
Leading terms of Thom polynomials and
J- images

Yoshifumi Ando

Abstract We give two types of singularities of maps between 4q-manifolds whose
Thom polynomials with integer coefficients have nonvanishing coefficient of Pontrjagin
class Pq . We show that an element of the J-image of dimension 4q − 1 has a fold map
between S4q−1 and can be detected by the leading terms of Thom polynomials of those
singularities of an extended map between D4q of the fold map.

1. Introduction

The calculation of Thom polynomials of smooth maps in the real category began
in [24], and has been developed mainly with Z2-coefficients by many authors (see,
e.g., [17], [20], [21], [2], [16], [6], [18]). However, there have been known only a
small number of orientable real singularities of codimension 4q of smooth maps
between equi-dimensional manifolds whose Thom polynomials with Z-coefficients
have the nonvanishing leading term, namely, the term of the qth Pontrjagin class.
This is a very different situation from the complex case in the calculation of Thom
polynomials. The examples, as far as the author knows, are the singularities of
type Σ2 of codimension 4 in [20] and the singularities, which have been studied
in [6], of codimension 8. In this paper we present two types of real singularities
with such a property under a certain restrictive assumption on maps and apply
the result to show a relationship between those singularities and the J -images of
the stable homotopy groups of spheres.

Let K(k) denote the contact group defined in [10] on the jet space Jk(n,n).
For an integer n with n � 8, we consider an unfolding fη : (Rn,0) → (Rn,0) of a
genotype η = 〈η1(u, v), η2(u, v)〉 and the K(k)-orbit K(k)(jkfη), which we denote,
for simplicity, by Kη in this paper. We deal with the genotypes 〈u2 + v2, um〉
(S1) and 〈u2 + v3, uvm−2〉 (S2) for m � 4. Note that S1 is of type Σ2,0, called
IVm by [12], and S2 is of type Σ2,1. They are orientable if m is an even integer
2q. If a smooth map f : X → Y between smooth manifolds of dimension n with
n � 4q such that j2q−1f(X) does not intersect with cl(Kη)\Kη and j2q−1f(X)
is transverse to Kη, then (j2q−1)f −1(Kη) is a manifold and we can define its
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Thom polynomial as proved in Corollary 5.6, which we denote by tp(Kη;f). We
calculate the leading term of the Thom polynomials for these genotypes.

THEOREM 1.1

Let m be an even integer 2q (q � 2). Let X and Y be orientable smooth mani-
folds of dimension n with n � 4q, and let f : X → Y be a smooth map such that
j2q−1f(X) does not intersect with cl(Kη)\Kη and that j2q−1f(X) is transverse to
Kη. Then the leading term of the Thom polynomial tp(Kη;f) with Z-coefficients
is equal to, up to sign,

(1) (2q − 1)!Pq for 〈u2 + v2, u2q 〉,

(2)

{
3P2 if q = 2,

3
{∏2q−2

i=3 i
}
Pq if q � 3

for 〈u2 + v3, uv2q−2〉,

where Pi denotes the Pontrjagin class Pi(f ∗(TY ) − TX). In particular, these
terms depend only on the homotopy class of f .

In the process of the calculation using the Gysin homomorphisms, the structures
of the normal bundles of Boardman–Thom manifolds in [5] and [9] and of the
normal bundle of Kη in [10] play important roles. Note that we do not assert the
existence of the Thom polynomials in the sense of [6]. Although it is better for
the complete forms of Thom polynomials to apply the method in [6], [18], and
[19] using the Vassiliev complexes and the structure groups of normal bundles of
K-orbits, it is rather hard to adopt it in our case. Fehér and Rimányi [6] have
proved that K 〈u2 + v3, uv2〉 − 2K 〈u2 + v2, u4〉 constitutes a cycle in a Vassiliev
complex and have determined its precise Thom polynomial. Its leading term
coincides with our leading term ±9P2(f ∗(TY ) − TX) in Theorem 1.1.

We next explain that the above Thom polynomial of the singularities Kη

detects elements of the J -images of the stable homotopy groups of spheres. In
[3] we have studied the group of oriented cobordism classes of fold maps to Sn

of degree zero. Two fold maps fi : Ni → Sn (i = 0,1) of degree zero are called
cobordant if there exists a fold map, say, f̃ : (W,∂W ) → (Sn × [0,1], Sn × 0 ∪
Sn × 1) of degree zero, where f̃ |N0 × 0 = f0 and f̃ |N1 × 1 = f1 together with the
usually required properties, where Ni and W are oriented.

Let Ωfold,0(Sn) denote the group of all oriented cobordism classes of fold maps
to Sn of degree zero. Let πs

n denote the nth stable homotopy group of spheres.
Then we have proved that there exists an isomorphism ω0 : Ωfold,0(Sn) → πs

n for
n ≥ 1. Consequently, an element in the J -image has a fold map f : N → Sn of
degree zero via ω0 and its extension Ef : (V,N) → (Dn+1, Sn) of degree zero,
where V is a parallelizable manifold with ∂V = N and Ef |N = f . We will apply
a method introduced in [4] to detect an element of the J -image by the algebraic
numbers of above singularities of Ef of codimension n+1 = 4q and will describe
the details in dimensions 4q � 8.

In Section 2 we explain the notation currently used in this paper. In Section 3
we briefly review the fundamental properties of Boardman–Thom manifolds. In
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Section 4 we briefly review the results concerning K-orbits in [10] and give pre-
liminary lemmas and properties of the singularities of Kη. In Section 5 we give
a number of results concerning the normal bundles of Kη. In Section 6 we give
a proof of Theorem 1.1 in a general form. In Section 7 we apply Theorem 1.1
to show a relationship between the singularities of Kη and the J -images of the
stable homotopy groups of spheres in Theorem 7.2.

2. Notation

Throughout the paper all manifolds are Hausdorff, paracompact, and smooth of
class C∞.

Let πE : E → W and πF : F → W be smooth n-vector bundles over a smooth
manifold W . Let Hom(E,F ) denote the smooth vector bundle over W with fiber
Hom(Ex, Fx), x ∈ W , which consists of all homomorphisms Ex → Fx.

We set

(2.1) Jk(E,F ) = Hom
( k⊕

i=1

Si(E), F
)

over W with projections πJ onto W . Here, Si(E) denote the vector bundle⋃
x∈W Si(Ex) over W , where Si(Ex) denotes the i-fold symmetric product of

Ex. An element z of Jk(E,F ) with πJ (z) = x gives the homomorphisms hi,z :
Si(Ex) → Fx. Let (∂x1, ∂x2, . . . , ∂xn) or (∂y1, ∂y2, . . . , ∂yn) denote the basis of Ex

or Fy , and let (x1, x2, . . . , xn) or (y, y2, . . . , yn) denote the dual basis of E∗
x and F ∗

x .
Then {hi,z } yields a map germ f : (Rn,0) → (Rn,0), where yi ◦ f(x1, x2, . . . , xn)
is a polynomial of degree k for i = 1, . . . , n. We identify z with jk

0 f .
Let Jk(X,Y ) denote the k-jet space of n-manifolds X and Y . Let pX and

pY be the projections of X × Y , onto X and Y , respectively. If we provide
X and Y with Riemannian metrics, then the Levi–Civita connections induce
the exponential maps expX,x : TxX → X and expY,y : TyY → Y . In dealing with
exponential maps we always consider convex neighborhoods (see [8]). We define
the smooth bundle map

(2.2) Jk(X,Y ) → Jk
(
p∗

X(TX), p∗
Y (TY )

)
over X × Y

by sending z = jk
xf ∈ Jk

x,y(X,Y ) to the k-jet of (expP,y)−1 ◦ f ◦ expX,x at 0 ∈ TxX ,
which is regarded as an element of Jk(TxX,TyY ) (i.e., Jk

x,y(TX,TY )). Let Lk(n)
denote the group of all k-jets of local diffeomorphisms of (Rn,0). Then the smooth
equivalence of the fiber bundles under the structure group Lk(n) × Lk(n) in (2.2)
gives a smooth reduction of the structure group Lk(n) × Lk(n) of Jk(X,Y ) to the
structure group O(n) × O(n) of Jk(p∗

X(TX), p∗
Y (TY )). Therefore, we will work

in the jet spaces of types in (2.1).

3. Boardman–Thom singularities

Let us recall the fundamental properties of the intrinsic derivatives on Boardman–
Thom manifolds in Jk(E,F ) following [5] and [9]. Let D denote the total tangent
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bundle which is isomorphic to (πJ )∗E. There have been defined the first, second,
and third intrinsic derivatives.

(1) Let d1 : D −→ (πJ )∗F denote the first intrinsic derivative defined over
Jk(E,F ). Let K and Q denote the 2-dimensional kernel and cokernel bundle of
d1 defined over Σ2(E,F ), respectively.

(2) Let d2 : K −→ Hom(K,Q) denote the second intrinsic derivative defined
over Σ2(E,F ). The manifold Σ2,1(E,F ) consists of all jets z ∈ Σ2(E,F ) with
d2,z being of rank 1. Let K2 denote the kernel bundle of d2 over Σ2,1(E,F ).
Let d̃2 : S2K → Q over Σ2(E,F ) denote the bundle homomorphisms, which
are canonically induced from d2. This implies that d̃2 is a smooth section of
Hom(S2K,Q) over Σ2(E,F ). Let K⊥

2 denote the orthogonal complement of K2

in K such that d̃2 : K⊥
2 © K⊥

2 → Q is injective. Let I2 denote the trivial line
subbundle as the image d̃2(K⊥

2 © K⊥
2 ).

(3) Let d3 : K2 −→ Cok(d2) denote the third intrinsic derivative defined over
Σ2,1(E,F ). The manifold Σ2,1,0(E,F ) consists of all jets z ∈ Σ2,1(E,F ) such that
d3,z is injective.

In the paper we usually abbreviate (E,F ) as Σ2, Σ2,1, and Σ2,1,0.

PROPOSITION 3.1

(1) The normal bundle of Σ2 in Jk(E,F ) is isomorphic to Hom(K,Q).
(2) The normal bundle of Σ2,1 in Σ2 is isomorphic to

Hom(K2 © K⊥
2 ,Q/I2) ⊕ Hom(K2 © K2,Q)

restricted to Σ2,1.

Proof
(1) This is well known.
(2) Since d̃2 vanishes exactly on K2 © K, it is a monomorphism of K⊥

2 ©
K⊥

2 to Q. Therefore, the cokernel of d2 is isomorphic to Hom(K⊥
2 ,Q/I2) ⊕

Hom(K2,Q). By [5], the normal bundle of Σ2,1 in Σ2 is isomorphic to

Hom
(
K2,Hom(K⊥

2 ,Q/I2) ⊕ Hom(K2,Q)
)
.

This shows the assertion. �

4. Local properties of singularities

In this section we study the singularities of unfoldings of the genotypes introduced
in the introduction. In this section let k denote m − 1.

Let us recall the tangent bundle and the normal bundle of the K(k)-orbit of
the k-jet z = jk

0 f for a C∞-map germ f : (Rn,0) → (Rn,0) in Jk(n,n) described
in [10, Proposition 7.4]. Let θ(f) denote the vector space of germs of vector
fields along f . Let idRn be the identity map germs of (Rn,0). Then we have the
homomorphisms

tf : θ(idRn) −→ θ(f) and wf : θ(idRn) −→ θ(f)
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defined by tf(s) = df ◦ s and wf(s) = s ◦ f for sections s ∈ θ(idRn). It has
been proved that there exists a canonical isomorphism of the tangent bundle
of Jk(n,n) at z with mxθ(f)�mk+1

x θ(f). Then the tangent bundle and the nor-
mal bundle of K(k)z are expressed as

Tz(K(k)(z)) =
{
tf

(
mxθ(idRn)

)
+ f ∗(my)θ(f)

}
/mk+1

x θ(f),
(4.1)

νz

(
K(k)(z)

)
= mxθ(f)�

(
tf(mxθ(idRn)) + f ∗(my)θ(f) + mk+1

x θ(f)
)
,

respectively. Here, mx and my denote the maximal ideals of C∞-map germs on
(Rn,0) under coordinates (x1, . . . , xn) and (y1, . . . , yn), respectively.

Let η = 〈η1, η2〉 denote a C∞-map germ (R2,0) → (R2,0) with rank zero at
the origin. An unfolding f : (Rn,0) → (Rn,0) of the genotype η implies a map
germ (u, v, t1, . . . , tn−2) �→ (f1, . . . , fn), where

f1 = η1(u, v) + g1(u, v, t1, . . . , tn−2),

f2 = η2(u, v) + g2(u, v, t1, . . . , tn−2),(4.2)

fj = tj−2 for 3 � j � n,

such that g1(u, v,0, . . . ,0) = g2(u, v,0, . . . ,0) = 0.
The following lemma is an elementary consequence.

LEMMA 4.1

The tangent bundle and the normal bundle of K(k)(jk
0 f) are isomorphic to those

of K(k)(jk
0 η) under the canonical isomorphism

mxθ(f)�mk+1
x θ(f) ≈ mu,vθ(η)�mk+1

u,v θ(η).

Since the orbit K(k)(jk
0 f) is determined by the genotype η, we denote the orbit,

simply, by K0η in what follows.
In this paper ∂/∂xi, ∂/∂yj , ∂/∂u, and ∂/∂v are denoted by ∂xi, ∂yj , ∂u, and

∂v for simplicity. Let (∂u,∂v) or (∂y1, ∂y2) be a basis of the source R2 or the
target R2, respectively. The following proposition is a consequence of a direct
calculation and is useful to study the normal bundle of K0η.

PROPOSITION 4.2

Let m � 4. In the respective cases S1 and S2, we have the following.

(1) The tangent space T (K0η) is, respectively, generated by
(S1) u2∂y1, uv∂y1, v2∂y1, uvm−1∂y2, and (u2 + v2)∂/∂yi, vm∂/∂yi for i =

1,2 over mu,v,
(S2) 2u2∂y1 +uvm−2∂y2, 2uv∂y1 +vm−1∂y2, 3uv2∂y1 +(m − 2)u2vm−3∂y2,

3v3∂y1 + (m − 2)uvm−2∂y2, and (u2 + v3)∂yi, uvm−2∂yi for i = 1,2 over mu,v.
(2) The normal space ν(K0η) is, respectively, generated by the vectors
(S1) u∂yi, v∂yi for i = 1,2, and uj∂y2, uj−1v∂y2, where j varies over 2 to

m − 1,
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(S2) u∂yi, v∂yi, for i = 1,2, and uv∂y1, v2∂y1, uvj−1∂y2, vj∂/∂y2, where
j varies over 2 to m − 2.

We have the following lemma.

LEMMA 4.3

The orbit K0η is a submanifold of codimension 2m.

REMARK 4.4

In Proposition 3.1(2), u, v, uv, ∂y1, and ∂y2 correspond to (K⊥
2 )∗

z , (K∗
2)z ,

(K⊥
2 )∗

z © (K∗
2)z , (I2)z , and (Q/I2)z , respectively.

LEMMA 4.5

The topological closure of K0η is an algebraic set of Jk(n,n).

Proof
By [11, Proposition 9.1], it is enough to prove the assertion in the case n = 2.
By [4] and [13], the topological closures of Σ2,0 and Σ2,1 are algebraic sets. A jet
of a germ (y1 ◦ f, y2 ◦ f) of Σ2,0 lies in the topological closure of K0η if and
only if y1 ◦ f and y2 ◦ f vanish modulo (u2 + v2) + mm

u,v by the arguments in
the classification of simple singularities of type Σ2,0 in [12]. If a jet of a germ
(y1 ◦ f, y2 ◦ f) lies in Σ2,1, then the functions ∂u(yi ◦ f), ∂v(yi ◦ f) for i = 1,2
constitute a one-dimensional subspace of mu,v/m2

u,v . Let w(u, v) denote such a
nonsingular function in them. Then a jet of a germ (y1 ◦ f, y2 ◦ f) of Σ2,1 lies
in the topological closure of K0η if and only if y1 ◦ f and y2 ◦ f vanish modulo
(w2)+mm−1

u,v by the arguments in the classification of simple singularities of type
Σ2,1 in [12]. This shows the assertion. �

Let V be a 2-dimensional vector space with basis ∂u and ∂v, and let V ∗ be
its dual space with basis u and v. Then SiV ∗ is identified with the space of
homogeneous polynomials of degree i with variables u and v. Since the element
(∂u)2 +(∂v)2 in S2V is invariant with respect to the action of O(2), it yields the
1-dimensional subspace LV of S2V . Hence, the subspaces LV © Si−2V in SiV

for i � 2 yield the subspace Σt+1
i=2(LV © Si−2V ) in Σt+1

i=2S
iV of codimension 2t.

REMARK 4.6

The quotient SiV/(LV © Si−2V ) has a basis (∂v)i and ∂u(∂v)i−1. Let z =
∂u +

√
−1∂v, and let R(zi) and I(zi) denote the real and imaginary part of

zi, respectively. Then R(zi) and I(zi) constitute a better basis. Indeed, for any
homogeneous polynomial g(u, v) of degree i − 2, we have(

R(zi) +
√

−1I(zi)
)
(u2 + v2)g(u, v) = 0,

and so, R(zi) and I(zi) annihilate (u2 + v2)g(u, v).
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We define Kη(Ex, Fx) at x ∈ X corresponding to K0η in Jk(n,n) applying the
above argument similarly as in Jk(Ex, Fx). Let Kη(E,F ) denote the subbundle
of Jk(E,F ) over X with fiber Kη(Ex, Fx). Let T (Kη(E,F )) and ν(Kη(E,F ))
denote the tangent bundle and the normal bundle of Kη(E,F ) in Jk(E,F ),
respectively. If there is no confusion, then (Ex, Fx) and (E,F ) may be abbreviated
as Kxη and Kη.

We next determine the structure of the normal bundle of Kη in Jk(E,F ) by
using Propositions 3.1 and 4.2. Since Kη lies in the Boardman–Thom manifold
Σ2 of codimension 4, it is enough for this purpose to determine the structure of
the normal bundle of Kη in Σ2.

Let L denote the trivial line bundle in S2K, which is associated to the
subspace LKz of S2Kz . Let K, L, Q, and K⊥

2 in the case (S2) denote the restriction
of K, L, Q, and K⊥

2 in the case (S2) to Kη. For a jet z ∈ Kη, let qz denote the
oriented line of Qz with the orthogonal projection p(qz) : Qz → qz .

We define two line bundles qi and their orthogonal complements q⊥
i for i =

1,2 in Q over Kη. Namely, q⊥
1,z is generated by the image d̃2,z((∂u)2 + (∂v)2) in

the case (S1), and q⊥
2,z is generated by the image d̃2,z((∂u)2) in the case (S2).

We note that q⊥
i are trivial and W1(qi) = W1(Q) over Kη.

Let ν(Kη) denote the following bundle over Kη in the respective cases:

(S1) Hom
(⊕m−1

i=2 SiK/(L © Si−2K),q1

)
,

(S2) Hom(S2K/K⊥
2 ,Q) ⊕ Hom

({⊕m−2
i=3 SiK/(K⊥

2 © Si−2K)
}
,q2

)
.

The next proposition follows from Proposition 4.2.

PROPOSITION 4.7

We have the following:

(1) the normal bundle of Kη in Jk(E,F ) is isomorphic to Hom(K,Q) ⊕
ν(Kη),

(2) the normal bundle of Kη is orientable if and only if m is even, respec-
tively.

Proof
(1) The assertion follows from Propositions 3.1 and 4.2.
(2) The first Stiefel–Whitney classes of Hom(K,Q) and Hom(S2K/K⊥

2 ,Q)
are all equal to zero. Let W (K) = (1 + t1)(1 + t2) and W (Q) = (1 + r1)(1 + r2).
Then we have W1(K) = W1(Q) = t1 + t2 and W1(SiK) = (i(i+1)/2)W1(K). Since
L and K⊥

2 are isomorphic to the trivial bundle ε, we have

W1

(
SiK/(ε © Si−2K)

)
= W1(SiK) − W1(Si−2K) = W1(K).

These identities show the assertions. �
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5. Global properties of singularities

In this section we study the global structure of the normal bundle of Kη, which is
necessary for the calculation of its Thom polynomial. In this section let k denote
m − 1.

Let X be orientable. Let Jk(E,F )× = Jk(E,F )\(cl(Kη)� Kη) with the pro-
jection πJ onto X . Let G(E) denote the Grassmann bundle G2,2w−2((πJ )∗E)
with canonical projection prE : G(E) → X . Let G(E,F ) denote the Grassmann
bundle G2,2w−2((prE)∗F ) with projection prG : G(E,F ) → X . Let KG denote the
canonical 2-plane bundle over G(E,F ), and let QG denote the canonical 2-plane
bundle over G(E,F ) associated to pr∗

E(F ). We always provide E, F , KG, and QG

with the structure groups O(n) and O(2), respectively. Let LG denote the trivial
line subbundle of S2KG. An element of G(E,F ) is expressed by (z,α,β), where
z ∈ J(E,F )× with πJ(z) = x, α ∈ G2,n−2(Ex), β ∈ G2,n−2(Fx). Here, α and β are
often written as Kz and Qz , respectively. Let πG : G(E,F ) → J(E,F )× denote
the map defined by πG(z,α,β) = z. Let s be a section of J(E,F )× over X , which
is transverse to Kη, and let sG : s∗G(E,F ) → G(E,F ) denote the canonical bun-
dle map covering s. Then we have the diagram with the given canonical maps:

(5.1)
(
SηG ⊂ s∗G(E,F )

) sG (
KηG ⊂ G(E,F )

)
πG(

Kη ⊂ Jk(E,F )×)

(Sη ⊂ X)

s

X

The following notation is used at the end of this section. Let Sη denote the
space s−1(Kη). The space S2

G denotes the space that consists of all quadruples
(x, s(x), α, β) with s(x) ∈ cl(Σ2) such that α ⊂ Ker(d1,s(x)) and β ⊥ Im(d1,s(x)).
The space SηG denotes the subspace of S2

G with s(x) ∈ Kη. Obviously, SηG is
mapped onto Sη diffeomorphically by the canonical projection.

Let Σ2
G or KηG denote the space that consists of all triples z̃ = (z,Kz,Qz) ∈

G(E,F ) such that Kz and Qz are 2-planes and that z lies in cl(Σ2) or Kη,
respectively. For an element z̃ ∈ Kη, Kz , and Qz are uniquely determined. Any
jet z̃ in G(E,F ) induces an element of Jk(Kz,Qz) = Hom

(⊕k
i=1 SiKz,Qz

)
and

a polynomial map ζ : (R2,0) → (R2,0) of degree k. We use this notation ζ for z̃

without any comment.
Let d1|KG : KG → pr∗

G(F ) denote the homomorphism induced from d1. Let
pr(QG) denote the canonical projection of pr∗

G(F ) onto QG. Then we have
the bundles Hom(KG,pr∗

G(F )) ⊕ Hom(K⊥
G ,Q) over G(E,F ) with a section σG

defined by

σG(z) = d1,z |(KG)z ⊕ pr(QG) ◦ d1,z |(K⊥
G )z.

The next proposition follows from [17] (see also [2]).
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PROPOSITION 5.1

(i) The section σG is transverse to the zero section, and its inverse images
of the zero sections by σG coincide with Σ2

G. Consequently, Σ2
G is a submanifold.

(ii) The projection πG maps Σ2
G onto cl(Σ2) so that (πG|Σ2

G)−1(Σ2) is
mapped onto Σ2 diffeomorphically.

We take a very small tubular neighborhood U(KηG) of KηG in the cases (S1)
and (S2). Let d2,z̃ : S2Kz → Qz denote the composite of the homomorphism
h2,z |S2Kz and pr(Qz). Note that d2,z̃ coincides with the homomorphism induced
from d2,z at least for z ∈ Σ2. We define two line bundles qi and their orthogonal
complements q⊥

i for i = 1,2 in QG. If d2,z̃(Lz) does not vanish, then q⊥
1,z̃ is

defined to be the image d2,z̃(Lz) and q1,z̃ is its orthogonal line in Qz , where Lz

is generated by ∂u2 + ∂v2.
Let Σ2,1

G denote (πG|Σ2
G)−1(Σ2,1). We define K⊥

2 to be a line subbundle of
KG over Σ2,1

G induced from K⊥
2 . Let ∂u denote a unit basis of K⊥

2,z̃ , and let ∂v

denote a basis of K2,z̃ . Then (∂u,∂v) is an orthogonal basis of KG,z̃ . We take
a small tubular neighborhood U(Σ2,1

G ) of Σ2,1
G with radius ε within a tubular

neighborhood with radius 2ε in Σ2
G, where ε is a positive function on Σ2,1

G . Let
U(Σ2,1

G ) contain U(KηG) in the case (S2). We can extend K⊥
2 to a trivial bundle

over the tubular neighborhood denoted by the same symbol K⊥
2 . Let d(z̃,Σ2,1

G )
denote the distance of z and Σ2,1, and let w(t) be a smooth-increasing function
such that w(t) = 0 for t � ε and w(t) = ε for t � 2ε. We define a trivial line
subbundle ΘG of S2KG over Σ2

G so that ΘG coincides with S2K⊥
2 on Σ2,1

G and
that (ΘG)z̃ is generated by a vector(

1 − (1/ε)w(d(z̃,Σ2,1
G ))

)
∂u2 + (1/ε)w

(
d(z̃,Σ2,1

G )
)
(∂u2 + ∂v2).

If d2,z̃((ΘG)z̃) does not vanish, then q⊥
2,z̃ is defined to be the image d2,z̃((ΘG)z̃),

and q2,z̃ is its orthogonal line in Qz .

REMARK 5.2

In the case (S2) we choose a basis of SiKG/(ΘG © Si−2KG) denoted by Ri
Θ and

Ii
Θ, which are equal to ∂u(∂v)i−1 and (∂v)i over U(Σ2,1

G ).

Let (u, v) and (y1, y2) denote orthogonal coordinates determined as above. We
define a section r of

Hom
(
SiKG/(LG © Si−2KG),QG

)
and

Hom
(
SiKG/(ΘG © Si−2KG),QG

)
by

(S1) ri(z) =
[

R(∂u +
√

−1∂v)i(y1 ◦ ζ)|0, I(∂u +
√

−1∂v)i(y1 ◦ ζ)|0
R(∂u +

√
−1∂v)i(y2 ◦ ζ)|0, I(∂u +

√
−1∂v)i(y2 ◦ ζ)|0

]
,

(5.2)

(S2) ri
Θ(z) =

[
Ri

Θ(y1 ◦ ζ)|0, Ii
Θ(y1 ◦ ζ)|0

Ri
Θ(y2 ◦ ζ)|0, Ii

Θ(y2 ◦ ζ)|0

]
.
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We show how ri(z) changes by the coordinate changes. We express them as
z = u +

√
−1v, z′ = u′ +

√
−1v′ with z = e

√
−1θz′, and (y1, y2) = A(y′

1, y
′
2), where

A is an orthogonal 2-matrix. Let T (θ) denote the counterclockwise rotation by
the angle θ. Then the following lemma is easy to prove.

LEMMA 5.3

(i) If z = e
√

−1θz′, then ri(z) = Ari(z′)tT (θ).
(ii) If u = u′ and v = −v, then ri(z) = Ari(z′)

[
1 0
0 −1

]
.

Let o(QG) denote the line bundle determined by the first Stiefel–Whitney class
W1(QG), which is isomorphic to the wedge product QG ∧ QG. Let ε1

G denote the
trivial line bundle over G(E,F ).

Since π3(S1) = {0}, the following lemma is easy to prove.

LEMMA 5.4

If QG is the Whitney sum q⊥ ⊕ q over a subcomplex W of Σ2
G with W1(q) =

W1(QG|W ), then there exists a fiberwise map

μ : Hom
(
SiKG/(ε1

G © Si−2KG),QG

)
→ Hom

(
SiKG/(ε1

G © Si−2KG), o(QG)
)

over Σ2
G such that if {0} lies in the image of μ on a point of Σ2

G, then μ−1{0} =
{0} there and that μ| Hom(SiKG/(ε1

G © Si−2KG),q)|W is the identity on W .

Proof
The restriction of the identity of Hom(SiKG/(ε1

G © Si−2KG),QG) to

Hom
(
SiKG/(ε1

G © Si−2KG),QG

)
\{zero section}

over W yields a fiberwise map to

Hom
(
SiKG/(ε1

G © Si−2KG),q
)

\{zero section}

by using π3(S1) = {0} so that μ| Hom(SiKG/(ε1
G © Si−2KG),q)|W is the identity

on W . Then extend this fiberwise map to

Hom
(
SiKG/(ε1

G © Si−2KG), o(QG)
)

\{zero-section}.

Then construct the required map μ by extending this map by the conewise con-
struction. �

Let N (η)G denote the following vector bundles:

(S1) Hom
(⊕m−1

i=2 (SiKG/(LG⊗Si−2KG), o(QG))
)
,

(S2) Hom(S2KG/ΘG,QG) ⊕ Hom
({(⊕m−2

i=3 SiKG/(ΘG © Si−2KG)
)}

,

o(QG)
)

over G(E,F ) in the cases (S1) and (S2), respectively. Let n(η)Σ2 denote their
restriction to Σ2

G, respectively.
In the following proposition we apply the fiberwise map μ with W = U(KηG)

in the case (S1) and with W = U(Σ2,1
G ) in the case (S2) together with ri and ri

Θ.
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PROPOSITION 5.5

In the case (S1) or (S2), we have the following.

(i) The normal bundle of KηG in Σ2
G is induced from n(η)Σ2 by the inclusion

KηG in Σ2
G.

(ii) There exists a section ψ of n(η)Σ2 over Σ2
G, which is transverse to the

zero-section on KηG, whose inverse image of the zero section coincides with KηG.

Proof
For an element z̃ = (z,Kz,Qz) of Σ2

G with z ∈ cl(Σ2), we take local orthogo-
nal coordinate systems (u, v) and (y1, y2) for Kz and Qz with the associated
polynomial map ζ : (R2,0) → (R2,0).

(1) We have defined the lines q⊥
1 and q1 such that QG ≈ q⊥

1 ⊕ q1 over a
very small tubular neighborhood U(KηG) of KηG. Let (y1, y2) be the coordinates
associated to (q⊥

1 ,q1). Then it follows from (5.2) and Lemma 5.4 that we have
a section

μ ◦ ri : U(KηG) → Hom
(
SiKG/(LG ⊗ Si−2KG),q1

)
defined over U(KηG). We set the section ψU on U(KηG) as

ψU (z̃) =
(m−1⊕

i=2

μ ◦ ri(z̃)
)
.

By definition, ψU is transverse to the zero section on Kη. Furthermore, ψU van-
ishes on KηG and never vanishes on U(KηG)\KηG. Suppose that ψU (z̃) vanishes.
Then there exists a nonzero real number c such that

y1 ◦ ζ(u, v) = (u2 + v2)
(
c + g1(u, v)

)
,

y2 ◦ ζ(u, v) = (u2 + v2)
(
g2(u, v)

)
,

modulo mm
u,v , where deg gi is greater than zero. By the Morse theorem we may

assume under a suitable choice of coordinates (u, v) that y1 ◦ ζ(u, v) = c(u2 +v2).
Hence, we may assume under a suitable choice of coordinates (y1, y2) that y2 ◦
ζ(u, v) = 0 modulo mm

u,v . This implies that z̃ lies in KηG.
We next extend ψU to a section of

Hom
(m−1⊕

i=2

(SiKG/(LG⊗Si−2KG), o(QG)
)

\(zero section)

over Σ2
G. By using μ ◦ ri in Lemma 5.4, we can extend the section ri on ∂U(KηG)

to a section

ψi : Σ2
G\ IntU

(
KηG

)
→ Hom

(
SiKG/(LG © Si−2KG),QG

)
over Σ2

G\ IntU(KηG) such that ψi(z̃) vanishes if and only if μ ◦ ψi(z̃) vanishes.
Now we define the section ψ′ over Σ2

G\ IntU(KηG) by

ψ′(z̃) =
(m−1⊕

i=2

μ ◦ ψi(z̃)
)
.
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We have to show that ψ′ never vanish on Σ2
G\ IntU(KηG). Suppose that ψ′(z̃)

vanishes. This implies that yi ◦ ζ(u, v) lies in the ideal (u2 + v2) modulo mm
u,v for

i = 1,2. First let z lie in Σ2. If one of yi ◦ ζ(u, v) is equal to c(u2 + v2) modulo
m3

u,v with c �= 0, then we may again suppose that yi ◦ ζ(u, v) = c(u2 + v2), and
hence, z lies in KηG. This is impossible. Hence, c = 0 and z lies in Σ2,2. Since
the normal bundle Hom(S2K,Q) of Σ2,2 cannot be a subbundle of N (η)G by
considering the structure group of N (η)G, this is also impossible. If z lies in the
closure of Σ3, then the normal bundle of Σi for i > 2 cannot be a subbundle of
N (η)G by the same reason. Therefore, ψ′(z̃) never vanish.

By the definition of ψU and ψ′, they coincide on ∂U(KηG) with each other.
Thus we have obtained the required section ψ defined on Σ2

G such that it vanishes
only on KηG and is transverse to the zero section on KηG.

(2) In the case (S2), we have defined the lines q⊥
2 and q2 such that QG ≈

q⊥
2 ⊕ q2 over a very small tubular neighborhood U(Σ2,1

G ) of Σ2,1
G . Let (y1, y2) be

the corresponding coordinates. By (5.2) and Lemma 5.4 we have the sections

μ ◦ ri
Θ : U(Σ2,1

G ) → Hom
(
SiKG/(ΘG ⊗ Si−2KG),q2

)
for i � 3.

We set the section ψU on U(Σ2,1
G ) as

ψU (z̃) = r2
Θ(z̃) ⊕

(m−2⊕
i=3

μ ◦ ri
Θ(z̃)

)
.

By definition, ψU is transverse to the zero section on Kη. Furthermore, ψU van-
ishes on KηG and never vanishes on U(Σ2,1

G )\KηG. In fact, suppose that ψU (z̃)
vanishes. Since r2

Θ(z̃) vanishes, we may write y1 ◦ ζ(u, v) = au2 with a �= 0 and
y2 ◦ ζ(u, v) = 0 modulo m3

u,v under a suitable choice of coordinates (y1, y2), and z

lies in Σ2,1. By the splitting theorem, we may assume under a suitable choice of
coordinates (u, v) that y1 ◦ ζ(u, v) = a1u

2 + h(v) modulo mm−1
u,v , where degh > 2.

If degh = 3, then we may assume that y1 ◦ ζ(u, v) = u2 + v3 and y2 ◦ ζ(u, v) = 0
modulo (u2 + v3) + mm−1

u,v . Hence, we can prove under a suitable choice of coor-
dinates (u, v) and (y1, y2) that y1 ◦ ζ(u, v) = u2 + v3 and y2 ◦ ζ(u, v) = 0 modulo
mm−1

u,v . This implies by the result concerning a classification of simple singulari-
ties in [12, Section 8] that z lies in Kη. If a = 0 or degh > 3, then we first have
h(v) = 0 modulo mm−1

u,v . Next we take the germs ζλ such that

y1 ◦ ζλ(u, v) = λ(u2 + v3),

y2 ◦ ζλ(u, v) = (u2 + v3)g(u, v)

modulo mm−1
u,v , which yields the jets zλ = z + jm−2ζλ. If λ �= 0, then zλ similarly

lies in Kη, and so z lies in cl(Kη)\ Kη. This is impossible. Hence, ψU never vanish.
We next extend ψU to a section of Hom(SiKG/(ΘG © Si−2KG),QG)\(zero

section) over Σ2
G. Over Σ2

G\ IntU(Σ2,1
G ), we have the section

r2
Θ : Σ2

G\ IntU(Σ2,1
G ) → Hom(S2KG/ΘG,QG),

ri
Θ : Σ2

G\ IntU(Σ2,1
G ) → Hom

(
SiKG/(ΘG © Si−2KG),QG

)
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in (5.2). Therefore, it follows from Lemma 5.4 that it induces a section

μ ◦ ri
Θ : Σ2

G\ IntU(Σ2,1
G ) → Hom

(
SiKG/(ΘG © Si−2KG), o(QG)

)
such that μ ◦ ri

Θ(z̃) vanishes if and only if ri
Θ(z̃) vanishes. Now we define the

section ψ
′
of

Hom(S2KG/ΘG,QG) ⊕ Hom
({(m−2⊕

i=3

SiKG/(ΘG © Si−2KG)
)}

, o(QG)
)

over Σ2
G\ IntU(Σ2,1

G ) by

ψ
′
(z̃) = r2

Θ(z̃) ⊕
(m−2⊕

i=3

μ ◦ ri
Θ(z̃)

)
.

We have to show that ψ
′

never vanish on Σ2
G\ IntU(Σ2,1

G ). Suppose that ψ
′
(z̃)

vanishes. Then we may write y1 ◦ ζ(u, v) = a(u2 + v2) and y2 ◦ ζ(u, v) = 0 modulo
m3

u,v . First let z lie in Σ2. If a �= 0, then we may assume by the Morse theorem
that y1 ◦ ζ(u, v) = a(u2 + v2). This implies that z lies in cl(K 〈x2 + y2, xm−1〉).
By the transversality of ψ

′
, the structure groups of the normal bundles at z

and of N (η)G are different. This is impossible. If a = 0, namely, yi ◦ ζ(u, v) = 0
for i = 1,2, then z lies in Σ2,2, and hence, similarly as in (1), it is impossible.
Therefore, it follows as in (1) that z lies in cl(Σ3). Similarly as in (1), this is also
impossible. Hence, ψ′(z̃) never vanish.

From the definition of ψU , it follows that ψU and ψ
′
coincide with each other

on ∂U(Σ2,1
G ). Thus we have obtained the required section ψ defined on Σ2

G such
that it vanishes only on KηG and is transverse to the zero section on KηG. This
completes the proof. �

COROLLARY 5.6

Let X be of dimension not less than 2m. Let s be a section of Jk(E,F ) over X

such that s(X) ∩ (cl(Kη)\ Kη) is empty and s is transverse to Boardman–Thom
manifolds. Then the section ψs over S2

G of (sG|S2
G)∗n(η)Σ2 , which is induced by

ψ ◦ s, is transverse to the zero section on SηG and its inverse image of the zero
section is exactly equal to SηG in the case (S1) or (S2), respectively.

6. Thom polynomials

In what follows let k denote 2q − 1. We calculate the Thom polynomial of Kη

under the condition that a section of Jk(E,F ) does not intersect with cl(Kη)\Kη

by properties of Gysin homomorphisms and characteristic classes (see [7], [15],
[22]) and prove Theorem 1.1. We first prepare several lemmas.

Let H be a 2w-vector bundle over a connected orientable manifold Z. Let
πG : G2,2w−2(H) → Z denote the Grassmann bundle associated to H with fiber
G2,2w−2. Let (πG)! : H∗(G2,2w−2(H);Z) → H∗(Z;Z) denote the Gysin homomor-
phism. Let K denote the canonical 2-plane bundle over G2,2w−2(H) and HG =
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(πG)∗H . We express the total Pontrjagin class P (K) of K as P (K) = 1+P1(K).
Let P (H)−1 = 1 + P 1(H) + · · · + P i(H) + · · · .

We have the following lemma. This is well known (see [17]).

LEMMA 6.1

(1) G2,2w−2(H) is orientable.

(2) We have (πG)!(Pi(HG/K)) =

{
1 for i = w − 1,

0 for i �= w − 1.

(3) We have (πG)!(P1(K)w−1+�) = (−1)w−1+�P �(H).

Proof
(1) The tangent bundle of G2,2w−2(H) is isomorphic to Hom(K,HG/K), and its
first Stiefel–Whitney class is equal to (2w − 2)W1(K) + 2W1(H/K) = 0.

(2) If i �= w − 1, then Pi(HG/K) vanishes by the dimensional reason. By
regarding Hx with Cw for a point x ∈ X , we take a 1-dimensional complex
subspace C of Hx. Let ix : x → X and ĩx : G2,2w−2(Hx) → G2,2w−2(H) be the
inclusions. Let Hx

G = (ĩx)∗HG and Kx = (ĩx)∗K. Then we have a vector bun-
dle Hom(C,Hx

G/Kx) over G2,2w−2(Hx) and its section κ such that κ(b), for
b ∈ G2,2w−2(Hx), maps C to Hx/b by the orthogonal projection along b of Hx

onto Hx/b. Obviously, κ(b) is a null homomorphism if and only if b = C. Fur-
thermore, it is elementary to show that κ is transverse to the zero section
of Hom(C,Hx

G/Kx). This implies that the fundamental cohomology class of
G2,2w−2(Hx) is equal to the Euler class χ(Hom(C,Hx

G/Kx)). Furthermore, we
have

χ
(
Hom(C,Hx

G/Kx)
)

= C2w−2

(
(Hx

G/Kx) ⊗ C
)

= Pw−1(Hx
G/Kx),

where C2w−2 denotes the (2w − 2)-th Chern class. For the Gysin homomorphisms(
πG|G2,2w−2(Hx)

)
!
: H∗(

G2,2w−2(Hx);Z
)

−→ H∗(x;Z),

we have (
πG|G2,2w−2(Hx)

)
!

(
Pw−1(Hx

G/Kx)
)

= 1.

In the commutative diagram

G2,2w−2(Hx)
ĩx

G2,2w−2(H)

x
ĩx

X

it follows that

(ix)∗(
(πG)!(Pi(HG/K))

)
=

(
πG|G2,2w−2(Hx)

)
!

{
(ĩx)∗(

Pi(HG/K)
)}

=
(
πG|G2,2w−2(Hx)

)
!

(
Pi(Hx

G/Kx)
)
.
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Since (ix)∗ induces an isomorphism of Z in the zeroth dimension, this proves the
assertion.

(3) Since HG = K ⊕ HG/K, we have P (HG) = P (K)P (HG/K), and so,
P (K)−1 = P (HG)−1P (HG/K). By comparing the terms of degree w − 1 + �,
we have

(−1)w−1+�P1(K)w−1+� =
w−1∑
j=0

Pw−1+�−j(HG)Pj(HG/K).

By (2) and the naturality of the Gysin homomorphism, we have

(−1)w−1+�(πG)!
(
P1(K)w−1+�

)
=

w−1∑
j=0

Pw−1+�−j(HG)(πG)!
(
Pj(HG/K)

)
= P �(H). �

As is well known, we may reduce the calculation to the case where F is trivial.
In fact, let F ⊥ denote a vector bundle such that F ⊕ F ⊥ is trivial. Let

L : Jk(E,F ) → Jk(E ⊕ F ⊥, F ⊕ F ⊥)

denote a bundle map defined by L(h) = h + idF ⊥ , where h ∈ Jk(E,F ) and idF ⊥

is the identity of F ⊥. Then the following lemma is elementary.

LEMMA 6.2

(1) The inverse images of Boardman–Thom manifolds ΣI(E ⊕ F ⊥, F ⊕ F ⊥)
with any symbol I, Kη, and cl(Kη)\ Kη in Jk(E ⊕ F ⊥, F ⊕ F ⊥) by L coincide
with those spaces in Jk(E,F ), respectively.

(2) L is transverse to each ΣI(E ⊕ F ⊥, F ⊕ F ⊥) and Kη(E ⊕ F ⊥, F ⊕ F ⊥).

In the following E and F imply E ⊕ F ⊥ and the trivial bundle F ⊕ F ⊥ of
dimension 2w, respectively. Let iS2 denote the inclusion of S2

G into s∗G(E,F ).
Note that (iΣ2)∗(χ(N (η)G) = χ(n(η)Σ2).

THEOREM 6.3

We assume that the coefficient group is Z when m is even and is Z/2Z when m

is odd. Then we have the following in the cases (S1) and (S2):

(πG)!
{
s∗

G

(
χ(Hom(K,ε2w) ⊕ Hom(K⊥,Q)) ∪ χ(N (η)G)

)}
= [Sη]

Proof
We give a proof for the case (S2), and the proof for the case (S1) is similar.
Indeed, we have

s∗
G

(
χ(Hom(K,ε2w) ⊕ Hom(K⊥,Q)) ∪ χ(N (η)G)

)
∩ [s∗G(E,F )]

= s∗
G

(
χ(N (η)G)

)
∩

{
s∗

G

(
χ(Hom(K,ε2w) ⊕ Hom(K⊥,Q))

)
∩ [s∗G(E,F )]

}
= s∗

G

(
χ(N (η)G)

)
∩

(
(iS2)∗([S2

G])
)
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= (iS2)∗(
s∗

G(χ(N (η)G))
)

∩ ([S2
G])

= χ
(
(iS2)∗(n(η)Σ2)

)
∩ ([S2

G])

= [SηG].

Furthermore, we have that SηG is mapped diffeomorphically onto Sη. This shows
the theorem. �

Now we calculate the Euler class of Hom(K,ε2w) ⊕ Hom(K⊥,Q) ⊕ N (η)G.

LEMMA 6.4

The following formulas hold up to sign, where ε is a trivial line bundle over
G(E,F ).

(i) χ
{
Hom

(⊕t+2�
i=t+1 SiKG/(ΘG © Si−2KG), o(QG)

)}
=

{∏t+2�
i=t+1 i

}
×

P1(KG)�.

(ii) χ{Hom(K⊥
G ,QG)} =

∑w−1
i=0 (−1)iPi(K⊥

G )P1(QG)w−1−i over G(E,F ).
(iii) χ(Hom(S2KG/LG,QG)) = 3P1(KG) over G(E,F ).

Proof
In this proof, = will mean the equality modulo 2-torsion. In the proof we set
K = KG, Q = QG, and ε = ΘG = LG. Let E(i) → BO(i) denote the classify-
ing vector bundle over a classifying space of i-dimensional vector bundles. Let
cK : G(E,F ) → BO(2), cK⊥ : G(E,F ) → BO(2w − 2), and cQ : G(E,F ) → BO(2)
denote the classifying maps of K, K⊥, and Q, respectively. Then we note that

χ
{

Hom
( t+2�⊕

i=t+1

SiK/(ε © Si−2K), o(Q)
)}

= (cK × cQ)∗
(

χ
{

Hom
( t+2�⊕

i=t+1

SiE(2)/(ε © Si−2E(2)), o(E(2))
)})

,

χ
{
Hom(K⊥,Q)

}
= (cK⊥ × cQ)∗(

χ
{
Hom

(
E(2w − 2),E(2)

)})
,

χ
(
Hom(S2K/ε,Q)

)
= (cK × cQ)∗(

χ
(
Hom(S2E(2)/ε,E(2))

))
.

Let C(KC) and C(E(2)C), which are corresponded by (cK)∗, be represented
by the same symbol (1 + t1)(1 + t2), let C(QC) and C(E(2)C), which are cor-
responded by (cQ)∗, be represented by the same symbol (1 + r1)(1 + r2), and
similarly, let

C
(
(K⊥)C

)
or C

(
E(2w − 2)

)
=

2w−2∏
j=3

(1 + tj).

(i) For i � 2, we have

C
(
SiE(2)C/(εC⊗Si−2E(2)C)

)
= C

(
SiE(2)C

)
C(εC⊗Si−2E(2)C)−1



Leading terms of Thom polynomials and J -images 361

= C
(
SiE(2)C

)
C

(
Si−2E(2)C

)−1

=
i∏

s=0

(
1 + st1 + (i − s)t2

){i−2∏
j=0

(
1 + jt1 + (i − 2 − j)t2

)}−1

=
i∏

s=0

(
1 + st1 + (i − s)t2

){i−2∏
j=0

(
1 + jt1 + (i − 2 − j)t2 + t1 + t2

)}−1

= (1 + it1)(1 + it2)

modulo 2-torsion. Since

χ
{(

SiE(2)C/
(
εC⊗Si−2E(2)C

))}2 = C2

(
(SiE(2)C/(εC⊗Si−2E(2)C))

)
= i2t1t2

= i2C2

(
E(2)C

)
,

we calculate as

χ
{

Hom
( t+2�⊕

i=t+1

SiE(2)/
(
ε © Si−2E(2)

)
, o

(
E(2)

))}2

= C4�

(
Hom

( t+2�⊕
i=t+1

(
SiE(2)C/εC⊗Si−2E(2)C

))
,C

)

=
t+2�∏

i=t+1

C2

(
SiE(2)C/εC⊗Si−2E(2)C

)
=

t+2�∏
i=t+1

(it1)(it2)

=
{ t+2�∏

i=t+1

i2
}

C2

(
E(2)C

)2�

=
{ t+2�∏

i=t+1

i2
}

P1

(
E(2)

)2�
.

By considering the cohomology ring of BO(2) modulo 2-torsion, we have

χ
{

Hom
( t+2�⊕

i=t+1

SiE(2)/
(
ε © Si−2E(2)

)
, o

(
E(2)

))}
=

{ t+2�∏
i=t+1

i
}
P1

(
E(2)

)�
.

Thus we obtain the assertion (i) by applying (cK × cQ)∗.
The following proofs of (ii) and (iii) are similar, and so we only give outlines

of calculations.
(ii) We have

χ
{
Hom(E(2w − 2),E(2))

}2

= C4w−4

(
Hom(E(2w − 2)C,E(2)C)

)
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=
2w∏
i=3

(r1 − ti)(r2 − ti)

=
2w∏
i=3

(r1r2 + t2i )

=
2w∏
i=3

(
C2(E(2)C) + t2i

)
modulo 2-torsion. Setting x2 = C2(E(2)C), this is equal, modulo 2-torsion, to

2w∏
i=3

(
x2 − (

√
−1ti)2

)

=
2w∏
i=3

(x +
√

−1ti)
2w∏
i=3

(x −
√

−1ti)

=
(2w−2∑

i=0

(
√

−1)iCi

(
E(2w − 2)C

)
x2w−2−i

)

×
(2w−2∑

i=0

(−
√

−1)iCi

(
E(2w − 2)C

)
x2w−2−i

)

=
(w−1∑

i=0

(−1)iC2i

(
E(2w − 2)C

)
x2w−2−2i

)2

=
(w−1∑

i=0

(−1)iC2i

(
E(2w − 2)C

)
C2

(
E(2)C

)w−1−i
)2

=
(w−1∑

i=0

(−1)iPi

(
E(2w − 2)

)
P1

(
E(2)

)w−1−i
)2

.

Hence,

χ
{
Hom

(
E(2w − 2),E(2)

)}
= ±

w−1∑
i=0

(−1)iPi

(
E(2w − 2)

)
P1

(
E(2)

)w−1−i
.

(iii) Similarly, we have that

χ
(
Hom(S2K/ε,Q)

)2

= C4

(
Hom(S2KC/εC,QC)

)
= (r1 − 2t1)(r1 − 2t2)(r2 − 2t1)(r2 − 2t2)

= (r2
1 + 4t1t2)(r2

2 + 4t1t2)

=
(
4C2(K)

)2 − 8r1r2C2(K)C2(Q) + C2(Q)2
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=
(
4C2(K) − C2(Q)

)2

=
(
4P1(K) − P1(Q)

)2
.

Hence, we obtain χ(Hom(S2K/ε,Q)) = ±(4P1(K) − P1(Q)). �

The next theorem follows from Theorem 6.3 and Lemma 6.4.

THEOREM 6.5

Let m be an even integer 2q. Let X be an orientable manifold. Then the lead-
ing term of the Thom polynomial tp(Kη;s) with Z-coefficients is equal to the
following.

(S1) We have (2q − 1)!Pq(F − E),

(S2) We have

{
3P2(F − E) if q = 2,

3
{∏2q−2

i=3 i
}
Pq(F − E) if q � 3

up to sign. In particular, tp(Kη;s) depends only on the homotopy class of s.

Proof
In this proof, = will mean the equality modulo 2-torsion. In the proof E implies
E ⊕ F ⊥. As is well known, we have

(6.1) χ
{
How(K,ε2w)

}
= χ(KC)w = C2(KC)w = P1(K)w

over G(E,F ).
(S1) The coefficient of P1(Q)w−1 of χ(Hom(K⊥,Q)) is equal to 1. Hence, we

have

χ
{

How(K,ε2w) ⊕ Hom
(2q−1⊕

i=2

SiK/(L © Si−2K), o(Q)
)}

=
{2q−1∏

i=2

i
}

P1(K)q−1+w.

By the commutativity of the diagram (5.1), (prE)! maps the Euler class to{2q−1∏
i=2

i
}

P q(E − F ) =
{2q−1∏

i=2

i
}
Pq(F − E).

(S2) We have

How(S2K/Θ ⊕ E/K,Q) =
(
4P1(K) − P1(Q)

)(w−1∑
i=0

(−1)iPi(E/K)P1(Q)w−1−i
)
.

The coefficient of the term P1(Q)w−1 is

P1(E/K) + 4P1(K) = P1(E) + 3P1(K).
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Ignoring P1(E), (prF )! maps the Euler class of

How(K,ε2w) ⊕ How(S2K/Θ ⊕ E/K,Q) ⊕ Hom
(2q−2⊕

i=3

SiK/(Θ © Si−2K), o(Q)
)

to

(prE)!
(
3
{2q−2∏

i=3

i
}

P1(K)q−1+w
)

= 3
{2q−2∏

i=3

i
}

Pq(F − E).

This proves the theorem. �

Proof of Theorems 1.1
By setting F = f ∗(TY ), E = TX , and s = (idX ×f)∗(jkf), the assertions follow
from Theorem 6.5 by replacing Pi with Pi(f ∗(TY ) − TX). �

7. J - images

In this section we show a relationship of the Thom polynomials in Theorem 1.1
and the J -images.

Let us recall the J -image of the J -homomorphism

J : πn(SO) −→ πs
n

in [1] and [23]. Recall the cobordism group Ωfold,j(Sn) of fold maps of closed
oriented n-dimensional manifolds to Sn of degree j and an isomorphism ωj :
Ωfold,j(Sn) → πs

n from [3, Theorem 1]. We have proved in [3, Proposition 5.2]
that an element α ∈ πs

n lies in the J -image if and only if there exists a fold map
f : Sn → Sn of degree 1 with ω1([f ]) = α. This assertion is also true in the case
of degree zero by [3, Lemmas 2.5, 3.4]. In fact, a fold map f : N → Sn of degree
j determines the homotopy class of the bundle map

T (f) : TN ⊕ εN −→ TSn ⊕ εSn

covering f . If N = Sn and f is of degree j, then T (f) determines an element of
πn(SO(n + 1)), whose image of J coincides with ωj([f ]).

For a fold map f of degree zero, we take a parallelizable (n + 1)-manifold
V with ∂V = Sn and an extended map F : V → Dn+1 such that the restriction
of F between the collars Sn × [0, ε] of V and Dn+1 is equal to f × id[0,ε] for a
sufficiently small ε. Let V̂ denote the manifold, which is the union of V ∪Sn Dn+1,
where V and Dn+1 are pasted on Sn. For a sufficiently large integer k, let τ(f)
denote

T (f) ⊕ (f × idRk−n−1) : TSn ⊕ εk−n
Sn −→ TSn ⊕ εk−n

Sn−1 .

Let τ(V̂ , τ(f)) be the k-dimensional vector bundle over V̂ , which is obtained by
pasting TV ⊕ εk−n−1

Sn−1 and TDn+1 ⊕ εk−n−1
Sn by τ(f) on Sn.

Now consider the jet space Jk
(
τ(V̂ , τ(f)), εk

V̂

)
, whose restriction to V (resp.,

Dn+1) is equal to Jk(V,Dn+1) (resp., Jk(Dn+1,Dn+1)). Let s(f) denote its
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section defined by

s(f)(x) =

{
jk(idDn+1) × idRk−n−1 for x ∈ Dn+1,

jk
xF × idRk−n−1 for x ∈ V.

Let n = 4q − 1 in the following. The J -image π4q−1(SO) is a cyclic group of order
jq . The next lemma follows from [14, Lemma 2].

LEMMA 7.1

Let n = 4q − 1. Let o
(
τ(V̂ , τ(f))

)
denote the element of π4q−1(SO), which is

determined as the primary obstruction of τ(V̂ , τ(f)) to being trivial. Then the
Pontrjagin class Pq

(
τ(V̂ , τ(f))

)
is related by the identity

Pq

(
τ(V̂ , τ(f))

)
= ±aq(4q − 1)!o

(
τ(V̂ , τ(f))

)
,

where aq = 2 for q odd and aq = 1 for q even.

By definition, s(f) is transverse to Kη and (s(f)|D8q)−1(Kη) is empty. Then
the Thom polynomials tp(Kη, s(f)) are as given in Theorem 1.1, and they are
nothing but the Poincaré duals of Kη of Ef . Therefore, we have the following
theorem.

THEOREM 7.2

Let α be an element of the J -image in πs
4q−1, which has a fold map f : S4q−1 →

S4q−1 of degree zero with α = o
(
τ(V̂ , τ(f))

)
. Then the algebraic number of sin-

gularities of type Kη of the extension Ef is equal, modulo (4q − 1)!jq, to

(S1) (2q − 1)!(4q − 1)!aqα,

(S2)

{
3 · 7!α if q = 2,

3
{∏2q−2

i=3 i
}
(4q − 1)!aqα if q � 3

up to sign.

In dimension 12, the J -image is of order 23327, and the algebraic number of
singularities of type Kη of the extension Ef is equal, modulo 2 · 11! · 23327, to
5!11! · 2α in the case (S1) and to 32 · 22 · 11!α in the case (S2), where an integer
α varies from 1 to 23327.

In the case where a fold map f : N → Sn of degree zero has a parallelizable
manifold V and an extension Ef such that ω0([f ]) = α does not lie in the J -
image, we can define the Thom polynomial tp(Kη, s(f)). However, the author
does not know whether it is effective to detect α or not. The theorem implies that
the singularities with nonvanishing leading terms of Thom polynomials detect
elements of the J -image. Therefore, the classification of those singularities and
the calculation of Thom polynomials will be important to clarify the relationship
between singularities and the stable homotopy groups of spheres.
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