Leading terms of Thom polynomials and J-images

Yoshifumi Ando

Abstract

We give two types of singularities of maps between $4 q$-manifolds whose Thom polynomials with integer coefficients have nonvanishing coefficient of Pontrjagin class P_{q}. We show that an element of the J-image of dimension $4 q-1$ has a fold map between $S^{4 q-1}$ and can be detected by the leading terms of Thom polynomials of those singularities of an extended map between $D^{4 q}$ of the fold map.

1. Introduction

The calculation of Thom polynomials of smooth maps in the real category began in [24], and has been developed mainly with \mathbb{Z}_{2}-coefficients by many authors (see, e.g., [17], [20], [21], [2], [16], [6], [18]). However, there have been known only a small number of orientable real singularities of codimension $4 q$ of smooth maps between equi-dimensional manifolds whose Thom polynomials with \mathbb{Z}-coefficients have the nonvanishing leading term, namely, the term of the q th Pontrjagin class. This is a very different situation from the complex case in the calculation of Thom polynomials. The examples, as far as the author knows, are the singularities of type Σ^{2} of codimension 4 in [20] and the singularities, which have been studied in [6], of codimension 8. In this paper we present two types of real singularities with such a property under a certain restrictive assumption on maps and apply the result to show a relationship between those singularities and the J-images of the stable homotopy groups of spheres.

Let $\mathcal{K}^{(k)}$ denote the contact group defined in [10] on the jet space $J^{k}(n, n)$. For an integer n with $n \geqq 8$, we consider an unfolding $f_{\eta}:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ of a genotype $\eta=\left\langle\eta_{1}(u, v), \eta_{2}(u, v)\right\rangle$ and the $\mathcal{K}^{(k)}$-orbit $\mathcal{K}^{(k)}\left(j^{k} f_{\eta}\right)$, which we denote, for simplicity, by $\mathcal{K} \eta$ in this paper. We deal with the genotypes $\left\langle u^{2}+v^{2}, u^{m}\right\rangle$ (S1) and $\left\langle u^{2}+v^{3}, u v^{m-2}\right\rangle$ (S2) for $m \geqq 4$. Note that S1 is of type $\Sigma^{2,0}$, called $I V_{m}$ by [12], and $S 2$ is of type $\Sigma^{2,1}$. They are orientable if m is an even integer $2 q$. If a smooth map $f: X \rightarrow Y$ between smooth manifolds of dimension n with $n \geqq 4 q$ such that $j^{2 q-1} f(X)$ does not intersect with $\operatorname{cl}(\mathcal{K} \eta) \backslash \mathcal{K} \eta$ and $j^{2 q-1} f(X)$ is transverse to $\mathcal{K} \eta$, then $\left(j^{2 q-1}\right) f^{-1}(\mathcal{K} \eta)$ is a manifold and we can define its

Thom polynomial as proved in Corollary 5.6 , which we denote by $\operatorname{tp}(\mathcal{K} \eta ; f)$. We calculate the leading term of the Thom polynomials for these genotypes.

THEOREM 1.1
Let m be an even integer $2 q(q \geqq 2)$. Let X and Y be orientable smooth manifolds of dimension n with $n \geqq 4 q$, and let $f: X \rightarrow Y$ be a smooth map such that $j^{2 q-1} f(X)$ does not intersect with $\mathrm{cl}(\mathcal{K} \eta) \backslash \mathcal{K} \eta$ and that $j^{2 q-1} f(X)$ is transverse to $\mathcal{K} \eta$. Then the leading term of the Thom polynomial $\operatorname{tp}(\mathcal{K} \eta ; f)$ with \mathbb{Z}-coefficients is equal to, up to sign,
(1) $(2 q-1)!P_{q}$ for $\left\langle u^{2}+v^{2}, u^{2 q}\right\rangle$,
(2) $\left\{\begin{array}{ll}3 P_{2} & \text { if } q=2, \\ 3\left\{\prod_{i=3}^{2 q-2} i\right\} P_{q} & \text { if } q \geqq 3\end{array} \quad\right.$ for $\left\langle u^{2}+v^{3}, u v^{2 q-2}\right\rangle$,
where P_{i} denotes the Pontrjagin class $P_{i}\left(f^{*}(T Y)-T X\right)$. In particular, these terms depend only on the homotopy class of f.

In the process of the calculation using the Gysin homomorphisms, the structures of the normal bundles of Boardman-Thom manifolds in [5] and [9] and of the normal bundle of $\mathcal{K} \eta$ in [10] play important roles. Note that we do not assert the existence of the Thom polynomials in the sense of [6]. Although it is better for the complete forms of Thom polynomials to apply the method in [6], [18], and [19] using the Vassiliev complexes and the structure groups of normal bundles of \mathcal{K}-orbits, it is rather hard to adopt it in our case. Fehér and Rimányi [6] have proved that $\mathcal{K}\left\langle u^{2}+v^{3}, u v^{2}\right\rangle-2 \mathcal{K}\left\langle u^{2}+v^{2}, u^{4}\right\rangle$ constitutes a cycle in a Vassiliev complex and have determined its precise Thom polynomial. Its leading term coincides with our leading term $\pm 9 P_{2}\left(f^{*}(T Y)-T X\right)$ in Theorem 1.1.

We next explain that the above Thom polynomial of the singularities $\mathcal{K} \eta$ detects elements of the J-images of the stable homotopy groups of spheres. In [3] we have studied the group of oriented cobordism classes of fold maps to S^{n} of degree zero. Two fold maps $f_{i}: N_{i} \rightarrow S^{n}(i=0,1)$ of degree zero are called cobordant if there exists a fold map, say, $\tilde{f}:(W, \partial W) \rightarrow\left(S^{n} \times[0,1], S^{n} \times 0 \cup\right.$ $\left.S^{n} \times 1\right)$ of degree zero, where $\widetilde{f} \mid N_{0} \times 0=f_{0}$ and $\widetilde{f} \mid N_{1} \times 1=f_{1}$ together with the usually required properties, where N_{i} and W are oriented.

Let $\Omega_{\text {fold }, 0}\left(S^{n}\right)$ denote the group of all oriented cobordism classes of fold maps to S^{n} of degree zero. Let π_{n}^{s} denote the nth stable homotopy group of spheres. Then we have proved that there exists an isomorphism $\omega_{0}: \Omega_{\text {fold }, 0}\left(S^{n}\right) \rightarrow \pi_{n}^{s}$ for $n \geq 1$. Consequently, an element in the J-image has a fold map $f: N \rightarrow S^{n}$ of degree zero via ω_{0} and its extension $E^{f}:(V, N) \rightarrow\left(D^{n+1}, S^{n}\right)$ of degree zero, where V is a parallelizable manifold with $\partial V=N$ and $E^{f} \mid N=f$. We will apply a method introduced in [4] to detect an element of the J-image by the algebraic numbers of above singularities of E^{f} of codimension $n+1=4 q$ and will describe the details in dimensions $4 q \geqq 8$.

In Section 2 we explain the notation currently used in this paper. In Section 3 we briefly review the fundamental properties of Boardman-Thom manifolds. In

Section 4 we briefly review the results concerning \mathcal{K}-orbits in [10] and give preliminary lemmas and properties of the singularities of $\mathcal{K} \eta$. In Section 5 we give a number of results concerning the normal bundles of $\mathcal{K} \eta$. In Section 6 we give a proof of Theorem 1.1 in a general form. In Section 7 we apply Theorem 1.1 to show a relationship between the singularities of $\mathcal{K} \eta$ and the J-images of the stable homotopy groups of spheres in Theorem 7.2.

2. Notation

Throughout the paper all manifolds are Hausdorff, paracompact, and smooth of class C^{∞}.

Let $\pi^{E}: E \rightarrow W$ and $\pi^{F}: F \rightarrow W$ be smooth n-vector bundles over a smooth manifold W. Let $\operatorname{Hom}(E, F)$ denote the smooth vector bundle over W with fiber $\operatorname{Hom}\left(E_{x}, F_{x}\right), x \in W$, which consists of all homomorphisms $E_{x} \rightarrow F_{x}$.

We set

$$
\begin{equation*}
J^{k}(E, F)=\operatorname{Hom}\left(\bigoplus_{i=1}^{k} S^{i}(E), F\right) \tag{2.1}
\end{equation*}
$$

over W with projections π^{J} onto W. Here, $S^{i}(E)$ denote the vector bundle $\bigcup_{x \in W} S^{i}\left(E_{x}\right)$ over W, where $S^{i}\left(E_{x}\right)$ denotes the i-fold symmetric product of E_{x}. An element z of $J^{k}(E, F)$ with $\pi^{J}(z)=x$ gives the homomorphisms $h_{i, z}$: $S^{i}\left(E_{x}\right) \rightarrow F_{x}$. Let $\left(\partial x_{1}, \partial x_{2}, \ldots, \partial x_{n}\right)$ or $\left(\partial y_{1}, \partial y_{2}, \ldots, \partial y_{n}\right)$ denote the basis of E_{x} or F_{y}, and let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ or $\left(y, y_{2}, \ldots, y_{n}\right)$ denote the dual basis of E_{x}^{*} and F_{x}^{*}. Then $\left\{h_{i, z}\right\}$ yields a map germ $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$, where $y_{i} \circ f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a polynomial of degree k for $i=1, \ldots, n$. We identify z with $j_{0}^{k} f$.

Let $J^{k}(X, Y)$ denote the k-jet space of n-manifolds X and Y. Let p_{X} and p_{Y} be the projections of $X \times Y$, onto X and Y, respectively. If we provide X and Y with Riemannian metrics, then the Levi-Civita connections induce the exponential maps $\exp _{X, x}: T_{x} X \rightarrow X$ and $\exp _{Y, y}: T_{y} Y \rightarrow Y$. In dealing with exponential maps we always consider convex neighborhoods (see [8]). We define the smooth bundle map

$$
\begin{equation*}
J^{k}(X, Y) \rightarrow J^{k}\left(p_{X}^{*}(T X), p_{Y}^{*}(T Y)\right) \quad \text { over } X \times Y \tag{2.2}
\end{equation*}
$$

by sending $z=j_{x}^{k} f \in J_{x, y}^{k}(X, Y)$ to the k-jet of $\left(\exp _{P, y}\right)^{-1} \circ f \circ \exp _{X, x}$ at $0 \in T_{x} X$, which is regarded as an element of $J^{k}\left(T_{x} X, T_{y} Y\right)$ (i.e., $J_{x, y}^{k}(T X, T Y)$). Let $L^{k}(n)$ denote the group of all k-jets of local diffeomorphisms of $\left(\mathbb{R}^{n}, 0\right)$. Then the smooth equivalence of the fiber bundles under the structure group $L^{k}(n) \times L^{k}(n)$ in (2.2) gives a smooth reduction of the structure group $L^{k}(n) \times L^{k}(n)$ of $J^{k}(X, Y)$ to the structure group $O(n) \times O(n)$ of $J^{k}\left(p_{X}^{*}(T X), p_{Y}^{*}(T Y)\right)$. Therefore, we will work in the jet spaces of types in (2.1).

3. Boardman-Thom singularities

Let us recall the fundamental properties of the intrinsic derivatives on BoardmanThom manifolds in $J^{k}(E, F)$ following [5] and [9]. Let \mathbf{D} denote the total tangent
bundle which is isomorphic to $\left(\pi^{J}\right)^{*} E$. There have been defined the first, second, and third intrinsic derivatives.
(1) Let $\mathbf{d}_{1}: \mathbf{D} \longrightarrow\left(\pi^{J}\right)^{*} F$ denote the first intrinsic derivative defined over $J^{k}(E, F)$. Let \mathbf{K} and \mathbf{Q} denote the 2-dimensional kernel and cokernel bundle of \mathbf{d}_{1} defined over $\Sigma^{2}(E, F)$, respectively.
(2) Let $\mathbf{d}_{2}: \mathbf{K} \longrightarrow \operatorname{Hom}(\mathbf{K}, \mathbf{Q})$ denote the second intrinsic derivative defined over $\Sigma^{2}(E, F)$. The manifold $\Sigma^{2,1}(E, F)$ consists of all jets $z \in \Sigma^{2}(E, F)$ with $\mathbf{d}_{2, z}$ being of rank 1 . Let \mathbf{K}_{2} denote the kernel bundle of \mathbf{d}_{2} over $\Sigma^{2,1}(E, F)$. Let $\mathbf{d}_{2}: S^{2} \mathbf{K} \rightarrow \mathbf{Q}$ over $\Sigma^{2}(E, F)$ denote the bundle homomorphisms, which are canonically induced from \mathbf{d}_{2}. This implies that $\widetilde{\mathbf{d}}_{2}$ is a smooth section of $\operatorname{Hom}\left(S^{2} \mathbf{K}, \mathbf{Q}\right)$ over $\Sigma^{2}(E, F)$. Let \mathbf{K}_{2}^{\perp} denote the orthogonal complement of \mathbf{K}_{2} in \mathbf{K} such that $\widetilde{\mathbf{d}}_{2}: \mathbf{K}_{2}^{\perp} \bigcirc \mathbf{K}_{2}^{\perp} \rightarrow \mathbf{Q}$ is injective. Let \mathbf{I}_{2} denote the trivial line subbundle as the image $\widetilde{\mathbf{d}}_{2}\left(\mathbf{K}_{2}^{\perp} \bigcirc \mathbf{K}_{2}^{\perp}\right)$.
(3) Let $\mathbf{d}_{3}: \mathbf{K}_{2} \longrightarrow \operatorname{Cok}\left(\mathbf{d}_{2}\right)$ denote the third intrinsic derivative defined over $\Sigma^{2,1}(E, F)$. The manifold $\Sigma^{2,1,0}(E, F)$ consists of all jets $z \in \Sigma^{2,1}(E, F)$ such that $\mathbf{d}_{3, z}$ is injective.

In the paper we usually abbreviate (E, F) as $\Sigma^{2}, \Sigma^{2,1}$, and $\Sigma^{2,1,0}$.
PROPOSITION 3.1
(1) The normal bundle of Σ^{2} in $J^{k}(E, F)$ is isomorphic to $\operatorname{Hom}(\mathbf{K}, \mathbf{Q})$.
(2) The normal bundle of $\Sigma^{2,1}$ in Σ^{2} is isomorphic to

$$
\operatorname{Hom}\left(\mathbf{K}_{2} \bigcirc \mathbf{K}_{2}^{\perp}, \mathbf{Q} / \mathbf{I}_{2}\right) \oplus \operatorname{Hom}\left(\mathbf{K}_{2} \bigcirc \mathbf{K}_{2}, \mathbf{Q}\right)
$$

restricted to $\Sigma^{2,1}$.

Proof
(1) This is well known.
(2) Since $\widetilde{\mathbf{d}}_{2}$ vanishes exactly on $\mathbf{K}_{2} \bigcirc \mathbf{K}$, it is a monomorphism of $\mathbf{K}_{2}^{\perp} \bigcirc$ \mathbf{K}_{2}^{\perp} to \mathbf{Q}. Therefore, the cokernel of \mathbf{d}_{2} is isomorphic to $\operatorname{Hom}\left(\mathbf{K}_{2}^{\perp}, \mathbf{Q} / \mathbf{I}_{2}\right) \oplus$ $\operatorname{Hom}\left(\mathbf{K}_{2}, \mathbf{Q}\right)$. By [5], the normal bundle of $\Sigma^{2,1}$ in Σ^{2} is isomorphic to

$$
\operatorname{Hom}\left(\mathbf{K}_{2}, \operatorname{Hom}\left(\mathbf{K}_{2}^{\perp}, \mathbf{Q} / \mathbf{I}_{2}\right) \oplus \operatorname{Hom}\left(\mathbf{K}_{2}, \mathbf{Q}\right)\right) .
$$

This shows the assertion.

4. Local properties of singularities

In this section we study the singularities of unfoldings of the genotypes introduced in the introduction. In this section let k denote $m-1$.

Let us recall the tangent bundle and the normal bundle of the $\mathcal{K}^{(k)}$-orbit of the k-jet $z=j_{0}^{k} f$ for a C^{∞}-map germ $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ in $J^{k}(n, n)$ described in [10, Proposition 7.4]. Let $\theta(f)$ denote the vector space of germs of vector fields along f. Let $\mathrm{id}_{\mathbb{R}^{n}}$ be the identity map germs of $\left(\mathbb{R}^{n}, 0\right)$. Then we have the homomorphisms

$$
t f: \theta\left(\mathrm{id}_{\mathbb{R}^{n}}\right) \longrightarrow \theta(f) \quad \text { and } \quad w f: \theta\left(\operatorname{id}_{\mathbb{R}^{n}}\right) \longrightarrow \theta(f)
$$

defined by $t f(s)=d f \circ s$ and $w f(s)=s \circ f$ for sections $s \in \theta\left(\operatorname{id}_{\mathbb{R}^{n}}\right)$. It has been proved that there exists a canonical isomorphism of the tangent bundle of $J^{k}(n, n)$ at z with $\mathfrak{m}_{x} \theta(f) / \mathfrak{m}_{x}^{k+1} \theta(f)$. Then the tangent bundle and the normal bundle of $\mathcal{K}^{(k)} z$ are expressed as

$$
\begin{align*}
& T_{z}\left(\mathcal{K}^{(k)}(z)\right)=\left\{t f\left(\mathfrak{m}_{x} \theta\left(\mathrm{id}_{\mathbb{R}^{n}}\right)\right)+f^{*}\left(\mathfrak{m}_{y}\right) \theta(f)\right\} / \mathfrak{m}_{x}^{k+1} \theta(f), \tag{4.1}\\
& \nu_{z}\left(\mathcal{K}^{(k)}(z)\right)=\mathfrak{m}_{x} \theta(f) /\left(t f\left(\mathfrak{m}_{x} \theta\left(\operatorname{id}_{\mathbb{R}^{n}}\right)\right)+f^{*}\left(\mathfrak{m}_{y}\right) \theta(f)+\mathfrak{m}_{x}^{k+1} \theta(f)\right),
\end{align*}
$$

respectively. Here, \mathfrak{m}_{x} and \mathfrak{m}_{y} denote the maximal ideals of C^{∞}-map germs on $\left(\mathbb{R}^{n}, 0\right)$ under coordinates $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$, respectively.

Let $\eta=\left\langle\eta_{1}, \eta_{2}\right\rangle$ denote a C^{∞}-map germ $\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{2}, 0\right)$ with rank zero at the origin. An unfolding $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ of the genotype η implies a map $\operatorname{germ}\left(u, v, t_{1}, \ldots, t_{n-2}\right) \mapsto\left(f_{1}, \ldots, f_{n}\right)$, where

$$
\begin{align*}
& f_{1}=\eta_{1}(u, v)+g_{1}\left(u, v, t_{1}, \ldots, t_{n-2}\right), \\
& f_{2}=\eta_{2}(u, v)+g_{2}\left(u, v, t_{1}, \ldots, t_{n-2}\right), \tag{4.2}\\
& f_{j}=t_{j-2} \quad \text { for } 3 \leqq j \leqq n,
\end{align*}
$$

such that $g_{1}(u, v, 0, \ldots, 0)=g_{2}(u, v, 0, \ldots, 0)=0$.
The following lemma is an elementary consequence.

LEMMA 4.1

The tangent bundle and the normal bundle of $\mathcal{K}^{(k)}\left(j_{0}^{k} f\right)$ are isomorphic to those of $\mathcal{K}^{(k)}\left(j_{0}^{k} \eta\right)$ under the canonical isomorphism

$$
\mathfrak{m}_{x} \theta(f) / \mathfrak{m}_{x}^{k+1} \theta(f) \approx \mathfrak{m}_{u, v} \theta(\eta) / \mathfrak{m}_{u, v}^{k+1} \theta(\eta) .
$$

Since the orbit $\mathcal{K}^{(k)}\left(j_{0}^{k} f\right)$ is determined by the genotype η, we denote the orbit, simply, by $\mathcal{K}_{0} \eta$ in what follows.

In this paper $\partial / \partial x_{i}, \partial / \partial y_{j}, \partial / \partial u$, and $\partial / \partial v$ are denoted by $\partial x_{i}, \partial y_{j}, \partial u$, and ∂v for simplicity. Let $(\partial u, \partial v)$ or $\left(\partial y_{1}, \partial y_{2}\right)$ be a basis of the source \mathbb{R}^{2} or the target \mathbb{R}^{2}, respectively. The following proposition is a consequence of a direct calculation and is useful to study the normal bundle of $\mathcal{K}_{0} \eta$.

PROPOSITION 4.2

Let $m \geqq 4$. In the respective cases $S 1$ and S2, we have the following.
(1) The tangent space $T\left(\mathcal{K}_{0} \eta\right)$ is, respectively, generated by
(S1) $u^{2} \partial y_{1}, u v \partial y_{1}, v^{2} \partial y_{1}, u v^{m-1} \partial y_{2}$, and $\left(u^{2}+v^{2}\right) \partial / \partial y_{i}, v^{m} \partial / \partial y_{i}$ for $i=$ 1,2 over $\mathfrak{m}_{u, v}$,
(S2) $2 u^{2} \partial y_{1}+u v^{m-2} \partial y_{2}, 2 u v \partial y_{1}+v^{m-1} \partial y_{2}, 3 u v^{2} \partial y_{1}+(m-2) u^{2} v^{m-3} \partial y_{2}$, $3 v^{3} \partial y_{1}+(m-2) u v^{m-2} \partial y_{2}$, and $\left(u^{2}+v^{3}\right) \partial y_{i}, u v^{m-2} \partial y_{i}$ for $i=1,2$ over $\mathfrak{m}_{u, v}$.
(2) The normal space $\nu\left(\mathcal{K}_{0} \eta\right)$ is, respectively, generated by the vectors
(S1) $u \partial y_{i}, v \partial y_{i}$ for $i=1,2$, and $u^{j} \partial y_{2}, u^{j-1} v \partial y_{2}$, where j varies over 2 to $m-1$,
(S2) $u \partial y_{i}, v \partial y_{i}$, for $i=1,2$, and $u v \partial y_{1}, v^{2} \partial y_{1}, u v^{j-1} \partial y_{2}, v^{j} \partial / \partial y_{2}$, where j varies over 2 to $m-2$.

We have the following lemma.

LEMMA 4.3

The orbit $\mathcal{K}_{0} \eta$ is a submanifold of codimension $2 m$.

REMARK 4.4
In Proposition 3.1(2), $u, v, u v, \partial y_{1}$, and ∂y_{2} correspond to $\left(\mathbf{K}_{2}^{\perp}\right)_{z}^{*},\left(\mathbf{K}_{2}^{*}\right)_{z}$, $\left(\mathbf{K}_{2}^{\perp}\right)_{z}^{*} \bigcirc\left(\mathbf{K}_{2}^{*}\right)_{z},\left(\mathbf{I}_{2}\right)_{z}$, and $\left(\mathbf{Q} / \mathbf{I}_{2}\right)_{z}$, respectively.

LEMMA 4.5
The topological closure of $\mathcal{K}_{0} \eta$ is an algebraic set of $J^{k}(n, n)$.

Proof

By [11, Proposition 9.1], it is enough to prove the assertion in the case $n=2$. By [4] and [13], the topological closures of $\Sigma^{2,0}$ and $\Sigma^{2,1}$ are algebraic sets. A jet of a germ $\left(y_{1} \circ f, y_{2} \circ f\right)$ of $\Sigma^{2,0}$ lies in the topological closure of $\mathcal{K}_{0} \eta$ if and only if $y_{1} \circ f$ and $y_{2} \circ f$ vanish modulo $\left(u^{2}+v^{2}\right)+\mathfrak{m}_{u, v}^{m}$ by the arguments in the classification of simple singularities of type $\Sigma^{2,0}$ in [12]. If a jet of a germ $\left(y_{1} \circ f, y_{2} \circ f\right)$ lies in $\Sigma^{2,1}$, then the functions $\partial u\left(y_{i} \circ f\right), \partial v\left(y_{i} \circ f\right)$ for $i=1,2$ constitute a one-dimensional subspace of $\mathfrak{m}_{u, v} / \mathfrak{m}_{u, v}^{2}$. Let $w(u, v)$ denote such a nonsingular function in them. Then a jet of a germ $\left(y_{1} \circ f, y_{2} \circ f\right)$ of $\Sigma^{2,1}$ lies in the topological closure of $\mathcal{K}_{0} \eta$ if and only if $y_{1} \circ f$ and $y_{2} \circ f$ vanish modulo $\left(w^{2}\right)+\mathfrak{m}_{u, v}^{m-1}$ by the arguments in the classification of simple singularities of type $\Sigma^{2,1}$ in [12]. This shows the assertion.

Let V be a 2-dimensional vector space with basis ∂u and ∂v, and let V^{*} be its dual space with basis u and v. Then $S^{i} V^{*}$ is identified with the space of homogeneous polynomials of degree i with variables u and v. Since the element $(\partial u)^{2}+(\partial v)^{2}$ in $S^{2} V$ is invariant with respect to the action of $O(2)$, it yields the 1-dimensional subspace L_{V} of $S^{2} V$. Hence, the subspaces $L_{V} \bigcirc S^{i-2} V$ in $S^{i} V$ for $i \geqq 2$ yield the subspace $\Sigma_{i=2}^{t+1}\left(L_{V} \bigcirc S^{i-2} V\right)$ in $\Sigma_{i=2}^{t+1} S^{i} V$ of codimension $2 t$.

REMARK 4.6
The quotient $S^{i} V /\left(L_{V} \bigcirc S^{i-2} V\right)$ has a basis $(\partial v)^{i}$ and $\partial u(\partial v)^{i-1}$. Let $z=$ $\partial u+\sqrt{-1} \partial v$, and let $\mathcal{R}\left(z^{i}\right)$ and $\mathcal{I}\left(z^{i}\right)$ denote the real and imaginary part of z^{i}, respectively. Then $\mathcal{R}\left(z^{i}\right)$ and $\mathcal{I}\left(z^{i}\right)$ constitute a better basis. Indeed, for any homogeneous polynomial $g(u, v)$ of degree $i-2$, we have

$$
\left(\mathcal{R}\left(z^{i}\right)+\sqrt{-1} \mathcal{I}\left(z^{i}\right)\right)\left(u^{2}+v^{2}\right) g(u, v)=0
$$

and so, $\mathcal{R}\left(z^{i}\right)$ and $\mathcal{I}\left(z^{i}\right)$ annihilate $\left(u^{2}+v^{2}\right) g(u, v)$.

We define $\mathcal{K} \eta\left(E_{x}, F_{x}\right)$ at $x \in X$ corresponding to $\mathcal{K}_{0} \eta$ in $J^{k}(n, n)$ applying the above argument similarly as in $J^{k}\left(E_{x}, F_{x}\right)$. Let $\mathcal{K} \eta(E, F)$ denote the subbundle of $J^{k}(E, F)$ over X with fiber $\mathcal{K} \eta\left(E_{x}, F_{x}\right)$. Let $T(\mathcal{K} \eta(E, F))$ and $\nu(\mathcal{K} \eta(E, F))$ denote the tangent bundle and the normal bundle of $\mathcal{K} \eta(E, F)$ in $J^{k}(E, F)$, respectively. If there is no confusion, then $\left(E_{x}, F_{x}\right)$ and (E, F) may be abbreviated as $\mathcal{K}_{x} \eta$ and $\mathcal{K} \eta$.

We next determine the structure of the normal bundle of $\mathcal{K} \eta$ in $J^{k}(E, F)$ by using Propositions 3.1 and 4.2. Since $\mathcal{K} \eta$ lies in the Boardman-Thom manifold Σ^{2} of codimension 4, it is enough for this purpose to determine the structure of the normal bundle of $\mathcal{K} \eta$ in Σ^{2}.

Let \mathbf{L} denote the trivial line bundle in $S^{2} \mathbf{K}$, which is associated to the subspace $L_{\mathbf{K}_{z}}$ of $S^{2} \mathbf{K}_{z}$. Let $\mathfrak{K}, \mathfrak{L}, \mathfrak{Q}$, and \mathfrak{K}_{2}^{\perp} in the case (S2) denote the restriction of $\mathbf{K}, \mathbf{L}, \mathbf{Q}$, and \mathbf{K}_{2}^{\perp} in the case (S2) to $\mathcal{K} \eta$. For a jet $z \in \mathcal{K} \eta$, let q_{z} denote the oriented line of \mathbf{Q}_{z} with the orthogonal projection $p\left(q_{z}\right): \mathbf{Q}_{z} \rightarrow q_{z}$.

We define two line bundles \mathfrak{q}_{i} and their orthogonal complements \mathfrak{q}_{i}^{\perp} for $i=$ 1,2 in \mathfrak{Q} over $\mathcal{K} \eta$. Namely, $\mathfrak{q}_{1, z}^{\perp}$ is generated by the image $\widetilde{\mathbf{d}}_{2, z}\left((\partial u)^{2}+(\partial v)^{2}\right)$ in the case (S1), and $\mathfrak{q}_{2, z}^{\perp}$ is generated by the image $\widetilde{\mathbf{d}}_{2, z}\left((\partial u)^{2}\right)$ in the case (S2). We note that \mathfrak{q}_{i}^{\perp} are trivial and $W_{1}\left(\mathfrak{q}_{i}\right)=W_{1}(\mathfrak{Q})$ over $\mathcal{K} \eta$.

Let $\nu(\mathcal{K} \eta)$ denote the following bundle over $\mathcal{K} \eta$ in the respective cases:
(S1) $\operatorname{Hom}\left(\bigoplus_{i=2}^{m-1} S^{i} \mathfrak{K} /\left(\mathfrak{L} \bigcirc S^{i-2} \mathfrak{K}\right), \mathfrak{q}_{1}\right)$,
(S2) $\operatorname{Hom}\left(S^{2} \mathfrak{K} / \mathfrak{K}_{2}^{\perp}, \mathfrak{Q}\right) \oplus \operatorname{Hom}\left(\left\{\bigoplus_{i=3}^{m-2} S^{i} \mathfrak{K} /\left(\mathfrak{K}_{2}^{\perp} \bigcirc S^{i-2} \mathfrak{K}\right)\right\}, \mathfrak{q}_{2}\right)$.
The next proposition follows from Proposition 4.2.

PROPOSITION 4.7

We have the following:
(1) the normal bundle of $\mathcal{K} \eta$ in $J^{k}(E, F)$ is isomorphic to $\operatorname{Hom}(\mathfrak{K}, \mathfrak{Q}) \oplus$ $\nu(\mathcal{K} \eta)$,
(2) the normal bundle of $\mathcal{K} \eta$ is orientable if and only if m is even, respectively.

Proof

(1) The assertion follows from Propositions 3.1 and 4.2.
(2) The first Stiefel-Whitney classes of $\operatorname{Hom}(\mathfrak{K}, \mathfrak{Q})$ and $\operatorname{Hom}\left(S^{2} \mathfrak{K} / \mathfrak{K}_{2}^{\perp}, \mathfrak{Q}\right)$ are all equal to zero. Let $W(\mathfrak{K})=\left(1+t_{1}\right)\left(1+t_{2}\right)$ and $W(\mathfrak{Q})=\left(1+r_{1}\right)\left(1+r_{2}\right)$. Then we have $W_{1}(\mathfrak{K})=W_{1}(\mathfrak{Q})=t_{1}+t_{2}$ and $W_{1}\left(S^{i} \mathfrak{K}\right)=(i(i+1) / 2) W_{1}(\mathfrak{K})$. Since \mathfrak{L} and \mathfrak{K}_{2}^{\perp} are isomorphic to the trivial bundle ε, we have

$$
W_{1}\left(S^{i} \mathfrak{K} /\left(\varepsilon \bigcirc S^{i-2} \mathfrak{K}\right)\right)=W_{1}\left(S^{i} \mathfrak{K}\right)-W_{1}\left(S^{i-2} \mathfrak{K}\right)=W_{1}(\mathfrak{K}) .
$$

These identities show the assertions.

5. Global properties of singularities

In this section we study the global structure of the normal bundle of $\mathcal{K} \eta$, which is necessary for the calculation of its Thom polynomial. In this section let k denote $m-1$.

Let X be orientable. Let $J^{k}(E, F)^{\times}=J^{k}(E, F) \backslash(\operatorname{cl}(\mathcal{K} \eta) \backslash \mathcal{K} \eta)$ with the projection π^{J} onto X. Let $G(E)$ denote the Grassmann bundle $G_{2,2 w-2}\left(\left(\pi^{J}\right)^{*} E\right)$ with canonical projection $\operatorname{pr}_{E}: G(E) \rightarrow X$. Let $G(E, F)$ denote the Grassmann bundle $G_{2,2 w-2}\left(\left(\operatorname{pr}_{E}\right)^{*} F\right)$ with projection $\operatorname{pr}_{G}: G(E, F) \rightarrow X$. Let K_{G} denote the canonical 2-plane bundle over $G(E, F)$, and let Q_{G} denote the canonical 2-plane bundle over $G(E, F)$ associated to $\operatorname{pr}_{E}^{*}(F)$. We always provide E, F, K_{G}, and Q_{G} with the structure groups $O(n)$ and $O(2)$, respectively. Let L_{G} denote the trivial line subbundle of $S^{2} K_{G}$. An element of $G(E, F)$ is expressed by (z, α, β), where $z \in J(E, F)^{\times}$with $\pi^{J}(z)=x, \alpha \in G_{2, n-2}\left(E_{x}\right), \beta \in G_{2, n-2}\left(F_{x}\right)$. Here, α and β are often written as K_{z} and Q_{z}, respectively. Let $\pi_{G}: G(E, F) \rightarrow J(E, F)^{\times}$denote the map defined by $\pi_{G}(z, \alpha, \beta)=z$. Let s be a section of $J(E, F)^{\times}$over X, which is transverse to $\mathcal{K} \eta$, and let $s_{G}: s^{*} G(E, F) \rightarrow G(E, F)$ denote the canonical bundle map covering s. Then we have the diagram with the given canonical maps:

The following notation is used at the end of this section. Let $S \eta$ denote the space $s^{-1}(\mathcal{K} \eta)$. The space S_{G}^{2} denotes the space that consists of all quadruples $(x, s(x), \alpha, \beta)$ with $s(x) \in \operatorname{cl}\left(\Sigma^{2}\right)$ such that $\alpha \subset \operatorname{Ker}\left(\mathbf{d}_{1, s(x)}\right)$ and $\beta \perp \operatorname{Im}\left(\mathbf{d}_{1, s(x)}\right)$. The space $S \eta_{G}$ denotes the subspace of S_{G}^{2} with $s(x) \in \mathcal{K} \eta$. Obviously, $S \eta_{G}$ is mapped onto $S \eta$ diffeomorphically by the canonical projection.

Let Σ_{G}^{2} or $\mathcal{K} \eta_{G}$ denote the space that consists of all triples $\tilde{z}=\left(z, K_{z}, Q_{z}\right) \in$ $G(E, F)$ such that K_{z} and Q_{z} are 2-planes and that z lies in $\operatorname{cl}\left(\Sigma^{2}\right)$ or $\mathcal{K} \eta$, respectively. For an element $\tilde{z} \in \mathcal{K} \eta, K_{z}$, and Q_{z} are uniquely determined. Any jet \tilde{z} in $G(E, F)$ induces an element of $J^{k}\left(K_{z}, Q_{z}\right)=\operatorname{Hom}\left(\bigoplus_{i=1}^{k} S^{i} K_{z}, Q_{z}\right)$ and a polynomial map $\zeta:\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{2}, 0\right)$ of degree k. We use this notation ζ for \tilde{z} without any comment.

Let $d_{1} \mid K_{G}: K_{G} \rightarrow \operatorname{pr}_{G}^{*}(F)$ denote the homomorphism induced from \mathbf{d}_{1}. Let $\operatorname{pr}\left(Q_{G}\right)$ denote the canonical projection of $\operatorname{pr}_{G}^{*}(F)$ onto Q_{G}. Then we have the bundles $\operatorname{Hom}\left(K_{G}, \operatorname{pr}_{G}^{*}(F)\right) \oplus \operatorname{Hom}\left(K_{G}^{\perp}, Q\right)$ over $G(E, F)$ with a section σ_{G} defined by

$$
\sigma_{G}(z)=d_{1, z}\left|\left(K_{G}\right)_{z} \oplus \operatorname{pr}\left(Q_{G}\right) \circ d_{1, z}\right|\left(K_{G}^{\frac{1}{G}}\right)_{z} .
$$

The next proposition follows from [17] (see also [2]).

PROPOSITION 5.1

(i) The section σ_{G} is transverse to the zero section, and its inverse images of the zero sections by σ_{G} coincide with Σ_{G}^{2}. Consequently, Σ_{G}^{2} is a submanifold.
(ii) The projection π_{G} maps Σ_{G}^{2} onto $\operatorname{cl}\left(\Sigma^{2}\right)$ so that $\left(\pi_{G} \mid \Sigma_{G}^{2}\right)^{-1}\left(\Sigma^{2}\right)$ is mapped onto Σ^{2} diffeomorphically.

We take a very small tubular neighborhood $U\left(\mathcal{K} \eta_{G}\right)$ of $\mathcal{K} \eta_{G}$ in the cases (S1) and (S2). Let $d_{2, \tilde{z}}: S^{2} K_{z} \rightarrow Q_{z}$ denote the composite of the homomorphism $h_{2, z} \mid S^{2} K_{z}$ and $\operatorname{pr}\left(Q_{z}\right)$. Note that $d_{2, \tilde{z}}$ coincides with the homomorphism induced from $\mathbf{d}_{2, z}$ at least for $z \in \Sigma^{2}$. We define two line bundles \mathbf{q}_{i} and their orthogonal complements \mathbf{q}_{i}^{\perp} for $i=1,2$ in Q_{G}. If $d_{2, \tilde{z}}\left(L_{z}\right)$ does not vanish, then $\mathbf{q}_{1, \tilde{z}}^{\perp}$ is defined to be the image $d_{2, \tilde{z}}\left(L_{z}\right)$ and $\mathbf{q}_{1, \tilde{z}}$ is its orthogonal line in Q_{z}, where L_{z} is generated by $\partial u^{2}+\partial v^{2}$.

Let $\Sigma_{G}^{2,1}$ denote $\left(\pi_{G} \mid \Sigma_{G}^{2}\right)^{-1}\left(\Sigma^{2,1}\right)$. We define K_{2}^{\perp} to be a line subbundle of K_{G} over $\Sigma_{G}^{2,1}$ induced from \mathbf{K}_{2}^{\perp}. Let ∂u denote a unit basis of $K_{2, \tilde{z}}^{\perp}$, and let ∂v denote a basis of $K_{2, \tilde{z}}$. Then $(\partial u, \partial v)$ is an orthogonal basis of $K_{G, \tilde{z}}$. We take a small tubular neighborhood $U\left(\Sigma_{G}^{2,1}\right)$ of $\Sigma_{G}^{2,1}$ with radius ϵ within a tubular neighborhood with radius 2ϵ in Σ_{G}^{2}, where ϵ is a positive function on $\Sigma_{G}^{2,1}$. Let $U\left(\Sigma_{G}^{2,1}\right)$ contain $U\left(\mathcal{K} \eta_{G}\right)$ in the case $(\mathrm{S} 2)$. We can extend K_{2}^{\perp} to a trivial bundle over the tubular neighborhood denoted by the same symbol K_{2}^{\perp}. Let $d\left(\widetilde{z}, \Sigma_{G}^{2,1}\right)$ denote the distance of z and $\Sigma^{2,1}$, and let $w(t)$ be a smooth-increasing function such that $w(t)=0$ for $t \leqq \epsilon$ and $w(t)=\epsilon$ for $t \geqq 2 \epsilon$. We define a trivial line subbundle Θ_{G} of $S^{2} K_{G}$ over Σ_{G}^{2} so that Θ_{G} coincides with $S^{2} K_{2}^{\perp}$ on $\Sigma_{G}^{2,1}$ and that $\left(\Theta_{G}\right)_{\tilde{z}}$ is generated by a vector

$$
\left(1-(1 / \epsilon) w\left(d\left(\tilde{z}, \Sigma_{G}^{2,1}\right)\right)\right) \partial u^{2}+(1 / \epsilon) w\left(d\left(\tilde{z}, \Sigma_{G}^{2,1}\right)\right)\left(\partial u^{2}+\partial v^{2}\right)
$$

If $d_{2, \tilde{z}}\left(\left(\Theta_{G}\right)_{\tilde{z}}\right)$ does not vanish, then $\mathbf{q}_{2, \tilde{z}}^{\perp}$ is defined to be the image $d_{2, \tilde{z}}\left(\left(\Theta_{G}\right) \tilde{z}\right)$, and $\mathbf{q}_{2, \tilde{z}}$ is its orthogonal line in Q_{z}.

REMARK 5.2

In the case (S2) we choose a basis of $S^{i} K_{G} /\left(\Theta_{G} \bigcirc S^{i-2} K_{G}\right)$ denoted by R_{Θ}^{i} and I_{Θ}^{i}, which are equal to $\partial u(\partial v)^{i-1}$ and $(\partial v)^{i}$ over $U\left(\Sigma_{G}^{2,1}\right)$.

Let (u, v) and $\left(y_{1}, y_{2}\right)$ denote orthogonal coordinates determined as above. We define a section r of

$$
\begin{aligned}
& \operatorname{Hom}\left(S^{i} K_{G} /\left(L_{G} \bigcirc S^{i-2} K_{G}\right), Q_{G}\right) \quad \text { and } \\
& \operatorname{Hom}\left(S^{i} K_{G} /\left(\Theta_{G} \bigcirc S^{i-2} K_{G}\right), Q_{G}\right)
\end{aligned}
$$

by
$(S 1) r^{i}(z)=\left[\begin{array}{ll}\left.\mathcal{R}(\partial u+\sqrt{-1} \partial v)^{i}\left(y_{1} \circ \zeta\right)\right|_{\mathbf{0}}, & \left.\mathcal{I}(\partial u+\sqrt{-1} \partial v)^{i}\left(y_{1} \circ \zeta\right)\right|_{\mathbf{0}} \\ \left.\mathcal{R}(\partial u+\sqrt{-1} \partial v)^{i}\left(y_{2} \circ \zeta\right)\right|_{\mathbf{0}}, & \left.\mathcal{I}(\partial u+\sqrt{-1} \partial v)^{i}\left(y_{2} \circ \zeta\right)\right|_{\mathbf{0}}\end{array}\right]$,

$$
r_{\Theta}^{i}(z)=\left[\begin{array}{ll}
\left.R_{\Theta}^{i}\left(y_{1} \circ \zeta\right)\right|_{\mathbf{0}}, & \left.I_{\Theta}^{i}\left(y_{1} \circ \zeta\right)\right|_{\mathbf{0}} \tag{5.2}\\
\left.R_{\Theta}^{i}\left(y_{2} \circ \zeta\right)\right|_{\mathbf{0}}, & \left.I_{\Theta}^{i}\left(y_{2} \circ \zeta\right)\right|_{\mathbf{0}}
\end{array}\right]
$$

We show how $r^{i}(z)$ changes by the coordinate changes. We express them as $z=u+\sqrt{-1} v, z^{\prime}=u^{\prime}+\sqrt{-1} v^{\prime}$ with $z=e^{\sqrt{-1} \theta} z^{\prime}$, and $\left(y_{1}, y_{2}\right)=A\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$, where A is an orthogonal 2-matrix. Let $T(\theta)$ denote the counterclockwise rotation by the angle θ. Then the following lemma is easy to prove.

LEMMA 5.3
(i) If $z=e^{\sqrt{-1} \theta} z^{\prime}$, then $r^{i}(z)=A r^{i}\left(z^{\prime}\right)^{t} T(\theta)$.
(ii) If $u=u^{\prime}$ and $v=-v$, then $r^{i}(z)=A r^{i}\left(z^{\prime}\right)\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.

Let $o\left(Q_{G}\right)$ denote the line bundle determined by the first Stiefel-Whitney class $W_{1}\left(Q_{G}\right)$, which is isomorphic to the wedge product $Q_{G} \wedge Q_{G}$. Let ε_{G}^{1} denote the trivial line bundle over $G(E, F)$.

Since $\pi_{3}\left(S^{1}\right)=\{0\}$, the following lemma is easy to prove.

LEMMA 5.4
If Q_{G} is the Whitney sum $\mathbf{q}^{\perp} \oplus \mathbf{q}$ over a subcomplex W of Σ_{G}^{2} with $W_{1}(\mathbf{q})=$ $W_{1}\left(\left.Q_{G}\right|_{W}\right)$, then there exists a fiberwise map

$$
\mu: \operatorname{Hom}\left(S^{i} K_{G} /\left(\varepsilon_{G}^{1} \bigcirc S^{i-2} K_{G}\right), Q_{G}\right) \rightarrow \operatorname{Hom}\left(S^{i} K_{G} /\left(\varepsilon_{G}^{1} \bigcirc S^{i-2} K_{G}\right), o\left(Q_{G}\right)\right)
$$

over Σ_{G}^{2} such that if $\{0\}$ lies in the image of μ on a point of Σ_{G}^{2}, then $\mu^{-1}\{0\}=$ $\{0\}$ there and that $\mu\left|\operatorname{Hom}\left(S^{i} K_{G} /\left(\varepsilon_{G}^{1} \bigcirc S^{i-2} K_{G}\right), \mathbf{q}\right)\right|_{W}$ is the identity on W.

Proof

The restriction of the identity of $\operatorname{Hom}\left(S^{i} K_{G} /\left(\varepsilon_{G}^{1} \bigcirc S^{i-2} K_{G}\right), Q_{G}\right)$ to

$$
\operatorname{Hom}\left(S^{i} K_{G} /\left(\varepsilon_{G}^{1} \bigcirc S^{i-2} K_{G}\right), Q_{G}\right) \backslash\{\text { zero section }\}
$$

over W yields a fiberwise map to

$$
\operatorname{Hom}\left(S^{i} K_{G} /\left(\varepsilon_{G}^{1} \bigcirc S^{i-2} K_{G}\right), \mathbf{q}\right) \backslash\{\text { zero section }\}
$$

by using $\pi_{3}\left(S^{1}\right)=\{0\}$ so that $\mu\left|\operatorname{Hom}\left(S^{i} K_{G} /\left(\varepsilon_{G}^{1} \bigcirc S^{i-2} K_{G}\right), \mathbf{q}\right)\right|_{W}$ is the identity on W. Then extend this fiberwise map to

$$
\operatorname{Hom}\left(S^{i} K_{G} /\left(\varepsilon_{G}^{1} \bigcirc S^{i-2} K_{G}\right), o\left(Q_{G}\right)\right) \backslash\{\text { zero-section }\} .
$$

Then construct the required map μ by extending this map by the conewise construction.

Let $\mathcal{N}(\eta)_{G}$ denote the following vector bundles:
(S1) $\operatorname{Hom}\left(\bigoplus_{i=2}^{m-1}\left(S^{i} K_{G} /\left(L_{G} \otimes S^{i-2} K_{G}\right), o\left(Q_{G}\right)\right)\right)$,
(S2) $\operatorname{Hom}\left(S^{2} K_{G} / \Theta_{G}, Q_{G}\right) \oplus \operatorname{Hom}\left(\left\{\left(\bigoplus_{i=3}^{m-2} S^{i} K_{G} /\left(\Theta_{G} \bigcirc S^{i-2} K_{G}\right)\right)\right\}\right.$, $\left.o\left(Q_{G}\right)\right)$
over $G(E, F)$ in the cases (S1) and (S2), respectively. Let $\mathbf{n}(\eta)_{\Sigma^{2}}$ denote their restriction to Σ_{G}^{2}, respectively.

In the following proposition we apply the fiberwise map μ with $W=U\left(\mathcal{K} \eta_{G}\right)$ in the case (S1) and with $W=U\left(\Sigma_{G}^{2,1}\right)$ in the case (S2) together with r^{i} and r_{Θ}^{i}.

PROPOSITION 5.5

In the case (S1) or (S2), we have the following.
(i) The normal bundle of $\mathcal{K} \eta_{G}$ in Σ_{G}^{2} is induced from $\mathbf{n}(\eta)_{\Sigma^{2}}$ by the inclusion $\mathcal{K} \eta_{G}$ in Σ_{G}^{2}.
(ii) There exists a section ψ of $\mathbf{n}(\eta)_{\Sigma^{2}}$ over Σ_{G}^{2}, which is transverse to the zero-section on $\mathcal{K} \eta_{G}$, whose inverse image of the zero section coincides with $\mathcal{K} \eta_{G}$.

Proof

For an element $\tilde{z}=\left(z, K_{z}, Q_{z}\right)$ of Σ_{G}^{2} with $z \in \operatorname{cl}\left(\Sigma^{2}\right)$, we take local orthogonal coordinate systems (u, v) and $\left(y_{1}, y_{2}\right)$ for K_{z} and Q_{z} with the associated polynomial map $\zeta:\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{2}, 0\right)$.
(1) We have defined the lines \mathbf{q}_{1}^{\perp} and \mathbf{q}_{1} such that $Q_{G} \approx \mathbf{q}_{1}^{\perp} \oplus \mathbf{q}_{1}$ over a very small tubular neighborhood $U\left(\mathcal{K} \eta_{G}\right)$ of $\mathcal{K} \eta_{G}$. Let $\left(y_{1}, y_{2}\right)$ be the coordinates associated to $\left(\mathbf{q}_{1}^{\perp}, \mathbf{q}_{1}\right)$. Then it follows from (5.2) and Lemma 5.4 that we have a section

$$
\mu \circ r^{i}: U\left(\mathcal{K} \eta_{G}\right) \rightarrow \operatorname{Hom}\left(S^{i} K_{G} /\left(L_{G} \otimes S^{i-2} K_{G}\right), \mathbf{q}_{1}\right)
$$

defined over $U\left(\mathcal{K} \eta_{G}\right)$. We set the section ψ_{U} on $U\left(\mathcal{K} \eta_{G}\right)$ as

$$
\psi_{U}(\tilde{z})=\left(\bigoplus_{i=2}^{m-1} \mu \circ r^{i}(\tilde{z})\right)
$$

By definition, $\bar{\psi}_{U}$ is transverse to the zero section on $\mathcal{K} \eta$. Furthermore, ψ_{U} vanishes on $\mathcal{K} \eta_{G}$ and never vanishes on $U\left(\mathcal{K} \eta_{G}\right) \backslash \mathcal{K} \eta_{G}$. Suppose that $\psi_{U}(\tilde{z})$ vanishes. Then there exists a nonzero real number c such that

$$
\begin{aligned}
& y_{1} \circ \zeta(u, v)=\left(u^{2}+v^{2}\right)\left(c+g_{1}(u, v)\right), \\
& y_{2} \circ \zeta(u, v)=\left(u^{2}+v^{2}\right)\left(g_{2}(u, v)\right),
\end{aligned}
$$

modulo $\mathfrak{m}_{u, v}^{m}$, where $\operatorname{deg} g_{i}$ is greater than zero. By the Morse theorem we may assume under a suitable choice of coordinates (u, v) that $y_{1} \circ \zeta(u, v)=c\left(u^{2}+v^{2}\right)$. Hence, we may assume under a suitable choice of coordinates $\left(y_{1}, y_{2}\right)$ that y_{2} 。 $\zeta(u, v)=0$ modulo $\mathfrak{m}_{u, v}^{m}$. This implies that \tilde{z} lies in $\mathcal{K} \eta_{G}$.

We next extend ψ_{U} to a section of

$$
\operatorname{Hom}\left(\bigoplus_{i=2}^{m-1}\left(S^{i} K_{G} /\left(L_{G} \otimes S^{i-2} K_{G}\right), o\left(Q_{G}\right)\right) \backslash(\text { zero section })\right.
$$

over Σ_{G}^{2}. By using $\mu \circ r^{i}$ in Lemma 5.4, we can extend the section r^{i} on $\partial U\left(\mathcal{K} \eta_{G}\right)$ to a section

$$
\psi^{i}: \Sigma_{G}^{2} \backslash \operatorname{Int} U\left(\mathcal{K} \eta_{G}\right) \rightarrow \operatorname{Hom}\left(S^{i} K_{G} /\left(L_{G} \bigcirc S^{i-2} K_{G}\right), Q_{G}\right)
$$

over $\Sigma_{G}^{2} \backslash \operatorname{Int} U\left(\mathcal{K} \eta_{G}\right)$ such that $\psi^{i}(\tilde{z})$ vanishes if and only if $\mu \circ \psi^{i}(\tilde{z})$ vanishes. Now we define the section ψ^{\prime} over $\Sigma_{G}^{2} \backslash \operatorname{Int} U\left(\mathcal{K} \eta_{G}\right)$ by

$$
\psi^{\prime}(\tilde{z})=\left(\bigoplus_{i=2}^{m-1} \mu \circ \psi^{i}(\tilde{z})\right)
$$

We have to show that ψ^{\prime} never vanish on $\Sigma_{G}^{2} \backslash \operatorname{Int} U\left(\mathcal{K} \eta_{G}\right)$. Suppose that $\psi^{\prime}(\tilde{z})$ vanishes. This implies that $y_{i} \circ \zeta(u, v)$ lies in the ideal $\left(u^{2}+v^{2}\right)$ modulo $\mathfrak{m}_{u, v}^{m}$ for $i=1,2$. First let z lie in Σ^{2}. If one of $y_{i} \circ \zeta(u, v)$ is equal to $c\left(u^{2}+v^{2}\right)$ modulo $\mathfrak{m}_{u, v}^{3}$ with $c \neq 0$, then we may again suppose that $y_{i} \circ \zeta(u, v)=c\left(u^{2}+v^{2}\right)$, and hence, z lies in $\mathcal{K} \eta_{G}$. This is impossible. Hence, $c=0$ and z lies in $\Sigma^{2,2}$. Since the normal bundle $\operatorname{Hom}\left(S^{2} \mathbf{K}, \mathbf{Q}\right)$ of $\Sigma^{2,2}$ cannot be a subbundle of $\mathcal{N}(\eta)_{G}$ by considering the structure group of $\mathcal{N}(\eta)_{G}$, this is also impossible. If z lies in the closure of Σ^{3}, then the normal bundle of Σ^{i} for $i>2$ cannot be a subbundle of $\mathcal{N}(\eta)_{G}$ by the same reason. Therefore, $\psi^{\prime}(\tilde{z})$ never vanish.

By the definition of ψ_{U} and ψ^{\prime}, they coincide on $\partial U\left(\mathcal{K} \eta_{G}\right)$ with each other. Thus we have obtained the required section ψ defined on Σ_{G}^{2} such that it vanishes only on $\mathcal{K} \eta_{G}$ and is transverse to the zero section on $\mathcal{K} \eta_{G}$.
(2) In the case (S2), we have defined the lines $\mathbf{q}_{2}^{\frac{1}{2}}$ and \mathbf{q}_{2} such that $Q_{G} \approx$ $\mathbf{q}_{2}^{\perp} \oplus \mathbf{q}_{2}$ over a very small tubular neighborhood $U\left(\Sigma_{G}^{2,1}\right)$ of $\Sigma_{G}^{2,1}$. Let $\left(y_{1}, y_{2}\right)$ be the corresponding coordinates. By (5.2) and Lemma 5.4 we have the sections

$$
\mu \circ r_{\Theta}^{i}: U\left(\Sigma_{G}^{2,1}\right) \rightarrow \operatorname{Hom}\left(S^{i} K_{G} /\left(\Theta_{G} \otimes S^{i-2} K_{G}\right), \mathbf{q}_{2}\right) \quad \text { for } i \geqq 3 .
$$

We set the section $\bar{\psi}_{U}$ on $U\left(\Sigma_{G}^{2,1}\right)$ as

$$
\bar{\psi}_{U}(\tilde{z})=r_{\Theta}^{2}(\tilde{z}) \oplus\left(\bigoplus_{i=3}^{m-2} \mu \circ r_{\Theta}^{i}(\tilde{z})\right)
$$

By definition, $\bar{\psi}_{U}$ is transverse to the zero section on $\mathcal{K} \eta$. Furthermore, $\bar{\psi}_{U}$ vanishes on $\mathcal{K} \eta_{G}$ and never vanishes on $U\left(\Sigma_{G}^{2,1}\right) \backslash \mathcal{K} \eta_{G}$. In fact, suppose that $\bar{\psi}_{U}(\widetilde{z})$ vanishes. Since $r_{\Theta}^{2}(\tilde{z})$ vanishes, we may write $y_{1} \circ \zeta(u, v)=a u^{2}$ with $a \neq 0$ and $y_{2} \circ \zeta(u, v)=0$ modulo $\mathfrak{m}_{u, v}^{3}$ under a suitable choice of coordinates $\left(y_{1}, y_{2}\right)$, and z lies in $\Sigma^{2,1}$. By the splitting theorem, we may assume under a suitable choice of coordinates (u, v) that $y_{1} \circ \zeta(u, v)=a_{1} u^{2}+h(v)$ modulo $\mathfrak{m}_{u, v}^{m-1}$, where $\operatorname{deg} h>2$. If $\operatorname{deg} h=3$, then we may assume that $y_{1} \circ \zeta(u, v)=u^{2}+v^{3}$ and $y_{2} \circ \zeta(u, v)=0$ modulo $\left(u^{2}+v^{3}\right)+\mathfrak{m}_{u, v}^{m-1}$. Hence, we can prove under a suitable choice of coordinates (u, v) and $\left(y_{1}, y_{2}\right)$ that $y_{1} \circ \zeta(u, v)=u^{2}+v^{3}$ and $y_{2} \circ \zeta(u, v)=0$ modulo $\mathfrak{m}_{u, v}^{m-1}$. This implies by the result concerning a classification of simple singularities in [12, Section 8] that z lies in $\mathcal{K} \eta$. If $a=0$ or $\operatorname{deg} h>3$, then we first have $h(v)=0$ modulo $\mathfrak{m}_{u, v}^{m-1}$. Next we take the germs ζ_{λ} such that

$$
\begin{aligned}
& y_{1} \circ \zeta_{\lambda}(u, v)=\lambda\left(u^{2}+v^{3}\right), \\
& y_{2} \circ \zeta_{\lambda}(u, v)=\left(u^{2}+v^{3}\right) g(u, v)
\end{aligned}
$$

modulo $\mathfrak{m}_{u, v}^{m-1}$, which yields the jets $z_{\lambda}=z+j^{m-2} \zeta_{\lambda}$. If $\lambda \neq 0$, then z_{λ} similarly lies in $\mathcal{K} \eta$, and so z lies in $\operatorname{cl}(\mathcal{K} \eta) \backslash \mathcal{K} \eta$. This is impossible. Hence, $\bar{\psi}_{U}$ never vanish.

We next extend $\bar{\psi}_{U}$ to a section of $\operatorname{Hom}\left(S^{i} K_{G} /\left(\Theta_{G} \bigcirc S^{i-2} K_{G}\right), Q_{G}\right) \backslash$ (zero section) over Σ_{G}^{2}. Over $\Sigma_{G}^{2} \backslash \operatorname{Int} U\left(\Sigma_{G}^{2,1}\right)$, we have the section

$$
\begin{aligned}
& r_{\Theta}^{2}: \Sigma_{G}^{2} \backslash \operatorname{Int} U\left(\Sigma_{G}^{2,1}\right) \rightarrow \operatorname{Hom}\left(S^{2} K_{G} / \Theta_{G}, Q_{G}\right), \\
& r_{\Theta}^{i}: \Sigma_{G}^{2} \backslash \operatorname{Int} U\left(\Sigma_{G}^{2,1}\right) \rightarrow \operatorname{Hom}\left(S^{i} K_{G} /\left(\Theta_{G} \bigcirc S^{i-2} K_{G}\right), Q_{G}\right)
\end{aligned}
$$

in (5.2). Therefore, it follows from Lemma 5.4 that it induces a section

$$
\mu \circ r_{\Theta}^{i}: \Sigma_{G}^{2} \backslash \operatorname{Int} U\left(\Sigma_{G}^{2,1}\right) \rightarrow \operatorname{Hom}\left(S^{i} K_{G} /\left(\Theta_{G} \bigcirc S^{i-2} K_{G}\right), o\left(Q_{G}\right)\right)
$$

such that $\mu \circ r_{\Theta}^{i}(\tilde{z})$ vanishes if and only if $r_{\Theta}^{i}(\tilde{z})$ vanishes. Now we define the section $\bar{\psi}^{\prime}$ of

$$
\operatorname{Hom}\left(S^{2} K_{G} / \Theta_{G}, Q_{G}\right) \oplus \operatorname{Hom}\left(\left\{\left(\bigoplus_{i=3}^{m-2} S^{i} K_{G} /\left(\Theta_{G} \bigcirc S^{i-2} K_{G}\right)\right)\right\}, o\left(Q_{G}\right)\right)
$$

over $\Sigma_{G}^{2} \backslash \operatorname{Int} U\left(\Sigma_{G}^{2,1}\right)$ by

$$
\bar{\psi}^{\prime}(\tilde{z})=r_{\Theta}^{2}(\tilde{z}) \oplus\left(\bigoplus_{i=3}^{m-2} \mu \circ r_{\Theta}^{i}(\tilde{z})\right)
$$

We have to show that $\bar{\psi}^{\prime}$ never vanish on $\Sigma_{G}^{2} \backslash \operatorname{Int} U\left(\Sigma_{G}^{2,1}\right)$. Suppose that $\bar{\psi}^{\prime}(\tilde{z})$ vanishes. Then we may write $y_{1} \circ \zeta(u, v)=a\left(u^{2}+v^{2}\right)$ and $y_{2} \circ \zeta(u, v)=0$ modulo $\mathfrak{m}_{u, v}^{3}$. First let z lie in Σ^{2}. If $a \neq 0$, then we may assume by the Morse theorem that $y_{1} \circ \zeta(u, v)=a\left(u^{2}+v^{2}\right)$. This implies that z lies in $\operatorname{cl}\left(\mathcal{K}\left\langle x^{2}+y^{2}, x^{m-1}\right\rangle\right)$. By the transversality of $\bar{\psi}^{\prime}$, the structure groups of the normal bundles at z and of $\mathcal{N}(\eta)_{G}$ are different. This is impossible. If $a=0$, namely, $y_{i} \circ \zeta(u, v)=0$ for $i=1,2$, then z lies in $\Sigma^{2,2}$, and hence, similarly as in (1), it is impossible. Therefore, it follows as in (1) that z lies in $\operatorname{cl}\left(\Sigma^{3}\right)$. Similarly as in (1), this is also impossible. Hence, $\psi^{\prime}(\tilde{z})$ never vanish.

From the definition of $\bar{\psi}_{U}$, it follows that $\bar{\psi}_{U}$ and $\bar{\psi}^{\prime}$ coincide with each other on $\partial U\left(\Sigma_{G}^{2,1}\right)$. Thus we have obtained the required section $\bar{\psi}$ defined on Σ_{G}^{2} such that it vanishes only on $\mathcal{K} \eta_{G}$ and is transverse to the zero section on $\mathcal{K} \eta_{G}$. This completes the proof.

COROLLARY 5.6

Let X be of dimension not less than $2 m$. Let s be a section of $J^{k}(E, F)$ over X such that $s(X) \cap(\operatorname{cl}(\mathcal{K} \eta) \backslash \mathcal{K} \eta)$ is empty and s is transverse to Boardman-Thom manifolds. Then the section ψ_{s} over S_{G}^{2} of $\left(s_{G} \mid S_{G}^{2}\right)^{*} \mathbf{n}(\eta)_{\Sigma^{2}}$, which is induced by $\psi \circ s$, is transverse to the zero section on $S \eta_{G}$ and its inverse image of the zero section is exactly equal to $S \eta_{G}$ in the case (S1) or (S2), respectively.

6. Thom polynomials

In what follows let k denote $2 q-1$. We calculate the Thom polynomial of $\mathcal{K} \eta$ under the condition that a section of $J^{k}(E, F)$ does not intersect with $\operatorname{cl}(\mathcal{K} \eta) \backslash \mathcal{K} \eta$ by properties of Gysin homomorphisms and characteristic classes (see [7], [15], [22]) and prove Theorem 1.1. We first prepare several lemmas.

Let H be a $2 w$-vector bundle over a connected orientable manifold Z. Let $\pi^{G}: G_{2,2 w-2}(H) \rightarrow Z$ denote the Grassmann bundle associated to H with fiber $G_{2,2 w-2}$. Let $\left(\pi^{G}\right)_{!}: H^{*}\left(G_{2,2 w-2}(H) ; \mathbb{Z}\right) \rightarrow H^{*}(Z ; \mathbb{Z})$ denote the Gysin homomorphism. Let K denote the canonical 2-plane bundle over $G_{2,2 w-2}(H)$ and $H_{G}=$
$\left(\pi^{G}\right)^{*} H$. We express the total Pontrjagin class $P(K)$ of K as $P(K)=1+P_{1}(K)$. Let $P(H)^{-1}=1+\bar{P}_{1}(H)+\cdots+\bar{P}_{i}(H)+\cdots$.

We have the following lemma. This is well known (see [17]).

LEMMA 6.1

(1) $G_{2,2 w-2}(H)$ is orientable.
(2) We have $\left(\pi^{G}\right)!\left(P_{i}\left(H_{G} / K\right)\right)= \begin{cases}1 & \text { for } i=w-1, \\ 0 & \text { for } i \neq w-1 .\end{cases}$
(3) We have $\left(\pi^{G}\right)!\left(P_{1}(K)^{w-1+\ell}\right)=(-1)^{w-1+\ell} \bar{P}_{\ell}(H)$.

Proof
(1) The tangent bundle of $G_{2,2 w-2}(H)$ is isomorphic to $\operatorname{Hom}\left(K, H_{G} / K\right)$, and its first Stiefel-Whitney class is equal to $(2 w-2) W_{1}(K)+2 W_{1}(H / K)=0$.
(2) If $i \neq w-1$, then $P_{i}\left(H_{G} / K\right)$ vanishes by the dimensional reason. By regarding H_{x} with \mathbb{C}^{w} for a point $x \in X$, we take a 1 -dimensional complex subspace \mathbb{C} of H_{x}. Let $i_{x}: x \rightarrow X$ and $\widetilde{i_{x}}: G_{2,2 w-2}\left(H_{x}\right) \rightarrow G_{2,2 w-2}(H)$ be the inclusions. Let $H_{G}^{x}=\left(\widetilde{i_{x}}\right)^{*} H_{G}$ and $K^{x}=\left(\widetilde{i_{x}}\right)^{*} K$. Then we have a vector bundle $\operatorname{Hom}\left(\mathbb{C}, H_{G}^{x} / K^{x}\right)$ over $G_{2,2 w-2}\left(H_{x}\right)$ and its section \varkappa such that $\varkappa(b)$, for $b \in G_{2,2 w-2}\left(H_{x}\right)$, maps \mathbb{C} to H_{x} / b by the orthogonal projection along b of H_{x} onto H_{x} / b. Obviously, $\varkappa(b)$ is a null homomorphism if and only if $b=\mathbb{C}$. Furthermore, it is elementary to show that \varkappa is transverse to the zero section of $\operatorname{Hom}\left(\mathbb{C}, H_{G}^{x} / K^{x}\right)$. This implies that the fundamental cohomology class of $G_{2,2 w-2}\left(H_{x}\right)$ is equal to the Euler class $\chi\left(\operatorname{Hom}\left(\mathbb{C}, H_{G}^{x} / K^{x}\right)\right)$. Furthermore, we have

$$
\chi\left(\operatorname{Hom}\left(\mathbb{C}, H_{G}^{x} / K^{x}\right)\right)=C_{2 w-2}\left(\left(H_{G}^{x} / K^{x}\right) \otimes \mathbb{C}\right)=P_{w-1}\left(H_{G}^{x} / K^{x}\right),
$$

where $C_{2 w-2}$ denotes the $(2 w-2)$-th Chern class. For the Gysin homomorphisms

$$
\left(\pi^{G} \mid G_{2,2 w-2}\left(H_{x}\right)\right)_{!}: H^{*}\left(G_{2,2 w-2}\left(H_{x}\right) ; \mathbb{Z}\right) \longrightarrow H^{*}(x ; \mathbb{Z}),
$$

we have

$$
\left(\pi^{G} \mid G_{2,2 w-2}\left(H_{x}\right)\right)_{!}\left(P_{w-1}\left(H_{G}^{x} / K^{x}\right)\right)=1
$$

In the commutative diagram

it follows that

$$
\begin{aligned}
\left(i_{x}\right)^{*}\left(\left(\pi^{G}\right)!\left(P_{i}\left(H_{G} / K\right)\right)\right) & =\left(\pi^{G} \mid G_{2,2 w-2}\left(H_{x}\right)\right)_{!}\left\{\left(\tilde{i_{x}}\right)^{*}\left(P_{i}\left(H_{G} / K\right)\right)\right\} \\
& =\left(\pi^{G} \mid G_{2,2 w-2}\left(H_{x}\right)\right)_{!}\left(P_{i}\left(H_{G}^{x} / K^{x}\right)\right) .
\end{aligned}
$$

Since $\left(i_{x}\right)^{*}$ induces an isomorphism of \mathbb{Z} in the zeroth dimension, this proves the assertion.
(3) Since $H_{G}=K \oplus H_{G} / K$, we have $P\left(H_{G}\right)=P(K) P\left(H_{G} / K\right)$, and so, $P(K)^{-1}=P\left(H_{G}\right)^{-1} P\left(H_{G} / K\right)$. By comparing the terms of degree $w-1+\ell$, we have

$$
(-1)^{w-1+\ell} P_{1}(K)^{w-1+\ell}=\sum_{j=0}^{w-1} \bar{P}_{w-1+\ell-j}\left(H_{G}\right) P_{j}\left(H_{G} / K\right)
$$

By (2) and the naturality of the Gysin homomorphism, we have

$$
\begin{aligned}
(-1)^{w-1+\ell}\left(\pi^{G}\right)!\left(P_{1}(K)^{w-1+\ell}\right) & =\sum_{j=0}^{w-1} \bar{P}_{w-1+\ell-j}\left(H_{G}\right)\left(\pi^{G}\right)!\left(P_{j}\left(H_{G} / K\right)\right) \\
& =\bar{P}_{\ell}(H)
\end{aligned}
$$

As is well known, we may reduce the calculation to the case where F is trivial. In fact, let F^{\perp} denote a vector bundle such that $F \oplus F^{\perp}$ is trivial. Let

$$
\mathcal{L}: J^{k}(E, F) \rightarrow J^{k}\left(E \oplus F^{\perp}, F \oplus F^{\perp}\right)
$$

denote a bundle map defined by $\mathcal{L}(h)=h+\operatorname{id}_{F^{\perp}}$, where $h \in J^{k}(E, F)$ and $\operatorname{id}_{F^{\perp}}$ is the identity of F^{\perp}. Then the following lemma is elementary.

LEMMA 6.2
(1) The inverse images of Boardman-Thom manifolds $\Sigma^{I}\left(E \oplus F^{\perp}, F \oplus F^{\perp}\right)$ with any symbol $I, \mathcal{K} \eta$, and $\operatorname{cl}(\mathcal{K} \eta) \backslash \mathcal{K} \eta$ in $J^{k}\left(E \oplus F^{\perp}, F \oplus F^{\perp}\right)$ by \mathcal{L} coincide with those spaces in $J^{k}(E, F)$, respectively.
(2) \mathcal{L} is transverse to each $\Sigma^{I}\left(E \oplus F^{\perp}, F \oplus F^{\perp}\right)$ and $\mathcal{K} \eta\left(E \oplus F^{\perp}, F \oplus F^{\perp}\right)$.

In the following E and F imply $E \oplus F^{\perp}$ and the trivial bundle $F \oplus F^{\perp}$ of dimension $2 w$, respectively. Let $i_{S^{2}}$ denote the inclusion of S_{G}^{2} into $s^{*} G(E, F)$. Note that $\left(i_{\Sigma^{2}}\right)^{*}\left(\chi\left(\mathcal{N}(\eta)_{G}\right)=\chi\left(\mathbf{n}(\eta)_{\Sigma^{2}}\right)\right.$.

THEOREM 6.3

We assume that the coefficient group is \mathbb{Z} when m is even and is $\mathbb{Z} / 2 \mathbb{Z}$ when m is odd. Then we have the following in the cases (S1) and (S2):

$$
\left(\pi_{G}\right)!\left\{s_{G}^{*}\left(\chi\left(\operatorname{Hom}\left(K, \varepsilon^{2 w}\right) \oplus \operatorname{Hom}\left(K^{\perp}, Q\right)\right) \cup \chi\left(\mathcal{N}(\eta)_{G}\right)\right)\right\}=[S \eta]
$$

Proof
We give a proof for the case (S2), and the proof for the case (S1) is similar. Indeed, we have

$$
\begin{aligned}
& s_{G}^{*}\left(\chi\left(\operatorname{Hom}\left(K, \varepsilon^{2 w}\right) \oplus \operatorname{Hom}\left(K^{\perp}, Q\right)\right) \cup \chi\left(\mathcal{N}(\eta)_{G}\right)\right) \cap\left[s^{*} G(E, F)\right] \\
& \quad=s_{G}^{*}\left(\chi\left(\mathcal{N}(\eta)_{G}\right)\right) \cap\left\{s_{G}^{*}\left(\chi\left(\operatorname{Hom}\left(K, \varepsilon^{2 w}\right) \oplus \operatorname{Hom}\left(K^{\perp}, Q\right)\right)\right) \cap\left[s^{*} G(E, F)\right]\right\} \\
& \quad=s_{G}^{*}\left(\chi\left(\mathcal{N}(\eta)_{G}\right)\right) \cap\left(\left(i_{S^{2}}\right)_{*}\left(\left[S_{G}^{2}\right]\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(i_{S^{2}}\right)^{*}\left(s_{G}^{*}\left(\chi\left(\mathcal{N}(\eta)_{G}\right)\right)\right) \cap\left(\left[S_{G}^{2}\right]\right) \\
& =\chi\left(\left(i_{S^{2}}\right)^{*}\left(\mathbf{n}(\eta)_{\Sigma^{2}}\right)\right) \cap\left(\left[S_{G}^{2}\right]\right) \\
& =\left[S \eta_{G}\right] .
\end{aligned}
$$

Furthermore, we have that $S \eta_{G}$ is mapped diffeomorphically onto $S \eta$. This shows the theorem.

Now we calculate the Euler class of $\operatorname{Hom}\left(K, \varepsilon^{2 w}\right) \oplus \operatorname{Hom}\left(K^{\perp}, Q\right) \oplus \mathcal{N}(\eta)_{G}$.

LEMMA 6.4

The following formulas hold up to sign, where ε is a trivial line bundle over $G(E, F)$.
(i) $\chi\left\{\operatorname{Hom}\left(\bigoplus_{i=t+1}^{t+2 \ell} S^{i} K_{G} /\left(\Theta_{G} \bigcirc S^{i-2} K_{G}\right), o\left(Q_{G}\right)\right)\right\}=\left\{\prod_{i=t+1}^{t+2 \ell} i\right\} \times$ $P_{1}\left(K_{G}\right)^{\ell}$.
(ii) $\chi\left\{\operatorname{Hom}\left(K_{G}^{\perp}, Q_{G}\right)\right\}=\sum_{i=0}^{w-1}(-1)^{i} P_{i}\left(K_{G}^{\perp}\right) P_{1}\left(Q_{G}\right)^{w-1-i}$ over $G(E, F)$.
(iii) $\chi\left(\operatorname{Hom}\left(S^{2} K_{G} / L_{G}, Q_{G}\right)\right)=3 P_{1}\left(K_{G}\right)$ over $G(E, F)$.

Proof
In this proof, $=$ will mean the equality modulo 2 -torsion. In the proof we set $K=K_{G}, Q=Q_{G}$, and $\varepsilon=\Theta_{G}=L_{G}$. Let $E(i) \rightarrow \mathrm{BO}(i)$ denote the classifying vector bundle over a classifying space of i-dimensional vector bundles. Let $c_{K}: G(E, F) \rightarrow \mathrm{BO}(2), c_{K^{\perp}}: G(E, F) \rightarrow \mathrm{BO}(2 w-2)$, and $c_{Q}: G(E, F) \rightarrow \mathrm{BO}(2)$ denote the classifying maps of K, K^{\perp}, and Q, respectively. Then we note that

$$
\begin{aligned}
& \chi\left\{\operatorname{Hom}\left(\bigoplus_{i=t+1}^{t+2 \ell} S^{i} K /\left(\varepsilon \bigcirc S^{i-2} K\right), o(Q)\right)\right\} \\
& \quad=\left(c_{K} \times c_{Q}\right)^{*}\left(\chi\left\{\operatorname{Hom}\left(\bigoplus_{i=t+1}^{t+2 \ell} S^{i} E(2) /\left(\varepsilon \bigcirc S^{i-2} E(2)\right), o(E(2))\right)\right\}\right), \\
& \chi\left\{\operatorname{Hom}\left(K^{\perp}, Q\right)\right\}=\left(c_{K^{\perp}} \times c_{Q}\right)^{*}(\chi\{\operatorname{Hom}(E(2 w-2), E(2))\}) \\
& \chi\left(\operatorname{Hom}\left(S^{2} K / \varepsilon, Q\right)\right)=\left(c_{K} \times c_{Q}\right)^{*}\left(\chi\left(\operatorname{Hom}\left(S^{2} E(2) / \varepsilon, E(2)\right)\right)\right)
\end{aligned}
$$

Let $C\left(K^{\mathbb{C}}\right)$ and $C\left(E(2)^{\mathbb{C}}\right)$, which are corresponded by $\left(c_{K}\right)^{*}$, be represented by the same symbol $\left(1+t_{1}\right)\left(1+t_{2}\right)$, let $C\left(Q^{\mathbb{C}}\right)$ and $C\left(E(2)^{\mathbb{C}}\right)$, which are corresponded by $\left(c_{Q}\right)^{*}$, be represented by the same symbol $\left(1+r_{1}\right)\left(1+r_{2}\right)$, and similarly, let

$$
C\left(\left(K^{\perp}\right)^{\mathbb{C}}\right) \text { or } C(E(2 w-2))=\prod_{j=3}^{2 w-2}\left(1+t_{j}\right)
$$

(i) For $i \geqq 2$, we have

$$
\begin{aligned}
& C\left(S^{i} E(2)^{\mathbb{C}} /\left(\varepsilon^{\mathbb{C}} \otimes S^{i-2} E(2)^{\mathbb{C}}\right)\right) \\
& \quad=C\left(S^{i} E(2)^{\mathbb{C}}\right) C\left(\varepsilon^{\mathbb{C}} \otimes S^{i-2} E(2)^{\mathbb{C}}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =C\left(S^{i} E(2)^{\mathbb{C}}\right) C\left(S^{i-2} E(2)^{\mathbb{C}}\right)^{-1} \\
& =\prod_{s=0}^{i}\left(1+s t_{1}+(i-s) t_{2}\right)\left\{\prod_{j=0}^{i-2}\left(1+j t_{1}+(i-2-j) t_{2}\right)\right\}^{-1} \\
& =\prod_{s=0}^{i}\left(1+s t_{1}+(i-s) t_{2}\right)\left\{\prod_{j=0}^{i-2}\left(1+j t_{1}+(i-2-j) t_{2}+t_{1}+t_{2}\right)\right\}^{-1} \\
& =\left(1+i t_{1}\right)\left(1+i t_{2}\right)
\end{aligned}
$$

modulo 2-torsion. Since

$$
\begin{aligned}
\chi\left\{\left(S^{i} E(2)^{\mathbb{C}} /\left(\varepsilon^{\mathbb{C}} \otimes S^{i-2} E(2)^{\mathbb{C}}\right)\right)\right\}^{2} & =C_{2}\left(\left(S^{i} E(2)^{\mathbb{C}} /\left(\varepsilon^{\mathbb{C}} \otimes S^{i-2} E(2)^{\mathbb{C}}\right)\right)\right) \\
& =i^{2} t_{1} t_{2} \\
& =i^{2} C_{2}\left(E(2)^{\mathbb{C}}\right),
\end{aligned}
$$

we calculate as

$$
\begin{aligned}
\chi & \left\{\operatorname{Hom}\left(\bigoplus_{i=t+1}^{t+2 \ell} S^{i} E(2) /\left(\varepsilon \bigcirc S^{i-2} E(2)\right), o(E(2))\right)\right\}^{2} \\
& =C_{4 \ell}\left(\operatorname{Hom}\left(\bigoplus_{i=t+1}^{t+2 \ell}\left(S^{i} E(2)^{\mathbb{C}} / \varepsilon^{\mathbb{C}} \otimes S^{i-2} E(2)^{\mathbb{C}}\right)\right), \mathbb{C}\right) \\
& =\prod_{i=t+1}^{t+2 \ell} C_{2}\left(S^{i} E(2)^{\mathbb{C}} / \varepsilon^{\mathbb{C}} \otimes S^{i-2} E(2)^{\mathbb{C}}\right) \\
& =\prod_{i=t+1}^{t+2 \ell}\left(i t_{1}\right)\left(i t_{2}\right) \\
& =\left\{\prod_{i=t+1}^{t+2 \ell} i^{2}\right\} C_{2}\left(E(2)^{\mathbb{C}}\right)^{2 \ell} \\
& =\left\{\prod_{i=t+1}^{t+2 \ell} i^{2}\right\} P_{1}(E(2))^{2 \ell} .
\end{aligned}
$$

By considering the cohomology ring of $\mathrm{BO}(2)$ modulo 2 -torsion, we have

$$
\chi\left\{\operatorname{Hom}\left(\bigoplus_{i=t+1}^{t+2 \ell} S^{i} E(2) /\left(\varepsilon \bigcirc S^{i-2} E(2)\right), o(E(2))\right)\right\}=\left\{\prod_{i=t+1}^{t+2 \ell} i\right\} P_{1}(E(2))^{\ell}
$$

Thus we obtain the assertion (i) by applying $\left(c_{K} \times c_{Q}\right)^{*}$.
The following proofs of (ii) and (iii) are similar, and so we only give outlines of calculations.
(ii) We have

$$
\begin{aligned}
& \chi\{\operatorname{Hom}(E(2 w-2), E(2))\}^{2} \\
& \quad=C_{4 w-4}\left(\operatorname{Hom}\left(E(2 w-2)^{\mathbb{C}}, E(2)^{\mathbb{C}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{i=3}^{2 w}\left(r_{1}-t_{i}\right)\left(r_{2}-t_{i}\right) \\
& =\prod_{i=3}^{2 w}\left(r_{1} r_{2}+t_{i}^{2}\right) \\
& =\prod_{i=3}^{2 w}\left(C_{2}\left(E(2)^{\mathbb{C}}\right)+t_{i}^{2}\right)
\end{aligned}
$$

modulo 2-torsion. Setting $x^{2}=C_{2}\left(E(2)^{\mathbb{C}}\right)$, this is equal, modulo 2-torsion, to

$$
\begin{aligned}
& \prod_{i=3}^{2 w}\left(x^{2}-\left(\sqrt{-1} t_{i}\right)^{2}\right) \\
&= \prod_{i=3}^{2 w}\left(x+\sqrt{-1} t_{i}\right) \prod_{i=3}^{2 w}\left(x-\sqrt{-1} t_{i}\right) \\
&=\left(\sum_{i=0}^{2 w-2}(\sqrt{-1})^{i} C_{i}\left(E(2 w-2)^{\mathbb{C}}\right) x^{2 w-2-i}\right) \\
& \times\left(\sum_{i=0}^{2 w-2}(-\sqrt{-1})^{i} C_{i}\left(E(2 w-2)^{\mathbb{C}}\right) x^{2 w-2-i}\right) \\
&=\left(\sum_{i=0}^{w-1}(-1)^{i} C_{2 i}\left(E(2 w-2)^{\mathbb{C}}\right) x^{2 w-2-2 i}\right)^{2} \\
&=\left(\sum_{i=0}^{w-1}(-1)^{i} C_{2 i}\left(E(2 w-2)^{\mathbb{C}}\right) C_{2}\left(E(2)^{\mathbb{C}}\right)^{w-1-i}\right)^{2} \\
&=\left(\sum_{i=0}^{w-1}(-1)^{i} P_{i}(E(2 w-2)) P_{1}(E(2))^{w-1-i}\right)^{2} .
\end{aligned}
$$

Hence,

$$
\chi\{\operatorname{Hom}(E(2 w-2), E(2))\}= \pm \sum_{i=0}^{w-1}(-1)^{i} P_{i}(E(2 w-2)) P_{1}(E(2))^{w-1-i}
$$

(iii) Similarly, we have that

$$
\begin{aligned}
\chi & \left(\operatorname{Hom}\left(S^{2} K / \varepsilon, Q\right)\right)^{2} \\
\quad & =C_{4}\left(\operatorname{Hom}\left(S^{2} K^{\mathbb{C}} / \varepsilon^{\mathbb{C}}, Q^{\mathbb{C}}\right)\right) \\
& =\left(r_{1}-2 t_{1}\right)\left(r_{1}-2 t_{2}\right)\left(r_{2}-2 t_{1}\right)\left(r_{2}-2 t_{2}\right) \\
& =\left(r_{1}^{2}+4 t_{1} t_{2}\right)\left(r_{2}^{2}+4 t_{1} t_{2}\right) \\
& =\left(4 C_{2}(K)\right)^{2}-8 r_{1} r_{2} C_{2}(K) C_{2}(Q)+C_{2}(Q)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(4 C_{2}(K)-C_{2}(Q)\right)^{2} \\
& =\left(4 P_{1}(K)-P_{1}(Q)\right)^{2}
\end{aligned}
$$

Hence, we obtain $\chi\left(\operatorname{Hom}\left(S^{2} K / \varepsilon, Q\right)\right)= \pm\left(4 P_{1}(K)-P_{1}(Q)\right)$.
The next theorem follows from Theorem 6.3 and Lemma 6.4.

THEOREM 6.5

Let m be an even integer $2 q$. Let X be an orientable manifold. Then the leading term of the Thom polynomial $\operatorname{tp}(\mathcal{K} \eta ; s)$ with \mathbb{Z}-coefficients is equal to the following.
(S1) We have $(2 q-1)!P_{q}(F-E)$,
(S2) We have $\begin{cases}3 P_{2}(F-E) & \text { if } q=2, \\ 3\left\{\prod_{i=3}^{2 q-2} i\right\} P_{q}(F-E) & \text { if } q \geqq 3\end{cases}$
up to sign. In particular, $\operatorname{tp}(\mathcal{K} \eta ; s)$ depends only on the homotopy class of s.
Proof
In this proof, $=$ will mean the equality modulo 2 -torsion. In the proof E implies $E \oplus F^{\perp}$. As is well known, we have

$$
\begin{equation*}
\chi\left\{\operatorname{How}\left(K, \varepsilon^{2 w}\right)\right\}=\chi\left(K^{\mathbb{C}}\right)^{w}=C_{2}\left(K^{\mathbb{C}}\right)^{w}=P_{1}(K)^{w} \tag{6.1}
\end{equation*}
$$

over $G(E, F)$.
(S1) The coefficient of $P_{1}(Q)^{w-1}$ of $\chi\left(\operatorname{Hom}\left(K^{\perp}, Q\right)\right)$ is equal to 1 . Hence, we have

$$
\begin{aligned}
& \chi\left\{\operatorname{How}\left(K, \varepsilon^{2 w}\right) \oplus \operatorname{Hom}\left(\bigoplus_{i=2}^{2 q-1} S^{i} K /\left(L \bigcirc S^{i-2} K\right), o(Q)\right)\right\} \\
& \quad=\left\{\prod_{i=2}^{2 q-1} i\right\} P_{1}(K)^{q-1+w}
\end{aligned}
$$

By the commutativity of the diagram (5.1), $\left(\operatorname{pr}_{E}\right)$! maps the Euler class to

$$
\left\{\prod_{i=2}^{2 q-1} i\right\} \bar{P}_{q}(E-F)=\left\{\prod_{i=2}^{2 q-1} i\right\} P_{q}(F-E)
$$

(S2) We have

$$
\operatorname{How}\left(S^{2} K / \Theta \oplus E / K, Q\right)=\left(4 P_{1}(K)-P_{1}(Q)\right)\left(\sum_{i=0}^{w-1}(-1)^{i} P_{i}(E / K) P_{1}(Q)^{w-1-i}\right)
$$

The coefficient of the term $P_{1}(Q)^{w-1}$ is

$$
P_{1}(E / K)+4 P_{1}(K)=P_{1}(E)+3 P_{1}(K)
$$

Ignoring $P_{1}(E),\left(\operatorname{pr}_{F}\right)$! maps the Euler class of
$\operatorname{How}\left(K, \varepsilon^{2 w}\right) \oplus \operatorname{How}\left(S^{2} K / \Theta \oplus E / K, Q\right) \oplus \operatorname{Hom}\left(\bigoplus_{i=3}^{2 q-2} S^{i} K /\left(\Theta \bigcirc S^{i-2} K\right), o(Q)\right)$
to

$$
\left(\operatorname{pr}_{E}\right)_{!}\left(3\left\{\prod_{i=3}^{2 q-2} i\right\} P_{1}(K)^{q-1+w}\right)=3\left\{\prod_{i=3}^{2 q-2} i\right\} P_{q}(F-E)
$$

This proves the theorem.

Proof of Theorems 1.1
By setting $F=f^{*}(T Y), E=T X$, and $s=\left(\operatorname{id}_{X} \times f\right)^{*}\left(j^{k} f\right)$, the assertions follow from Theorem 6.5 by replacing P_{i} with $P_{i}\left(f^{*}(T Y)-T X\right)$.

7. J-images

In this section we show a relationship of the Thom polynomials in Theorem 1.1 and the J-images.

Let us recall the J-image of the J-homomorphism

$$
J: \pi_{n}(\mathrm{SO}) \longrightarrow \pi_{n}^{s}
$$

in [1] and [23]. Recall the cobordism group $\Omega_{\mathrm{fold}, j}\left(S^{n}\right)$ of fold maps of closed oriented n-dimensional manifolds to S^{n} of degree j and an isomorphism ω_{j} : $\Omega_{\mathrm{fold}, j}\left(S^{n}\right) \rightarrow \pi_{n}^{s}$ from [3, Theorem 1]. We have proved in [3, Proposition 5.2] that an element $\alpha \in \pi_{n}^{s}$ lies in the J-image if and only if there exists a fold map $f: S^{n} \rightarrow S^{n}$ of degree 1 with $\omega_{1}([f])=\alpha$. This assertion is also true in the case of degree zero by [3, Lemmas 2.5, 3.4]. In fact, a fold map $f: N \rightarrow S^{n}$ of degree j determines the homotopy class of the bundle map

$$
\mathcal{T}(f): T N \oplus \varepsilon_{N} \longrightarrow T S^{n} \oplus \varepsilon_{S^{n}}
$$

covering f. If $N=S^{n}$ and f is of degree j, then $\mathcal{T}(f)$ determines an element of $\pi_{n}(\mathrm{SO}(n+1))$, whose image of J coincides with $\omega_{j}([f])$.

For a fold map f of degree zero, we take a parallelizable $(n+1)$-manifold V with $\partial V=S^{n}$ and an extended map $F: V \rightarrow D^{n+1}$ such that the restriction of F between the collars $S^{n} \times[0, \varepsilon]$ of V and D^{n+1} is equal to $f \times \mathrm{id}_{[0, \varepsilon]}$ for a sufficiently small ε. Let \widehat{V} denote the manifold, which is the union of $V \cup_{S^{n}} D^{n+1}$, where V and D^{n+1} are pasted on S^{n}. For a sufficiently large integer k, let $\tau(f)$ denote

$$
\mathcal{T}(f) \oplus\left(f \times \operatorname{id}_{\mathbb{R}^{k-n-1}}\right): T S^{n} \oplus \varepsilon_{S^{n}}^{k-n} \longrightarrow T S^{n} \oplus \varepsilon_{S^{n-1}}^{k-n}
$$

Let $\tau(\widehat{V}, \tau(f))$ be the k-dimensional vector bundle over \widehat{V}, which is obtained by pasting $T V \oplus \varepsilon_{S^{n-1}}^{k-n-1}$ and $T D^{n+1} \oplus \varepsilon_{S^{n}}^{k-n-1}$ by $\tau(f)$ on S^{n}.

Now consider the jet space $J^{k}\left(\tau(\widehat{V}, \tau(f)), \varepsilon_{\widehat{V}}^{k}\right)$, whose restriction to V (resp., D^{n+1}) is equal to $J^{k}\left(V, D^{n+1}\right)$ (resp., $J^{k}\left(D^{n+1}, D^{n+1}\right)$). Let $s(f)$ denote its
section defined by

$$
s(f)(x)= \begin{cases}j^{k}\left(\mathrm{id}_{D^{n+1}}\right) \times \mathrm{id}_{\mathbb{R}^{k-n-1}} & \text { for } x \in D^{n+1} \\ j_{x}^{k} F \times \mathrm{id}_{\mathbb{R}^{k-n-1}} & \text { for } x \in V\end{cases}
$$

Let $n=4 q-1$ in the following. The J-image $\pi_{4 q-1}(\mathrm{SO})$ is a cyclic group of order j_{q}. The next lemma follows from [14, Lemma 2].

LEMMA 7.1
Let $n=4 q-1$. Let $\mathfrak{o}(\tau(\widehat{V}, \tau(f)))$ denote the element of $\pi_{4 q-1}(\mathrm{SO})$, which is determined as the primary obstruction of $\tau(\widehat{V}, \tau(f))$ to being trivial. Then the Pontrjagin class $P_{q}(\tau(\widehat{V}, \tau(f)))$ is related by the identity

$$
P_{q}(\tau(\widehat{V}, \tau(f)))= \pm a_{q}(4 q-1)!\mathfrak{o}(\tau(\widehat{V}, \tau(f)))
$$

where $a_{q}=2$ for q odd and $a_{q}=1$ for q even.
By definition, $s(f)$ is transverse to $\mathcal{K} \eta$ and $\left(s(f) \mid D^{8 q}\right)^{-1}(\mathcal{K} \eta)$ is empty. Then the Thom polynomials $\operatorname{tp}(\mathcal{K} \eta, s(f))$ are as given in Theorem 1.1, and they are nothing but the Poincaré duals of $\mathcal{K} \eta$ of E^{f}. Therefore, we have the following theorem.

THEOREM 7.2
Let α be an element of the J-image in $\pi_{4 q-1}^{s}$, which has a fold map $f: S^{4 q-1} \rightarrow$ $S^{4 q-1}$ of degree zero with $\alpha=\mathfrak{o}(\tau(\widehat{V}, \tau(f)))$. Then the algebraic number of singularities of type $\mathcal{K} \eta$ of the extension E^{f} is equal, modulo $(4 q-1)!j_{q}$, to

$$
\begin{align*}
& (2 q-1)!(4 q-1)!a_{q} \alpha, \tag{S1}\\
& \begin{cases}3 \cdot 7!\alpha & \text { if } q=2 \\
3\left\{\prod_{i=3}^{2 q-2} i\right\}(4 q-1)!a_{q} \alpha & \text { if } q \geqq 3\end{cases} \tag{S2}
\end{align*}
$$

up to sign.

In dimension 12 , the J-image is of order $2^{3} 3^{2} 7$, and the algebraic number of singularities of type $\mathcal{K} \eta$ of the extension E^{f} is equal, modulo $2 \cdot 11!\cdot 2^{3} 3^{2} 7$, to $5!11!\cdot 2 \alpha$ in the case $(\mathrm{S} 1)$ and to $3^{2} \cdot 2^{2} \cdot 11!\alpha$ in the case $(\mathrm{S} 2)$, where an integer α varies from 1 to $2^{3} 3^{2} 7$.

In the case where a fold map $f: N \rightarrow S^{n}$ of degree zero has a parallelizable manifold V and an extension E^{f} such that $\omega_{0}([f])=\alpha$ does not lie in the J image, we can define the Thom polynomial $\operatorname{tp}(\mathcal{K} \eta, s(f))$. However, the author does not know whether it is effective to detect α or not. The theorem implies that the singularities with nonvanishing leading terms of Thom polynomials detect elements of the J-image. Therefore, the classification of those singularities and the calculation of Thom polynomials will be important to clarify the relationship between singularities and the stable homotopy groups of spheres.

References

[1] J. F. Adams, On the groups $J(X), I V$, Topology 5 (1966), 21-71.
[2] Y. Ando, On the higher Thom polynomials of Morin singularities, Publ. Res. Inst. Math. Sci. 23 (1987), 195-207.
[3] , Fold-maps and the space of base point preserving maps of spheres, J. Math. Kyoto Univ. 41 (2001), 691-735.
[4] , Stable homotopy groups of spheres and higher singularities, J. Math. Kyoto Univ. 46 (2006), 147-165.
[5] J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 21-57.
[6] L. Fehér and R. Rimányi, Thom polynomials with integer coefficients, Illinois J. Math. 46 (2002), 1145-1158.
[7] F. Hirzebruch, Topological Methods in Algebraic Geometry, reprint of the 1978 ed., Classics Math., Springer, Berlin, 1995.
[8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, reprint of the 1963 original, Wiley Classics Lib., Wiley, New York, 1996.
[9] H. I. Levine, "Singularities of differentiable mappings" in Singularities, Symposium I (Liverpool, 1969/70), Lecture Notes in Math. 192, Springer, Berlin, 1-85.
[10] J. N. Mather, Stability of C^{∞} mappings, III: Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 279-308.
[11] , Stability of C^{∞} mappings, V: Transversality, Adv. Math. 4 (1970), 301-336.
[12] , "Stability of C^{∞} mappings, VI: The nice dimensions" in Singularities, Symposium I (Liverpool, 1969/70), Springer, Berlin, 1971.
[13] , "On Thom-Boardman singularities" in Dynamical Systems (Salvador, Brazil, 1971), Academic Press, New York, 1973, 233-248.
[14] J. Milnor and M. Kervaire, "Bernoulli numbers, homotopy groups, and a theorem of Rohlin" in Proceedings of the International Congress of Mathematicians (Edinburgh, 1958), Cambridge Univ. Press, Cambridge, 1960, 454-458.
[15] J. Milnor and J. Stasheff, Characteristic Classes, Ann. of Math. Stud. 76, Princeton Univ. Press, Princeton; Univ. Tokyo Press, Tokyo, 1974.
[16] T. Ohmoto, Vassiliev complex for contact classes of real smooth map-germs, Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem. 27 (1994), 1-12.
[17] Porteous, "Simple singularities of maps" in Singularities, Lecture Notes in Math. 192, Springer, Berlin, 1971, 286-307.
[18] R. Rimányi, Thom polynomials, symmetries and incidences of singularities, Invent. Math. 143 (2001), 499-521.
[19] , On right-left symmetries of stable singularities, Math. Z. 242 (2002), 347-366.
[20] F. Ronga, "Le calcul de la classe de cohomologie entière dual a Σ^{k} " in Singularities, Lecture Notes in Math. 192, Springer, Berlin, 1971, 313-315.
[21] , Le calcul des classes duales aux singularités de Boardman d'ordre deux, Comment. Math. Helv. 47 (1972), 15-35.
[22] N. Steenrod, The Topology of Fibre Bundles, reprint of the 1957 ed., Princeton Landmarks Math., Princeton Univ. Press, Princeton, 1999.
[23] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Stud. 49, Princeton Univ. Press, Princeton, 1962.
[24] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier (Grenoble) 6 (1955-1956), 43-87.

Department of Mathematical Sciences, Faculty of Science, Yamaguchi University, 753-8512, Japan; andoy@yamaguchi-u.ac.jp

