω) is a critical value if and only if

(5.14)
l1 − l2

2
+ 1 ≤ m ≤ l1 + l2

2
+ 1.

The central critical value is L(l1/2+1,Ω) which vanishes if (l1 + l2)/2 is odd. By
(2.30), we have

(5.15) R(m,Ω) = (−1)mi(l1−l2)/2(2π)(l2−l1)/2Pm−1,m−1−(l1−l2)/2.

Here Ps,t denotes the period integral given by (2.25). Let f = f(Ω) ∈ Z2
P (Γ, V )
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be the parabolic 2-cocycle defined by (4.1). Then we have

f(σ,μ) = −
∫ iε

iε−1

∫ i∞

0

d(Ω),

and −Pm−1,m−1−(l1−l2)/2 is equal to the coefficient of el1+2−m ⊗ e′
(l1+l2)/2+2−m

in f(σ,μ).
Using the operator ẽ (cf. (5.10)), we define

f+ = (1 + ẽ )f, f − = (1 − ẽ )f.

We have f ± ∈ Z2
P (Γ, V ). As was shown in the proof of Proposition 5.2, we have

(5.16) f+(σ,μ) = (1 + ν)f(σ,μ), f −(σ,μ) = (1 − ν)f(σ,μ).

We have

(5.17) ν(el1+2−m ⊗ e′
(l1+l2)/2+2−m) = N(ε)m−1−l1/2el1+2−m ⊗ e′

(l1+l2)/2+2−m.

Assume N(ε) = −1. Suppose that l1/2 is even. By (5.17), we see that f+(σ,μ)
contains information on R(m,Ω) for odd m and f −(σ,μ) contains informa-
tion on R(m,Ω) for even m. If l1/2 is odd, then f+(σ,μ) contains informa-
tion on R(m,Ω) for even m and f −(σ,μ) contains information on R(m,Ω) for
odd m.

To treat f − efficiently, we will need more techniques which will be explained
in the next section.

6. Numerical examples, I

6.1
In this section, we assume that F = Q(

√
5). (The formulas (6.1) ∼ (6.6) and

those given in Section 6.5 are valid for any real quadratic field.) We use the
notation of Section 5. The elements σ, μ, τ , and η generate Γ = PSL(2, OF ) (cf.
Vaserštein [V]). We take ω = ε. Then they satisfy the relations

(i) σ2 = 1,
(ii) (στ)3 = 1,
(iii) (σμ)2 = 1,
(iv) τη = ητ ,
(v) μτμ−1 = τη,
(vi) μημ−1 = τη2,
(vii) σησ = τη−1ση−1μ.

THEOREM 6.1

Let F = Q(
√

5) and Γ = PSL(2, OF ). We take ω = ε. The fundamental relations
satisfied by the generators σ, μ, τ , and η are (i) ∼ (vii).

A proof is given in the appendix of [Y4]. This theorem is not necessary for the
calculations in this section, but it clarifies the exposition.
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Now the elements σ, ν, and τ of Γ∗ satisfy the relations

(i′) σ2 = 1,
(ii′) (στ)3 = 1,
(iii′) (σν)2 = 1,
(iv′) τντν−1 = ντν−1τ ,
(v′) ν2τν−2 = τντν−1.

THEOREM 6.2

The fundamental relations satisfied by the generators σ, ν, τ of Γ∗ are (i′) ∼
(v′).

This theorem follows from Theorem 6.1. We sketch a proof. We have μ = ν2,
η = ντν−1. Then we can check easily that the relations (i) ∼ (vii) in Theorem 6.1
follow from (i′) ∼ (v′). Suppose that

(∗) u1u2 · · · um = 1

is a relation. Here ui is one of σ, ν, ν−1, τ , τ −1. In (∗), we substitute ν−1 by
μ−1ν. Then we obtain a relation

(∗∗) v1v2 · · · vn = 1.

Here vi is one of σ, ν, μ−1, τ , τ −1. The number of vi such that vi = ν is even.
If this number is zero, then (∗ ∗) is the relation among the elements σ, μ, and
τ . If this number is positive, then in (∗ ∗), a term of the form νXν is contained,
where X is an expression which contains only σ, τ , and μ. We may replace νXν

by νXν−1μ. By the relations

νσν−1 = σν−2 = σμ−1, ντν−1 = η,

νXν−1 is transformed to an expression which contains only σ, μ, τ , η, and their
inverses. Repeating this procedure, (∗ ∗) can be reduced to a relation among
the elements σ, μ, τ , and η. By Theorem 6.1, this relation follows from the
fundamental relations (i) ∼ (vii). Since (i) ∼ (vii) follow from (i′) ∼ (v′), our
assertion is proved.

Let F ∗ be the free group on three letters σ̃, ν̃, τ̃ . We define a surjective
homomorphism π∗ : F ∗ −→ Γ∗ by π∗(σ̃) = σ, π∗(ν̃) = ν, π∗(τ̃) = τ . Let R∗ be
the kernel of π∗. We have Γ∗ = F ∗/R∗. By Theorem 6.2, R∗ is generated by the
elements

(i∗) σ̃2,
(ii∗) (σ̃τ̃)3,
(iii∗) (σ̃ν̃)2,
(iv∗) τ̃ ν̃τ̃ ν̃−1(ν̃τ̃ ν̃−1τ̃)−1,
(v∗) ν̃2τ̃ ν̃−2(τ̃ ν̃τ̃ ν̃−1)−1

and their conjugates.
Let P ∗ be the subgroup of Γ∗ consisting of elements which can be repre-

sented by upper-triangular matrices. Let FP ∗ be the subgroup of F ∗ generated
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by ν̃ and τ̃ . Then π∗ | FP ∗ : FP ∗ −→ P ∗ is surjective. Let RP ∗ be the kernel of
this homomorphism. We see that RP ∗ is generated by (iv∗) and (v∗) and their
conjugates.

We have [F ∗ : (π∗)−1(Γ)] = 2. The following lemma can be proved easily by
applying the method of Reidemeister and Schreier (cf. Schreier [Sc], Suzuki [Su,
Section 6]).

LEMMA 6.3

The group (π∗)−1(Γ) is the free group on five elements σ̃, ν̃2, τ̃ , ν̃σ̃ν̃−1, and
ν̃τ̃ ν̃−1.

We put ν̃2 = μ̃, ν̃τ̃ ν̃−1 = η̃. Let F be the free group on four elements σ̃, μ̃, τ̃ ,
and η̃. Then our notation becomes consistent with that given in the beginning
of Section 5. We have F R∗ = (π∗)−1(Γ).

6.2
For every γ ∈ Γ∗, we choose γ̃ ∈ F ∗ so that π∗(γ̃) = γ. For explicit calculations, it
is necessary to specify the choice of γ̃. First let p ∈ P . We can write p = μaτ bηc,
and this expression is unique. We put p̃ = μ̃aτ̃ bη̃c. Next let p ∈ P ∗. We have p ∈ P

or p = νp1 with p1 ∈ P . In the latter case, we put p̃ = ν̃p̃1.
Let Δ be a complete set of representatives for P \Γ as in Section 5.1. Then Δ

is also a complete set of representatives for P ∗ \Γ∗. For γ ∈ Γ∗, we write γ = pδ

with p ∈ P ∗, δ ∈ Δ and put γ̃ = p̃δ̃. Our task is to specify the choice of Δ and
define δ̃ for δ ∈ Δ. To specify Δ is equivalent to choosing one element from every
coset Pγ, γ ∈ Γ. Let γ =

(
a b
c d

)
.

(1) In the case where Pγ = P , we take 1 as the representative. We take the
identity element of F as 1̃.

(2) In the case where c ∈ EF , we can take an element of the form
(

0 −1
1 d

)
as

the representative. We define

˜
(

0 −1
1 d

)
= σ̃

(̃
1 d

0 1

)
.

(3) In the case where c 
= 0 and c /∈ EF , we note that OF is a Euclidean ring
with respect to the absolute value of the norm (cf. [HW, Theorem 247, p. 213]).†

For every x, y ∈ OF , x 
= 0, there exist q, r ∈ OF such that

y = qx + r, |N(r)| < |N(x)|.

We have(
u 0
0 u−1

)(
a b

c d

)
=

(
ua ub

u−1c u−1d

)
,

(
1 t

0 1

)(
a b

c d

)
=

(
a + tc b + td

c d

)
.

†In this paper, this step will be used for the actual calculations only in the case a ∈ EF . Since

it will become necessary in future calculations, we write one (tentative) algorithm explicitly.
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First multiplying γ on the left by
(

u 0
0 u−1

)
, u ∈ EF , we normalize c so that

c � 0, 1 ≤ c′/c < ε4.

Next multiplying γ on the left by
(

1 t
0 1

)
, t ∈ OF , we may assume that |N(a)| <

|N(c)| by the Euclidean algorithm. However, to specify the choice of t is not
necessarily easy. In other words, there can be many choices of such a’s. We make
the preference order of the choice of a as follows. Put a = α + βε, α, β ∈ Z.

(1) |α| + |β| is minimum.
(2) |α| is minimum.
(3) |β| is minimum.
(4) We have α ≥ 0.
(5) We have β ≥ 0.

We define δ̃ for δ ∈ Δ as follows. We put δ =
(

a b
c d

)
and proceed by induction on

|N(c)|. The case |N(c)| = 0 or 1 is settled by (1) and (2). By our choice of Δ,
we have |N(a)| < |N(c)|. Put σ−1δ = p1δ1, p1 ∈ P , δ1 ∈ Δ, δ1 =

(
a1 b1
c1 d1

)
. We have

|N(c1)| = |N(a)| < |N(c)|. We define δ̃ = σ̃p̃1δ̃1.

6.3
Let f ∈ Z2

P (Γ, V ) be a normalized parabolic 2-cocycle. We first consider f+ (cf.
Section 5.6). We put f ∗ = T̃ (f). Then f ∗ ∈ Z2(Γ∗, V ) and f ∗ | Γ = f+ (cf. Sec-
tion 5.3). We can verify easily the parabolic condition

(6.1) f ∗(pγ1, γ2) = pf ∗(γ1, γ2), p ∈ P ∗, γ1, γ2 ∈ Γ∗.

We have

(6.2) H2(Γ∗, V ) ∼= H1(R∗, V )Γ
∗
/ Im

(
H1(F ∗, V )

)
.

Let ϕ ∈ H1(R∗, V )Γ
∗

be a corresponding element to f ∗. We recall that ϕ is
obtained in the following way. There exists a ∈ C1(F ∗, V ) such that

(6.3) a(g1g2) = g1a(g2) + a(g1) − f ∗(
π∗(g1), π∗(g2)

)
, g1, g2 ∈ F ∗.

Then ϕ = a | R∗. We may regard (6.3) as a rule for determining the value a(g)
according to the length of a word g ∈ F ∗. We can take a(σ̃) = a(ν̃) = a(τ̃) = 0.
Then we have a | FP ∗ = 0, since (6.1) yields f ∗(p, γ) = 0, p ∈ P ∗, γ ∈ Γ∗. In
particular, we have

(6.4) ϕ | RP ∗ = 0.

As shown in Section 1.5, we may assume that

(6.5) f ∗(γ1, γ2) = −ϕ
(
γ̃1γ̃2(γ̃1γ2)−1

)
adding a coboundary to f ∗. By (6.4), we can check that f ∗ satisfies (6.1) in the
same way as in Section 5.1. We have (cf. (5.3))

f ∗(σ,μ) = −ϕ
(
(σ̃μ̃)2

)
+ σμϕ(σ̃2).
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We have

ϕ
(
(σ̃μ̃)2

)
= ϕ(σ̃ν̃2σ̃ν̃2) = ϕ(σ̃ν̃σ̃ν̃ν̃−1σ̃−1ν̃σ̃ν̃2)

= ϕ(σ̃ν̃σ̃ν̃) + ϕ(ν̃−1σ̃−2ν̃) + ϕ(ν̃−1σ̃ν̃σ̃ν̃2)

= (1 + ν−1)ϕ
(
(σ̃ν̃)2

)
− ν−1ϕ(σ̃2).

Therefore we obtain

(6.6) f ∗(σ,μ) = −(1 + ν−1)ϕ
(
(σ̃ν̃)2

)
+ (σμ + ν−1)ϕ(σ̃2).

Clearly ϕ is determined by its values on the elements (i∗) ∼ (v∗). By (6.4),
ϕ takes the value zero on the elements (iv∗) and (v∗). We have σϕ(σ̃2) = ϕ(σ̃2).
Take h ∈ H1(F ∗, V ) so that h(σ̃) = −ϕ(σ̃2)/2, h(ν̃) = 0, h(τ̃) = 0. Adding h | R∗

to ϕ, we may assume that ϕ(σ̃2) = 0; ϕ still satisfies (6.4).
We analyze the process of adding h | R∗ to ϕ in more detail. For S, T , U ∈ V ,

we can find h ∈ H1(F ∗, V ) such that

h(σ̃) = S, h(τ̃) = T, h(ν̃) = U.

We find easily that the conditions when h vanishes on the elements (iv∗) and
(v∗) are

(1 + τν − ν − ντν−1)T + (τ − 1)(1 − ντν−1)U = 0,(6.7)

(ν2 − 1 − τν)T + (1 + ν − ν2τν−1 − τ)U = 0,(6.8)

respectively. We have

(6.9) h(σ̃2) = (1 + σ)S.

We put

A = ϕ
(
(σ̃ν̃)2

)
, B = ϕ

(
(σ̃τ̃)3

)
.

We note that

(6.10) σνA = A, στB = B.

Our objective is to determine A explicitly.

6.4
Let us consider the Hecke operators. We put g∗ = T (�)f ∗ where g∗ is defined
by (5.4) with Γ∗ in place of Γ. Let ψ ∈ H1(R∗, V )Γ

∗
be a corresponding element

to g∗. We see that Proposition 5.1 remains valid with Γ∗ and P ∗ in place of Γ
and P . In particular, we may assume that ψ is given by the formula

ψ(γ̃1γ̃2 · · · γ̃m)
(6.11)

= c

d∑
i=1

β−1
i ϕ

(
˜βiγ1β

−1
q1(i)

˜βq1(i)γ2β
−1
q2(i)

· · · ˜βqm−1(i)γmβ−1
qm(i)

)
.

Here γj = σ or γj ∈ P ∗ and γ1γ2 · · · γm = 1.
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EXAMPLE 6.4

Let us consider T (2). We may take

β1 =
(

1 0
0 2

)
, β2 =

(
1 1
0 2

)
, β3 =

(
1 ε

0 2

)
,

β4 =
(

1 ε2

0 2

)
, β5 =

(
2 0
0 1

)
.

By (6.11), we find

ψ
(
(σ̃τ̃)3

)
= c(β−1

3 Z3 + β−1
4 Z4),

where

(6.12) Z3 = ϕ

((
˜

(
ε −ε2

2 −ε2

)
τ̃

)3)
, Z4 = ϕ

((
˜

(
ε2 −ε2

2 −ε

))3)
.

We have

˜
(

ε −ε2

2 −ε2

)
= σ̃

˜
(

ε−1 0
0 ε

)(̃
1 ε

0 1

)−2

σ̃

(̃
1 ε

0 1

)−1

.

Hence, using (6.4), we have

Z3 = ϕ

((
σ̃

˜
(

ε−1 −2
0 ε

)
σ̃

˜
(

1 −ε−1

0 1

))3)
.

Similarly we obtain

Z4 = ϕ

((
σ̃

˜
(

ε−2 −2
0 ε2

)
σ̃

˜
(

1 −1
0 1

))3)
.

6.5
In general, every element r of R∗ can be written as (by using (i∗), (iv∗), (v∗),
and taking conjugation by σ̃ if necessary)

r = σ̃p̃1σ̃p̃2 · · · σ̃p̃m

with pi ∈ P ∗, 1 ≤ i ≤ m, such that σp1σp2 · · · σpm = 1. We call such an element
an m-terms relation. Theorem 6.2 assures us that ϕ(r) can be expressed by A

and B. The following formulas can be proved easily.

ϕ
(
(σ̃ν̃n)2

)
= (1 + ν−1 + · · · + ν1−n)A, n ≥ 1,(6.13a)

ϕ
(
(σ̃ν̃−n)2

)
= −(ν + ν2 + · · · + νn)A, n ≥ 1.(6.13b)

For t ∈ EF , we put

B(t) = ϕ

(
σ̃

(̃
1 t

0 1

)
σ̃

˜
(

1 t−1

0 1

)
σ̃

(̃
1 t

0 1

)
˜

(
t 0
0 t−1

))
.



416 Hiroyuki Yoshida

Then we have B(1) = B,

B(−t) = −σ

(
t 0
0 t−1

)
B(t) −

(
t−1 0
0 t

)
ϕ

((
σ̃

˜
(

t−1 0
0 t

))2)
,(6.14)

B(εt) = ν−1B(t)
(6.15)

+
[
1 + σ

(
1 εt

0 1

)
σ

(
1 ε−1t−1

0 1

)
− σ

(
1 εt

0 1

)
σ

]
A,

B(t) = σ

(
1 t

0 1

)
B(t−1) + ϕ

((
σ̃

˜
(

t 0
0 t−1

))2)
.(6.16)

By these formulas, we can express B(t) in terms of A and B explicitly. Using
B(t), we have an explicit formula for ϕ(r) for a three-term relation r:

ϕ

(
σ̃

˜
(

u1 x1

0 1

)
σ̃

˜
(

u2 x2

0 1

)
σ̃

˜
(

u3 x3

0 1

))

=
(

u−1
1 0
0 1

)
B(u−1

1 x1) + ϕ

((
σ̃

˜
(

u1 0
0 1

))2)
(6.17)

+
(

u−1
3 −u−1

3 x3

0 1

)
σϕ

((
σ̃

˜
(

u2 0
0 1

))2)
.

For an m-term relation r ∈ R∗, m ≥ 4, we may write pi =
(

ui xi
0 1

)
, ui ∈ EF ,

xi ∈ OF , 1 ≤ i ≤ m. We see that ϕ(r) reduces to an (m − 2)-term relation if xi = 0
for some i. If xi ∈ EF for some i, ϕ(r) reduces to an (m − 1)-term relation. For
example, if x1 ∈ EF and m ≥ 4, we have

ϕ

(
σ̃

˜
(

u1 x1

0 1

)
σ̃

˜
(

u2 x2

0 1

)
σ̃

˜
(

u3 x3

0 1

)
σ̃ · · · σ̃

˜
(

um xm

0 1

))

=
(

u−1
1 u−1 −u−1

1

0 u

)
ϕ

(
σ̃

˜
(

1 −u−1

0 1

)
˜

(
u2 x2

0 1

)
σ̃

˜
(

u3 x3

0 1

)
σ̃

(6.18)

· · · σ̃
˜

(
um xm

0 1

)
˜

(
u−1

1 u−1 −u−1
1

0 u

))

+
(

u−1
1 0
0 1

)
B(u) + ϕ

((
σ̃

˜
(

u1 0
0 1

))2)
.

Here u = u−1
1 x1. For a general m-term relation r, the explicit reduction of ϕ(r)

to A and B is a highly nontrivial problem. The author has an idea on a heuristic
algorithm to solve this problem, but it will not be discussed in this paper. For
our present purposes, the formulas (6.13a) ∼ (6.18) are sufficient.
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6.6
For actual computations, it is convenient to use the decomposition (5.13). Propo-
sition 5.5 shows that we will lose little information by assuming ϕ ∈ H1(R∗,

V )Γ
∗,+, so we do assume this. Then we have

−ϕ
(
(σ̃τ̃)3

)
= ϕ(τ̃ −1σ̃τ̃ −1σ̃τ̃ −1σ̃) = τ −1ϕ

(
(σ̃τ̃ −1)3

)
= τ −1ϕ

(
((σ̃τ̃)3)δ

)
= τ −1δϕ

(
(σ̃τ̃)3

)
.

Hence

(δτ + 1)B = 0.

Similarly we obtain

(δ − 1)A = 0.

Now we are ready to state explicit numerical examples. First by numerical
computations, we have verified the following.

FACT 6.1

Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then adding h | R∗, h ∈ H1(F ∗, V ) to ϕ (keeping ϕ in
the plus space under the action of δ and the condition (6.4)), we may assume
B = 0.

Therefore our task is to find constraints on A = ϕ((σ̃ν̃)2). Note that (σν − 1)A =
0. We put x =

(
ε −ε2

2 −ε2

)
τ and

(6.19) Z+
A =

{
v ∈ V

∣∣ (σν − 1)v = 0, (δ − 1)v = 0, xZ3 = Z3

}
.

Here some explanation is called for on the meaning of xZ3 = Z3. First note
that Z3 is defined by (6.12); clearly we must have xZ3 = Z3. Using the formulas
(6.13a) ∼ (6.18), we see that Z3 can be expressed by A. Therefore xZ3 = Z3 gives
a constraint on A. We define a linear mapping

(6.20) ζ+ : Z+
A −→ Cl2+1

as follows. Let v ∈ Z+
A . We let the coefficient of el1+2−m ⊗ e′

(l1+l2)/2+2−m in
(1 + ν−1)v be equal to the ((l1 + l2)/2 + 2 − m)th coefficient of ζ+(v), for (l1 −
l2)/2 + 1 ≤ m ≤ (l1 + l2)/2 + 1 (cf. (6.6)).

Suppose that ϕ as above corresponds to a (nonzero) Hecke eigenform Ω ∈
Sl1+2,l2+2(Γ). Suppose that l1 and l2 are in the range of Fact 6.1. Then ζ+(A) 
= 0
if l2 ≥ 4 in the case l1 
= l2, if l2 ≥ 6 in the case l1 = l2 by Proposition 5.5.

EXAMPLE 6.5

We take l1 = 8, l2 = 4. Then dimS10,6(Γ) = 1. We find that ζ+(Z+
A ) is one-

dimensional and consists of scalar multiples of t(4,0,1,0,4). Hence we obtain

R(7,Ω)/R(5,Ω) = 4, Ω ∈ S10,6(Γ).

My computer calculates this example in six seconds.



418 Hiroyuki Yoshida

EXAMPLE 6.6

In the same way as in Example 6.5, we obtain the following numerical values:

R(9,Ω)/R(7,Ω) = 6, Ω ∈ S14,6(Γ),

R(6,Ω)/R(4,Ω) =
25
6

, Ω ∈ S8,8(Γ),

R(8,Ω)/R(6,Ω) = 7, Ω ∈ S12,8(Γ),

R(10,Ω)/R(8,Ω) =
720
11

, Ω ∈ S12,10(Γ).

The spaces of cusp forms appearing in this example are all one-dimensional.

6.7
To deal with the case where dimSl1+2,l2+2(Γ) > 1, it is necessary to use the action
of Hecke operators. To this end, we consider the contribution of H1(F ∗, V ) to
Z+

A . Take h ∈ H1(F ∗, V ), and put

h(σ̃) = S, h(ν̃) = U, h(τ̃) = T.

We require that h | R∗ vanishes on the elements (i∗), (ii∗), (iv∗), (v∗). These
conditions are equivalent to

(σ + 1)S = 0,(6.21) {
(στ)2 + στ + 1

}
(σT + S) = 0,(6.22)

and (6.7), (6.8). We have

h
(
(σ̃ν̃)2

)
= (σν + 1)(σU + S).

We also require that

(6.23) (δ − 1)(σν + 1)(σU + S) = 0.

Let B+
A be the subspace of V generated by (σν + 1)(σU + S) when S, T , U

extend over vectors of V satisfying the relations (6.7), (6.8), (6.21), (6.22), and
(6.23). We have B+

A ⊂ Z+
A . As shown in Section 4.1, we have

(6.24) ζ+(B+
A) = {0} if l1 
= l2, dim ζ+(B+

A) ≤ 1 if l1 = l2.

By Proposition 5.5, we have

dimZ+
A/B+

A ≥ dimSl1+2.l2+2(Γ) if l2 ≥ 4, l1 
= l2, or if l1 = l2, l2 ≥ 6.

Now by numerical computations, we have verified the following.

FACT 6.2

Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then dimSl1+2,l2+1(Γ) = dimZ+
A/B+

A .

This fact means that the constraints posed on A = ϕ((σ̃ν̃)2) are enough.

EXAMPLE 6.7

We take l1 = 12, l2 = 8. We have dimS14,10(Γ) = 2. Moreover, we have ζ+(Z+
A ) =
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2 in this case. Hence ζ+ gives an isomorphism of Z+
A/B+

A into Cl2+1. Calculating
the action of T (2) on Z+

A/B+
A using (6.11), we find that the eigenvalues are

−2560 ± 960
√

106. Take an eigenvector in Z+
A/B+

A , and map it by ζ+. Then we
find

R(11,Ω)/R(7,Ω) = 1616 − 76
√

106, R(9,Ω)/R(7,Ω) =
58
3

− 5
6

√
106

if 0 
= Ω ∈ S14,10(Γ) satisfies Ω | T (2) = (−2560+960
√

106)Ω. If 0 
= Ω ∈ S14,10(Γ)
satisfies Ω | T (2) = (−2560 − 960

√
106)Ω, then we have

R(11,Ω)/R(7,Ω) = 1616 + 76
√

106, R(9,Ω)/R(7,Ω) =
58
3

+
5
6

√
106.

REMARK 6.8

The relation dim ζ+(Z+
A ) = dimSl1+2,l2+2(Γ) is rather accidental in the above

example. It holds in many cases, but we have dimSl1+2,l2+2(Γ) > dim ζ+(Z+
A ) in

general. Even in the general case, we can obtain ratios of L-values by finding an
eigenvector of Hecke operators in Z+

A/B+
A and mapping it by ζ+.

6.8
We next consider the 2-cocycle f − (cf. Section 5.6). The technique of calculation
is basically the same as for f+, but this case is somewhat more complicated. Put

(6.25) H1(R∗, V )Γ =
{
ϕ ∈ Hom(R∗, V )

∣∣ ϕ(grg−1) = gϕ(r), g ∈ F , r ∈ R∗}
.

Let ϕ ∈ H1(R∗, V )Γ. We put

(eϕ)(r) = ν−1ϕ(ν̃rν̃−1), r ∈ R∗.

Then we can verify easily that

eϕ ∈ H1(R∗, V )Γ, e2ϕ = ϕ.

Therefore H1(R∗, V )Γ decomposes as

(6.26) H1(R∗, V )Γ = H1(R∗, V )Γ,+ ⊕ H1(R∗, V )Γ,−,

where, for ε = ±1,

H1(R∗, V )Γ,ε =
{
ϕ ∈ Hom(R∗, V )Γ

∣∣ ϕ(ν̃rν̃−1) = ενϕ(r), r ∈ R∗}
.

First we take an arbitrary normalized 2-cocycle f ∈ Z2(Γ, V ). Since F R∗ is
a free group, there exists a ∈ C1(F R∗, V ) such that

(6.27) f
(
π∗(g1), π∗(g2)

)
= g1a(g2) + a(g1) − a(g1g2), g1, g2 ∈ F R∗.

As shown in Section 1.4, we have

a(gr) = ga(r) + a(g), a(grg−1) = ga(r), g ∈ F R∗, r ∈ R∗.

Put ϕ = a | R∗. Then the above formulas imply ϕ ∈ H1(R∗, V )Γ. From the iso-
morphism Γ ∼= F R∗/R∗(∼= F /F ∩ R∗ = F /R), we obtain

(6.28) H2(Γ, V ) ∼= H1(R∗, V )Γ/ Im
(
H1(F R∗, V )

)
,
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and the procedure f �→ ϕ described above gives an explicit form of the isomor-
phism (6.28). We consider the decomposition of H2(Γ, V ) under the action of ν

(cf. the formula below (5.10)). Then we have

(6.29) H2(Γ, V )± ∼= H1(R∗, V )Γ,±/
(
Im(H1(F R∗, V )) ∩ H1(R∗, V )Γ,±)

.

6.9
Now we consider the 2-cocycle f −. Let ϕ ∈ H1(R∗, V )Γ,− be a corresponding
element. As for f+, we may assume that

ϕ | RP ∗ = 0,(6.30)

f −(γ1, γ2) = −ϕ
(
γ̃1γ̃2(γ̃1γ2)−1

)
(6.31)

adding a coboundary to f −. We put

A = ϕ
(
(σ̃ν̃)2

)
, B = ϕ

(
(σ̃τ̃)3

)
.

The formulas (6.13a) ∼ (6.18) hold with the following modifications:

(6.13a−) ϕ
(
(σ̃ν̃n)2

)
=

(
1 − ν−1 + ν−2 + · · · + (−1)1−nν1−n

)
A, n ≥ 1,

(6.13b−) ϕ
(
(σ̃ν̃−n)2

)
=

(
ν − ν2 + ν3 − · · · + (−1)1−nνn

)
A, n ≥ 1.

We define B(t), t ∈ EF , by the same formula as before. In (6.15), the term
ν−1B(t) should be replaced by −ν−1B(t); (6.14) and (6.16) hold without any
change. For u = ±εn ∈ EF , we define ε0(u) = (−1)n. On the right-hand side of
(6.17), the first term should be multiplied by ε0(u1), and the third term should
be multiplied by ε0(u3). On the right-hand side of (6.18), both the first and the
second terms should be multiplied by ε0(u1).

We may and do assume that f − belongs to the plus subspace of H2(Γ, V )−

under the action of δ. Then we have

(δ − 1)A = 0, (δτ + 1)B = 0.

By numerical computations, we have verified the following.

FACT 6.3

Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then adding h | R∗ for h ∈ H1(F R∗, V ) such that
h | R∗ ∈ H1(R∗, V )Γ,− to ϕ (keeping ϕ in the plus space under the action of δ

and the condition (6.30)), we may assume B = 0.

Therefore our task is to find constraints on A = ϕ((σ̃ν̃)2). Note that (σν + 1) ·
A = 0. We put x =

(
ε −ε2

2 −ε2

)
τ and

(6.32) Z−
A =

{
v ∈ V

∣∣ (σν + 1)v = 0, (δ − 1)v = 0, xZ3 = Z3

}
.

Here the meaning of the constraint xZ3 = Z3 is the same as for Z+
A . We define a

linear mapping

ζ− : Z−
A −→ Cl2+1
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as follows. Let v ∈ Z−
A . We let the coefficient of el1+2−m ⊗ e′

(l1+l2)/2+2−m in
(1 − ν−1)v be equal to the ((l1 + l2)/2 + 2 − m)th coefficient of ζ−(v), for (l1 −
l2)/2 + 1 ≤ m ≤ (l1 + l2)/2 + 1 (cf. (6.6)).

EXAMPLE 6.9

We take l1 = 8, l2 = 6. Then dimS10,8(Γ) = 1. We find that ζ−(Z−
A ) is one-

dimensional and consists of scalar multiples of t(2,0,7/90,0, −7/90,0, −2). Hence
we obtain

R(8,Ω)/R(6,Ω) =
180
7

, Ω ∈ S10,8(Γ).

EXAMPLE 6.10

In the same way as in Example 6.9, we obtain the following numerical values:

R(9,Ω)/R(7,Ω) =
70
3

, Ω ∈ S12,8(Γ),

R(9,Ω)/R(7,Ω) = 42, Ω ∈ S12,10(Γ).

The spaces of cusp forms appearing in this example are all one-dimensional.

6.10
To treat the case where dimSl1+2,l2+2(Γ) > 1, it is necessary to consider Hecke
operators.

First let us write down Im(H1(F R∗, V )) ∩ H1(R∗, V )Γ,±, which appears on
the right-hand side of (6.29), explicitly. Take h ∈ Z1(F R∗, V ). We put

(6.33) (e0h)(x) = ν−1h(ν̃xν̃−1), x ∈ F R∗.

We can check easily that e0h ∈ Z1(F R∗, V ) and that

(e2
0h)(x) = h(x) + (ν−2 − xν−2)h(ν̃2), x ∈ F R∗.

If we restrict h to R∗, then the action e0 coincides with the action of e defined
in Section 6.8. We have (e2

0h) | R∗ = h | R∗. We put

h± = h ± e0h.

A general element of Im(H1(F R∗, V )) ∩ H1(R∗, V )Γ,± can be obtained as h± | R∗

from a general element h ∈ Z1(F R∗, V ).
Let Z1(F R∗, V )± be the subgroup of Z1(F R∗, V ) consisting of all elements

whose restrictions to R∗ belong to H1(R∗, V )Γ,±. Take ε1 = ±1, and put h± =
h + ε1e0h. For the free generators σ̃, τ̃ , ν̃2, ν̃σ̃ν̃−1, ν̃τ̃ ν̃−1 of F R∗, we put

h(σ̃) = S1, h(τ̃) = T1, h(ν̃2) = U,

h(ν̃σ̃ν̃−1) = V1, h(ν̃τ̃ ν̃−1) = W1.

Then we find

h±(σ̃) = S1 + ε1ν
−1V1,

h±(τ̃) = T1 + ε1ν
−1W1,
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h±(ν̃2) = (1 + ε1ν
−1)U,

h±(ν̃σ̃ν̃−1) = V1 + ε1νS1 + ε1ν
−1(1 − ν4σ)U,

h±(ν̃τ̃ ν̃−1) = W1 + ε1νT1 + ε1(ν−1 − ντν−2)U.

Fix ε1 = ±1, and put

(6.34) h±(σ̃) = S, h±(τ̃) = T.

Then V1 and W1 are eliminated, and we obtain

h±(ν̃2) = (1 + ε1ν
−1)U,(6.35)

h±(ν̃σ̃ν̃−1) = ε1νS + ε1ν
−1(1 − ν4σ)U,(6.36)

h±(ν̃τ̃ ν̃−1) = ε1νT + ε1(ν−1 − ντν−2)U.(6.37)

Clearly S, T , and U can take the arbitrary three vectors of V . The formulas
(6.34) ∼ (6.37) describe a general element of Z1(F R∗, V )±. The conditions for
h± to vanish on the elements (iv∗) and (v∗) are

(6.38)
{
ντν−1 − 1 + ε1(1 − τ)ν

}
T + ε1(1 − τ)(ν−1 − ν−1τν−2)U = 0,

(6.39) (1+ε1τν − ν2)T +
{
ε1τ(ν−1 − ντν−2) − (1 − ν2τν−2)(1+ε1ν

−1)
}
U = 0,

respectively. For h± ∈ Z1(F R∗, V )± as above, we have

(6.40) h±(
(σ̃ν̃)2

)
= (1 + ε1σν)S + (ν−2 + ε1σν−1)U.

Now we consider the case ε1 = −1. Let B−
A be the subspace of V generated by

(1 − σν)S + (ν−2 − σν−1)U when S, T , U extend over vectors of V satisfying
the relations (6.21), (6.22), (6.38), (6.39), and

(6.41) (δ − 1)
{
(1 − σν)S + (ν−2 − σν−1)U

}
= 0.

We have B−
A ⊂ Z−

A . As shown in Section 4.1, we have

ζ−(B−
A ) = {0} if l1 
= l2, dim ζ−(B−

A ) ≤ 1 if l1 = l2.

Using Proposition 5.2(2), we can show that

dimZ−
A /B−

A ≥ dimSl1+2.l2+2(Γ) if l2 ≥ 2, l1 
= l2 or if l1 = l2, l2 ≥ 4.

Now by numerical computations, we have verified the following.

FACT 6.4

Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then dimSl1+2,l2+1(Γ) = dimZ−
A /B−

A .

The formula (6.11) can be generalized in the following way. We put g− = T (�)f −

where g− is defined by (5.4). Let ϕ ∈ H1(R∗, V )Γ,− be a corresponding element
to f −. We may assume that (6.31) holds. There exists a 1-cochain b ∈ C1(F R∗, V )
such that

(6.42) f −(
π∗(x1), π∗(x2)

)
= x1b(x2) + b(x1) − b(x1x2), x1, x2 ∈ F R∗.
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As the intial conditions, we may assume that

b(σ̃) = 0, b(ν̃2) = 0, b(τ̃) = 0, b(ν̃σ̃ν̃−1) = 0, b(ν̃τ̃ ν̃−1) = 0

for the free generators of F R∗. Then the formula (5.9) holds when b(γ̃j) = 0,
1 ≤ j ≤ m. This condition holds if γ̃j is equal to one of the five free generators as
above or their inverses. In particular, ψ = b | R∗ is given by

ψ(γ̃1γ̃2 · · · γ̃m)

= c

d∑
i=1

β−1
i ϕ

(
˜βiγ1β

−1
q1(i)

˜βq1(i)γ2β
−1
q2(i)

· · · ˜βqm−1(i)γmβ−1
qm(i)

)
provided γ̃j is equal to one of the five free generators of F R∗ or their inverses
and γ1γ2 · · · γm = 1. The above formula is the same as (6.11), but there is one
important point about which we must be careful. This ψ belongs to H1(R∗, V )Γ

and gives a corresponding element to g−, but it does not necessarily belong
to H1(R∗, V )Γ,−. We obtain ψ− ∈ H1(R∗, V )Γ,− corresponding to g− by ψ− =
(1 − e)ψ/2 (cf. Section 6.8).

EXAMPLE 6.11

We take l1 = 12, l2 = 8. We have dimS14,10(Γ) = 2. Moreover, we have ζ−(Z−
A ) =

2 in this case. Hence ζ− gives an isomorphism of Z−
A /B−

A into Cl2+1. Take an
eigenvector of T (2) in Z−

A /B−
A , and map it by ζ−. Then we find

R(10,Ω)/R(8,Ω) = 50 −
√

106

if 0 
= Ω ∈ S14,10(Γ) satisfies Ω | T (2) = (−2560+960
√

106)Ω. If 0 
= Ω ∈ S14,10(Γ)
satisfies Ω | T (2) = (−2560 − 960

√
106)Ω, then we have

R(10,Ω)/R(8,Ω) = 50 +
√

106.

Let Ω be a Hecke eigenform of S14,10(Γ). Then L(m,Ω) is a critical value for
integers in the range 3 ≤ m ≤ 11 (cf. (5.14)). We have L(s,Ω) = L(14 − s,Ω) (cf.
(2.7)). By Examples 6.7 and 6.11, we have treated all critical values on the right
of the critical line.

EXAMPLE 6.12

We take l1 = l2 = 18. We have dimS20,20(Γ) = 7. Calculating the action of T (2)
on Z+

A/B+
A using (6.11), we find that the characteristic polynomial of T (2) is (we

can use Z−
A /B−

A , which gives the same result)

(X − 97280)2(X + 840640)(X4 − 1286780X3 + 19006483200X2

+ 27181090390835200X − 22979876427231395840000).

The irreducible factor of degree four corresponds to the base-change part from
S20(Γ0(5), ( 5 )); X + 840640 corresponds to the base-change part from
S20(SL2(Z)); the factor (X − 97280)2 corresponds to the non-base-change part.
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Let Ω ∈ dimS20,20(Γ) be a Hecke eigenform in the non-base-change part. A cal-
culation for the plus part yields the result

R(18,Ω)/R(10,Ω) = 39355680000, R(16,Ω)/R(10,Ω) = 33163650,

R(14,Ω)/R(10,Ω) =
1266460

27
, R(12,Ω)/R(10,Ω) =

26075
216

.

A calculation for the minus part yields the result

R(17,Ω)/R(11,Ω) =
111006792000

803
, R(15,Ω)/R(11,Ω) =

54618434
365

,

R(13,Ω)/R(11,Ω) =
453159
1606

.

We note that though there are two Hecke eigenforms in the non-base-change
part, these ratios are the same for them.†

7. Numerical examples, II

7.1
In this section, we treat the case F = Q(

√
13). We use the same notation as in

Section 6. Many results there remain valid in the present case, so we will be brief.
The fundamental unit of F is ε = (3 +

√
13)/2. The elements σ, ν, and τ of

Γ∗ satisfy the relations (i′) ∼ (iv′) in Section 6.1 and

(v′) ν2τν−2 = τ(ντν−1)3.

Though we do not know that (i′) ∼ (v′) are the fundamental relations, we will
show that it is possible to calculate ratios of critical values of L-functions rigor-
ously.

Let F ∗ be the free group on three letters σ̃, ν̃, τ̃ . We define a surjective
homomorphism π∗ : F ∗ −→ Γ∗ by π∗(σ̃) = σ, π∗(ν̃) = ν, π∗(τ̃) = τ . Let R∗ be
the kernel of π∗. Then R∗ contains the elements (i∗) ∼ (iv∗) in Section 6.1 and

(v∗) ν̃2τ̃ ν̃−2
{
τ̃(ν̃τ̃ ν̃−1)3

}−1
.

For every γ ∈ Γ∗, we choose γ̃ ∈ F ∗ so that π∗(γ̃) = γ. We use the same algorithm
as in Section 6.

We consider f+ (cf. Section 5.6). We put f ∗ = T̃ (f). Then f ∗ ∈ Z2(Γ∗, V ) and
f ∗ | Γ = f+ (cf. Section 5.3). Let ϕ ∈ H1(R∗, V )Γ

∗
be a corresponding element

to f ∗. We may assume that (6.4) and (6.5) hold. We may also assume that
ϕ(σ̃2) = 0. We need to analyze the process of adding h | R∗ to ϕ. For S, T ,
U ∈ V , there exists h ∈ H1(F ∗, V ) such that

h(σ̃) = S, h(τ̃) = T, h(ν̃) = U.

†We can show that the L-functions (2.39) are the same for two Hecke eigenforms in the
non-base-change part. In fact, let Ω �= 0 be a Hecke eigenform in the non-base-change part, and
let λ(m) be the eigenvalue of T (m) for Ω. For the nontrivial automorphism σ of F , there exists

a Hecke eigenform Ωσ �= 0 such that Ωσ | T (m) = λ(mσ)Ωσ (cf. [Y2, Remark, p. 1035]). Since Ω
is not a base change, we have λ(m) �= λ(mσ) for some m. Hence Ωσ is not a constant multiple

of Ω. On the other hand, L(s,Ωσ) is equal to L(s,Ω).
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We find that the conditions for h to vanish on the elements (iv∗) and (v∗) are
(6.7) and [

ν2 − τ
{
1 + ντν−1 + (ντν−1)2

}
ν − 1

]
T

+
[
(1 − ν2τν−2)(1 + ν) − τ

{
1 + ντν−1 + (ντν−1)2

}
(7.1)

× (1 − ντν−1)
]
U = 0,

respectively. We put

A = ϕ
(
(σ̃ν̃)2

)
, B = ϕ

(
(σ̃τ̃)3

)
.

Then (6.10) holds. As in Section 6, our objective is to determine A explicitly.

7.2
Let us consider the Hecke operators. We put g∗ = T (�)f ∗ where g∗ is defined
by (5.4) with Γ∗ in place of Γ. Let ψ ∈ H1(R∗, V )Γ

∗
be a corresponding element

to g∗. We may assume that ψ is given by (6.11).
We have 3 = (4 +

√
13)(4 −

√
13) in F . Put � = 4 −

√
13 = −2ε + 7, p = (�),

and consider the Hecke operator T (p) = T (�). We may take

β1 =
(

1 0
0 �

)
, β2 =

(
1 1
0 �

)
, β3 =

(
1 ε

0 �

)
, β4 =

(
� 0
0 1

)
.

Using (6.11), we can compute ψ(σ̃2), ψ((σ̃ν̃)2), and ψ((σ̃τ̃)3). Remarkably it
turns out that these quantities can be expressed by A and B. Since this is tech-
nically the essential part of calculation, we are going to explain the computation
of ψ((σ̃τ̃)3) in some detail. By (6.11), we have

ψ
(
(σ̃τ̃)3

)
= cβ−1

3 Z3,

where

(7.2) Z3 = ϕ

((
σ̃

˜
(

ε−1 2ε − 7
0 ε

)
σ̃

˜
(

1 −2ε

0 1

))3)
.

For x ∈ OF and u ∈ EF such that x divides u − 1, we put

{x,u}4

=
(̃

1 x

0 1

)
σ̃

˜
(

1 (1 − u)/x

0 1

)
σ̃

˜
(

1 −x/u

0 1

)
σ̃

˜
(

1 −u(1 − u)/x

0 1

)
σ̃

˜
(

u−1 0
0 u

)
.

Then {x,u}4 ∈ R∗. As a quantitative version of [Y4, Lemma A.6(3)], we can show
that

ϕ({x,ue}4) = ϕ({x,u}4)

+ σ

(
u−1 u−e+1(1 − ue)/x

0 u

)
σ

(
1 ue−2x

0 1

)
· ϕ({ −ue−2x,ue−1}4)(7.3)
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− σ

(
u−1 u−e+1(1 − ue)/x

0 u

)
σϕ

((
σ̃

˜
(

u1−e 0
0 ue−1

))2)

+ σ

(
u−e 0
0 ue

)
ϕ

((
σ̃

˜
(

u−e 0
0 ue

))2)

− σ

(
u−1 0
0 u

)
ϕ

((
σ̃

˜
(

u−1 0
0 u

))2)
for e ∈ Z. (This formula holds for any real quadratic field F .) By (7.3) and using
the formulas given in Section 6.5, we can express ψ((σ̃τ̃)3) in terms of A and B.

7.3
We assume ϕ ∈ H1(R∗, V )Γ

∗,+ (cf. Section 5.5). Then, as in Section 6.6, we have

(δτ + 1)B = 0, (δ − 1)A = 0.

FACT 7.1

Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then adding h | R∗, h ∈ H1(F ∗, V ) to ϕ (keeping ϕ

in the plus space under the action of δ and the condition ϕ | RP ∗ = 0), we may
assume B = 0.

Therefore our task is to find constraints on A = ϕ((σ̃ν̃)2). We put x =
σ
(

ε−1 2ε−7
0 ε

)
σ
(

1 −2ε
0 1

)
and let

(7.4) Z+
A =

{
v ∈ V

∣∣ (σν − 1)v = 0, (δ − 1)v = 0, xZ3 = Z3

}
.

Here Z3 is defined by (7.2), and the meaning of xZ3 = Z3 is the same as in Sec-
tion 6.6. Namely, xZ3 = Z3 must hold because x3 = 1; since Z3 can be expressed
by A, xZ3 = Z3 gives a constraint on A.

We consider the contribution of H1(F ∗, V ) to Z+
A . Take h ∈ H1(F ∗, V ), and

put

h(σ̃) = S, h(ν̃) = U, h(τ̃) = T.

We require that h | R∗ vanishes on the elements (i∗), (ii∗), (iv∗), (v∗). These
conditions are equivalent to (6.21), (6.22), (6.7), and (7.1). We have

h
(
(σ̃ν̃)2

)
= (σν + 1)(σU + S).

We also require that (6.23) holds. Let B+
A be the subspace of V generated by

(σν +1)(σU +S) when S, T , U extend over vectors of V satisfying the relations
(6.7), (6.21), (6.22), (6.23), and (7.1). We have B+

A ⊂ Z+
A . As shown in Section 4.1,

(6.24) holds. By Proposition 5.5, we have

dimZ+
A/B+

A ≥ dimSl1+2.l2+2(Γ) if l2 ≥ 4, l1 
= l2 or if l1 = l2, l2 ≥ 6.

Now by numerical computations, we have verified the following.
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FACT 7.2

Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then dimSl1+2,l2+1(Γ) = dimZ+
A/B+

A .

This fact means that the constraints posed on A = ϕ((σ̃ν̃)2) are enough.

EXAMPLE 7.1

We take l1 = l2 = 6. We have dimS8,8(Γ) = 5. Calculating the action of T (p) on
Z+

A/B+
A using (6.11), we find that the characteristic polynomial of T (p) is

(X2 − 40X − 3957)(X3 + 28X2 − 2601X − 71748).

The quadratic factor corresponds to the non-base-change part; the irreducible
factor of degree three corresponds to the base-change part from S8(Γ0(13), ( 13 )).
Let Ω ∈ S8,8(Γ) be the Hecke eigenform such that Ω | T (p) = (20 +

√
4357)Ω.

Then we find

R(6,Ω)/R(4,Ω) = 70/3.

EXAMPLE 7.2

We take l1 = l2 = 8. We have dimS10,10(Γ) = 7. We find that the characteristic
polynomial of T (p) is

(X2 − 16X − 42789)

× (X5 + X4 − 66033X3 + 1260423X2 + 530326440X + 14266185264).

The quadratic factor corresponds to the non-base-change part. Let Ω ∈ S10,10(Γ)
be the Hecke eigenform such that Ω | T (p) = (8 +

√
42853)Ω. Then we find

R(7,Ω)/R(5,Ω) = 50.

EXAMPLE 7.3

We take l1 = l2 = 10. We have dimS12,12(Γ) = 11. We find that the characteristic
polynomial of T (p) is

(X − 252)(X4 + 252X3 − 496198X2 − 116604684X + 25202349477)

× (X6 + 244X5 − 665334X4 − 129598956X3 + 109163403621X2

+ 14522233287672X − 255121008509808).

The irreducible factor of degree four corresponds to the non-base-change part;
X − 252 corresponds to the base-change part from S12(SL2(Z)); and the irre-
ducible factor of degree six corresponds to the base-change part from S12(Γ0(13),
( 13 )). Put

f(X) = X4 + 252X3 − 496198X2 − 116604684X + 25202349477.

Let θ be a root of f(X), and put K = Q(θ). We find that K contains a quadratic
subfield F = Q(

√
7 · 5167). Put d = 7 · 5167. Then a root of f(X) is given by

ψ = −(63 +
√

d) +
√

223837 − 360
√

d.
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We have

N(223837 − 360
√

d) = 13 · 563 · 6205151.

This number and the quadratic fields in Examples 7.1 and 7.2 are consistent with
the table given in Doi, Hida, and Ishii [DHI].

For the Hecke eigenform Ω ∈ S12,12(Γ) such that Ω | T (�) = ψΩ, we find

R(10,Ω)/R(6,Ω) =
3732099 + 18663

√
d

5
,

R(8,Ω)/R(6,Ω) =
24367 + 121

√
d

20
.

8. A comparison of two methods

In [Sh2], Shimura gave a method to calculate critical values of D(s, f, g) for two
elliptic modular forms f and g. Here D(s, f, g) is the Rankin–Selberg convolution
of f and g. Shortly later he gave a generalization to the case of Hilbert modular
forms (see [Sh3]). Taking one argument in the convoluted L-function as a suitable
Eisenstein series, this method enables us to calculate the ratios of critical values
of L(s,Ω) for a Hilbert modular form Ω. We call this technique method A. We
call the cohomological technique method B, which was initiated in [Sh1] and
studied in this paper when [F : Q] = 2. It is interesting to compare A and B.

(0) Method A is more general and conceptually simpler. It has the advantage
of giving the relation of the product of the plus and minus periods to the Petersson
norm. It is applicable also to modular forms of half-integral weights.

(1) If n = [F : Q] > 2, method B has to calculate Hn(Γ, V ), which is beyond
reach at present. Therefore when [F : Q] > 2, A is definitively superior than B.

(2) Suppose that [F : Q] = 2. Method B is still incomplete. But in the cases
well worked out, F = Q(

√
5), for example, B has the advantage that we can

write a program which calculates everything by machine. It can also be used to
calculate the characteristic polynomials of Hecke operators. (In this respect, it is
desirable to solve the problem mentioned at the end of Section 6.5.) We employed
essentially a single program to obtain examples in Section 7. Therefore in some
cases at least, B will have the advantage over A. But in general the method A is
conceptually simpler.

In Doi and Goto [DG] and Doi and Ishii [DI], the authors gave interesting
examples of critical values of D(s, f, g) for Hilbert modular forms f and g. Their
interest was the relation of this value to the congruences between Hilbert modular
forms. However, they did not give examples of critical values of L(s,Ω). Recently
Dr. K. Okada calculated the ratios of critical values of L(s,Ω) and confirmed the
numerical value of Example 7.1 by method A. He obtained one more example for
F = Q(

√
17).

(3) Suppose that F = Q. Method B is developed into the theory of modular
symbols which is presently used to calculate characteristic polynomials of Hecke
operators. For the L-values, the author does not know which is faster. But the
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calculation of [Sh1] reviewed in the introduction suggests that B would not be
more complex than A.

9. A remark on periods unrelated to critical values

In this section, we will show that we can deduce some information on the com-
ponents of the cocycle f(Ω) which are not related to critical values in certain
cases. We use the notation of Section 6 assuming F = Q(

√
5). For simplicity, we

consider the plus space assuming l1 
= l2.
To explain our ideas, let us recall that

(9.1) H2(Γ∗, V )+ ∼= Z+
A/B+

A ,

which is verified for 4 ≤ l2 < l1 ≤ 20 (cf. Facts 6.1, 6.2, and Proposition 5.5). We
assume that (9.1) always holds. Let ζ+ be the linear mapping of Z+

A into Cl2+1

(see (6.20)) which picks up information on critical values. A crucial point of our
calculation of L-values is the fact that ζ+(B+

A) = 0. By the functional equation of
L(s,Ω) (or by (2.21)) and by Section 5.6, we see easily that the components of ζ+

consist of (at most) [l2/4] + 1 linearly independent linear forms on Z+
A . We have

Z+
A ⊃ Ker(ζ+) ⊃ B+

A , dim ζ+(Z+
A ) = dimZ+

A/Ker(ζ+).

Put g+ = dimKer(ζ+)/B+
A and L = Hom(Z+

A/B+
A ,C). We regard an element of

L as a linear form on Z+
A which is trivial on B+

A . Let L0 be the subspace of L

spanned by the components of ζ+.
Now our idea is very simple: By the dimensionality reason, we have g+ > 0

when l1 is sufficiently large for a fixed l2 (e.g., g+ = 1 when (l1, l2) = (12,6),
(18,6), (18,8)). Hence there exists l ∈ L which does not belong to L0. In view of
(9.1), l defines the linear form of Z2(Γ∗, V )+ which is trivial on the coboundary
space. Considering the image under l of the cocycle obtained from Ω, we can
deduce information on periods which are not related to critical values.

More concretely, let χ be the system of eigenvalues of Hecke operators at-
tached to Ω. Let (Z+

A/B+
A)(χ) be the χ-isotypic component of Z+

A/B+
A , and

let Z+
A (χ) be its pullback under the canonical homomorphism Z+

A −→ Z+
A/B+

A .
By the method of Section 6, we can calculate (Z+

A/B+
A)(χ) algebraically. Take

ϕ ∈ Z+
A (χ) whose components are in Q. On the other hand, we can calculate

the corresponding element ψ ∈ Z+
A (χ) from values of the cocycle f(Ω). We have

ψ ≡ cϕ mod B+
A with c ∈ C×, and therefore

(9.2) l(ψ) = cl(ϕ).

Equation (9.2) contains information on the values of f(Ω) unrelated to the critical
values.
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