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Abstract This paper addresses Gabor families in l2(Zd). The discrete Gabor families
have interested many researchers due to their good potential for digital signal process-
ing. Gabor analysis in l2(Zd) is more complicated than that in l2(Z) since the geometry
of the lattices generated by time-frequency translation matrices can be quite complex in
this case. In this paper, we characterize window functions such that they correspond to
completeGabor families (Gabor frames) in l2(Zd); obtain a necessary and sufficient con-
ditionon time-frequency translation for the existence of completeGabor families (Gabor
frames, GaborRiesz bases) in l2(Zd); characterize duals withGabor structure forGabor
frames; derive an explicit expression of the canonical dual for a Gabor frame; and prove
its norm minimality among all Gabor duals.

1. Introduction

To begin, we introduce some notions and notation. Let H be a separable Hilbert
space. An at most countable sequence {gn}n∈I in H is called a frame for H if
there exist 0 < C ≤ D < ∞ such that

(1.1) C‖f ‖2 ≤
∑
n∈I

| 〈f, gn〉 |2 ≤ D‖f ‖2

for f ∈ H, where C, D are called frame bounds. In particular, it is called a tight
frame (normalized tight frame) for H if C = D (C = D = 1) in (1.1). The sequence
{gn}n∈I is called a Bessel sequence in H if the right-hand side inequality in (1.1)
holds, where D is called its Bessel bound. A frame for H is called a Riesz basis
for H if it ceases to be a frame whenever an arbitrary element is removed. Let
{gn}n∈I be a frame for H. A sequence {hn}n∈I in H is called a dual frame of

{gn}n∈I if it is a frame for H, and f =
∑

n∈I 〈f,hn〉gn for f ∈ H. It is easy to
check that {gn}n∈I is also a dual frame of {hn}n∈I in this case, so we say that
{hn}n∈I and {gn}n∈I are dual frames for H.
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We always denote by I the identity operator. Let {gn}n∈I and {hn}n∈I be
Bessel sequences in H. Define the operator Sh,g : H → H by

(1.2) Sh,gf :=
∑
n∈I

〈f,hn〉gn

for f ∈ H. Then Sh,g is a bounded operator on H. By definition {hn}n∈I and
{gn}n∈I are dual frames for H if and only if Sh,g = I . In particular, if gn = hn and
{gn}n∈I is a frame for H with frame bounds C and D, then Sg,g is also invertible
and {S −1

g,ggn}n∈I is a frame for H with frame bounds D−1 and C−1, which is a
dual of {gn}n∈I (called the canonical dual). The fundamentals of frames can be
found in [2], [7], [34].

Let Z denote the set of integers, and let N be the set of positive integers. For
L ∈ N, we write

NL := {0,1, . . . ,L − 1}.

Given d ∈ N, we denote by ei with i ∈ Nd the vectors in Cd,

(1.3) ei = (0,0, . . . ,1,0, . . . ,0)t,

with the ith component being 1 and the others being zero, by Td the set [0,1)d,
by GL(Rd) and GL(Zd) the set of d × d invertible real matrices and the set
of d × d invertible integer matrices, respectively, by l2(Zd) the Hilbert space of
square-summable sequences on Zd, and by l2(I) the closed subspace of l2(Zd),

l2(I) :=
{
f : f ∈ l2(Zd), f(j) = 0 for j /∈ I

}
,

for a nonempty set I in Zd, which is obviously a Hilbert space. For Q ∈ GL(Zd),
a set E is called a full set of Zd/QZd if it is a set of representatives of distinct
cosets in Zd/QZd. Such an E has many different choices for a given Q ∈ GL(Zd).
It is easy to see that E can be given by E = (QTd) ∩ Zd as an example. For
a Lebesgue measurable set E in Rd, we denote by |E| its Lebesgue measure,
by L∞(E) the Banach space of all essentially bounded measurable functions
with essential supremum norm, by χ

E
the characteristic function of E, and by

E + x0 the set E + x0 = {x + x0 : x ∈ E} for an arbitrary x0 ∈ Rd. Similarly,
if E is a subset in Zd, we also denote by χ

E
the characteristic function of E.

Let A, B ∈ GL(Rd), and let N , M ∈ GL(Zd). The continuous Gabor family, also
known as the Weyl-Heisenberg family, generated by a function g in L2(Rd) is the
following family of functions in L2(Rd):

(1.4) G(g,A,B) :=
{
e2πi〈Bm,·〉g(· − An) : m,n ∈ Zd

}
.

Similarly, the discrete Gabor family (or Weyl-Heisenberg family) generated by a
function g in l2(Zd) is the following family of functions in l2(Zd):

(1.5) G(g,N,M) :=
{
EM −1mTNng : m ∈ (MTd) ∩ Zd, n ∈ Zd

}
,

where EM −1m and TNn denote the modulation operator and translation operator,
respectively,

EM −1mf(·) := e2πi〈M −1m,·〉f(·), TNnf(·) := f(· − Nn),
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for f ∈ l2(Zd). For g, h ∈ l2(Zd) with G(g,N,M) and G(h,N,M) both being
Bessel sequences in l2(Zd), the operator Sh,g defined as in (1.2) can be written
as

(1.6) Sh,gf :=
∑

n∈Zd

∑
m∈(MTd)∩Zd

〈f,EM −1mTNnh〉EM −1mTNng

for f ∈ l2(Zd). When Sh,g = I on l2(Zd), h is called a Gabor dual of g. When
G(g,N,M) is a frame for l2(Zd), we usually call S −1

g,gg the canonical Gabor dual
of g since

S −1
g,gEM −1mTNng = EM −1mTNnS −1

g,gg

for m ∈ (MTd) ∩ Zd and n ∈ Zd.

The continuous Gabor families were introduced by Gabor in [12] and have
been extensively studied (especially for the case d = 1). We refer readers to [8], [9],
[13], [14], [17], [21], [27], [28] for details. Under certain conditions, there is a way
to obtain discrete Gabor frames via Gabor frames for L2(R) through sampling
(see [19], [25], [31]). One can also consider Gabor frames in l2(Z) without referring
to frames in L2(R). The general theory of discrete Gabor analysis is somewhat
similar to the continuous case. However, its transference to the discrete case is
not all direct or trivial, and sometimes major differences occur. In 1989, Heil [18]
showed that while Gabor frames in the continuous case are bases only if they
are generated by functions that are not smooth or have poor decay, it is possible
in the discrete case to construct Gabor frames that are bases and are generated
by sequences with good decay. The sampled Gaussian provides an example of
such a signal. In recent years, the discrete Gabor families have interested many
researchers due to their good potential for digital signal processing (for details see
[1], [4], [5], [18]–[20], [22]–[25], [31], [33] and the references therein). Interestingly,
to our knowledge, all these results are concentrated on one-dimensional periodic
sequences or l2(Z) instead of general l2(Zd). This paper addresses Gabor analysis
in l2(Zd) with d being an arbitrarily fixed positive integer.

The density problem is an important one in Gabor analysis; that is, under
what conditions on A and B in (1.4) (N and M in (1.5)) we can find a func-
tion g ∈ L2(Rd) (g ∈ l2(Zd)) such that the Gabor family G(g,A,B) in (1.4)
(G(g,N,M) in (1.5)) is an orthonormal basis (a frame, complete) for L2(Rd)
(l2(Zd)). For G(g,A,B) with d = 1, it is easy to check that g =

√
|B|χ[0,|A|) is

such that G(g,A,B) is a tight frame (an orthonormal basis) for L2(R) if |AB| ≤ 1
(if |AB| = 1); and conversely, Rieffel [29] proved that |AB| ≤ 1 if G(g,A,B) is
complete in L2(R) for some g ∈ L2(R). For G(g,A,B) with d > 1, an analogous
necessary condition was established by Ramanathan and Steger in [26], Ron and
Shen in [30], and Christensen, Deng, and Heil in [3], where they proved that
| det(AB)| = 1 (| det(AB)| ≤ 1) if there exists g ∈ L2(Rd) such that G(g,A,B) is
an orthonormal basis (a frame) for L2(Rd). In particular, Gabardo and Han in
[11] and [10] proved this result by a simple and general approach to the incom-
pleteness property for arbitrary grouplike unitary systems. The converse had
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not been resolved until Han and Wang [16] proved the following proposition by
studying a problem concerning lattice tiling in Rd.

PROPOSITION 1.1 ([16, THEOREM 3.3])

For A, B ∈ GL(Rd), the following are equivalent.

(i) There exists g ∈ L2(Rd) such that G(g,A,B) is a normalized tight frame
for L2(Rd).

(ii) There exists g ∈ L2(Rd) such that G(g,A,B) is complete in L2(Rd).
(iii) We have | det(AB)| ≤ 1.

Let us turn to the discrete Gabor family G(g,N,M) in (1.5). When d = 1, the
density problem has been completely answered. As a consequence of [20, Sec-
tion 1.6.5], we have |N | ≤ |M | if there exists g ∈ l2(Z) such that G(g,N,M) is a
frame for l2(Z). As a special case of [22, Theorems 4.3, 4.4, 5.2, 5.3], we have the
following propositions.

PROPOSITION 1.2

For N , M ∈ Z\ {0}, the following are equivalent.

(i) There exists g ∈ l2(Z) such that G(g,N,M) is a normalized tight frame
for l2(Z).

(ii) There exists g ∈ l2(Z) such that G(g,N,M) is complete in l2(Z).
(iii) We have |N | ≤ |M |.

PROPOSITION 1.3

Given N , M ∈ Z\ {0}, let G(g,N,M) be a frame for l2(Z). Then G(g,N,M) is a
Riesz basis for l2(Z) if and only if |N | = |M |.

PROPOSITION 1.4

For N , M ∈ Z\ {0}, there exists g ∈ l2(Z) such that G(g,N,M) is a Riesz basis
for l2(Z) if and only if |N | = |M |.

When d > 1, the density problem of G(g,N,M) is much more complicated since
the geometry of the lattices NZd and M −1Zd can be quite complex. The main
goal of this paper is to study the density problem of G(g,N,M) and related
problems.

In Section 2, for given N , M ∈ GL(Zd) we characterize g with G(g,N,M)
complete in l2(Zd). In Section 3, we characterize N , M ∈ GL(Zd) for the exis-
tence of complete Gabor families (Gabor frames, Gabor Riesz bases) of the form
G(g,N,M) in l2(Zd). In Section 4, we obtain a characterization of Gabor frames
and their Gabor duals, give a formula about the frame bounds of tight Gabor
frames, derive an explicit expression of the canonical dual for a Gabor frame,
and prove its norm minimality among all Gabor duals.
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2. Completeness of G(g,N,M) in l2(Zd)

Let N , M ∈ GL(Zd). This section is devoted to the characterization of g such
that G(g,N,M) in (1.5) is complete in l2(Zd). In order to state our result, we
first introduce a matrix-valued function related to G(g,N,M).

For a complex matrix P , let P t be its transpose, and let P ∗ be its conjugate
transpose. For f ∈ l2(Zd), define its Fourier transform by

(2.1) f̂(ξ) :=
∑
j∈Zd

f(j)e−2πi〈j,ξ〉

for ae ξ ∈ Rd. We associate G(g,N,M) with a | detN | × | detM | matrix-valued
function G(·) defined by
(2.2)(

G(ξ)
)
k,m

:= ĝ
(
ξ − M −1m − (N t)−1k

)
, k ∈ (N tTd) ∩ Zd,m ∈ (MTd) ∩ Zd

for ae ξ ∈ Rd. Herein the order of rows and columns of G(·) can be arbitrar-
ily chosen for our convenience since only the rank of G(·) and the spectrum of
G(·)G∗(·) are involved in the paper, which are not changed under row or col-
umn permutations to G(·). Similarly, we associate a Gabor family G(h,N,M)
generated by an arbitrary h ∈ l2(Zd) with H(·). For a vector-valued function
F (·) = (Fk(·))k∈(NtTd)∩Zd , the order of columns of G∗(·) is required to adapt to
the order of components of F (·) when we compute the vector G∗(·)F (·); that is,
its mth component is(

G∗(·)F (·)
)
m

=
∑

k∈(NtTd)∩Zd

ĝ
(

· − M −1m − (N t)−1k
)

Fk(·)

for m ∈ (MTd) ∩ Zd. The following theorem provides us with a characterization
of the completeness of G(g,N,M) in l2(Zd).

THEOREM 2.1

For N , M ∈ GL(Zd) and g ∈ l2(Zd), G(g,N,M) is complete in l2(Zd) if and only
if rank(G(·)) = | detN | ae on (N t)−1Td, where G(·) is defined as in (2.2).

To prove Theorem 2.1, we need some more notation and lemmas, which are
also used in the following sections. Without specification, relations between two
measurable sets in Rd, such as equality, disjointness, or inclusion, are always
understood up to a set of measure zero.

DEFINITION 2.1

Let Q ∈ GL(Rd). For a measurable set Ω in Rd, we say Ω tiles Rd by QZd if

(i)
⋃

�∈Zd(Ω + Q�) = Rd;
(ii) (Ω + Q�) ∩ (Ω + Q�′) = ∅ for any � �= �′ in Zd.

One says that Ω packs Rd by QZd if only the condition (ii) holds.
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DEFINITION 2.2

For a measurable set S in Rd, a collection {Si : i ∈ I } of at most countably
measurable sets is called a partition of S if S =

⋃
i∈I Si and Si ∩ Si′ = ∅ for any

i �= i′ in I.

DEFINITION 2.3

Let Q ∈ GL(Rd). For two measurable sets S and S̃ in Rd, we say that S and S̃ are
QZd-congruent if there exists a partition {Sk : k ∈ Zd} of S such that {Sk + Qk :
k ∈ Zd} is a partition of S̃. Similarly, for Q1, Q2 ∈ GL(Rd), S and S̃ are said to
be Q1Zd + Q2Zd-congruent if there exists a partition {Sk,� : (k, �) ∈ Zd × Zd} of
S such that {Sk,� + Q1k + Q2� : (k, �) ∈ Zd × Zd} is a partition of S̃.

To better understand the congruence between two sets, we see a simple example.
Consider two sets [0,1] and [1,3/2) ∪ [7/2,4]. Take S1 = [0,1/2), S3 = [1/2,1], and
Sk = ∅ for k ∈ Z \ {1,3}. Then S1 + 1 = [1,3/2), S3 + 3 = [7/2,4], and Sk + k = ∅
for k ∈ Z \ {1,3}. So {Sk : k ∈ Z} is a partition of [0,1], and {Sk + k : k ∈ Z} is
a partition of [1,3/2) ∪ [7/2,4] by Definition 2.2. Therefore, [0,1] and [1,3/2) ∪
[7/2,4] are Z-congruent by Definition 2.3.

It is obvious that Ω tiles Rd by QZd if and only if {Ω + Q� : � ∈ Zd} is a
partition of Rd. Observing that QTd tiles Rd by QZd, we also have that Ω tiles
Rd by QZd if and only if Ω and QTd are QZd-congruent.

LEMMA 2.1

Given N , M ∈ GL(Zd), let Td ∩ (N t)−1Zd ⊂ Td ∩ M −1Zd. Then there exist
finitely many ε0, ε1, . . . , εL−1 in Td ∩ M −1Zd with ε0 = 0 and mutually disjoint
subsets Ω0, Ω1, . . . ,ΩL−1 of Td ∩ M −1Zd such that

Td ∩ M −1Zd =
⋃

�∈NL

Ω�,

and each Ω� is Zd-congruent to (Td ∩ (N t)−1Zd) + ε�.

Proof
Write Ω̃ = Td ∩ (N t)−1Zd and Ω = Td ∩ M −1Zd. Let Ω0 = Ω̃ and ε0 = 0. If Ω = Ω0,
the lemma holds. If Ω0 � Ω, we choose an arbitrary ε1 ∈ Ω\Ω0. Then, to each
η ∈ Ω̃ there corresponds a unique kη,ε1 ∈ Zd such that η + ε1 + kη,ε1 ∈ Td. Since
η ∈ Ω̃ ⊂ Ω and ε1 ∈ Ω, both Mη and Mε1 are in MTd ∩ Zd, which implies that
M(η + ε1) ∈ Zd. Observe that Mkη,ε1 ∈ Zd due to the fact that M ∈ GL(Zd) and
kη,ε1 ∈ Zd. It follows that M(η + ε1 + kη,ε1) ∈ Zd; equivalently, η + ε1 + kη,ε1 ∈
M −1Zd. Also observing that ε1 /∈ (N t)−1Zd, we have η + ε1 + kη,ε1 ∈ Ω \ Ω0.
For η �= η̃ in Ω̃, (η + ε1 + kη,ε1) − (η̃ + ε1 + kη̃,ε1) /∈ Zd since η, η̃ ∈ Td. Define
Ω1 := {η + ε1 + kη,ε1 : η ∈ Ω̃}. Then Ω1 ⊂ Ω \ Ω0, and Ω1 is Zd-congruent to
Ω̃+ ε1. If Ω = Ω0 ∪ Ω1, the lemma follows. If Ω0 ∪ Ω1 � Ω, we choose an arbitrary
ε2 ∈ Ω\(Ω0 ∪ Ω1). Then, to each η ∈ Ω̃ there corresponds a unique kη,ε2 ∈ Zd such
that η + ε2 + kη,ε2 ∈ Td. Define Ω2 := {η + ε2 + kη,ε2 : η ∈ Ω̃}. Similarly, we have
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Ω2 ⊂ Ω \ (Ω0 ∪ Ω1), and Ω2 is Zd-congruent to Ω̃ + ε2. If Ω = Ω0 ∪ Ω1 ∪ Ω2, the
lemma follows. If Ω0 ∪ Ω1 ∪ Ω2 � Ω, we can obtain Ω3 similarly. Since Ω is a finite
set, there exists L ∈ N such that this procedure stops when we obtain ΩL−1. This
finishes the proof. �

LEMMA 2.2

Let Q ∈ GL(Zd). Then Td and

Δ :=
⋃

k∈(QTd)∩Zd

(Q−1Td − Q−1k)

are Zd-congruent, and the union here is a disjoint union.

Proof
For k �= k′ in (QTd) ∩ Zd, since (Td − k) ∩ (Td − k′) = ∅, we have

(Q−1Td − Q−1k) ∩ (Q−1Td − Q−1k′) = Q−1[(Td − k) ∩ (Td − k′)] = ∅.

This implies that
⋃

k∈(QTd)∩Zd(Q−1Td − Q−1k) is a disjoint union, and thus,

|Δ| =
∑

k∈(QTd)∩Zd

|Q−1Td − Q−1k| =
∑

k∈(QTd)∩Zd

|Q−1Td| = 1.

Let K = {k ∈ Zd : (Δ − k) ∩ Td �= ∅ }. Then K is a finite set since both Δ and Td

are bounded sets. Define

Sk :=

{
(Δ − k) ∩ Td if k ∈ K,

∅ if k /∈ K,

for k ∈ Zd. Observe that {Td + k : k ∈ Zd} is a partition of Rd and that Sk + k =
Δ ∩ (Td + k) for k ∈ Zd. It follows that {Sk + k : k ∈ Zd} forms a partition of Δ,
and thus

(2.3)
∑
k∈Zd

|Sk | =
∑
k∈Zd

|Sk + k| = |Δ| = 1.

Next we prove that {Sk : k ∈ Zd} is a partition of Td. By (2.3) and the definition
of Sk, we only need to prove that Sk ∩ Sk′ = ∅ for k �= k′ in K. For such k and k′,
since (QTd) ∩ Zd is a full set of Zd/QZd, we have k̃ + Qk �= k̃′ + Qk′, and thus

(Td − k̃ − Qk) ∩ (Td − k̃′ − Qk′) = ∅

for k̃, k̃′ ∈ (QTd) ∩ Zd. It follows that

(Q−1Td − Q−1k̃ − k) ∩ (Q−1Td − Q−1k̃′ − k′) = ∅

for k̃, k̃′ ∈ (QTd) ∩ Zd. So (Δ − k) ∩ (Δ − k′) = ∅ by the definition of Δ, which
implies that Sk ∩ Sk′ = ∅. The proof is completed. �

EXAMPLE 2.1

Let Q = ( 4 3
3 2 ) in Lemma 2.2. Then (QT2) ∩ Z2 = {(0,0)t}, Q−1 =

( −2 3
3 −4

)
, and

Δ =
{
(x, y)t ∈ R2 : 0 ≤ 3x + 2y < 1,0 ≤ 4x + 3y < 1

}
.
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Under the notation of Lemma 2.2, we have

K =
{
(−2,2)t, (−2,1)t, (−1,1)t, (−1,0)t, (0,0)t, (0, −1)t,

(0, −2)t, (1, −2)t, (1, −3)t, (2, −3)t, (2, −4)t
}
,

and {Sk : k ∈ Z2} has the following form:

S(−2,2)t =
{

(x, y)t ∈ R2 :
2
3
(1 − y) ≤ x <

3
4
(1 − y),0 ≤ y ≤ 1

}
,

S(−2,1)t =
{

(x, y)t ∈ R2 :
2
3
(2 − y) ≤ x <

3
4
(2 − y),

2
3

≤ y ≤ 1
}

∪
{

(x, y)t ∈ R2 :
2
3
(2 − y) ≤ x < 1,

1
2

≤ y ≤ 2
3

}
,

S(−1,1)t =
{

(x, y)t ∈ R2 : 0 ≤ x <
1
2

− 3
4
y,

1
2

≤ y ≤ 2
3

}

∪
{

(x, y)t ∈ R2 :
1
3

− 2
3
y ≤ x <

1
2

− 3
4
y,0 ≤ y ≤ 1

2

}
,

S(−1,0)t =
{

(x, y)t ∈ R2 : 1 − 2
3
y ≤ x <

5
4

− 3
4
y,

1
3

≤ y ≤ 1
}

∪
{

(x, y)t ∈ R2 : 1 − 2
3
y ≤ x < 1,0 ≤ y ≤ 1

3

}
,

S(0,0)t =
{

(x, y)t ∈ R2 : 0 ≤ x <
1
4

− 3
4
y,0 ≤ y ≤ 1

3

}
,

S(0,−1)t =
{

(x, y)t ∈ R2 :
3
4
(1 − y) ≤ x < 1 − 3

4
y,0 ≤ y ≤ 1

}
,

S(0,−2)t =
{

(x, y)t ∈ R2 :
3
4
(2 − y) ≤ x < 1,

2
3

≤ y ≤ 1
}
,

S(1,−2)t =
{

(x, y)t ∈ R2 : 0 ≤ x <
2
3
(1 − y),

2
3

≤ y ≤ 1
}

∪
{

(x, y)t ∈ R2 :
1
2

− 3
4
y ≤ x <

2
3
(1 − y),0 ≤ y ≤ 2

3

}
,

S(1,−3)t =
{

(x, y)t ∈ R2 :
5
4

− 3
4
y ≤ x <

4
3

− 2
3
y,

1
2

≤ y ≤ 1
}

∪
{

(x, y)t ∈ R2 :
5
4

− 3
4
y ≤ x < 1,

1
3

≤ y ≤ 1
2

}
,

S(2,−3)t =
{

(x, y)t ∈ R2 : 0 ≤ x <
1
3

− 2
3
y,

1
3

≤ y ≤ 1
2

}

∪
{

(x, y)t ∈ R2 :
1
4

− 3
4
y ≤ x <

1
3

− 2
3
y,0 ≤ y ≤ 1

3

}
,

S(2,−4)t =
{

(x, y)t ∈ R2 : 1 − 3
4
y ≤ x < 1 − 2

3
y,0 ≤ y ≤ 1

}
,

Sk = ∅ for k /∈ K.
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Figure 1. {Sk : k ∈ Z
2} is a partition of T

2, and {S+
k = Sk + k : k ∈ Z

2} is a partition of Δ

By the proof of Lemma 2.2, {Sk : k ∈ Z2} is a partition of T2, and {S+
k = Sk +k :

k ∈ Z2} is a partition of Δ (see also Figure 1). Therefore, T2 and Δ are Z2-
congruent.

LEMMA 2.3

Let N , M ∈ GL(Zd), and let g ∈ l2(Zd). Define G(·) as in (2.2). Then

〈f,EM −1mTNng〉 = e−2πi〈M −1m,Nn〉
∫

(Nt)−1Td

(
G∗(ξ)F (ξ)

)
m

e2πi〈Nn,ξ〉 dξ

for f ∈ l2(Zd), m ∈ (MTd) ∩ Zd, and n ∈ Zd, where F (·) :=
(
f̂(· − (N t)−1 ×

k)
)
k∈(NtTd)∩Zd .
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Proof
A simple computation shows that

(2.4) (EM −1mTNng)ˆ(ξ) = e2πi〈M −1m,Nn〉e−2πi〈Nn,ξ〉ĝ(ξ − M −1m)

for m ∈ (MTd) ∩ Zd, n ∈ Zd, and ae ξ ∈ Td. It follows that

(2.5) 〈f,EM −1mTNng〉 = e−2πi〈M −1m,Nn〉
∫

Td

f̂(ξ)ĝ(ξ − M −1m)e2πi〈Nn,ξ〉 dξ

for m ∈ (MTd) ∩ Zd and n ∈ Zd. Letting Q = N t in Lemma 2.2, we have Td and

(2.6) Δ :=
⋃

k∈(NtTd)∩Zd

(
(N t)−1Td − (N t)−1k

)

are Zd-congruent, and the union here is a disjoint union. So, by Definition 2.3,
there exists a partition {Δ� : � ∈ Zd} of Δ such that {Δ� +� : � ∈ Zd} is a partition
of Td. It follows that Td =

⋃
�∈Zd(Δ� + �), where the union is a disjoint union.

Also observing that the integrand in (2.5) is Zd-periodic, we have∫
Td

f̂(ξ)ĝ(ξ − M −1m)e2πi〈Nn,ξ〉 dξ =
∑
�∈Zd

∫
Δ�+�

f̂(ξ)ĝ(ξ − M −1m)e2πi〈Nn,ξ〉 dξ

=
∑
�∈Zd

∫
Δ�

f̂(ξ)ĝ(ξ − M −1m)e2πi〈Nn,ξ〉dξ(2.7)

=
∫

Δ

f̂(ξ)ĝ(ξ − M −1m)e2πi〈Nn,ξ〉dξ,

where we use the fact that Δ is a disjoint union of Δ�, � ∈ Zd, in the last equality.
Since the union in (2.6) is a disjoint one, we arrive at∫

Δ

f̂(ξ)ĝ(ξ − M −1m)e2πi〈Nn,ξ〉dξ

=
∑

k∈(NtTd)∩Zd

∫
(Nt)−1Td −(Nt)−1k

f̂(ξ)ĝ(ξ − M −1m)e2πi〈Nn,ξ〉dξ

=
∑

k∈(NtTd)∩Zd

∫
(Nt)−1Td

f̂
(
ξ − (N t)−1k

)
ĝ
(
ξ − M −1m − (N t)−1k

)
e2πi〈Nn,ξ〉dξ.

This, together with (2.7) and (2.5), leads to

〈f,EM −1mTNng〉

= e−2πi〈M −1m,Nn〉

×
∫

(Nt)−1Td

( ∑
k∈(NtTd)∩Zd

f̂
(
ξ − (N t)−1k

)
ĝ
(
ξ − M −1m − (N t)−1k

))

× e2πi〈Nn,ξ〉dξ

= e−2πi〈M −1m,Nn〉
∫

(Nt)−1Td

(
G∗(ξ)F (ξ)

)
m

e2πi〈Nn,ξ〉dξ

for m ∈ (MTd) ∩ Zd and n ∈ Zd. The proof is completed. �
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Proof of Theorem 2.1
By Lemma 2.3, G(g,N,M) is complete in l2(Zd) if and only if f = 0 is the unique
solution to the equation about f ∈ l2(Zd):

(2.8) G∗(·)F (·) = 0 ae on (N t)−1Td,

where F (·) :=
(
f̂(· − (N t)−1k)

)
k∈(NtTd)∩Zd .

For sufficiency, suppose that rank(G(·)) = | detN | ae on (N t)−1Td, and sup-
pose that f ∈ l2(Zd) satisfies the equation (2.8). Then F (·) = 0 ae on (N t)−1Td,
which together with Lemma 2.2 implies that f̂(·) = 0 ae on Td. It follows that
f = 0, and thus G(g,N,M) is complete in l2(Zd).

For necessity, we argue by contradiction. Suppose that G(g,N,M) is complete
in l2(Zd), and suppose that rank(G(·)) < | detN | on E for some measurable set
E ⊂ (N t)−1Td with |E| > 0. Then ker(G∗(ξ)) �= {0} for ξ ∈ E. Define

P (·) := lim
n→∞

e−nG(·)G∗(·).

Then P (·) is measurable and the orthogonal projection onto the kernel of G∗(·)
by an easy application of the spectral theorem for self-adjoint matrices (see also
[6, p. 978]). Therefore there exist an i ∈ N| detN | and a measurable set Ẽ ⊂ E

with |Ẽ| > 0 such that P (ξ)ei �= 0 for ξ ∈ Ẽ, where ei is defined as in (1.3) with
d replaced by | detN |. Define f ∈ l2(Zd) via its Fourier transform by

(
f̂(· − (N t)−1k)

)
k∈(NtTd)∩Zd :=

{
P (·)ei on Ẽ,

0 otherwise,

ae on (N t)−1Td. Then f is well defined by Lemma 2.2, and f is a nonzero solution
to (2.8). This is in contradiction to the first paragraph of the proof. The proof is
completed. �

3. Density results

In this section, we characterize N , M ∈ GL(Zd) for the existence of complete
Gabor families (Gabor frames, Gabor Riesz bases) of the form G(g,N,M) in
l2(Zd). We first introduce some definitions and lemmas.

DEFINITION 3.1

Let Q ∈ GL(Rd), and let ei, i ∈ Nd, be as in (1.3). Given x ∈ Rd, the vector
(x0, . . . , xd−1)t ∈ Rd is called the Q-coordinate of x if x =

∑
i∈Nd

xiQei. The set{
x ∈ Rd : x =

∑
i∈Nd

xiQei, xi > 0, i ∈ Nd

}

is called the first Q-quadrant.

Definition 3.1 is well defined. In fact, Qei, i ∈ Nd, are linearly independent, and
consequently, for each x ∈ Rd, there corresponds a unique (x0, . . . , xd−1)t ∈ Rd

such that x =
∑

i∈Nd
xiQei. In particular, the Q-coordinate is identical with the
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usual rectangular coordinate when Q is the identity matrix. Without specifica-
tion, a point (x0, . . . , xd−1)t or a set S in Rd is always referred to as the one
defined according to the rectangular coordinate system. The following lemma is
another equivalent statement of [16, Theorem 1.2].

LEMMA 3.1

Let Q1 and Q2 be two matrices in GL(Rd) such that | detQ1| ≤ | detQ2|. Then
there exists a measurable set Ω in Rd such that Ω tiles Rd by Q1Zd and packs
Rd by Q2Zd.

LEMMA 3.2

Given Q1, Q2 ∈ GL(Rd), let S and S̃ be two bounded measurable sets in Rd

such that they are (Q1Zd + Q2Zd)-congruent. Then there exist a finite subset
{(ki, �i) : 1 ≤ i ≤ n} of Zd × Zd and a partition {Si : 1 ≤ i ≤ n} of S such that
{Si + Q1ki + Q2�i : 1 ≤ i ≤ n} is a partition of S̃.

Proof
Since S and S̃ are Q1Zd +Q2Zd-congruent, there exists a partition {Sk,� : (k, �) ∈
Zd × Zd} of S such that {Sk,� + Q1k + Q2� : (k, �) ∈ Zd × Zd} is a partition of S̃.
Also recall that by assumption S and S̃ are both bounded. It follows that

Λ =
{
λ : λ = Q1k + Q2� for some (k, �) ∈ Zd × Zd with |Sk,�| > 0

}
is a finite set. Suppose that {(ki, �i) : 1 ≤ i ≤ n} is a finite subset of Zd × Zd such
that Λ = {λi = Q1ki + Q2�i : 1 ≤ i ≤ n}. Define

Si :=
⋃

(k,�)∈Zd:Q1k+Q2�=λi

Sk,�

for 1 ≤ i ≤ n. Then {Si : 1 ≤ i ≤ n} is as desired. The proof is completed. �

LEMMA 3.3

For arbitrary Q1, Q2 ∈ GL(Zd) with | detQ1| ≤ | detQ2|, there exists a set E in Zd

such that E is a full set of Zd/Q1Zd and is a subset of some full set of Zd/Q2Zd.
In particular, when | detQ1| = | detQ2|, E is also a full set of Zd/Q2Zd.

Proof
By Lemma 3.1, there exists a measurable set Ω in Rd such that Ω tiles Rd by Q1Zd

and packs Rd by Q2Zd. Note that Q1Td and Q2Td tile Rd by Q1Zd and Q2Zd,
respectively. It follows that Ω is Q1Zd-congruent to Q1Td and Q2Zd-congruent to
a subset of Q2Td, and thus Q1Td is (Q1Zd+Q2Zd)-congruent to a subset of Q2Td.
Then, by Lemma 3.2, there exist a finite subset {(ki, �i) : 1 ≤ i ≤ n} of Zd × Zd

and a partition {Si : 1 ≤ i ≤ n} of Q1Td such that {Si + Q1ki + Q2�i : 1 ≤ i ≤ n}
is a mutually disjoint measurable collection of subsets of Q2Td. Fix an arbitrary
γ ∈ (Q1Td) ∩ Zd. We denote by U(γ, δ) the δ neighborhood of γ and define

UQ1(γ, δ) = U(γ, δ) ∩ {x + γ : x is in the first Q1-quadrant}
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for δ > 0. We claim that there exists iγ with 1 ≤ iγ ≤ n such that Siγ ∩ UQ1(γ, δ)
has positive measure for any δ > 0. If, for each 1 ≤ i ≤ n, there exists δi > 0
such that |Si ∩ UQ1(γ, δi)| = 0, then by taking δ = min1≤i≤n δi, we have |Si ∩
UQ1(γ, δ)| = 0 for each 1 ≤ i ≤ n, which contradicts the fact that {Si : 1 ≤ i ≤
n} is a partition of Q1Td. So we can choose some 1 ≤ iγ ≤ n such that |Siγ ∩
UQ1(γ, δ)| > 0 for each δ > 0, and consequently,

(3.1) |(Siγ + Q1kiγ + Q2�iγ ) ∩ UQ1(γ + Q1kiγ + Q2�iγ , δ)| > 0 for each δ > 0.

Also observe that Siγ + Q1kiγ + Q2�γ
⊂ Q2Td leads to

(3.2) γ + Q1kiγ + Q2�iγ ∈ Q2Td.

We define E = {γ + Q1kiγ : γ ∈ (Q1Td) ∩ Zd}. Since (Q1Td) ∩ Zd is a full set of
Zd/Q1Zd, so does E . For γ �= γ̃ in (Q1Td) ∩ Zd, we have γ + Q1kiγ + Q2�iγ �=
γ̃ + Q1kiγ̃ + Q2�iγ̃ by (3.1) and the fact that {Si + Q1ki + Q2�i : 1 ≤ i ≤ n} is a
mutually disjoint measurable collection of subsets of Q2Td. Combined with (3.2)
and the fact that (Q2Td) ∩ Zd is a full set of Zd/Q2Zd, it follows that E is a
subset of some full set of Zd/Q2Zd. In particular, when | detQ1| = | detQ2|, the
cardinality of E is | detQ2|, and so E is also a full set of Zd/Q2Zd. The proof is
completed. �

LEMMA 3.4

Given Q ∈ GL(Zd), let E be a full set of Zd/QtZd, and let E ′ be a nonempty
subset of E . Then

(i) {(1/
√

| detQ|)EQ−1mχE : m ∈ (QTd) ∩ Zd} is an orthonormal basis for
l2(E ).

(ii) {(1/
√

| detQ|)EQ−1mχE ′ : m ∈ (QTd) ∩ Zd} is a normalized tight frame
for l2(E ′).

Proof
Clearly, the condition (i) is an equivalent statement of [32, Lemma 2.1], a special
case of which was obtained in [15, Lemma 5.1]. Since l2(E ′) is a closed subspace
of l2(E ), and the family in (ii) is the orthogonal projection onto l2(E ′) of the one
in (i), it is a normalized tight frame for l2(E ′) by [2, Proposition 5.3.5]. �

Note that G(·) in Theorem 2.1 is a (| detN | × | detM |) matrix. By Theorem 2.1,
the condition | detN | ≤ | detM | is necessary for the existence of a complete Gabor
family G(g,N,M) in l2(Zd). It turns out that such a condition is also sufficient,
and we can say much more about it.

THEOREM 3.1

For N , M ∈ GL(Zd), the following are equivalent.

(i) There exists g ∈ l2(Zd) such that G(g,N,M) is a frame for l2(Zd).
(ii) There exists g ∈ l2(Zd) such that G(g,N,M) is complete in l2(Zd).
(iii) We have | detN | ≤ | detM |.
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Proof
It is obvious that (i) implies (ii). Also observing that the matrix G(·) in (2.2)
is a | detN | × | detM | matrix-valued function, we have rank(G(·)) ≤ | detM |. So
(ii) implies (iii) by Theorem 2.1. Next we prove that (iii) implies (i). Suppose
that (iii) holds. Then, by Lemma 3.3, there exists a set E in Zd such that E
is a full set of Zd/NZd and is a subset of some full set of Zd/M tZd. It follows
that l2(Zd) =

⊕
n∈Zd l2(E + Nn) and that {EM −1mg : m ∈ (MTd) ∩ Zd} with

g = (1/
√

| detM |)χE is a normalized tight frame for l2(E ) by Lemma 3.4. So
{TNnEM −1mg : m ∈ (MTd) ∩ Zd, n ∈ Zd} is a normalized tight frame for l2(Zd);
equivalently, G(g,N,M) is a normalized tight frame for l2(Zd). The proof is
completed. �

LEMMA 3.5

Let N , M ∈ GL(Zd), and let g ∈ l2(Zd). Suppose that G(g,N,M) is a frame for
l2(Zd). Then ‖ S −1/2

g,g g‖2 = | detN |/| detM |.

Proof
Arbitrarily fix γ ∈ (NTd) ∩ Zd. It is easy to check that∑

n∈Zd

∑
m∈(MTd)∩Zd

∣∣∣〈f,EM −1mTNn
1√

| detM |
χ{γ}

〉∣∣∣2

=
∑

n∈Zd

|f(γ + Nn)|2 = ‖f ‖2

for f ∈ l2({γ} +NZd). So G((1/
√

| detM |)χ{γ} ,N,M) is a normalized tight frame
for l2({γ} + NZd). Also note that l2(Zd) =

⊕
γ∈(NTd)∩Zd l2({γ} + NZd). The

family{
EM −1mTNn

1√
| detM |

χ{γ} : m ∈ (MTd) ∩ Zd, n ∈ Zd, γ ∈ (NTd) ∩ Zd
}

is a normalized tight frame for l2(Zd). It follows that

‖S −1/2
g,g g‖2

=
1

| detM |
∑

γ∈(NTd)∩Zd

∑
n∈Zd

∑
m∈(MTd)∩Zd

| 〈 S −1/2
g,g g,EM −1mTNnχ{γ} 〉 |2

=
1

| detM |
∑

γ∈(NTd)∩Zd

∑
n∈Zd

∑
m∈(MTd)∩Zd

| 〈EM −1(−m)T−NnS −1/2
g,g g,χ{γ} 〉 |2

=
1

| detM |
∑

γ∈(NTd)∩Zd

∑
n∈Zd

∑
m∈(MTd)∩Zd

| 〈EM −1(Mm̃−m)T−NnS −1/2
g,g g,χ{γ} 〉 |2,

where m̃ = (sgn(m0), . . . , sgn(md−1))t, (m0, . . . ,md−1)t denotes the M -coordinate
of m and sgn(·) denotes the sign function. Note that x ∈ MTd if and only if
its M -coordinate (x0, . . . , xd−1)t satisfies 0 ≤ xi < 1 for i ∈ Nd. It follows that
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{Mm̃ − m : m ∈ (MTd) ∩ Zd} = (MTd) ∩ Zd, and consequently,

‖S −1/2
g,g g‖2 =

1
| detM |

(3.3)
×

∑
γ∈(NTd)∩Zd

∑
n∈Zd

∑
m∈(MTd)∩Zd

| 〈EM −1mTNnS −1/2
g,g g,χ{γ} 〉 |2.

However, G(S −1/2
g,g g,N,M) is a normalized tight frame for l2(Zd) since G(g,N,M)

is a frame for l2(Zd). So, by (3.3), we have

‖ S −1/2
g,g g‖2 =

1
| detM |

∑
γ∈(NTd)∩Zd

‖χ{γ} ‖2 =
| detN |

| detM | .

The proof is completed. �

THEOREM 3.2

Let N , M ∈ GL(Zd), and let g ∈ l2(Zd). Suppose that G(g,N,M) forms a frame
for l2(Zd). Then G(g,N,M) is a Riesz basis for l2(Zd) if and only if | detN | =
| detM |.

Proof
Note that G(g,N,M) is a Riesz basis for l2(Zd) if and only if G(S −1/2

g,g g,N,M) is
an orthonormal basis for l2(Zd), which is also equivalent to ‖S −1/2

g,g g‖ = 1 since
G(S −1/2

g,g g,N,M) is a normalized tight frame for l2(Zd). The theorem therefore
follows by Lemma 3.5. �

THEOREM 3.3

For N , M ∈ GL(Zd), there exists g ∈ l2(Zd) such that G(g,N,M) is a Riesz basis
for l2(Zd) if and only if | detN | = | detM |.

Proof
The necessity is an immediate consequence of Theorem 3.2. Next we turn to
the sufficiency. Suppose | detN | = | detM |. Then, by Lemma 3.3, there exists
a set E in Zd such that E is a full set of both Zd/NZd and Zd/M tZd. It fol-
lows that l2(Zd) =

⊕
n∈Zd l2(E + Nn) and that {EM −1mg : m ∈ (MTd) ∩ Zd}

with g = (1/
√

| detM |)χE is an orthonormal basis for l2(E ) by Lemma 3.4. So
{TNnEM −1mg : m ∈ (MTd) ∩ Zd, n ∈ Zd} is an orthonormal basis for l2(Zd);
equivalently, G(g,N,M) is an orthonormal basis for l2(Zd). The proof is com-
pleted. �

4. Frames and duals

In this section, we characterize Gabor frames and their Gabor duals, obtain
a formula about the frame bounds of tight Gabor frames, derive an explicit
expression of the canonical dual for a Gabor frame, and prove its norm minimality
among all Gabor duals.
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LEMMA 4.1

Let Q ∈ GL(Zd), and let k′ ∈ (QTd) ∩ Zd. Define

N1 :=
{
k ∈ (QTd) ∩ Zd : ki < 1 − k′

i for each i ∈ Nd

}
,

N2 :=
{
k ∈ (QTd) ∩ Zd : 1 − k′

i ≤ ki for some i ∈ Nd

}
,

where (k0, . . . , kd−1)t and (k′
0, . . . , k

′
d−1)

t denote the Q-coordinates of k and k′,
respectively. Then

(4.1) (QTd) ∩ Zd = {k + k′ : k ∈ N1} ∪
{

k + k′ −
∑

i∈Ik,k′

Qei : k ∈ N2

}
,

where ei is defined by (1.3) for each i ∈ Nd, and Ik,k′ = {i ∈ Nd : 1 − k′
i ≤ ki} for

k, k′ ∈ (QTd) ∩ Zd.

Proof
Define a mapping τ : (QTd) ∩ Zd → Zd by

τ(k) :=

{
k + k′ if k ∈ N1,

k + k′ −
∑

i∈Ik,k′ Qei if k ∈ N2,

for k ∈ (QTd) ∩ Zd. Then range(τ) ⊂ (QTd) ∩ Zd since x ∈ QTd if and only if
its Q-coordinate (x0, . . . , xd−1)t satisfies 0 ≤ xi < 1 for i ∈ Nd. Also observing
that k − k̃ /∈ QZd for k �= k̃ in (QTd) ∩ Zd, we have that τ is injective. The
equation (4.1) therefore follows. �

LEMMA 4.2

For Q ∈ GL(Zd) and J ∈ N, let (QTd) ∩ Zd = {n� : � ∈ N| detQ| }, let E = {εj :
j ∈ NJ } be a finite set in Rd, and let λ(·) be a Zd-periodic Lebesgue measurable
function on Rd. Define a | detQ| × J matrix-valued function Λ(·) by

Λ(·) :=
(
λ(· − Q−1n� − εj)

)
0≤�≤ | detQ|−1,0≤j≤J −1

ae on Rd. Then:
(i) To each k′ ∈ (QTd) ∩ Zd there corresponds a row permutation matrix Uk′

such that Λ(· − Q−1k′) = Uk′ Λ(·) ae on Rd.
(ii) The rank of Λ(·) and the spectrum of Λ(·)Λ∗(·) on Q−1Td completely

determine the ones on Rd.

Proof
We use the notation in Lemma 4.1. Fix arbitrarily k′ ∈ (QTd) ∩ Zd. Since λ(·) is
Zd-periodic, we can rewrite (�, j)-entries of Λ(· − Q−1k′) as

(
Λ(· − Q−1k′)

)
�,j

=

{
λ(· − Q−1(n� + k′) − εj) n� ∈ N1,

λ
(

· − Q−1(n� + k′ −
∑

i∈In�,k′ Qei) − εj

)
n� ∈ N2.
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So Λ(· − Q−1k′) can be obtained by a permutation of the rows of Λ(·) by
Lemma 4.1, which gives (i). It follows from (i) that

〈Λ(· − Q−1k′)Λ∗(· − Q−1k′)x,x〉 = 〈Λ(·)Λ∗(·)U ∗
k′ x,U ∗

k′ x〉
ae on Rd for x ∈ Cd. Therefore, the rank of Λ(·) and the spectrum of Λ(·)Λ∗(·)
on Q−1Td completely determine the ones on Td and thus on Rd by Lemma 2.2
and Zd-periodicity of λ(·). �

Let N , M ∈ GL(Zd), and let g ∈ l2(Zd). Define G(·) as in (2.2). Note that only the
spectrum of G(·)G∗(·) is involved in what follows. All conditions in our theorems
are stated on (N t)−1Td instead of Td or Rd since they are equivalent to each
other by Lemma 4.2.

LEMMA 4.3

For N , M ∈ GL(Zd) and g ∈ l2(Zd), G(g,N,M) is a Bessel sequence in l2(Zd)
with Bessel bound D if and only if

G(·)G∗(·) ≤ D| detN |I
almost everywhere on (N t)−1Td, where G(·) is defined as in (2.2).

Proof
Let Γ = {f ∈ l2(Zd) : f̂ ∈ L∞(Td)}. Then Γ is dense in l2(Zd). For f ∈ Γ, by
Lemma 2.3, we have∑

n∈Zd

∑
m∈(MTd)∩Zd

| 〈f,EM −1mTNng〉 |2

=
∑

n∈Zd

∑
m∈(MTd)∩Zd

∣∣∣∫
(Nt)−1Td

(
G∗(ξ)F (ξ)

)
m

e2πi〈Nn,ξ〉 dξ
∣∣∣2,

where F (ξ) :=
(
f̂(ξ − (N t)−1k)

)
k∈(NtTd)∩Zd . Also observe that each component of

G∗(·)F (·) is in L2((N t)−1Td), and {
√

| detN |e2πi〈Nn,·〉 : n ∈ Zd} is an orthonor-
mal basis for L2((N t)−1Td). It follows that∑

n∈Zd

∑
m∈(MTd)∩Zd

| 〈f,EM −1mTNng〉 |2

= | detN | −1
∑

m∈(MTd)∩Zd

∫
(Nt)−1Td

|(G∗(ξ)F (ξ))m|2 dξ(4.2)

= | detN | −1

∫
(Nt)−1Td

〈G(ξ)G∗(ξ)F (ξ), F (ξ)〉 dξ

for f ∈ Γ. However,

‖f ‖2 =
∫

Td

|f̂(ξ)|2 dξ =
∑

k∈(NtTd)∩Zd

∫
(Nt)−1Td

∣∣f̂(
ξ − (N t)−1k

)∣∣2 dξ

(4.3)
=

∫
(Nt)−1Td

‖ F (ξ)‖2 dξ
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by Lemma 2.2, where the norm of F (ξ) is taken in C| detN |. Therefore, by [2,
Lemma 3.2.6], G(g,N,M) is a Bessel sequence in l2(Zd) with Bessel bound D if
and only if

(4.4)
∫

(Nt)−1Td

〈G(ξ)G∗(ξ)F (ξ), F (ξ)〉 dξ ≤ D| detN |
∫

(Nt)−1Td

‖F (ξ)‖2 dξ

for f ∈ Γ. So the sufficiency obviously holds. Now we turn to the necessity. Sup-
pose that G(g,N,M) is a Bessel sequence in l2(Zd) with Bessel bound D. We
only need to prove that

(4.5) 〈G(ξ)G∗(ξ)x,x〉 ≤ D| detN | ‖x‖2

for x ∈ C| detN | and ae ξ ∈ (N t)−1Td. Note that all entries of G(·)G∗(·) are in
L1(Td), and thus they are locally integrable by their Zd-periodicity. Then almost
every interior point of (N t)−1Td is a Lebesgue point of all entries of G(ξ)G∗(ξ).
Let ξ0 be such an arbitrary point, and let x be an arbitrary vector in C| detN |.
To finish the proof, next we only need to prove that (4.5) holds for ξ0 and x. Let
ε > 0 be such that the ε-neighborhood of ξ0, denoted by U(ξ0, ε), is contained in
(N t)−1Td. Define f ∈ l2(Zd) by

F (ξ) := |U(ξ0, ε)| −1/2χ
U(ξ0,ε)(ξ)x

for ξ ∈ (N t)−1Td. Then f ∈ Γ, and by (4.4) we have

1
|U(ξ0, ε)|

∫
U(ξ0,ε)

〈G(ξ)G∗(ξ)x,x〉 ≤ D| detN | ‖x‖2.

Letting ε → 0 leads to (4.5) for ξ0 and x. The proof is completed. �

REMARK 4.1

By Lemma 4.3, for N , M ∈ GL(Zd) and g ∈ l2(Zd), G(g,N,M) is a Bessel
sequence in l2(Zd) if and only if each entry of G(·) is in L∞((N t)−1Td). Indeed,
G(g,N,M) being a Bessel sequence in l2(Zd) is equivalent to the existence of a
constant 0 < D < ∞ such that G(·)G∗(·) ≤ D| detN |I ; equivalently, ‖G∗(·)x‖ ≤√

D| detN | ‖x‖ for x ∈ C| detN | ae on (N t)−1Td. This is also equivalent to each
entry of G(·) being in L∞((N t)−1Td).

THEOREM 4.1

For N , M ∈ GL(Zd) and g ∈ l2(Zd), G(g,N,M) is a frame for l2(Zd) with frame
bounds 0 < C ≤ D < ∞ if and only if

C| detN |I ≤ G(·)G∗(·) ≤ D| detN |I

ae on (N t)−1Td, where G(·) is defined as in (2.2).

Proof
By Lemma 4.3, we may as well assume that G(g,N,M) is a Bessel sequence in
l2(Zd) with Bessel bound D. We use the notation in Lemma 4.3. Next we only
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need to prove that

(4.6) C‖f ‖2 ≤
∑

n∈Zd

∑
m∈(MTd)∩Zd

| 〈f,EM −1mTNng〉 |2 for f ∈ Γ

if and only if

(4.7) C| detN | ‖x‖2 ≤ 〈G(ξ)G∗(ξ)x,x〉 for x ∈ C| detN | and ae ξ ∈ (N t)−1Td

by [2, Lemmas 3.2.6, 5.1.7]. By (4.2) and (4.3), (4.6) can be rewritten as

C| detN |
∫

(Nt)−1Td

‖ F (ξ)‖2 dξ

(4.8)
≤

∫
(Nt)−1Td

〈G(ξ)G∗(ξ)F (ξ), F (ξ)〉 dξ for f ∈ Γ.

So we only need to prove the equivalence between (4.8) and (4.7). This can be
done by the same procedure as in Lemma 4.3. The proof is completed. �

COROLLARY 4.1

Let N , M ∈ GL(Zd), and let g ∈ l2(Zd) with ĝ(·) ∈ L∞(Td). For L ∈ N, let {S� :
� ∈ NL} be a partition of (N t)−1Td such that, to each � ∈ NL, there corresponds
a (| detN | × | detN |)-invertible submatrix G�(·) of G(·) satisfying that all entries
of (G�(·))−1 are in L∞(S�). Then G(g,N,M) is a frame for l2(Zd). In particular,
when | detN | = | detM |, G(g,N,M) is a Riesz basis for l2(Zd).

Proof
By Theorems 4.1 and 3.2, we only need to prove that, to each � ∈ NL, there
corresponds 0 < C� ≤ D� < ∞ such that

(4.9) C�‖x‖2 ≤ 〈G(·)G∗(·)x,x〉 ≤ D�‖x‖2 for x ∈ C| detN |

ae on S�. Since ĝ(·) ∈ L∞(Td), the right-hand-side inequality in (4.9) holds. Now
we prove the left-hand-side inequality in (4.9). Fix � ∈ NL. By Theorem 3.1
and the argument ahead of Theorem 2.1, we may as well assume that G(·) =
(G�(·), G̃�(·)) ae on S� when | detM | > | detN |, where the size of G̃�(·) is | detN | ×
(| detM | − | detN |). In particular, G(·) = G�(·) when | detM | = | detN |. Then

(4.10) 〈G(·)G∗(·)x,x〉 ≥ 〈G�(·)G∗
� (·)x,x〉 = ‖G∗

� (·)x‖2 for x ∈ C| detN |

ae on S�. Since each entry of (G�(·))−1 is in L∞(S�), there exists a constant
0 < C� < ∞ such that ‖(G∗

� (·))−1x‖2 ≤ C−1
� ‖x‖2 for x ∈ C| detN | ae on S�. So

‖G∗
� (·)x‖2 ≥ C�‖x‖2 for x ∈ C| detN | ae on S�, which together with (4.10) leads

to the left-hand-side inequality in (4.9). �

THEOREM 4.2

Let N , M ∈ GL(Zd), and let g ∈ l2(Zd). Suppose that G(g,N,M) is a tight frame
for l2(Zd) with frame bound C. Then C = (| detM |/| detN |)‖g‖2.
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Proof
By Theorem 4.1, we have G(ξ)G∗(ξ) = C| detN |I , and consequently,

(4.11)
∑

m∈(MTd)∩Zd

|ĝ(ξ − M −1m)|2 = C| detN |

for ae ξ ∈ (N t)−1Td. By Lemma 2.2, Td is Zd-congruent to the set⋃
m∈(MTd)∩Zd [M −1Td − M −1m], where the union is a disjoint one. It follows

that

‖g‖2 = ‖ĝ‖2 =
∫

Td

|ĝ(ξ)|2 dξ =
∑

m∈(MTd)∩Zd

∫
M −1Td

|ĝ(ξ − M −1m)|2 dξ,

which together with (4.11) yields

‖g‖2 = C
| detN |

| detM | .

The proof is completed. �

THEOREM 4.3

Let N , M ∈ GL(Zd), and let g, h ∈ l2(Zd) be such that G(g,N,M) and G(h,N,M)
are both Bessel sequences in l2(Zd). Let G(·) be defined as in (2.2), and let H(·)
be defined analogously. Then Sh,g = I on l2(Zd) if and only if

(4.12) G(·)H∗(·) = | detN |I
ae on (N t)−1Td.

Proof
By Lemma 2.3 and (2.4), we have

(Sh,gf)
(̂
ξ − (N t)−1k

)
=

∑
n∈Zd

∑
m∈(MTd)∩Zd

(∫
(Nt)−1Td

(
H∗(ξ′)F (ξ′)

)
m

(4.13)

× e2πi〈Nn,ξ′ 〉 dξ′
)
e−2πi〈Nn,ξ〉(G(ξ)

)
k,m

for f ∈ l2(Zd), k ∈ (N tTd) ∩ Zd, and ae ξ ∈ (N t)−1Td, where F (ξ) = (f̂(ξ −
(N t)−1k))k∈(NtTd)∩Zd . Since all entries of H∗(·) are in L∞((N t)−1Td) by
Remark 4.1, all entries of H∗(·)F (·) are in L2((N t)−1Td). However, {

√
| detN | ×

e−2πi〈Nn,·〉 : n ∈ Zd} is an orthonormal basis for L2((N t)−1Td). So (4.13) can be
rewritten as

(Sh,gf)
(̂
ξ − (N t)−1k

)
= | detN | −1

∑
m∈(MTd)∩Zd

(
H∗(ξ)F (ξ)

)
m

(
G(ξ)

)
k,m

(4.14)
= | detN | −1

(
G(ξ)H∗(ξ)F (ξ)

)
k

for f ∈ l2(Zd), k ∈ (N tTd) ∩ Zd, and ae ξ ∈ (N t)−1Td. It follows that Sh,g = I on
l2(Zd) if and only if

(4.15) G(ξ)H∗(ξ)F (ξ) = | detN | F (ξ)
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for f ∈ l2(Zd) and ae ξ ∈ (N t)−1Td. Obviously, (4.12) implies (4.15). Conversely,
for an arbitrary x ∈ C| detN |, we define f ∈ l2(Zd) by F (ξ) = x for ae ξ ∈ (N t)−1Td.
Then applying (4.15) to such f gives (4.12). The proof is completed. �

THEOREM 4.4

Let N , M ∈ GL(Zd), and let g ∈ l2(Zd) be such that G(g,N,M) is a frame for
l2(Zd). Let G(·) be defined as in (2.2). Define γ0 ∈ l2(Zd) via its Fourier trans-
form by (

γ̂0(· − (N t)−1k)
)
k∈(NtTd)∩Zd

(4.16)
= | detN |

(
G(·)G∗(·)

)−1(
ĝ(· − (N t)−1k)

)
k∈(NtTd)∩Zd

ae on (N t)−1Td. Then

(i) γ0 is the canonical Gabor dual of g, i.e., γ0 = S −1
g,gg;

(ii) ‖γ0‖ ≤ ‖γ‖ for an arbitrary Gabor dual γ of g, and the equality holds if
and only if γ = γ0.

Proof
(i) By Theorem 4.1, there exists 0 < C < ∞ such that(

G(·)G∗(·)
)−1 ≤ C−1| detN | −1I

ae on (N t)−1Td, which together with Lemma 2.2 implies that γ̂0(·) is an essen-
tially bounded measurable function. It follows that γ0 is well defined, and G(γ0,N,M)
is a Bessel sequence in l2(Zd) by Remark 4.1. From (4.14), we have(

(Sg,gf)ˆ(· − (N t)−1k)
)
k∈(NtTd)∩Zd

= | detN | −1G(·)G∗(·)
(
f̂(· − (N t)−1k)

)
k∈(NtTd)∩Zd

for f ∈ l2(Zd) ae on (N t)−1Td. Then taking f = S −1
g,gg leads to(

ĝ(· − (N t)−1k)
)
k∈(NtTd)∩Zd

= | detN | −1G(·)G∗(·)
(
(S −1

g,gg)ˆ(· − (N t)−1k)
)
k∈(NtTd)∩Zd

ae on (N t)−1Td. So γ̂0(· − (N t)−1k) = (S −1
g,gg)ˆ(· − (N t)−1k) for k ∈ (N tTd) ∩ Zd

ae on (N t)−1Td, and consequently, γ0 = S −1
g,gg.

(ii) Since Sγ,g = Sγ0,g = I on l2(Zd), we have

0 = 〈Sγ−γ0,gγ0, γ0〉

=
∑

n∈Zd

∑
m∈(MTd)∩Zd

〈γ0,EM −1mTNn(γ − γ0)〉 〈EM −1mTNng, γ0〉

=
∑

n∈Zd

∑
m∈(MTd)∩Zd

〈EM −1(−m)T−Nnγ0, γ − γ0〉 〈g,EM −1(−m)T−Nnγ0〉(4.17)
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=
∑

n∈Zd

∑
m∈(MTd)∩Zd

〈EM −1(Mm̃−m)TNnγ0, γ − γ0〉

× 〈g,EM −1(Mm̃−m)TNnγ0〉,

where m̃ = (sgn(m0), . . . , sgn(md−1))t, (m0, . . . ,md−1)t denotes the M -coordinate
of m, and sgn(·) denotes the sign function. Note that x ∈ MTd if and only if
its M -coordinate (x0, . . . , xd−1)t satisfies 0 ≤ xi < 1 for i ∈ Nd. It follows that
{Mm̃ − m : m ∈ (MTd) ∩ Zd} = (MTd) ∩ Zd, and consequently, (4.17) can be
rewritten as

0 = 〈g, Sγ0,γ0(γ − γ0)〉 = 〈 Sγ0,γ0g, γ − γ0〉.

However, Sγ0,γ0 = S −1
g,g by [2, Lemma 5.1.5]. So Sγ0,γ0g = S −1

g,gg = γ0, and thus
〈γ0, γ − γ0〉 = 0, which implies that

‖γ‖2 = ‖γ0‖2 + ‖γ − γ0‖2 ≥ ‖γ0‖2,

and the equality holds if and only if γ = γ0. The proof is completed. �

We conclude this section with two classes of examples.

EXAMPLE 4.1

Let N , M ∈ GL(Zd) with Td ∩ (N t)−1Zd ⊂ Td ∩ M −1Zd, and let g ∈ l2(Zd) be
such that supp(ĝ(·)) = (N t)−1Td + Zd. Then we have the following.

(i) G(g,N,M) is complete in l2(Zd).
(ii) When

(4.18) C
√

| detN |χ
(Nt)−1Td+Zd

(·) ≤ |ĝ(·)| ≤ D
√

| detN |χ
(Nt)−1Td+Zd

(·)

ae on Rd for some constants 0 < C ≤ D < ∞, G(g,N,M) is a frame for l2(Zd).
In particular, it is a Riesz basis for l2(Zd) if Td ∩ (N t)−1Zd = Td ∩ M −1Zd in
addition.

(iii) When ĝ(·) =
√

| detN |χ
(Nt)−1Td+Zd

(·) ae on Rd, then G(g,N,M) is a
tight frame for l2(Zd). In particular, it is an orthonormal basis for l2(Zd) if
Td ∩ (N t)−1Zd = Td ∩ M −1Zd in addition.

Proof
Let G(·) be defined as in (2.2). We use the notation in Lemma 2.1. By Zd-
periodicity of ĝ and the argument ahead of Theorem 2.1, we may as well assume
that

G(·) =
(
G0(·),G0(· − ε1), . . . ,G0(· − εL−1)

)
,

where G0(·) = (ĝ(· − m − k))k∈Ω0,m∈Ω0 is a | detN | × | detN | matrix-valued func-
tion. Since −N tΩ0 and N tΩ0 are both full sets of Zd/(N tZd), we can define a
bijection τ : Ω0 → Ω0 by N tτ(k) + N tk ∈ N tZd, that is, τ(k) + k ∈ Zd. Then we
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claim that

(4.19) ĝ(· − m − k)

{
�= 0 if m = τ(k),

= 0 if m �= τ(k),

ae on (N t)−1Td for k, m ∈ Ω0. Indeed, given arbitrarily k,m ∈ Ω0. If m = τ(k),
then ĝ(· − m − k) = ĝ(·) �= 0 ae on (N t)−1Td. If m �= τ(k), then m+k ∈ Ω0\{0} +
Zd. Also observing that (N t)−1Td ∩ ((N t)−1Td +Ω0\{0} +Zd) = ∅ by Lemma 2.2,
we have ĝ(· − m − k) = 0 ae on (N t)−1Td. So (4.19) holds.

(i) From (4.19), it follows that rank(G0(·)) = | detN | ae on (N t)−1Td, and
thus rank(G(·)) = | detN | ae on (N t)−1Td. By Theorem 2.1, G(g,N,M) is com-
plete in l2(Zd).

(ii) Suppose that (4.18) holds. Note that | detN | = | detM | when Td ∩
(N t)−1Zd = Td ∩ M −1Zd. We only need to prove that G(g,N,M) is a frame
for l2(Zd) by Theorem 3.2. From (4.19), we have C2| detN |I ≤ G0(·)G∗

0(·) ≤
D2| detN |I ae on (N t)−1Td and thus on Rd by Lemma 4.2. Therefore, we have

LC2| detN |I ≤ G(·)G∗(·) =
∑
�∈NL

G0(· − ε�)G∗
0(· − ε�) ≤ LD2| detN |I

ae on Rd, which implies that G(g,N,M) is a frame for l2(Zd) with frame bounds
LC2 and LD2 by Theorem 4.1.

(iii) Suppose ĝ(·) =
√

| detN |χ
(Nt)−1Td+Zd

(·) ae on Rd. Take C = D = 1 in
(ii). Then G(g,N,M) is a tight frame for l2(Zd) by (ii). In particular, when
Td ∩ (N t)−1Zd = Td ∩ M −1Zd, L = 1. Also observing that ‖g‖ = 1 leads to the
fact that G(g,N,M) is an orthonormal basis for l2(Zd). �

REMARK 4.2

Let N ∈ GL(Zd) be a triangular matrix with the ith diagonal element being r,
other diagonal elements being 1, and all elements of the ith row being in rZ, and
let M ∈ GL(Zd) be a triangular matrix with the ith diagonal element being r and
all elements of the ith column being in rZ. Then Td ∩ (N t)−1Zd ⊂ Td ∩ M −1Zd

as required in Example 4.1.

Next we turn to another class of examples, where the Gabor generators g are
finitely supported.

EXAMPLE 4.2

Let r, l1, l2, l3 ∈ Z\ {0} and a, b, c ∈ R. Let N =
(

1 1
1 −1

)
and M = ( 0 1

2r 0 ). Define
g ∈ l2(Z2) by

g

((
0
0

))
= 1, g

((
−1
0

))
= g

((
1
0

))
= a, g

((
2l3 + 1

0

))
= −c,

g

((
−2l1
−2l2

))
= g

((
2l1
2l2

))
= b, g

(
−

(
2l3 + 1

0

))
= c,
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g(j) = 0, j ∈ Z2\
{(

0
0

)
, ±

(
1
0

)
,

(
−2l1
−2l2

)
,

(
2l1
2l2

)
, ±

(
2l3 + 1

0

)}
.

Then

(i) when a �= 0 or c �= 0, G(g,N,M) is complete in l2(Z2);
(ii) when |b| < 1/2 and ac �= 0, G(g,N,M) is a frame for l2(Z2). In particular,

when |r| = 1, G(g,N,M) is a Riesz basis for l2(Z2).

Proof
Let G(·) be defined as in (2.2). It is easy to check that

T2 ∩ (N t)−1Z2 =
{(

0
0

)
,

(
1/2
1/2

)}
,

{(
0
0

)
,

(
1/2
0

)}
⊂ T2 ∩ M −1Z2.

Then, by the argument ahead of Theorem 2.1, we may as well assume that G(·)
have the following form:

G(·) =
(
G0(·),G1(·)

)
,

where

G0(·) =

⎛
⎜⎜⎝

ĝ(·) ĝ

(
· −

(
1/2
0

))

ĝ

(
· −

(
1/2
1/2

))
ĝ

(
· −

(
0

1/2

))
⎞
⎟⎟⎠ .

A simple computation shows

ĝ(ξ) = ĝ

(
ξ −

(
0

1/2

))
= 1 + 2a cos2πξ0 + 2b cos(4l1πξ0 + 4l2πξ1)

+ i2c sin(4l3πξ0 + 2πξ0),

ĝ

(
ξ −

(
1/2
0

))
= ĝ

(
ξ −

(
1/2
1/2

))

= 1 − 2a cos2πξ0 + 2b cos(4l1πξ0 + 4l2πξ1)

− i2c sin(4l3πξ0 + 2πξ0)

for ae ξ =
(

ξ0
ξ1

)
∈ R2. It follows that

det
(
G0(ξ)

)
= 8

(
1 + 2b cos(4l1πξ0 + 4l2πξ1)

)(
a cos2πξ0 + ic sin(4l3πξ0 + 2πξ0)

)
.

(i) When a �= 0 or c �= 0, the set of zeros of det(G0(ξ)) has measure zero.
So rank(G0(·)) = 2, and thus rank(G(·)) = 2 ae on R2. Therefore G(g,N,M) is
complete in l2(Z2) by Theorem 2.1.

(ii) When |b| < 1/2 and ac �= 0, det(G0(·)) �= 0 on R2. Note that det(G0(·))
is a Zd-periodic continuous function. It follows that | det(G0(·))| has a positive
bound from below on R2, which implies that all entries of (G0(·))−1 are essentially
bounded measurable functions. Therefore, by Corollary 4.1, G(g,N,M) is a frame
for l2(Z2). In particular, when |r| = 1, G(g,N,M) is a Riesz basis for l2(Z2) by
Corollary 4.1. �
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Harmon. Anal., Birkhäuser, Boston, 2003.

[3] O. Christensen, B. Deng, and C. Heil, Density of Gabor frames, Appl. Comput.

Harmon. Anal. 7 (1999), 292–304.
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