Leading terms of Thom polynomials and J-images

Yoshifumi Ando

Abstract We give two types of singularities of maps between 4q-manifolds whose Thom polynomials with integer coefficients have nonvanishing coefficient of Pontrjagin class P_q . We show that an element of the *J*-image of dimension 4q - 1 has a fold map between S^{4q-1} and can be detected by the leading terms of Thom polynomials of those singularities of an extended map between D^{4q} of the fold map.

1. Introduction

The calculation of Thom polynomials of smooth maps in the real category began in [24], and has been developed mainly with \mathbb{Z}_2 -coefficients by many authors (see, e.g., [17], [20], [21], [2], [16], [6], [18]). However, there have been known only a small number of orientable real singularities of codimension 4q of smooth maps between equi-dimensional manifolds whose Thom polynomials with \mathbb{Z} -coefficients have the nonvanishing leading term, namely, the term of the qth Pontrjagin class. This is a very different situation from the complex case in the calculation of Thom polynomials. The examples, as far as the author knows, are the singularities of type Σ^2 of codimension 4 in [20] and the singularities, which have been studied in [6], of codimension 8. In this paper we present two types of real singularities with such a property under a certain restrictive assumption on maps and apply the result to show a relationship between those singularities and the *J*-images of the stable homotopy groups of spheres.

Let $\mathcal{K}^{(k)}$ denote the contact group defined in [10] on the jet space $J^k(n,n)$. For an integer n with $n \geq 8$, we consider an unfolding $f_\eta : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ of a genotype $\eta = \langle \eta_1(u, v), \eta_2(u, v) \rangle$ and the $\mathcal{K}^{(k)}$ -orbit $\mathcal{K}^{(k)}(j^k f_\eta)$, which we denote, for simplicity, by $\mathcal{K}\eta$ in this paper. We deal with the genotypes $\langle u^2 + v^2, u^m \rangle$ (S1) and $\langle u^2 + v^3, uv^{m-2} \rangle$ (S2) for $m \geq 4$. Note that S1 is of type $\Sigma^{2,0}$, called IV_m by [12], and S2 is of type $\Sigma^{2,1}$. They are orientable if m is an even integer 2q. If a smooth map $f : X \to Y$ between smooth manifolds of dimension n with $n \geq 4q$ such that $j^{2q-1}f(X)$ does not intersect with $cl(\mathcal{K}\eta) \setminus \mathcal{K}\eta$ and $j^{2q-1}f(X)$ is transverse to $\mathcal{K}\eta$, then $(j^{2q-1})f^{-1}(\mathcal{K}\eta)$ is a manifold and we can define its

Kyoto Journal of Mathematics, Vol. 52, No. 2 (2012), 345-367

DOI 10.1215/21562261-1550994, © 2012 by Kyoto University

Received March 7, 2011. Revised August 18, 2011. Accepted August 29, 2011.

2010 Mathematics Subject Classification: Primary 58K30; Secondary 57R45, 58A20.

Thom polynomial as proved in Corollary 5.6, which we denote by $tp(\mathcal{K}\eta; f)$. We calculate the leading term of the Thom polynomials for these genotypes.

THEOREM 1.1

Let m be an even integer 2q $(q \ge 2)$. Let X and Y be orientable smooth manifolds of dimension n with $n \ge 4q$, and let $f: X \to Y$ be a smooth map such that $j^{2q-1}f(X)$ does not intersect with $\operatorname{cl}(\mathcal{K}\eta) \setminus \mathcal{K}\eta$ and that $j^{2q-1}f(X)$ is transverse to $\mathcal{K}\eta$. Then the leading term of the Thom polynomial $\operatorname{tp}(\mathcal{K}\eta; f)$ with \mathbb{Z} -coefficients is equal to, up to sign,

$$\begin{array}{ll} (1) & (2q-1)! P_q & for \ \langle u^2 + v^2, u^{2q} \rangle, \\ (2) & \begin{cases} 3P_2 & if \ q = 2, \\ 3\{\prod_{i=3}^{2q-2} i\} P_q & if \ q \geqq 3 \end{cases} for \ \langle u^2 + v^3, uv^{2q-2} \rangle, \end{array}$$

where P_i denotes the Pontrjagin class $P_i(f^*(TY) - TX)$. In particular, these terms depend only on the homotopy class of f.

In the process of the calculation using the Gysin homomorphisms, the structures of the normal bundles of Boardman–Thom manifolds in [5] and [9] and of the normal bundle of $\mathcal{K}\eta$ in [10] play important roles. Note that we do not assert the existence of the Thom polynomials in the sense of [6]. Although it is better for the complete forms of Thom polynomials to apply the method in [6], [18], and [19] using the Vassiliev complexes and the structure groups of normal bundles of \mathcal{K} -orbits, it is rather hard to adopt it in our case. Fehér and Rimányi [6] have proved that $\mathcal{K}\langle u^2 + v^3, uv^2 \rangle - 2\mathcal{K}\langle u^2 + v^2, u^4 \rangle$ constitutes a cycle in a Vassiliev complex and have determined its precise Thom polynomial. Its leading term coincides with our leading term $\pm 9P_2(f^*(TY) - TX)$ in Theorem 1.1.

We next explain that the above Thom polynomial of the singularities $\mathcal{K}\eta$ detects elements of the *J*-images of the stable homotopy groups of spheres. In [3] we have studied the group of oriented cobordism classes of fold maps to S^n of degree zero. Two fold maps $f_i: N_i \to S^n$ (i = 0, 1) of degree zero are called cobordant if there exists a fold map, say, $\tilde{f}: (W, \partial W) \to (S^n \times [0, 1], S^n \times 0 \cup S^n \times 1)$ of degree zero, where $\tilde{f}|N_0 \times 0 = f_0$ and $\tilde{f}|N_1 \times 1 = f_1$ together with the usually required properties, where N_i and W are oriented.

Let $\Omega_{\text{fold},0}(S^n)$ denote the group of all oriented cobordism classes of fold maps to S^n of degree zero. Let π_n^s denote the *n*th stable homotopy group of spheres. Then we have proved that there exists an isomorphism $\omega_0: \Omega_{\text{fold},0}(S^n) \to \pi_n^s$ for $n \ge 1$. Consequently, an element in the *J*-image has a fold map $f: N \to S^n$ of degree zero via ω_0 and its extension $E^f: (V,N) \to (D^{n+1},S^n)$ of degree zero, where *V* is a parallelizable manifold with $\partial V = N$ and $E^f|_N = f$. We will apply a method introduced in [4] to detect an element of the *J*-image by the algebraic numbers of above singularities of E^f of codimension n+1=4q and will describe the details in dimensions $4q \ge 8$.

In Section 2 we explain the notation currently used in this paper. In Section 3 we briefly review the fundamental properties of Boardman–Thom manifolds. In

Section 4 we briefly review the results concerning \mathcal{K} -orbits in [10] and give preliminary lemmas and properties of the singularities of $\mathcal{K}\eta$. In Section 5 we give a number of results concerning the normal bundles of $\mathcal{K}\eta$. In Section 6 we give a proof of Theorem 1.1 in a general form. In Section 7 we apply Theorem 1.1 to show a relationship between the singularities of $\mathcal{K}\eta$ and the *J*-images of the stable homotopy groups of spheres in Theorem 7.2.

2. Notation

Throughout the paper all manifolds are Hausdorff, paracompact, and smooth of class C^{∞} .

Let $\pi^E : E \to W$ and $\pi^F : F \to W$ be smooth *n*-vector bundles over a smooth manifold W. Let $\operatorname{Hom}(E, F)$ denote the smooth vector bundle over W with fiber $\operatorname{Hom}(E_x, F_x), x \in W$, which consists of all homomorphisms $E_x \to F_x$.

We set

(2.1)
$$J^{k}(E,F) = \operatorname{Hom}\left(\bigoplus_{i=1}^{k} S^{i}(E),F\right)$$

over W with projections π^J onto W. Here, $S^i(E)$ denote the vector bundle $\bigcup_{x \in W} S^i(E_x)$ over W, where $S^i(E_x)$ denotes the *i*-fold symmetric product of E_x . An element z of $J^k(E,F)$ with $\pi^J(z) = x$ gives the homomorphisms $h_{i,z}: S^i(E_x) \to F_x$. Let $(\partial x_1, \partial x_2, \ldots, \partial x_n)$ or $(\partial y_1, \partial y_2, \ldots, \partial y_n)$ denote the basis of E_x or F_y , and let (x_1, x_2, \ldots, x_n) or (y, y_2, \ldots, y_n) denote the dual basis of E_x^* and F_x^* . Then $\{h_{i,z}\}$ yields a map germ $f: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$, where $y_i \circ f(x_1, x_2, \ldots, x_n)$ is a polynomial of degree k for $i = 1, \ldots, n$. We identify z with $j_0^k f$.

Let $J^k(X,Y)$ denote the k-jet space of n-manifolds X and Y. Let p_X and p_Y be the projections of $X \times Y$, onto X and Y, respectively. If we provide X and Y with Riemannian metrics, then the Levi–Civita connections induce the exponential maps $\exp_{X,x}: T_xX \to X$ and $\exp_{Y,y}: T_yY \to Y$. In dealing with exponential maps we always consider convex neighborhoods (see [8]). We define the smooth bundle map

(2.2)
$$J^k(X,Y) \to J^k\left(p_X^*(TX), p_Y^*(TY)\right) \quad \text{over } X \times Y$$

by sending $z = j_x^k f \in J_{x,y}^k(X,Y)$ to the k-jet of $(\exp_{P,y})^{-1} \circ f \circ \exp_{X,x}$ at $0 \in T_x X$, which is regarded as an element of $J^k(T_x X, T_y Y)$ (i.e., $J_{x,y}^k(TX, TY)$). Let $L^k(n)$ denote the group of all k-jets of local diffeomorphisms of $(\mathbb{R}^n, 0)$. Then the smooth equivalence of the fiber bundles under the structure group $L^k(n) \times L^k(n)$ in (2.2) gives a smooth reduction of the structure group $L^k(n) \times L^k(n)$ of $J^k(X,Y)$ to the structure group $O(n) \times O(n)$ of $J^k(p_X^*(TX), p_Y^*(TY))$. Therefore, we will work in the jet spaces of types in (2.1).

3. Boardman-Thom singularities

Let us recall the fundamental properties of the intrinsic derivatives on Boardman– Thom manifolds in $J^k(E, F)$ following [5] and [9]. Let **D** denote the total tangent bundle which is isomorphic to $(\pi^J)^*E$. There have been defined the first, second, and third intrinsic derivatives.

(1) Let $\mathbf{d}_1 : \mathbf{D} \longrightarrow (\pi^J)^* F$ denote the first intrinsic derivative defined over $J^k(E, F)$. Let **K** and **Q** denote the 2-dimensional kernel and cokernel bundle of \mathbf{d}_1 defined over $\Sigma^2(E, F)$, respectively.

(2) Let $\mathbf{d}_2: \mathbf{K} \longrightarrow \operatorname{Hom}(\mathbf{K}, \mathbf{Q})$ denote the second intrinsic derivative defined over $\Sigma^2(E, F)$. The manifold $\Sigma^{2,1}(E, F)$ consists of all jets $z \in \Sigma^2(E, F)$ with $\mathbf{d}_{2,z}$ being of rank 1. Let \mathbf{K}_2 denote the kernel bundle of \mathbf{d}_2 over $\Sigma^{2,1}(E, F)$. Let $\widetilde{\mathbf{d}}_2: S^2\mathbf{K} \to \mathbf{Q}$ over $\Sigma^2(E, F)$ denote the bundle homomorphisms, which are canonically induced from \mathbf{d}_2 . This implies that $\widetilde{\mathbf{d}}_2$ is a smooth section of $\operatorname{Hom}(S^2\mathbf{K}, \mathbf{Q})$ over $\Sigma^2(E, F)$. Let \mathbf{K}_2^{\perp} denote the orthogonal complement of \mathbf{K}_2 in \mathbf{K} such that $\widetilde{\mathbf{d}}_2: \mathbf{K}_2^{\perp} \bigcirc \mathbf{K}_2^{\perp} \to \mathbf{Q}$ is injective. Let \mathbf{I}_2 denote the trivial line subbundle as the image $\widetilde{\mathbf{d}}_2(\mathbf{K}_2^{\perp} \bigcirc \mathbf{K}_2^{\perp})$.

(3) Let $\mathbf{d}_3 : \mathbf{K}_2 \longrightarrow \operatorname{Cok}(\mathbf{d}_2)$ denote the third intrinsic derivative defined over $\Sigma^{2,1}(E,F)$. The manifold $\Sigma^{2,1,0}(E,F)$ consists of all jets $z \in \Sigma^{2,1}(E,F)$ such that $\mathbf{d}_{3,z}$ is injective.

In the paper we usually abbreviate (E, F) as Σ^2 , $\Sigma^{2,1}$, and $\Sigma^{2,1,0}$.

PROPOSITION 3.1

- (1) The normal bundle of Σ^2 in $J^k(E, F)$ is isomorphic to Hom(**K**, **Q**).
- (2) The normal bundle of $\Sigma^{2,1}$ in Σ^2 is isomorphic to

$$\operatorname{Hom}(\mathbf{K}_2 \bigcirc \mathbf{K}_2^{\perp}, \mathbf{Q}/\mathbf{I}_2) \oplus \operatorname{Hom}(\mathbf{K}_2 \bigcirc \mathbf{K}_2, \mathbf{Q})$$

restricted to $\Sigma^{2,1}$.

Proof

(1) This is well known.

(2) Since \mathbf{d}_2 vanishes exactly on $\mathbf{K}_2 \bigcirc \mathbf{K}$, it is a monomorphism of $\mathbf{K}_2^{\perp} \bigcirc \mathbf{K}_2^{\perp}$ to \mathbf{Q} . Therefore, the cokernel of \mathbf{d}_2 is isomorphic to $\operatorname{Hom}(\mathbf{K}_2^{\perp}, \mathbf{Q}/\mathbf{I}_2) \oplus \operatorname{Hom}(\mathbf{K}_2, \mathbf{Q})$. By [5], the normal bundle of $\Sigma^{2,1}$ in Σ^2 is isomorphic to

$$\operatorname{Hom}(\mathbf{K}_2,\operatorname{Hom}(\mathbf{K}_2^{\perp},\mathbf{Q}/\mathbf{I}_2)\oplus\operatorname{Hom}(\mathbf{K}_2,\mathbf{Q})).$$

This shows the assertion.

4. Local properties of singularities

In this section we study the singularities of unfoldings of the genotypes introduced in the introduction. In this section let k denote m - 1.

Let us recall the tangent bundle and the normal bundle of the $\mathcal{K}^{(k)}$ -orbit of the k-jet $z = j_0^k f$ for a C^{∞} -map germ $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ in $J^k(n, n)$ described in [10, Proposition 7.4]. Let $\theta(f)$ denote the vector space of germs of vector fields along f. Let $\mathrm{id}_{\mathbb{R}^n}$ be the identity map germs of $(\mathbb{R}^n, 0)$. Then we have the homomorphisms

$$tf: \theta(\mathrm{id}_{\mathbb{R}^n}) \longrightarrow \theta(f) \qquad \text{and} \qquad wf: \theta(\mathrm{id}_{\mathbb{R}^n}) \longrightarrow \theta(f)$$

defined by $tf(s) = df \circ s$ and $wf(s) = s \circ f$ for sections $s \in \theta(\mathrm{id}_{\mathbb{R}^n})$. It has been proved that there exists a canonical isomorphism of the tangent bundle of $J^k(n,n)$ at z with $\mathfrak{m}_x \theta(f) / \mathfrak{m}_x^{k+1} \theta(f)$. Then the tangent bundle and the normal bundle of $\mathcal{K}^{(k)}z$ are expressed as

(4.1)

$$T_{z}(\mathcal{K}^{(k)}(z)) = \left\{ tf\left(\mathfrak{m}_{x}\theta(\mathrm{id}_{\mathbb{R}^{n}})\right) + f^{*}(\mathfrak{m}_{y})\theta(f) \right\} / \mathfrak{m}_{x}^{k+1}\theta(f),$$

$$\nu_{z}\left(\mathcal{K}^{(k)}(z)\right) = \mathfrak{m}_{x}\theta(f) / \left(tf(\mathfrak{m}_{x}\theta(\mathrm{id}_{\mathbb{R}^{n}})) + f^{*}(\mathfrak{m}_{y})\theta(f) + \mathfrak{m}_{x}^{k+1}\theta(f) \right),$$

respectively. Here, \mathfrak{m}_x and \mathfrak{m}_y denote the maximal ideals of C^{∞} -map germs on $(\mathbb{R}^n, 0)$ under coordinates (x_1, \ldots, x_n) and (y_1, \ldots, y_n) , respectively.

Let $\eta = \langle \eta_1, \eta_2 \rangle$ denote a C^{∞} -map germ $(\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ with rank zero at the origin. An unfolding $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ of the genotype η implies a map germ $(u, v, t_1, \ldots, t_{n-2}) \mapsto (f_1, \ldots, f_n)$, where

(4.2)

$$f_{1} = \eta_{1}(u, v) + g_{1}(u, v, t_{1}, \dots, t_{n-2}),$$

$$f_{2} = \eta_{2}(u, v) + g_{2}(u, v, t_{1}, \dots, t_{n-2}),$$

$$f_{j} = t_{j-2} \quad \text{for } 3 \leq j \leq n,$$

such that $g_1(u, v, 0, \dots, 0) = g_2(u, v, 0, \dots, 0) = 0$.

The following lemma is an elementary consequence.

LEMMA 4.1

The tangent bundle and the normal bundle of $\mathcal{K}^{(k)}(j_0^k f)$ are isomorphic to those of $\mathcal{K}^{(k)}(j_0^k \eta)$ under the canonical isomorphism

$$\mathfrak{m}_x \theta(f) / \mathfrak{m}_x^{k+1} \theta(f) \approx \mathfrak{m}_{u,v} \theta(\eta) / \mathfrak{m}_{u,v}^{k+1} \theta(\eta).$$

Since the orbit $\mathcal{K}^{(k)}(j_0^k f)$ is determined by the genotype η , we denote the orbit, simply, by $\mathcal{K}_0\eta$ in what follows.

In this paper $\partial/\partial x_i$, $\partial/\partial y_j$, $\partial/\partial u$, and $\partial/\partial v$ are denoted by ∂x_i , ∂y_j , ∂u , and ∂v for simplicity. Let $(\partial u, \partial v)$ or $(\partial y_1, \partial y_2)$ be a basis of the source \mathbb{R}^2 or the target \mathbb{R}^2 , respectively. The following proposition is a consequence of a direct calculation and is useful to study the normal bundle of $\mathcal{K}_0 \eta$.

PROPOSITION 4.2

Let $m \ge 4$. In the respective cases S1 and S2, we have the following.

(1) The tangent space $T(\mathcal{K}_0\eta)$ is, respectively, generated by

(S1) $u^2 \partial y_1$, $uv \partial y_1$, $v^2 \partial y_1$, $uv^{m-1} \partial y_2$, and $(u^2 + v^2) \partial / \partial y_i$, $v^m \partial / \partial y_i$ for i = 1, 2 over $\mathfrak{m}_{u,v}$,

(S2) $2u^2\partial y_1 + uv^{m-2}\partial y_2$, $2uv\partial y_1 + v^{m-1}\partial y_2$, $3uv^2\partial y_1 + (m-2)u^2v^{m-3}\partial y_2$, $3v^3\partial y_1 + (m-2)uv^{m-2}\partial y_2$, and $(u^2 + v^3)\partial y_i$, $uv^{m-2}\partial y_i$ for i = 1, 2 over $\mathfrak{m}_{u,v}$.

(2) The normal space $\nu(\mathcal{K}_0\eta)$ is, respectively, generated by the vectors

(S1) $u\partial y_i$, $v\partial y_i$ for i = 1, 2, and $u^j \partial y_2$, $u^{j-1}v\partial y_2$, where j varies over 2 to m-1,

(S2) $u\partial y_i$, $v\partial y_i$, for i = 1, 2, and $uv\partial y_1$, $v^2\partial y_1$, $uv^{j-1}\partial y_2$, $v^j\partial/\partial y_2$, where j varies over 2 to m - 2.

We have the following lemma.

LEMMA 4.3

The orbit $\mathcal{K}_0\eta$ is a submanifold of codimension 2m.

REMARK 4.4

In Proposition 3.1(2), u, v, uv, ∂y_1 , and ∂y_2 correspond to $(\mathbf{K}_2^{\perp})_z^*$, $(\mathbf{K}_2^*)_z$, $(\mathbf{K}_2^{\perp})_z^* \bigcirc (\mathbf{K}_2^*)_z$, $(\mathbf{I}_2)_z$, and $(\mathbf{Q}/\mathbf{I}_2)_z$, respectively.

LEMMA 4.5

The topological closure of $\mathcal{K}_0\eta$ is an algebraic set of $J^k(n,n)$.

Proof

By [11, Proposition 9.1], it is enough to prove the assertion in the case n = 2. By [4] and [13], the topological closures of $\Sigma^{2,0}$ and $\Sigma^{2,1}$ are algebraic sets. A jet of a germ $(y_1 \circ f, y_2 \circ f)$ of $\Sigma^{2,0}$ lies in the topological closure of $\mathcal{K}_0\eta$ if and only if $y_1 \circ f$ and $y_2 \circ f$ vanish modulo $(u^2 + v^2) + \mathfrak{m}_{u,v}^m$ by the arguments in the classification of simple singularities of type $\Sigma^{2,0}$ in [12]. If a jet of a germ $(y_1 \circ f, y_2 \circ f)$ lies in $\Sigma^{2,1}$, then the functions $\partial u(y_i \circ f), \partial v(y_i \circ f)$ for i = 1, 2constitute a one-dimensional subspace of $\mathfrak{m}_{u,v}/\mathfrak{m}_{u,v}^2$. Let w(u,v) denote such a nonsingular function in them. Then a jet of a germ $(y_1 \circ f, y_2 \circ f)$ of $\Sigma^{2,1}$ lies in the topological closure of $\mathcal{K}_0\eta$ if and only if $y_1 \circ f$ and $y_2 \circ f$ vanish modulo $(w^2) + \mathfrak{m}_{u,v}^{m-1}$ by the arguments in the classification of simple singularities of type $\Sigma^{2,1}$ in [12]. This shows the assertion.

Let V be a 2-dimensional vector space with basis ∂u and ∂v , and let V^* be its dual space with basis u and v. Then S^iV^* is identified with the space of homogeneous polynomials of degree i with variables u and v. Since the element $(\partial u)^2 + (\partial v)^2$ in S^2V is invariant with respect to the action of O(2), it yields the 1-dimensional subspace L_V of S^2V . Hence, the subspaces $L_V \bigcirc S^{i-2}V$ in S^iV for $i \ge 2$ yield the subspace $\sum_{i=2}^{t+1} (L_V \bigcirc S^{i-2}V)$ in $\sum_{i=2}^{t+1} S^iV$ of codimension 2t.

REMARK 4.6

The quotient $S^i V/(L_V \bigcirc S^{i-2}V)$ has a basis $(\partial v)^i$ and $\partial u(\partial v)^{i-1}$. Let $z = \partial u + \sqrt{-1}\partial v$, and let $\mathcal{R}(z^i)$ and $\mathcal{I}(z^i)$ denote the real and imaginary part of z^i , respectively. Then $\mathcal{R}(z^i)$ and $\mathcal{I}(z^i)$ constitute a better basis. Indeed, for any homogeneous polynomial g(u, v) of degree i - 2, we have

$$\big(\mathcal{R}(z^i)+\sqrt{-1}\mathcal{I}(z^i)\big)(u^2+v^2)g(u,v)=0,$$

and so, $\mathcal{R}(z^i)$ and $\mathcal{I}(z^i)$ annihilate $(u^2 + v^2)g(u, v)$.

We define $\mathcal{K}\eta(E_x, F_x)$ at $x \in X$ corresponding to $\mathcal{K}_0\eta$ in $J^k(n, n)$ applying the above argument similarly as in $J^k(E_x, F_x)$. Let $\mathcal{K}\eta(E, F)$ denote the subbundle of $J^k(E, F)$ over X with fiber $\mathcal{K}\eta(E_x, F_x)$. Let $T(\mathcal{K}\eta(E, F))$ and $\nu(\mathcal{K}\eta(E, F))$ denote the tangent bundle and the normal bundle of $\mathcal{K}\eta(E, F)$ in $J^k(E, F)$, respectively. If there is no confusion, then (E_x, F_x) and (E, F) may be abbreviated as $\mathcal{K}_x\eta$ and $\mathcal{K}\eta$.

We next determine the structure of the normal bundle of $\mathcal{K}\eta$ in $J^k(E, F)$ by using Propositions 3.1 and 4.2. Since $\mathcal{K}\eta$ lies in the Boardman–Thom manifold Σ^2 of codimension 4, it is enough for this purpose to determine the structure of the normal bundle of $\mathcal{K}\eta$ in Σ^2 .

Let **L** denote the trivial line bundle in S^2 **K**, which is associated to the subspace $L_{\mathbf{K}_z}$ of S^2 **K**_z. Let $\mathfrak{K}, \mathfrak{L}, \mathfrak{Q}$, and \mathfrak{K}_2^{\perp} in the case (S2) denote the restriction of **K**, **L**, **Q**, and **K**₂^{\perp} in the case (S2) to $\mathcal{K}\eta$. For a jet $z \in \mathcal{K}\eta$, let q_z denote the oriented line of **Q**_z with the orthogonal projection $p(q_z) : \mathbf{Q}_z \to q_z$.

We define two line bundles \mathfrak{q}_i and their orthogonal complements \mathfrak{q}_i^{\perp} for i = 1, 2 in \mathfrak{Q} over $\mathcal{K}\eta$. Namely, $\mathfrak{q}_{1,z}^{\perp}$ is generated by the image $\widetilde{\mathbf{d}}_{2,z}((\partial u)^2 + (\partial v)^2)$ in the case (S1), and $\mathfrak{q}_{2,z}^{\perp}$ is generated by the image $\widetilde{\mathbf{d}}_{2,z}((\partial u)^2)$ in the case (S2). We note that \mathfrak{q}_i^{\perp} are trivial and $W_1(\mathfrak{q}_i) = W_1(\mathfrak{Q})$ over $\mathcal{K}\eta$.

Let $\nu(\mathcal{K}\eta)$ denote the following bundle over $\mathcal{K}\eta$ in the respective cases:

(S1) Hom
$$\left(\bigoplus_{i=2}^{m-1} S^i \mathfrak{K}/(\mathfrak{L} \bigcirc S^{i-2}\mathfrak{K}), \mathfrak{q}_1\right),$$

(S2) Hom $\left(S^2 \mathfrak{K}/\mathfrak{K}_2^{\perp}, \mathfrak{Q} \oplus \operatorname{Hom}\left(\left\{\bigoplus_{i=3}^{m-2} S^i \mathfrak{K}/(\mathfrak{K}_2^{\perp} \bigcirc S^{i-2}\mathfrak{K})\right\}, \mathfrak{q}_2\right).$

The next proposition follows from Proposition 4.2.

PROPOSITION 4.7

We have the following:

(1) the normal bundle of $\mathcal{K}\eta$ in $J^k(E,F)$ is isomorphic to $\operatorname{Hom}(\mathfrak{K},\mathfrak{Q}) \oplus \nu(\mathcal{K}\eta)$,

(2) the normal bundle of $\mathcal{K}\eta$ is orientable if and only if m is even, respectively.

Proof

(1) The assertion follows from Propositions 3.1 and 4.2.

(2) The first Stiefel–Whitney classes of $\operatorname{Hom}(\mathfrak{K}, \mathfrak{Q})$ and $\operatorname{Hom}(S^2\mathfrak{K}/\mathfrak{K}_2^{\perp}, \mathfrak{Q})$ are all equal to zero. Let $W(\mathfrak{K}) = (1+t_1)(1+t_2)$ and $W(\mathfrak{Q}) = (1+r_1)(1+r_2)$. Then we have $W_1(\mathfrak{K}) = W_1(\mathfrak{Q}) = t_1 + t_2$ and $W_1(S^i\mathfrak{K}) = (i(i+1)/2)W_1(\mathfrak{K})$. Since \mathfrak{L} and \mathfrak{K}_2^{\perp} are isomorphic to the trivial bundle ε , we have

$$W_1(S^i\mathfrak{K}/(\varepsilon \bigcirc S^{i-2}\mathfrak{K})) = W_1(S^i\mathfrak{K}) - W_1(S^{i-2}\mathfrak{K}) = W_1(\mathfrak{K}).$$

These identities show the assertions.

5. Global properties of singularities

In this section we study the global structure of the normal bundle of $\mathcal{K}\eta$, which is necessary for the calculation of its Thom polynomial. In this section let k denote m-1.

Let X be orientable. Let $J^k(E,F)^{\times} = J^k(E,F) \setminus (\operatorname{cl}(\mathcal{K}\eta) \smallsetminus \mathcal{K}\eta)$ with the projection π^J onto X. Let G(E) denote the Grassmann bundle $G_{2,2w-2}((\pi^J)^*E)$ with canonical projection $\operatorname{pr}_E: G(E) \to X$. Let G(E,F) denote the Grassmann bundle $G_{2,2w-2}((\operatorname{pr}_E)^*F)$ with projection $\operatorname{pr}_G: G(E,F) \to X$. Let K_G denote the canonical 2-plane bundle over G(E,F), and let Q_G denote the canonical 2-plane bundle over G(E,F). We always provide E, F, K_G , and Q_G with the structure groups O(n) and O(2), respectively. Let L_G denote the trivial line subbundle of S^2K_G . An element of G(E,F) is expressed by (z,α,β) , where $z \in J(E,F)^{\times}$ with $\pi^J(z) = x, \alpha \in G_{2,n-2}(E_x), \beta \in G_{2,n-2}(F_x)$. Here, α and β are often written as K_z and Q_z , respectively. Let $\pi_G: G(E,F) \to J(E,F)^{\times}$ denote the map defined by $\pi_G(z,\alpha,\beta) = z$. Let s be a section of $J(E,F)^{\times}$ over X, which is transverse to $\mathcal{K}\eta$, and let $s_G: s^*G(E,F) \to G(E,F)$ denote the canonical bundle map covering s. Then we have the diagram with the given canonical maps:

The following notation is used at the end of this section. Let $S\eta$ denote the space $s^{-1}(\mathcal{K}\eta)$. The space S_G^2 denotes the space that consists of all quadruples $(x, s(x), \alpha, \beta)$ with $s(x) \in \operatorname{cl}(\Sigma^2)$ such that $\alpha \subset \operatorname{Ker}(\mathbf{d}_{1,s(x)})$ and $\beta \perp \operatorname{Im}(\mathbf{d}_{1,s(x)})$. The space $S\eta_G$ denotes the subspace of S_G^2 with $s(x) \in \mathcal{K}\eta$. Obviously, $S\eta_G$ is mapped onto $S\eta$ diffeomorphically by the canonical projection.

Let Σ_G^2 or $\mathcal{K}\eta_G$ denote the space that consists of all triples $\tilde{z} = (z, K_z, Q_z) \in G(E, F)$ such that K_z and Q_z are 2-planes and that z lies in $\operatorname{cl}(\Sigma^2)$ or $\mathcal{K}\eta$, respectively. For an element $\tilde{z} \in \mathcal{K}\eta$, K_z , and Q_z are uniquely determined. Any jet \tilde{z} in G(E, F) induces an element of $J^k(K_z, Q_z) = \operatorname{Hom}(\bigoplus_{i=1}^k S^i K_z, Q_z)$ and a polynomial map $\zeta : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ of degree k. We use this notation ζ for \tilde{z} without any comment.

Let $d_1|K_G: K_G \to \operatorname{pr}^*_G(F)$ denote the homomorphism induced from \mathbf{d}_1 . Let $\operatorname{pr}(Q_G)$ denote the canonical projection of $\operatorname{pr}^*_G(F)$ onto Q_G . Then we have the bundles $\operatorname{Hom}(K_G, \operatorname{pr}^*_G(F)) \oplus \operatorname{Hom}(K_G^{\perp}, Q)$ over G(E, F) with a section σ_G defined by

$$\sigma_G(z) = d_{1,z} | (K_G)_z \oplus \operatorname{pr}(Q_G) \circ d_{1,z} | (K_G^{\perp})_z.$$

The next proposition follows from [17] (see also [2]).

PROPOSITION 5.1

(i) The section σ_G is transverse to the zero section, and its inverse images of the zero sections by σ_G coincide with Σ_G^2 . Consequently, Σ_G^2 is a submanifold.

(ii) The projection π_G maps Σ_G^2 onto $\operatorname{cl}(\Sigma^2)$ so that $(\pi_G | \Sigma_G^2)^{-1}(\Sigma^2)$ is mapped onto Σ^2 diffeomorphically.

We take a very small tubular neighborhood $U(\mathcal{K}\eta_G)$ of $\mathcal{K}\eta_G$ in the cases (S1) and (S2). Let $d_{2,\tilde{z}}: S^2K_z \to Q_z$ denote the composite of the homomorphism $h_{2,z}|S^2K_z$ and $\operatorname{pr}(Q_z)$. Note that $d_{2,\tilde{z}}$ coincides with the homomorphism induced from $\mathbf{d}_{2,z}$ at least for $z \in \Sigma^2$. We define two line bundles \mathbf{q}_i and their orthogonal complements \mathbf{q}_i^{\perp} for i = 1, 2 in Q_G . If $d_{2,\tilde{z}}(L_z)$ does not vanish, then $\mathbf{q}_{1,\tilde{z}}^{\perp}$ is defined to be the image $d_{2,\tilde{z}}(L_z)$ and $\mathbf{q}_{1,\tilde{z}}$ is its orthogonal line in Q_z , where L_z is generated by $\partial u^2 + \partial v^2$.

Let $\Sigma_G^{2,1}$ denote $(\pi_G | \Sigma_G^2)^{-1}(\Sigma^{2,1})$. We define K_2^{\perp} to be a line subbundle of K_G over $\Sigma_G^{2,1}$ induced from \mathbf{K}_2^{\perp} . Let ∂u denote a unit basis of $K_{2,\tilde{z}}$, and let ∂v denote a basis of $K_{2,\tilde{z}}$. Then $(\partial u, \partial v)$ is an orthogonal basis of $K_{G,\tilde{z}}$. We take a small tubular neighborhood $U(\Sigma_G^{2,1})$ of $\Sigma_G^{2,1}$ with radius ϵ within a tubular neighborhood with radius 2ϵ in Σ_G^2 , where ϵ is a positive function on $\Sigma_G^{2,1}$. Let $U(\Sigma_G^{2,1})$ contain $U(\mathcal{K}\eta_G)$ in the case (S2). We can extend K_2^{\perp} to a trivial bundle over the tubular neighborhood denoted by the same symbol K_2^{\perp} . Let $d(\tilde{z}, \Sigma_G^{2,1})$ denote the distance of z and $\Sigma^{2,1}$, and let w(t) be a smooth-increasing function such that w(t) = 0 for $t \leq \epsilon$ and $w(t) = \epsilon$ for $t \geq 2\epsilon$. We define a trivial line subbundle Θ_G of $S^2 K_G$ over Σ_G^2 so that Θ_G coincides with $S^2 K_2^{\perp}$ on $\Sigma_G^{2,1}$ and that $(\Theta_G)_{\tilde{z}}$ is generated by a vector

$$\left(1 - (1/\epsilon)w(d(\tilde{z}, \Sigma_G^{2,1}))\right)\partial u^2 + (1/\epsilon)w(d(\tilde{z}, \Sigma_G^{2,1}))(\partial u^2 + \partial v^2)$$

If $d_{2,\tilde{z}}((\Theta_G)_{\tilde{z}})$ does not vanish, then $\mathbf{q}_{2,\tilde{z}}^{\perp}$ is defined to be the image $d_{2,\tilde{z}}((\Theta_G)_{\tilde{z}})$, and $\mathbf{q}_{2,\tilde{z}}$ is its orthogonal line in Q_z .

REMARK 5.2

In the case (S2) we choose a basis of $S^i K_G / (\Theta_G \bigcirc S^{i-2} K_G)$ denoted by R^i_{Θ} and I^i_{Θ} , which are equal to $\partial u (\partial v)^{i-1}$ and $(\partial v)^i$ over $U(\Sigma_G^{2,1})$.

Let (u, v) and (y_1, y_2) denote orthogonal coordinates determined as above. We define a section r of

$$\operatorname{Hom}\left(S^{i}K_{G}/(L_{G} \bigcirc S^{i-2}K_{G}), Q_{G}\right) \quad \text{and} \\ \operatorname{Hom}\left(S^{i}K_{G}/(\Theta_{G} \bigcirc S^{i-2}K_{G}), Q_{G}\right)$$

by

(5.2)
$$(S1) \ r^{i}(z) = \begin{bmatrix} \mathcal{R}(\partial u + \sqrt{-1}\partial v)^{i}(y_{1}\circ\zeta)|_{\mathbf{0}}, & \mathcal{I}(\partial u + \sqrt{-1}\partial v)^{i}(y_{1}\circ\zeta)|_{\mathbf{0}} \\ \mathcal{R}(\partial u + \sqrt{-1}\partial v)^{i}(y_{2}\circ\zeta)|_{\mathbf{0}}, & \mathcal{I}(\partial u + \sqrt{-1}\partial v)^{i}(y_{2}\circ\zeta)|_{\mathbf{0}} \end{bmatrix},$$

$$(S2) \ r^{i}_{\Theta}(z) = \begin{bmatrix} R^{i}_{\Theta}(y_{1}\circ\zeta)|_{\mathbf{0}}, & I^{i}_{\Theta}(y_{1}\circ\zeta)|_{\mathbf{0}} \\ R^{i}_{\Theta}(y_{2}\circ\zeta)|_{\mathbf{0}}, & I^{i}_{\Theta}(y_{2}\circ\zeta)|_{\mathbf{0}} \end{bmatrix}.$$

We show how $r^i(z)$ changes by the coordinate changes. We express them as $z = u + \sqrt{-1}v$, $z' = u' + \sqrt{-1}v'$ with $z = e^{\sqrt{-1}\theta}z'$, and $(y_1, y_2) = A(y'_1, y'_2)$, where A is an orthogonal 2-matrix. Let $T(\theta)$ denote the counterclockwise rotation by the angle θ . Then the following lemma is easy to prove.

LEMMA 5.3

- (i) If $z = e^{\sqrt{-1}\theta} z'$, then $r^i(z) = Ar^i(z')^t T(\theta)$.
- (ii) If u = u' and v = -v, then $r^i(z) = Ar^i(z') \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$.

Let $o(Q_G)$ denote the line bundle determined by the first Stiefel–Whitney class $W_1(Q_G)$, which is isomorphic to the wedge product $Q_G \wedge Q_G$. Let ε_G^1 denote the trivial line bundle over G(E, F).

Since $\pi_3(S^1) = \{0\}$, the following lemma is easy to prove.

LEMMA 5.4

If Q_G is the Whitney sum $\mathbf{q}^{\perp} \oplus \mathbf{q}$ over a subcomplex W of Σ_G^2 with $W_1(\mathbf{q}) = W_1(Q_G|_W)$, then there exists a fiberwise map

$$\mu: \operatorname{Hom}\left(S^{i}K_{G}/(\varepsilon_{G}^{1} \bigcirc S^{i-2}K_{G}), Q_{G}\right) \to \operatorname{Hom}\left(S^{i}K_{G}/(\varepsilon_{G}^{1} \bigcirc S^{i-2}K_{G}), o(Q_{G})\right)$$

over Σ_G^2 such that if $\{0\}$ lies in the image of μ on a point of Σ_G^2 , then $\mu^{-1}\{0\} = \{0\}$ there and that $\mu |\operatorname{Hom}(S^i K_G / (\varepsilon_G^1 \bigcirc S^{i-2} K_G), \mathbf{q})|_W$ is the identity on W.

Proof

The restriction of the identity of $\operatorname{Hom}(S^i K_G / (\varepsilon_G^1 \bigcirc S^{i-2} K_G), Q_G)$ to

$$\operatorname{Hom}\left(S^{i}K_{G}/(\varepsilon_{G}^{1} \bigcirc S^{i-2}K_{G}), Q_{G}\right) \setminus \{\text{zero section}\}$$

over W yields a fiberwise map to

$$\operatorname{Hom}\left(S^{i}K_{G}/(\varepsilon_{G}^{1} \bigcirc S^{i-2}K_{G}), \mathbf{q}\right) \setminus \{\operatorname{zero section}\}$$

by using $\pi_3(S^1) = \{0\}$ so that $\mu |\operatorname{Hom}(S^i K_G / (\varepsilon_G^1 \bigcirc S^{i-2} K_G), \mathbf{q})|_W$ is the identity on W. Then extend this fiberwise map to

$$\operatorname{Hom}\left(S^{i}K_{G}/(\varepsilon_{G}^{1} \bigcirc S^{i-2}K_{G}), o(Q_{G})\right) \setminus \{\operatorname{zero-section}\}.$$

Then construct the required map μ by extending this map by the conewise construction.

Let $\mathcal{N}(\eta)_G$ denote the following vector bundles:

$$(S1) \operatorname{Hom}\left(\bigoplus_{i=2}^{m-1} (S^{i}K_{G}/(L_{G}\otimes S^{i-2}K_{G}), o(Q_{G}))\right),$$

(S2)
$$\operatorname{Hom}\left(S^{2}K_{G}/\Theta_{G}, Q_{G}\right) \oplus \operatorname{Hom}\left(\left\{\left(\bigoplus_{i=3}^{m-2} S^{i}K_{G}/(\Theta_{G} \bigcirc S^{i-2}K_{G})\right)\right\}, o(Q_{G})\right)$$

over G(E, F) in the cases (S1) and (S2), respectively. Let $\mathbf{n}(\eta)_{\Sigma^2}$ denote their restriction to Σ_G^2 , respectively.

In the following proposition we apply the fiberwise map μ with $W = U(\mathcal{K}\eta_G)$ in the case (S1) and with $W = U(\Sigma_G^{2,1})$ in the case (S2) together with r^i and r_{Θ}^i .

PROPOSITION 5.5

In the case (S1) or (S2), we have the following.

(i) The normal bundle of $\mathcal{K}\eta_G$ in Σ_G^2 is induced from $\mathbf{n}(\eta)_{\Sigma^2}$ by the inclusion $\mathcal{K}\eta_G$ in Σ_G^2 .

(ii) There exists a section ψ of $\mathbf{n}(\eta)_{\Sigma^2}$ over Σ_G^2 , which is transverse to the zero-section on $\mathcal{K}\eta_G$, whose inverse image of the zero section coincides with $\mathcal{K}\eta_G$.

Proof

For an element $\tilde{z} = (z, K_z, Q_z)$ of Σ_G^2 with $z \in cl(\Sigma^2)$, we take local orthogonal coordinate systems (u, v) and (y_1, y_2) for K_z and Q_z with the associated polynomial map $\zeta : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$.

(1) We have defined the lines \mathbf{q}_1^{\perp} and \mathbf{q}_1 such that $Q_G \approx \mathbf{q}_1^{\perp} \oplus \mathbf{q}_1$ over a very small tubular neighborhood $U(\mathcal{K}\eta_G)$ of $\mathcal{K}\eta_G$. Let (y_1, y_2) be the coordinates associated to $(\mathbf{q}_1^{\perp}, \mathbf{q}_1)$. Then it follows from (5.2) and Lemma 5.4 that we have a section

$$\mu \circ r^i : U(\mathcal{K}\eta_G) \to \operatorname{Hom}\left(S^i K_G / (L_G \otimes S^{i-2} K_G), \mathbf{q}_1\right)$$

defined over $U(\mathcal{K}\eta_G)$. We set the section ψ_U on $U(\mathcal{K}\eta_G)$ as

$$\psi_U(\tilde{z}) = \left(\bigoplus_{i=2}^{m-1} \mu \circ r^i(\tilde{z})\right).$$

By definition, $\overline{\psi}_U$ is transverse to the zero section on $\mathcal{K}\eta$. Furthermore, ψ_U vanishes on $\mathcal{K}\eta_G$ and never vanishes on $U(\mathcal{K}\eta_G)\setminus\mathcal{K}\eta_G$. Suppose that $\psi_U(\tilde{z})$ vanishes. Then there exists a nonzero real number c such that

$$y_1 \circ \zeta(u, v) = (u^2 + v^2) (c + g_1(u, v)),$$

$$y_2 \circ \zeta(u, v) = (u^2 + v^2) (g_2(u, v)),$$

modulo $\mathfrak{m}_{u,v}^m$, where deg g_i is greater than zero. By the Morse theorem we may assume under a suitable choice of coordinates (u,v) that $y_1 \circ \zeta(u,v) = c(u^2 + v^2)$. Hence, we may assume under a suitable choice of coordinates (y_1, y_2) that $y_2 \circ \zeta(u,v) = 0$ modulo $\mathfrak{m}_{u,v}^m$. This implies that \tilde{z} lies in $\mathcal{K}\eta_G$.

We next extend ψ_U to a section of

$$\operatorname{Hom}\left(\bigoplus_{i=2}^{m-1} (S^{i}K_{G}/(L_{G}\otimes S^{i-2}K_{G}), o(Q_{G}))\right) (\text{zero section})$$

over Σ_G^2 . By using $\mu \circ r^i$ in Lemma 5.4, we can extend the section r^i on $\partial U(\mathcal{K}\eta_G)$ to a section

$$\psi^i: \Sigma_G^2 \setminus \operatorname{Int} U(\mathcal{K}\eta_G) \to \operatorname{Hom}(S^i K_G / (L_G \bigcirc S^{i-2} K_G), Q_G)$$

over $\Sigma_G^2 \setminus \operatorname{Int} U(\mathcal{K}\eta_G)$ such that $\psi^i(\tilde{z})$ vanishes if and only if $\mu \circ \psi^i(\tilde{z})$ vanishes. Now we define the section ψ' over $\Sigma_G^2 \setminus \operatorname{Int} U(\mathcal{K}\eta_G)$ by

$$\psi'(\tilde{z}) = \left(\bigoplus_{i=2}^{m-1} \mu \circ \psi^i(\tilde{z})\right).$$

We have to show that ψ' never vanish on $\Sigma_G^2 \setminus \operatorname{Int} U(\mathcal{K}\eta_G)$. Suppose that $\psi'(\tilde{z})$ vanishes. This implies that $y_i \circ \zeta(u, v)$ lies in the ideal $(u^2 + v^2)$ modulo $\mathfrak{m}_{u,v}^m$ for i = 1, 2. First let z lie in Σ^2 . If one of $y_i \circ \zeta(u, v)$ is equal to $c(u^2 + v^2)$ modulo $\mathfrak{m}_{u,v}^m$ with $c \neq 0$, then we may again suppose that $y_i \circ \zeta(u, v) = c(u^2 + v^2)$, and hence, z lies in $\mathcal{K}\eta_G$. This is impossible. Hence, c = 0 and z lies in $\Sigma^{2,2}$. Since the normal bundle $\operatorname{Hom}(S^2\mathbf{K},\mathbf{Q})$ of $\Sigma^{2,2}$ cannot be a subbundle of $\mathcal{N}(\eta)_G$ by considering the structure group of $\mathcal{N}(\eta)_G$, this is also impossible. If z lies in the closure of Σ^3 , then the normal bundle of Σ^i for i > 2 cannot be a subbundle of $\mathcal{N}(\eta)_G$ by the same reason. Therefore, $\psi'(\tilde{z})$ never vanish.

By the definition of ψ_U and ψ' , they coincide on $\partial U(\mathcal{K}\eta_G)$ with each other. Thus we have obtained the required section ψ defined on Σ_G^2 such that it vanishes only on $\mathcal{K}\eta_G$ and is transverse to the zero section on $\mathcal{K}\eta_G$.

(2) In the case (S2), we have defined the lines \mathbf{q}_{2}^{\perp} and \mathbf{q}_{2} such that $Q_{G} \approx \mathbf{q}_{2}^{\perp} \oplus \mathbf{q}_{2}$ over a very small tubular neighborhood $U(\Sigma_{G}^{2,1})$ of $\Sigma_{G}^{2,1}$. Let (y_{1}, y_{2}) be the corresponding coordinates. By (5.2) and Lemma 5.4 we have the sections

$$\mu \circ r_{\Theta}^{i} : U(\Sigma_{G}^{2,1}) \to \operatorname{Hom}\left(S^{i}K_{G}/(\Theta_{G} \otimes S^{i-2}K_{G}), \mathbf{q}_{2}\right) \quad \text{for } i \geq 3.$$

We set the section $\overline{\psi}_U$ on $U(\Sigma_G^{2,1})$ as

$$\overline{\psi}_U(\tilde{z}) = r_\Theta^2(\tilde{z}) \oplus \left(\bigoplus_{i=3}^{m-2} \mu \circ r_\Theta^i(\tilde{z}) \right)$$

By definition, $\overline{\psi}_U$ is transverse to the zero section on $\mathcal{K}\eta$. Furthermore, $\overline{\psi}_U$ vanishes on $\mathcal{K}\eta_G$ and never vanishes on $U(\Sigma_G^{2,1})\setminus\mathcal{K}\eta_G$. In fact, suppose that $\overline{\psi}_U(\widetilde{z})$ vanishes. Since $r_{\Theta}^2(\widetilde{z})$ vanishes, we may write $y_1 \circ \zeta(u, v) = au^2$ with $a \neq 0$ and $y_2 \circ \zeta(u, v) = 0$ modulo $\mathfrak{m}_{u,v}^3$ under a suitable choice of coordinates (y_1, y_2) , and z lies in $\Sigma^{2,1}$. By the splitting theorem, we may assume under a suitable choice of coordinates (u, v) that $y_1 \circ \zeta(u, v) = a_1u^2 + h(v)$ modulo $\mathfrak{m}_{u,v}^{m-1}$, where deg h > 2. If deg h = 3, then we may assume that $y_1 \circ \zeta(u, v) = u^2 + v^3$ and $y_2 \circ \zeta(u, v) = 0$ modulo $(u^2 + v^3) + \mathfrak{m}_{u,v}^{m-1}$. Hence, we can prove under a suitable choice of coordinates (u, v) and (y_1, y_2) that $y_1 \circ \zeta(u, v) = u^2 + v^3$ and $y_2 \circ \zeta(u, v) = 0$ modulo $\mathfrak{m}_{u,v}^{m-1}$. This implies by the result concerning a classification of simple singularities in [12, Section 8] that z lies in $\mathcal{K}\eta$. If a = 0 or deg h > 3, then we first have h(v) = 0 modulo $\mathfrak{m}_{u,v}^{m-1}$. Next we take the germs ζ_λ such that

$$y_1 \circ \zeta_{\lambda}(u, v) = \lambda(u^2 + v^3),$$

$$y_2 \circ \zeta_{\lambda}(u, v) = (u^2 + v^3)g(u, v)$$

modulo $\mathfrak{m}_{u,v}^{m-1}$, which yields the jets $z_{\lambda} = z + j^{m-2}\zeta_{\lambda}$. If $\lambda \neq 0$, then z_{λ} similarly lies in $\mathcal{K}\eta$, and so z lies in $cl(\mathcal{K}\eta)\setminus\mathcal{K}\eta$. This is impossible. Hence, $\overline{\psi}_U$ never vanish.

We next extend $\overline{\psi}_U$ to a section of $\operatorname{Hom}(S^i K_G/(\Theta_G \bigcirc S^{i-2}K_G), Q_G) \setminus (\operatorname{zero} \operatorname{section})$ over Σ_G^2 . Over $\Sigma_G^2 \setminus \operatorname{Int} U(\Sigma_G^{2,1})$, we have the section

$$\begin{aligned} r_{\Theta}^{2} &: \Sigma_{G}^{2} \setminus \operatorname{Int} U(\Sigma_{G}^{2,1}) \to \operatorname{Hom}(S^{2}K_{G}/\Theta_{G}, Q_{G}), \\ r_{\Theta}^{i} &: \Sigma_{G}^{2} \setminus \operatorname{Int} U(\Sigma_{G}^{2,1}) \to \operatorname{Hom}(S^{i}K_{G}/(\Theta_{G} \bigcirc S^{i-2}K_{G}), Q_{G}) \end{aligned}$$

in (5.2). Therefore, it follows from Lemma 5.4 that it induces a section

$$\mu \circ r_{\Theta}^{i} : \Sigma_{G}^{2} \setminus \operatorname{Int} U(\Sigma_{G}^{2,1}) \to \operatorname{Hom}\left(S^{i}K_{G}/(\Theta_{G} \bigcirc S^{i-2}K_{G}), o(Q_{G})\right)$$

such that $\mu \circ r_{\Theta}^i(\tilde{z})$ vanishes if and only if $r_{\Theta}^i(\tilde{z})$ vanishes. Now we define the section $\overline{\psi}'$ of

$$\operatorname{Hom}(S^{2}K_{G}/\Theta_{G},Q_{G}) \oplus \operatorname{Hom}\left(\left\{\left(\bigoplus_{i=3}^{m-2} S^{i}K_{G}/(\Theta_{G} \bigcirc S^{i-2}K_{G})\right)\right\}, o(Q_{G})\right)\right\}$$

over $\Sigma_G^2 \setminus \operatorname{Int} U(\Sigma_G^{2,1})$ by

$$\overline{\psi}'(\tilde{z}) = r_{\Theta}^2(\tilde{z}) \oplus \Big(\bigoplus_{i=3}^{m-2} \mu \circ r_{\Theta}^i(\tilde{z})\Big).$$

We have to show that $\overline{\psi}'$ never vanish on $\Sigma_G^2 \setminus \operatorname{Int} U(\Sigma_G^{2,1})$. Suppose that $\overline{\psi}'(\tilde{z})$ vanishes. Then we may write $y_1 \circ \zeta(u, v) = a(u^2 + v^2)$ and $y_2 \circ \zeta(u, v) = 0$ modulo $\mathfrak{m}_{u,v}^3$. First let z lie in Σ^2 . If $a \neq 0$, then we may assume by the Morse theorem that $y_1 \circ \zeta(u, v) = a(u^2 + v^2)$. This implies that z lies in $\operatorname{cl}(\mathcal{K}\langle x^2 + y^2, x^{m-1}\rangle)$. By the transversality of $\overline{\psi}'$, the structure groups of the normal bundles at z and of $\mathcal{N}(\eta)_G$ are different. This is impossible. If a = 0, namely, $y_i \circ \zeta(u, v) = 0$ for i = 1, 2, then z lies in $\Sigma^{2,2}$, and hence, similarly as in (1), it is impossible. Therefore, it follows as in (1) that z lies in $\operatorname{cl}(\Sigma^3)$. Similarly as in (1), this is also impossible. Hence, $\psi'(\tilde{z})$ never vanish.

From the definition of $\overline{\psi}_U$, it follows that $\overline{\psi}_U$ and $\overline{\psi}'$ coincide with each other on $\partial U(\Sigma_G^{2,1})$. Thus we have obtained the required section $\overline{\psi}$ defined on Σ_G^2 such that it vanishes only on $\mathcal{K}\eta_G$ and is transverse to the zero section on $\mathcal{K}\eta_G$. This completes the proof.

COROLLARY 5.6

Let X be of dimension not less than 2m. Let s be a section of $J^k(E, F)$ over X such that $s(X) \cap (\operatorname{cl}(\mathcal{K}\eta) \setminus \mathcal{K}\eta)$ is empty and s is transverse to Boardman-Thom manifolds. Then the section ψ_s over S_G^2 of $(s_G|S_G^2)^*\mathbf{n}(\eta)_{\Sigma^2}$, which is induced by $\psi \circ s$, is transverse to the zero section on $S\eta_G$ and its inverse image of the zero section is exactly equal to $S\eta_G$ in the case (S1) or (S2), respectively.

6. Thom polynomials

In what follows let k denote 2q - 1. We calculate the Thom polynomial of $\mathcal{K}\eta$ under the condition that a section of $J^k(E, F)$ does not intersect with $\operatorname{cl}(\mathcal{K}\eta)\setminus\mathcal{K}\eta$ by properties of Gysin homomorphisms and characteristic classes (see [7], [15], [22]) and prove Theorem 1.1. We first prepare several lemmas.

Let H be a 2*w*-vector bundle over a connected orientable manifold Z. Let $\pi^G: G_{2,2w-2}(H) \to Z$ denote the Grassmann bundle associated to H with fiber $G_{2,2w-2}$. Let $(\pi^G)_!: H^*(G_{2,2w-2}(H);\mathbb{Z}) \to H^*(Z;\mathbb{Z})$ denote the Gysin homomorphism. Let K denote the canonical 2-plane bundle over $G_{2,2w-2}(H)$ and $H_G =$

 $(\pi^G)^*H$. We express the total Pontrjagin class P(K) of K as $P(K) = 1 + P_1(K)$. Let $P(H)^{-1} = 1 + \overline{P}_1(H) + \cdots + \overline{P}_i(H) + \cdots$.

We have the following lemma. This is well known (see [17]).

LEMMA 6.1

(1) $G_{2,2w-2}(H)$ is orientable.

(2) We have
$$(\pi^G)_!(P_i(H_G/K)) = \begin{cases} 1 & \text{for } i = w - 1, \\ 0 & \text{for } i \neq w - 1. \end{cases}$$

(3) We have $(\pi^G)_!(P_1(K)^{w-1+\ell}) = (-1)^{w-1+\ell}\overline{P}_\ell(H).$

Proof

(1) The tangent bundle of $G_{2,2w-2}(H)$ is isomorphic to $\text{Hom}(K, H_G/K)$, and its first Stiefel–Whitney class is equal to $(2w-2)W_1(K) + 2W_1(H/K) = 0$.

(2) If $i \neq w - 1$, then $P_i(H_G/K)$ vanishes by the dimensional reason. By regarding H_x with \mathbb{C}^w for a point $x \in X$, we take a 1-dimensional complex subspace \mathbb{C} of H_x . Let $i_x : x \to X$ and $\tilde{i_x} : G_{2,2w-2}(H_x) \to G_{2,2w-2}(H)$ be the inclusions. Let $H_G^x = (\tilde{i_x})^* H_G$ and $K^x = (\tilde{i_x})^* K$. Then we have a vector bundle Hom($\mathbb{C}, H_G^x/K^x$) over $G_{2,2w-2}(H_x)$ and its section \varkappa such that $\varkappa(b)$, for $b \in G_{2,2w-2}(H_x)$, maps \mathbb{C} to H_x/b by the orthogonal projection along b of H_x onto H_x/b . Obviously, $\varkappa(b)$ is a null homomorphism if and only if $b = \mathbb{C}$. Furthermore, it is elementary to show that \varkappa is transverse to the zero section of Hom($\mathbb{C}, H_G^x/K^x$). This implies that the fundamental cohomology class of $G_{2,2w-2}(H_x)$ is equal to the Euler class $\chi(\text{Hom}(\mathbb{C}, H_G^x/K^x))$. Furthermore, we have

$$\chi\left(\operatorname{Hom}(\mathbb{C}, H_G^x/K^x)\right) = C_{2w-2}\left((H_G^x/K^x) \otimes \mathbb{C}\right) = P_{w-1}(H_G^x/K^x),$$

where C_{2w-2} denotes the (2w-2)-th Chern class. For the Gysin homomorphisms

$$\left(\pi^{G}|G_{2,2w-2}(H_{x})\right)_{!}:H^{*}\left(G_{2,2w-2}(H_{x});\mathbb{Z}\right)\longrightarrow H^{*}(x;\mathbb{Z}),$$

we have

$$\left(\pi^{G}|G_{2,2w-2}(H_{x})\right)_{!}\left(P_{w-1}(H_{G}^{x}/K^{x})\right) = 1.$$

In the commutative diagram

$$\begin{array}{cccc} G_{2,2w-2}(H_x) & \xrightarrow{\widetilde{i_x}} & G_{2,2w-2}(H) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ &$$

it follows that

$$(i_x)^* ((\pi^G)_! (P_i(H_G/K))) = (\pi^G | G_{2,2w-2}(H_x))_! \{(\widetilde{i_x})^* (P_i(H_G/K))\}$$

= $(\pi^G | G_{2,2w-2}(H_x))_! (P_i(H_G^x/K^x)).$

Since $(i_x)^*$ induces an isomorphism of \mathbb{Z} in the zeroth dimension, this proves the assertion.

(3) Since $H_G = K \oplus H_G/K$, we have $P(H_G) = P(K)P(H_G/K)$, and so, $P(K)^{-1} = P(H_G)^{-1}P(H_G/K)$. By comparing the terms of degree $w - 1 + \ell$, we have

$$(-1)^{w-1+\ell} P_1(K)^{w-1+\ell} = \sum_{j=0}^{w-1} \overline{P}_{w-1+\ell-j}(H_G) P_j(H_G/K)$$

By (2) and the naturality of the Gysin homomorphism, we have

$$(-1)^{w-1+\ell} (\pi^G)_! (P_1(K)^{w-1+\ell}) = \sum_{j=0}^{w-1} \overline{P}_{w-1+\ell-j}(H_G)(\pi^G)_! (P_j(H_G/K))$$
$$= \overline{P}_{\ell}(H).$$

As is well known, we may reduce the calculation to the case where F is trivial. In fact, let F^{\perp} denote a vector bundle such that $F \oplus F^{\perp}$ is trivial. Let

$$\mathcal{L}: J^k(E, F) \to J^k(E \oplus F^\perp, F \oplus F^\perp)$$

denote a bundle map defined by $\mathcal{L}(h) = h + \mathrm{id}_{F^{\perp}}$, where $h \in J^k(E, F)$ and $\mathrm{id}_{F^{\perp}}$ is the identity of F^{\perp} . Then the following lemma is elementary.

LEMMA 6.2

(1) The inverse images of Boardman–Thom manifolds $\Sigma^{I}(E \oplus F^{\perp}, F \oplus F^{\perp})$ with any symbol I, $\mathcal{K}\eta$, and $\operatorname{cl}(\mathcal{K}\eta) \setminus \mathcal{K}\eta$ in $J^{k}(E \oplus F^{\perp}, F \oplus F^{\perp})$ by \mathcal{L} coincide with those spaces in $J^{k}(E, F)$, respectively.

(2) \mathcal{L} is transverse to each $\Sigma^{I}(E \oplus F^{\perp}, F \oplus F^{\perp})$ and $\mathcal{K}\eta(E \oplus F^{\perp}, F \oplus F^{\perp})$.

In the following E and F imply $E \oplus F^{\perp}$ and the trivial bundle $F \oplus F^{\perp}$ of dimension 2w, respectively. Let i_{S^2} denote the inclusion of S_G^2 into $s^*G(E,F)$. Note that $(i_{\Sigma^2})^*(\chi(\mathcal{N}(\eta)_G) = \chi(\mathbf{n}(\eta)_{\Sigma^2}).$

THEOREM 6.3

We assume that the coefficient group is \mathbb{Z} when m is even and is $\mathbb{Z}/2\mathbb{Z}$ when m is odd. Then we have the following in the cases (S1) and (S2):

$$(\pi_G)_! \{ s_G^* \big(\chi(\operatorname{Hom}(K, \varepsilon^{2w}) \oplus \operatorname{Hom}(K^{\perp}, Q)) \cup \chi(\mathcal{N}(\eta)_G) \big) \} = [S\eta]$$

Proof

We give a proof for the case (S2), and the proof for the case (S1) is similar. Indeed, we have

$$s_{G}^{*}(\chi(\operatorname{Hom}(K,\varepsilon^{2w})\oplus\operatorname{Hom}(K^{\perp},Q))\cup\chi(\mathcal{N}(\eta)_{G}))\cap[s^{*}G(E,F)]$$

= $s_{G}^{*}(\chi(\mathcal{N}(\eta)_{G}))\cap\{s_{G}^{*}(\chi(\operatorname{Hom}(K,\varepsilon^{2w})\oplus\operatorname{Hom}(K^{\perp},Q)))\cap[s^{*}G(E,F)]\}$
= $s_{G}^{*}(\chi(\mathcal{N}(\eta)_{G}))\cap((i_{S^{2}})_{*}([S_{G}^{2}]))$

$$= (i_{S^2})^* \left(s_G^*(\chi(\mathcal{N}(\eta)_G)) \right) \cap ([S_G^2])$$
$$= \chi \left((i_{S^2})^* (\mathbf{n}(\eta)_{\Sigma^2}) \right) \cap ([S_G^2])$$
$$= [S\eta_G].$$

Furthermore, we have that $S\eta_G$ is mapped diffeomorphically onto $S\eta$. This shows the theorem.

Now we calculate the Euler class of $\operatorname{Hom}(K, \varepsilon^{2w}) \oplus \operatorname{Hom}(K^{\perp}, Q) \oplus \mathcal{N}(\eta)_G$.

LEMMA 6.4

The following formulas hold up to sign, where ε is a trivial line bundle over G(E,F).

$$\begin{array}{ll} \text{(i)} & \chi \big\{ \mathrm{Hom} \big(\bigoplus_{i=t+1}^{t+2\ell} S^i K_G / (\Theta_G \bigcirc S^{i-2} K_G), o(Q_G) \big) \big\} &= \big\{ \prod_{i=t+1}^{t+2\ell} i \big\} \times \\ P_1(K_G)^{\ell}. \\ \text{(ii)} & \chi \{ \mathrm{Hom}(K_G^{\perp}, Q_G) \} = \sum_{i=0}^{w-1} (-1)^i P_i(K_G^{\perp}) P_1(Q_G)^{w-1-i} \text{ over } G(E, F). \\ \text{(iii)} & \chi (\mathrm{Hom}(S^2 K_G / L_G, Q_G)) = 3 P_1(K_G) \text{ over } G(E, F). \end{array}$$

Proof

In this proof, = will mean the equality modulo 2-torsion. In the proof we set $K = K_G$, $Q = Q_G$, and $\varepsilon = \Theta_G = L_G$. Let $E(i) \to BO(i)$ denote the classifying vector bundle over a classifying space of *i*-dimensional vector bundles. Let $c_K : G(E, F) \to BO(2), c_{K^{\perp}} : G(E, F) \to BO(2w-2)$, and $c_Q : G(E, F) \to BO(2)$ denote the classifying maps of K, K^{\perp} , and Q, respectively. Then we note that

$$\begin{split} &\chi\Big\{\mathrm{Hom}\,\Big(\bigoplus_{i=t+1}^{t+2\ell}S^{i}K/(\varepsilon\bigcirc S^{i-2}K),o(Q)\Big)\Big\}\\ &=(c_{K}\times c_{Q})^{*}\bigg(\chi\Big\{\mathrm{Hom}\,\Big(\bigoplus_{i=t+1}^{t+2\ell}S^{i}E(2)/(\varepsilon\bigcirc S^{i-2}E(2)),o(E(2))\Big)\Big\}\bigg),\\ &\chi\big\{\mathrm{Hom}(K^{\perp},Q)\big\}=(c_{K^{\perp}}\times c_{Q})^{*}\big(\chi\big\{\mathrm{Hom}\big(E(2w-2),E(2)\big)\big\}\big),\\ &\chi\big(\mathrm{Hom}(S^{2}K/\varepsilon,Q)\big)=(c_{K}\times c_{Q})^{*}\big(\chi\big(\mathrm{Hom}(S^{2}E(2)/\varepsilon,E(2))\big)\big). \end{split}$$

Let $C(K^{\mathbb{C}})$ and $C(E(2)^{\mathbb{C}})$, which are corresponded by $(c_K)^*$, be represented by the same symbol $(1 + t_1)(1 + t_2)$, let $C(Q^{\mathbb{C}})$ and $C(E(2)^{\mathbb{C}})$, which are corresponded by $(c_Q)^*$, be represented by the same symbol $(1 + r_1)(1 + r_2)$, and similarly, let

$$C((K^{\perp})^{\mathbb{C}})$$
 or $C(E(2w-2)) = \prod_{j=3}^{2w-2} (1+t_j).$

(i) For $i \geq 2$, we have

$$C\left(S^{i}E(2)^{\mathbb{C}}/(\varepsilon^{\mathbb{C}}\otimes S^{i-2}E(2)^{\mathbb{C}})\right)$$
$$= C\left(S^{i}E(2)^{\mathbb{C}}\right)C(\varepsilon^{\mathbb{C}}\otimes S^{i-2}E(2)^{\mathbb{C}})^{-1}$$

$$= C(S^{i}E(2)^{\mathbb{C}})C(S^{i-2}E(2)^{\mathbb{C}})^{-1}$$

$$= \prod_{s=0}^{i} (1+st_{1}+(i-s)t_{2})\left\{\prod_{j=0}^{i-2} (1+jt_{1}+(i-2-j)t_{2})\right\}^{-1}$$

$$= \prod_{s=0}^{i} (1+st_{1}+(i-s)t_{2})\left\{\prod_{j=0}^{i-2} (1+jt_{1}+(i-2-j)t_{2}+t_{1}+t_{2})\right\}^{-1}$$

$$= (1+it_{1})(1+it_{2})$$

modulo 2-torsion. Since

$$\begin{split} \chi \left\{ \left(S^i E(2)^{\mathbb{C}} / \left(\varepsilon^{\mathbb{C}} \otimes S^{i-2} E(2)^{\mathbb{C}} \right) \right) \right\}^2 &= C_2 \left(\left(S^i E(2)^{\mathbb{C}} / \left(\varepsilon^{\mathbb{C}} \otimes S^{i-2} E(2)^{\mathbb{C}} \right) \right) \right) \\ &= i^2 t_1 t_2 \\ &= i^2 C_2 \left(E(2)^{\mathbb{C}} \right), \end{split}$$

we calculate as

$$\chi \Big\{ \operatorname{Hom} \Big(\bigoplus_{i=t+1}^{t+2\ell} S^{i}E(2) / (\varepsilon \bigcirc S^{i-2}E(2)), o(E(2)) \Big) \Big\}^{2}$$

$$= C_{4\ell} \Big(\operatorname{Hom} \Big(\bigoplus_{i=t+1}^{t+2\ell} (S^{i}E(2)^{\mathbb{C}} / \varepsilon^{\mathbb{C}} \otimes S^{i-2}E(2)^{\mathbb{C}}) \Big), \mathbb{C} \Big)$$

$$= \prod_{i=t+1}^{t+2\ell} C_{2} \Big(S^{i}E(2)^{\mathbb{C}} / \varepsilon^{\mathbb{C}} \otimes S^{i-2}E(2)^{\mathbb{C}} \Big)$$

$$= \prod_{i=t+1}^{t+2\ell} (it_{1})(it_{2})$$

$$= \Big\{ \prod_{i=t+1}^{t+2\ell} i^{2} \Big\} C_{2} \Big(E(2)^{\mathbb{C}} \Big)^{2\ell}$$

$$= \Big\{ \prod_{i=t+1}^{t+2\ell} i^{2} \Big\} P_{1} \Big(E(2) \Big)^{2\ell}.$$

By considering the cohomology ring of BO(2) modulo 2-torsion, we have

$$\chi\Big\{\operatorname{Hom}\Big(\bigoplus_{i=t+1}^{t+2\ell} S^i E(2)/\big(\varepsilon \bigcirc S^{i-2}E(2)\big), o\big(E(2)\big)\Big)\Big\} = \Big\{\prod_{i=t+1}^{t+2\ell} i\Big\} P_1\big(E(2)\big)^\ell.$$

Thus we obtain the assertion (i) by applying $(c_K \times c_Q)^*$.

The following proofs of (ii) and (iii) are similar, and so we only give outlines of calculations.

(ii) We have

$$\chi \{ \operatorname{Hom}(E(2w-2), E(2)) \}^{2}$$

= $C_{4w-4} (\operatorname{Hom}(E(2w-2)^{\mathbb{C}}, E(2)^{\mathbb{C}}))$

Yoshifumi Ando

$$= \prod_{i=3}^{2w} (r_1 - t_i)(r_2 - t_i)$$
$$= \prod_{i=3}^{2w} (r_1 r_2 + t_i^2)$$
$$= \prod_{i=3}^{2w} (C_2(E(2)^{\mathbb{C}}) + t_i^2)$$

modulo 2-torsion. Setting $x^2 = C_2(E(2)^{\mathbb{C}})$, this is equal, modulo 2-torsion, to

$$\begin{split} &\prod_{i=3}^{2w} \left(x^2 - (\sqrt{-1}t_i)^2\right) \\ &= \prod_{i=3}^{2w} (x + \sqrt{-1}t_i) \prod_{i=3}^{2w} (x - \sqrt{-1}t_i) \\ &= \left(\sum_{i=0}^{2w-2} (\sqrt{-1})^i C_i \left(E(2w-2)^{\mathbb{C}}\right) x^{2w-2-i}\right) \\ &\times \left(\sum_{i=0}^{2w-2} (-\sqrt{-1})^i C_i \left(E(2w-2)^{\mathbb{C}}\right) x^{2w-2-i}\right) \\ &= \left(\sum_{i=0}^{w-1} (-1)^i C_{2i} \left(E(2w-2)^{\mathbb{C}}\right) x^{2w-2-2i}\right)^2 \\ &= \left(\sum_{i=0}^{w-1} (-1)^i C_{2i} \left(E(2w-2)^{\mathbb{C}}\right) C_2 \left(E(2)^{\mathbb{C}}\right)^{w-1-i}\right)^2 \\ &= \left(\sum_{i=0}^{w-1} (-1)^i P_i \left(E(2w-2)\right) P_1 \left(E(2)\right)^{w-1-i}\right)^2. \end{split}$$

Hence,

$$\chi \big\{ \operatorname{Hom} \big(E(2w-2), E(2) \big) \big\} = \pm \sum_{i=0}^{w-1} (-1)^i P_i \big(E(2w-2) \big) P_1 \big(E(2) \big)^{w-1-i}.$$

(iii) Similarly, we have that

$$\chi \left(\operatorname{Hom}(S^2 K/\varepsilon, Q) \right)^2$$

= $C_4 \left(\operatorname{Hom}(S^2 K^{\mathbb{C}}/\varepsilon^{\mathbb{C}}, Q^{\mathbb{C}}) \right)$
= $(r_1 - 2t_1)(r_1 - 2t_2)(r_2 - 2t_1)(r_2 - 2t_2)$
= $(r_1^2 + 4t_1t_2)(r_2^2 + 4t_1t_2)$
= $\left(4C_2(K) \right)^2 - 8r_1r_2C_2(K)C_2(Q) + C_2(Q)^2$

$$= (4C_2(K) - C_2(Q))^2$$
$$= (4P_1(K) - P_1(Q))^2.$$

Hence, we obtain $\chi(\operatorname{Hom}(S^2K/\varepsilon, Q)) = \pm (4P_1(K) - P_1(Q)).$

The next theorem follows from Theorem 6.3 and Lemma 6.4.

THEOREM 6.5

Let m be an even integer 2q. Let X be an orientable manifold. Then the leading term of the Thom polynomial $tp(\mathcal{K}\eta;s)$ with Z-coefficients is equal to the following.

(S1) We have
$$(2q-1)!P_q(F-E)$$
,
(S2) We have
$$\begin{cases} 3P_2(F-E) & \text{if } q=2, \\ 3\{\prod_{i=3}^{2q-2}i\}P_q(F-E) & \text{if } q \ge 3 \end{cases}$$

up to sign. In particular, $tp(\mathcal{K}\eta; s)$ depends only on the homotopy class of s.

Proof

In this proof, = will mean the equality modulo 2-torsion. In the proof E implies $E \oplus F^{\perp}$. As is well known, we have

(6.1)
$$\chi \left\{ \operatorname{How}(K, \varepsilon^{2w}) \right\} = \chi(K^{\mathbb{C}})^w = C_2(K^{\mathbb{C}})^w = P_1(K)^w$$

over G(E, F).

(S1) The coefficient of $P_1(Q)^{w-1}$ of $\chi(\operatorname{Hom}(K^{\perp},Q))$ is equal to 1. Hence, we have

$$\chi \Big\{ \operatorname{How}(K, \varepsilon^{2w}) \oplus \operatorname{Hom}\left(\bigoplus_{i=2}^{2q-1} S^i K / (L \bigcirc S^{i-2}K), o(Q)\right) \Big\}$$
$$= \Big\{ \prod_{i=2}^{2q-1} i \Big\} P_1(K)^{q-1+w}.$$

By the commutativity of the diagram (5.1), $(pr_E)_!$ maps the Euler class to

$$\left\{\prod_{i=2}^{2q-1}i\right\}\overline{P}_q(E-F) = \left\{\prod_{i=2}^{2q-1}i\right\}P_q(F-E).$$

(S2) We have

$$\operatorname{How}(S^{2}K/\Theta \oplus E/K, Q) = \left(4P_{1}(K) - P_{1}(Q)\right) \left(\sum_{i=0}^{w-1} (-1)^{i} P_{i}(E/K) P_{1}(Q)^{w-1-i}\right).$$

The coefficient of the term $P_1(Q)^{w-1}$ is

$$P_1(E/K) + 4P_1(K) = P_1(E) + 3P_1(K).$$

Ignoring $P_1(E)$, $(\mathrm{pr}_F)_!$ maps the Euler class of

$$\operatorname{How}(K,\varepsilon^{2w}) \oplus \operatorname{How}(S^{2}K/\Theta \oplus E/K,Q) \oplus \operatorname{Hom}\left(\bigoplus_{i=3}^{2q-2} S^{i}K/(\Theta \bigcirc S^{i-2}K), o(Q)\right)$$

to

$$(\mathrm{pr}_E)_! \left(3\left\{ \prod_{i=3}^{2q-2} i \right\} P_1(K)^{q-1+w} \right) = 3\left\{ \prod_{i=3}^{2q-2} i \right\} P_q(F-E).$$

This proves the theorem.

Proof of Theorems 1.1

By setting $F = f^*(TY)$, E = TX, and $s = (id_X \times f)^*(j^k f)$, the assertions follow from Theorem 6.5 by replacing P_i with $P_i(f^*(TY) - TX)$.

7. J-images

In this section we show a relationship of the Thom polynomials in Theorem 1.1 and the J-images.

Let us recall the J-image of the J-homomorphism

$$J: \pi_n(\mathrm{SO}) \longrightarrow \pi_n^s$$

in [1] and [23]. Recall the cobordism group $\Omega_{\text{fold},j}(S^n)$ of fold maps of closed oriented *n*-dimensional manifolds to S^n of degree j and an isomorphism ω_j : $\Omega_{\text{fold},j}(S^n) \to \pi_n^s$ from [3, Theorem 1]. We have proved in [3, Proposition 5.2] that an element $\alpha \in \pi_n^s$ lies in the *J*-image if and only if there exists a fold map $f: S^n \to S^n$ of degree 1 with $\omega_1([f]) = \alpha$. This assertion is also true in the case of degree zero by [3, Lemmas 2.5, 3.4]. In fact, a fold map $f: N \to S^n$ of degree j determines the homotopy class of the bundle map

$$\mathcal{T}(f):TN\oplus\varepsilon_N\longrightarrow TS^n\oplus\varepsilon_{S^n}$$

covering f. If $N = S^n$ and f is of degree j, then $\mathcal{T}(f)$ determines an element of $\pi_n(\mathrm{SO}(n+1))$, whose image of J coincides with $\omega_j([f])$.

For a fold map f of degree zero, we take a parallelizable (n + 1)-manifold V with $\partial V = S^n$ and an extended map $F: V \to D^{n+1}$ such that the restriction of F between the collars $S^n \times [0, \varepsilon]$ of V and D^{n+1} is equal to $f \times \operatorname{id}_{[0,\varepsilon]}$ for a sufficiently small ε . Let \widehat{V} denote the manifold, which is the union of $V \cup_{S^n} D^{n+1}$, where V and D^{n+1} are pasted on S^n . For a sufficiently large integer k, let $\tau(f)$ denote

$$\mathcal{T}(f) \oplus (f \times \mathrm{id}_{\mathbb{R}^{k-n-1}}) : TS^n \oplus \varepsilon_{S^n}^{k-n} \longrightarrow TS^n \oplus \varepsilon_{S^{n-1}}^{k-n}.$$

Let $\tau(\widehat{V}, \tau(f))$ be the k-dimensional vector bundle over \widehat{V} , which is obtained by pasting $TV \oplus \varepsilon_{S^{n-1}}^{k-n-1}$ and $TD^{n+1} \oplus \varepsilon_{S^n}^{k-n-1}$ by $\tau(f)$ on S^n .

Now consider the jet space $J^k(\tau(\widehat{V}, \tau(f)), \varepsilon_{\widehat{V}}^k)$, whose restriction to V (resp., D^{n+1}) is equal to $J^k(V, D^{n+1})$ (resp., $J^k(D^{n+1}, D^{n+1})$). Let s(f) denote its

section defined by

$$s(f)(x) = \begin{cases} j^k(\mathrm{id}_{D^{n+1}}) \times \mathrm{id}_{\mathbb{R}^{k-n-1}} & \text{for } x \in D^{n+1}, \\ j^k_x F \times \mathrm{id}_{\mathbb{R}^{k-n-1}} & \text{for } x \in V. \end{cases}$$

Let n = 4q - 1 in the following. The *J*-image $\pi_{4q-1}(SO)$ is a cyclic group of order j_q . The next lemma follows from [14, Lemma 2].

LEMMA 7.1

Let n = 4q - 1. Let $\mathfrak{o}(\tau(\widehat{V}, \tau(f)))$ denote the element of $\pi_{4q-1}(SO)$, which is determined as the primary obstruction of $\tau(\widehat{V}, \tau(f))$ to being trivial. Then the Pontrjagin class $P_q(\tau(\widehat{V}, \tau(f)))$ is related by the identity

$$P_q(\tau(\widehat{V},\tau(f))) = \pm a_q(4q-1)! \mathfrak{o}(\tau(\widehat{V},\tau(f))),$$

where $a_q = 2$ for q odd and $a_q = 1$ for q even.

By definition, s(f) is transverse to $\mathcal{K}\eta$ and $(s(f)|D^{8q})^{-1}(\mathcal{K}\eta)$ is empty. Then the Thom polynomials $\operatorname{tp}(\mathcal{K}\eta, s(f))$ are as given in Theorem 1.1, and they are nothing but the Poincaré duals of $\mathcal{K}\eta$ of E^f . Therefore, we have the following theorem.

THEOREM 7.2

Let α be an element of the J-image in π^s_{4q-1} , which has a fold map $f: S^{4q-1} \rightarrow S^{4q-1}$ of degree zero with $\alpha = \mathfrak{o}(\tau(\widehat{V}, \tau(f)))$. Then the algebraic number of singularities of type $\mathcal{K}\eta$ of the extension E^f is equal, modulo $(4q-1)!j_q$, to

(S1)
$$(2q-1)!(4q-1)!a_q\alpha,$$

(S2) $\begin{cases} 3\cdot 7!\alpha & \text{if } q=2, \\ 3\{\prod_{i=3}^{2q-2}i\}(4q-1)!a_q\alpha & \text{if } q \ge 3 \end{cases}$

up to sign.

In dimension 12, the *J*-image is of order $2^{3}3^{2}7$, and the algebraic number of singularities of type $\mathcal{K}\eta$ of the extension E^{f} is equal, modulo $2 \cdot 11! \cdot 2^{3}3^{2}7$, to $5!11! \cdot 2\alpha$ in the case (S1) and to $3^{2} \cdot 2^{2} \cdot 11!\alpha$ in the case (S2), where an integer α varies from 1 to $2^{3}3^{2}7$.

In the case where a fold map $f: N \to S^n$ of degree zero has a parallelizable manifold V and an extension E^f such that $\omega_0([f]) = \alpha$ does not lie in the Jimage, we can define the Thom polynomial $\operatorname{tp}(\mathcal{K}\eta, s(f))$. However, the author does not know whether it is effective to detect α or not. The theorem implies that the singularities with nonvanishing leading terms of Thom polynomials detect elements of the J-image. Therefore, the classification of those singularities and the calculation of Thom polynomials will be important to clarify the relationship between singularities and the stable homotopy groups of spheres.

References

- [1] J. F. Adams, On the groups J(X), IV, Topology 5 (1966), 21–71.
- Y. Ando, On the higher Thom polynomials of Morin singularities, Publ. Res. Inst. Math. Sci. 23 (1987), 195–207.
- [3] _____, Fold-maps and the space of base point preserving maps of spheres,
 J. Math. Kyoto Univ. 41 (2001), 691–735.
- [4] _____, Stable homotopy groups of spheres and higher singularities, J. Math. Kyoto Univ. 46 (2006), 147–165.
- J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 21–57.
- [6] L. Fehér and R. Rimányi, Thom polynomials with integer coefficients, Illinois J. Math. 46 (2002), 1145–1158.
- F. Hirzebruch, Topological Methods in Algebraic Geometry, reprint of the 1978 ed., Classics Math., Springer, Berlin, 1995.
- [8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, reprint of the 1963 original, Wiley Classics Lib., Wiley, New York, 1996.
- H. I. Levine, "Singularities of differentiable mappings" in Singularities, Symposium I (Liverpool, 1969/70), Lecture Notes in Math. 192, Springer, Berlin, 1–85.
- [10] J. N. Mather, Stability of C[∞] mappings, III: Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 279–308.
- [11] _____, Stability of C^{∞} mappings, V: Transversality, Adv. Math. 4 (1970), 301–336.
- [12] _____, "Stability of C^{∞} mappings, VI: The nice dimensions" in *Singularities, Symposium I (Liverpool, 1969/70)*, Springer, Berlin, 1971.
- [13] _____, "On Thom-Boardman singularities" in Dynamical Systems (Salvador, Brazil, 1971), Academic Press, New York, 1973, 233–248.
- [14] J. Milnor and M. Kervaire, "Bernoulli numbers, homotopy groups, and a theorem of Rohlin" in *Proceedings of the International Congress of Mathematicians (Edinburgh, 1958)*, Cambridge Univ. Press, Cambridge, 1960, 454–458.
- [15] J. Milnor and J. Stasheff, *Characteristic Classes*, Ann. of Math. Stud. 76, Princeton Univ. Press, Princeton; Univ. Tokyo Press, Tokyo, 1974.
- T. Ohmoto, Vassiliev complex for contact classes of real smooth map-germs, Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem. 27 (1994), 1–12.
- [17] Porteous, "Simple singularities of maps" in *Singularities*, Lecture Notes in Math. **192**, Springer, Berlin, 1971, 286–307.
- [18] R. Rimányi, Thom polynomials, symmetries and incidences of singularities, Invent. Math. 143 (2001), 499–521.
- [19] _____, On right-left symmetries of stable singularities, Math. Z. **242** (2002), 347–366.

- [20] F. Ronga, "Le calcul de la classe de cohomologie entière dual a Σ^{k} " in Singularities, Lecture Notes in Math. **192**, Springer, Berlin, 1971, 313–315.
- [21] _____, Le calcul des classes duales aux singularités de Boardman d'ordre deux, Comment. Math. Helv. 47 (1972), 15–35.
- [22] N. Steenrod, The Topology of Fibre Bundles, reprint of the 1957 ed., Princeton Landmarks Math., Princeton Univ. Press, Princeton, 1999.
- [23] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Stud. 49, Princeton Univ. Press, Princeton, 1962.
- [24] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier (Grenoble) 6 (1955-1956), 43–87.

Department of Mathematical Sciences, Faculty of Science, Yamaguchi University, 753-8512, Japan; andoy@yamaguchi-u.ac.jp