Uniform large deviations for multivalued
stochastic differential equations
with Poisson jumps

Jing Wu

Abstract Based on a variational representation for functionals of a general Poisson ran-
dom measure plus an independent infinite-dimensional Brownian motion developed by
Budhiraja, Dupuis, and Maroulas, the Freidlin-Wentzell large deviation principle is
established for multivalued stochastic differential equations with Poisson jumps in this
paper.

. Introduction

Consider the following multivalued stochastic differential equation (MSDE) with
Poisson jumps:
dX(t) € (X(t))dt+b(X(t))dt+a(X(t))dW(t)

(1) + Jy V(X (=), y)N(dt, dy),
X(0) =z € D(A),

where A is a multivalued maximal monotone operator (see Definition 2.1) on

R4 b:RY - R4, o :R? — R x 12, [? denotes the usual sequence Hilbert space

and 7:R?% x Y — R? are measurable functions, W is a sequence of independent

standard Brownian motions, N is a Poisson random measure defined on (2, F, P)

with intensity measure v and N (dt, dy) := N(dt, dy) —v(dy) dt is the compensated

measure, N and W are independent, and Y is a locally compact Polish space.
When v =0, (1) becomes the following continuous MSDE:

{dX@)eA(()ﬁﬁ+MX@»dtHﬂX@DMV@L

@ X(0) = 29 € D(A)

which has been studied by Cépa [7]. In the same paper Cépa observed that when
A = 0Ip is the subdifferential operator of the indicator function of a convex
and closed domain D with nonempty interior, (2) is equivalent to the following
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stochastic differential equation with reflecting boundary:

dX(t) = b(X () dt + o (X (1)) dW (t) — dK (¢),
X(O) =29 € D.

After that, there are some works on the properties of solutions to (2) (see, e.g.,
14], [15).

When v # 0, (1) is an MSDE with jumps which has been studied in a previous
work [13]. There we proved the existence of a unique solution in the sense of
Definition 2.3 below, under an additional assumption that D(A) =R9. Later in
[17], we relaxed this additional assumption to (H3) in Section 3. In particular,
by an argument similar to Cépa’s, it is trivial to prove that when A = dIp, where
D is a convex and closed domain with nonempty interior, (1) is equivalent to a
stochastic differential equation (SDE) with reflecting boundary:

dX (£) = b(X (1)) dt + o (X (1)) dW (¢)
(3) + Jy V(X (¢=),y) N (dt, dy) — dE (1),
X(O) =xg € D,

which has been investigated in [12] for the case Y =R™\{0}.

On the other hand, Ren, Xu, and Zhang [15] recently proved the Freidlin-
Wentzell large deviation principle for MSDEs like (2) by using the weak conver-
gence method developed by Dupuis and Ellis [9]. Their idea is based on some
variational representations about the Laplace transform of bounded continuous
functionals of finite- and infinite-dimensional Brownian motions (see [3], [4]),
which leads to the equivalence between the Laplace principle and the large devi-
ation principle. Later in [18], these representations are generalized to abstract
Wiener spaces. In this respect, there exist other works on large deviations for
stochastic equations driven by Brownian motions (see, e.g., [16]).

Compared with the discretization method, the main advantage of the weak
convergence method is that some exponential probability estimates and the dis-
cretization arguments can be avoided. But it had not been applied to diffusion
processes with jumps until recently; a variational representation for functionals of
a Poisson random measure satisfying certain conditions has been obtained in [19]
through a Clark-Ocone formula. More recently, Budhiraja, Dupuis, and Maroulas
[6] have extended the result to bounded measurable functionals of a general Pois-
son random measure plus an independent infinite-dimensional Brownian motion
under weaker conditions. Later, Maroulas [11] put forward a uniform large devi-
ation.

In this paper we want to use the new representation obtained in [6] to estab-
lish a uniform large deviation principle for (1). More precisely, consider the fol-
lowing perturbed equation:

dXe(t) € —A(X(t))dt + b(X (1)) dt + /ea(X(t)) dW (t)
(4) + Jy v (XE(t=),y) (eN< (dt,dy) — v(dy) dt)

X¢(0)=z9€ D(A), €e€(0,1].
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Denote the solution as (X€, K€). Our aim is to establish a uniform large devia-
tion principle for the law of X€¢ in D :=D([0,7T] x D(A); D(A)). Here D([0,T] x
D(A); D(A)) denotes the space of cadlag functions from [0,7] x D(A) to D(A).

To this aim, we consider the corresponding controlled equation

dXete(t) € —A(X" (1)) dt + (XM (L)) dt + o (X% (1)) (t) dt
+Veo (XU (t)) dW (¢)
+ fY ’7(X€7u€ (t_)v y)(d\]eiltp€ (dt7 dy) - V(dy) dt);
XU (0) =x9 € D(A), €€ (0,1],
where u. = (., p.) is defined as in Section 3. Compared with SDEs considered
in [6], the main difficulty lies in proving the tightness of X< in D due to the
existence of the operator A. To overcome this, we switch to another method by
applying the relative entropy and convergence in probability as our tools.

The paper is organized as follows. In Section 2, some notions and notations
about multivalued SDEs and the Laplace principle are presented. We state our
main result and give a detailed proof in Section 3. Finally, applications to SDEs
and SDEs with reflecting boundaries are given in Section 4.

Throughout the paper, ¢ and C with or without indexes are constants whose
values may change from line to line.

2. Preliminaries

First of all, we present some notations on multivalued maximal monotone oper-
ator A. Let R? be the d-dimensional Euclidean space.

DEFINITION 2.1

By a multivalued operator on R?, we mean an operator A from R¢ to 2R" We
set

D(A):={z¢€ RY: A(x) # 0},
Gr(A) == {(z,y) € R*:x e D(A),y € A(z)}.
(1) A multivalued operator A is called monotone if
(1 —y2, w1 —@2) 20, V(21,51), (22,42) € Gr(A).
(2) A monotone operator A is called mazimal monotone if and only if

(z1,11) € Gr(4) & (y1 — Y2, 21 —x2) >0, V(x2,y2) € Gr(A).

We collect here some facts about the maximal monotone operator which we use
in the paper. For more details, we refer the reader to [7].

PROPOSITION 2.2
Let A be a mazimal monotone operator on R%. Then we have the following.

(i) Int(D(A)) and D(A) are convexr subsets of R%, and Int(D(A)) =

Int(D(A)).
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(ii) For each = € D(A), A(x) is a closed and conver subset of R?. Let
A°(x) 1= proj4(;)(0) be the minimal section of A, where projp is designated
as the projection on every closed and convex subset D on R% and projy(0) = co.
Then

x € D(A) & |A°(x)] < +o0.
Now we give the definition and some properties of solutions to (2).

DEFINITION 2.3
A pair of processes (X,K) is called a strong solution of (1) if X, K are
(Fi)-adapted processes satisfying

(1) X is cadlag, X =9, and X (t) € D(A) for every t > 0;
(ii) K is continuous, Ko = 0, and the total variation |K | < oo almost surely
for any 0 < T < o0;
(ii)) X (1) =0+ fy (X () ds+ [y o(X(5)dW (s) + fy [y 7(X (s=),y)N(ds,
dy) — K(t), 0 <t < oo, almost surely;
(iv) for any cadlag and (F;)-adapted functions (a, ) with
(a(t),B(1)) € Gr(A), Vte[0,400),

the measure (X (t) — a(t),dK (t) — B(t) dt) > 0 almost surely.

The two lemmas below are on the solutions. For the proofs, we refer the reader
to [7].

LEMMA 2.4
Let (X, K) and (X', K') be two pairs of processes satisfying (i), (i), and (iv) of
the above definition. Then

(X(t)— X'(t),dK(t) — dK'(t)) > 0.

LEMMA 2.5
Suppose that Int(D(A)) # 0. Then there exists an a € R and r >0, >0 such
that for any pair (X, K) satisfying Definition 2.3,

[ 6 = a k@) 21K~ [ 1X0) = aldo e - ),

where |K|{ denotes the total variation of K on [s,t].

Now we recall some notations and results on the large deviation principle from
[6]. Let Y be a locally compact Polish space, and denote by M g(Y) the space of
Radon measures on it. Endow M g(Y) with the weakest topology such that for
every fe€C.(Y),

Mp(Y)3 v — / F(w)(dy)
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is continuous. This topology can be metricized so that Mpg(Y) is a Polish space
and convergence in the metric is equivalent to weak convergence on each compact
subset of Y (see [8, Chapter VIII]).

Fix 0<T < o0. Let Yp:=[0,T] x Y, and let Y5° := Y7 x [0,00). Note that
R*> endowed with the topology of coordinate-wise convergence is a Polish space.
Denote by W the Polish space C([0,T];R*>°), and let V:=W x Mgr(Yr) and
Vi=W x Mg(Y$).

Define canonical maps N :V — Mpz(Yr) and 5;: V—W as

N(w,m)([0,¢] x A) :==m([0,t] x A), 0<t<T, AeB(Y)
Bi(w,m) :=w;, i>1.
Let 3:=(53;)$2,. Similarly, we can define maps N : V — Mpz(Y5) and 3 on V.
Fix v € Mg(Y). Define G, := oc{N([0,s] x A),B:(s);0<s<t,Ae B(Y)}.

For 6 > 0, denote by Py the unique probability measure on (V,B(V)) under
which

(1) (B:)$2, is a family of standard Brownian motions;

(2) N is a Poisson random measure with intensity measure v, where vy =
Ar @ v, Ar is the Lebesgue measure on [0,77;

(3) for every i > 1 and A € B(Y), {5;} and {N([0,t] x A)} are independent
of each other.

Define (P,{G;}) on (V,B(V)) analogously by replacing (N,0v7) with (N,vr),
where Ip = A\p @ ¥ X A and where A, is the Lebesgue measure on [0,00). Let
F; be the P-completion of G;.

Let P be the predictable o-field on [0, T] x V with respect to {F;,0 <t < T},
and

—_ — T —
A= {v = W)z e P\B(R),/ [46()]% ds < o0 almost surely P},
0

Ay :={p:Yr xV—[0,00); ¢ €P@B(Y)\B[0,00)},

Z/{SZ./le ><./Zl2.

DEFINITION 2.6
For ¢ € Ay, define a counting process N¥ on Yp: for t <T, A€ B(Y),

N‘”([O,t] X A) = / / ]1[0#,(84/)] (T)N(ds,dy,dr).
0,6]x A J (0,00)

N¥ is called a controlled random measure, with ¢ selecting the intensity measure
for the points at location y and time s.

Before proceeding further, we give the definition and a property of relative
entropy (see [3]).
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DEFINITION 2.7

Let (2, F) be a measurable space, and let P(§2) be the set of probability measures
defined on it. For 6 € P(Q2), the relative entropy function R(-||#) is the mapping
from P(2) given by

dp
Rip6) = [ (108 55 ) (),
whenever < 6 and log 2—5 is pu-integrable. Otherwise, set R(u||6) = oo.

PROPOSITION 2.8

Let (2, F) be a measurable space with Q a Polish space and F the corresponding
Borel o-field. Let 6 be a probability measure defined on it, and let f:Q — R
be a bounded Borel measurable function. Suppose that {u,} is a sequence of
probability measures in P(Q) satisfying that sup,,cy R(1nl|0) < a < oo and py,
converges weakly to a probability measure p. Then

lim | fdu,= / fdu.
Q Q

n—oo

Now for u= (v,¢) €U, define
1 T
Lr(w)i= Lp(0) + Lair(o), Lrr(w)i=g [ 10l ds

Lair(g) = [ (p(s,)logol,0) = plovn) + vldy) ds
For M € N, define
S1 = {g € L*([0,T];1%); L1,r(g) < M}
Soar = {h: Y —[0,00); Ly (h) < M}.
Let Sy := 51, m % S2,0 be endowed with the product topology, let S := UM21 S,

and let Uy :={u €U : u(w) € Spr, P-almost everywhere}.

REMARK 2.9

S1,m endowed with the weak topology is a Polish space. Every h € S3 pr can be
identified with a measure v € Mg (Yr) defined by

Vh(B) = / W(s,y)vr(ds,dy), B eB(Yr).
B

Since convergence in the metric of Mg (Yr) is equivalent to weak convergence
on each compact subset of Y7, {vf:,h € So as} is a compact subset of Mg(Y7),
and with this identification Sy s is compact.

Proof of Proposition 2.8
Since L2([0,T];1?) is reflexive and since any unit closed ball in a reflexive space
is compact, Sq, s is compact.
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For h,, € S2 pr, we have

v ([0,T] x Y) :/ hyv(dy)ds < M.
Yr
By [8, Theorem VIIL5], {v:v(Yr) < C} is compact. Therefore there exists a
subsequence (still denoted by n) such that vt % 1 and p(Yr) < M. Moreover,
v (Yr) — p(Yr). Hence there exists a subsequence ny such that

1
0< SulYr) < Vb (Yr) < M.
Set

h’!L
ap, — V' (dsdy) qp .= dy)ds 40 — p(ds, dy)

v ([0,T) x Y) (0,7 x YY) w0, 1] x )’
Then P,, P, and @ are probability measures on [0,7] x Y and
sup R(P,, | )

dP
= [1og & gp
/Ogdpd"k

1 o,
= /(log by, +logur (Yr) —loguy™ (Y1) hy, v(dy) ds
vy (Yr)

<C(M) < 0.

By Proposition 2.8, for any bounded measurable function f,

[rar.~ [ tda

which implies that P,, — @, and furthermore that V;"k — p. Moreover, for each

k, 1/;’“ is absolutely continuous with respect to vp. Therefore by [10, Theorem
8.24],

-
dvp * | dn

hn = ’
k dVT dl/T

vp-a.e.

Set h:= d(i—“T. Since g(z):=xlogxz —x + 1 is continuous, by Fatou’s lemma,

/ g(h)v(dy)ds :/ 1irrlng(hn)u(dy) ds < lirrln/ g(hp)v(dy)ds < M,
Yr Yr Yr

thus h € S5 a7, and the proof is complete. O
The following two lemmas are taken from [6], and we give a detailed proof here.

LEMMA 2.10
Let {T',} be an increasing sequence of compact subsets of Y such that Y =
Ur_ Ty. Let Aoy =, A;b, where

n=1

- -1
Az p = {g@ €Ay - <o(t,y)<n foryely and p=1 otherwise}.
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Let p € flg,b. Then

Xp{/ log p(s,y) N2 (ds, dy)
[0,£] x

+/Ot (logp(s,y) — (s, y) + 1)v(dy) ds}

IxY

exp [ log (s, y) N (ds, dy, dr)
[0,¢]xY x[0,1]

+/ (—¢(s,y) + l)DT(ds,dy,dr)}
[0,t]xYx[0,1]

is an {F;}-martingale. Here N} (ds,dy) := N*(ds,dy) —v(dy)ds, and N* is defined
as in Definition 2.6. Define a new probability measure Q¥ by

Q*(B) = /B Er(0)dP, BeB(Map(YF)).

Then for any (P ® B(Y*®)\B(R)) measurable function ¥ mapping Y x
Mg(YF) — R such that 9 is bounded and for some compact subset A CY X
[0,00), ¥(t,y,r) =0 when (y,r) € A°,

E?° /19 (s,y,7)N(ds,dy,dr)

= E9° /19(8,%7")[90(879)]1(0,1] (1) + 11,00y (M)]r (ds, dy, dr).

N is thus a random counting measure under Q¥ with compensator [¢lo,17(7) +

I (1,00 (r)]or(ds,dy, dr).

Proof
By applying Itd’s formula we get

—1+/ /5 )(log o(s,y) — (s, y) + 1)v(dy) ds
/ /8 ) (exp (log p(s—,y)) — 1) N2 (ds, dy)
/ /5 (exp (log p(s,y)) — 1 — logp(s,y)) v(dy) ds

=1+/0 /Yﬁsf(w)(so(sﬁy)—1)N§(d8,dy)-

Note that ¢ is positive and bounded. It then follows from [1, Chapter 5] that &

isa martingale
Now let Z(t) := [J(s,y,r)(N(ds,dy,dr) — vr(ds,dy,dr)). Then Z is a mar-
tingale under P as Well By Girsanov-Meyer’s theorem,

/e ) LA(Z,E(9))(5)
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is a @¥-martingale. Hence by (5),
B9 (2 EQ“"/ £ (0) d(Z,E(0))(s)
= EQ% /ﬂ(S,y,T) (@(S,y) - 1)]1(0,1] (T)DT(d57dyadr)'

Therefore

EQ° /19 s,y,7)N(ds,dy,dr)
=EY /19(8,2177") (¢(s,y) — 1)o,1(r)r(ds, dy, dr)
+E/19(s,y,r)ﬁT(ds,dy,dr)
=B [ 9(6,.7) (53001 (7) + Loy () (s ).
Analogously, we can prove the following.

LEMMA 2.11
Let u:= (¢, ) €U such that ¢ € Aoy, and ¢ € Ay =, ./Zl’f’b, where

Al = {v € Ar: ¢l <n}.
Set E(u) :=E(@)E(V), 0 <t <T, where &(p) is the same as above and

<o ot 1/t 5
0=l S [ 0080 3 [ vk}
Then &E(u) is an {F;}-martingale. Define a probability measure Q* by
Q"(B) = / Er(u)dP, BeB(V).
B

Then for any bounded (P ® B(Y*®)\B(R)) measurable function ¥ for 9(t,y,r) =0

when (y,r) is not in some compact subset A,

B [ 005,910V (ds. dy. )

=B /ﬁ(s,y,r) (e(s: 90,11 (r) + L100) () P (ds, dy, dr),

and {B;(t) fo ¥;i(s)ds,0 <t <T} is a sequence of standard Brownian motions
under the pmbabzlzty Qv.

Now we are in a proposition to present the Laplace principle taken from [6] and
[11]. Let D and Dy be Polish spaces. Suppose that {X*} is a family of random
variables taking values in D.
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DEFINITION 2.12

A function I from D to [0,00] is called a good rate function if for every N < oo,
{feD:I(f) <N} is a compact subset of D. A family of rate functions I, on D
parameterized by z € Dy is said to have compact level sets on compacts if for all
compact subsets K C Dy and for each N < 0o, An i :=U,cx {f €D: L(f) <N}
is a compact subset of D.

REMARK 2.13
A function having compact level set is automatically lower semicontinuous. Thus

for any fixed x € Dy, I,(f) is a lower semicontinuous function of f (see [9, Chap-
ter 1]).

DEFINITION 2.14 (UNIFORM LAPLACE PRINCIPLE)

Let I, be a family of rate functions on D and assume that it has compact level
sets on compacts. The family {X*} is said to satisfy the Laplace principle on D
with rate function I, uniformly on compacts, if for all compact subsets K C Dy
and all bounded continuous functions F mapping D into R,

lim sup |elog E, (exp{—%F(X””)}) + }relﬂf){F(f) —&-Im(f)}‘ =0.

—0gzek

Suppose that G is a measurable map from Dy x V — DD and that there exists a
measurable map G°: Dy x V— D such that

(C1) for every M €N, if a family {u. := (e, ve),€ € (0,1)} C Ups converges
in distribution to w:= (¢, ) € Upr and Dy >z — = € Dy as € — 0, then

Ge (xe,\/zﬂ+/0'¢e(s) ds,eNE“%) = g0 (x,/o'z,z;(s) ds,ugi);

(C2) for every M € N and compact subset K C Dy,

{g0<x,/0.g(s)ds,y¥)7x€K, (g,h) ES’M}

is a compact subset of D.

The following result is from [11, Theorem 4.4] (see also [6, Theorem 4.2]).

THEOREM 2.15
Let X% := G(x,+/€0, eNefl), and let (C1)—(C2) hold. For x €Dy and f €D,
define

L{f)= g)+ Lor(h
) {(g,h)€S: f= gﬂ(rjog( )dsuT)}{ 1r(g 2,r(h)}.

Suppose that x — I, defined above is a lower semicontinuous function from Dy
0 [0,00]. Then I, is a rate function having compact level sets on compacts.
Furthermore, {X% e € (0,1)} satisfies the uniform Laplace principle in D with
rate function I,. Moreover, X% satisfies a uniform large deviation principle;
that is, if we denote the law of X by pe, then for any B € B(D) and any
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compact subset K C Dy, x € K,

— inf I.(f) <liminfelog u.(B) <limsupelog u.(B) < — inf I.(f).
feBe e—0 e—0 feB

3. Main result and the proof

We restrict our discussion on the finite interval [0,7T]. Throughout this paper we
assume that the following conditions hold:

(H1) D(A) has nonempty interior;

(H2) b, o, and v are bounded, and for any 1,2, € R?, Vy €Y,

b(z1) — b(w2)| + [0 (1) — o (2) iz + [V (@1, y) — V(22,9)| < Cilwr — a2f;

(H3) for every x € D(A), z +~y(z,y) € D(A), Yy € Y;

(H4) for some compact subset I' C Y, y(x,y) =0 for all (z,y) € R? x I'®.

Consider the following perturbed equation of (1):

dXe(t) e —A(X(t))dt +b(X(t)) dt + /ea (X(t)) dW (¥)
(6) + [ V(XE(t=),y) (N (dt, dy) — v(dy) dt)
X¢(0)=xz9€ D(A), €€ (0,1].

As we have proved in [13], under (H1)-(H4), (6) has a unique solution.
Denote the solution by (X€(-,z0), K¢(-,20)). Moreover, it follows from the classi-
cal Yamada-Watanabe theorem that there exists a measurable function G¢ such
that
(7) X(-,0) = G (w0, VEW, eN* ).

Our main result is the following theorem.

THEOREM 3.1
Under (H1)—(H4), the solution {X(t,z0),e € (0,1],t € [0,T]} to (6) satisfies the
uniform large deviation principle with rate function I, defined by

(8) L, (f) = (ghlggf X}{ 17(9) + Lar(h) },

where (X4, K1) solves
dX9(t) e —A(X(t))dt + b(X9(t))dt + o(X9(t))g(t) dt

9) + [y v(X9(@t),y)(h(t,y) — v (dy) dt
X9(0) = 0.

NOTE
Throughout this section, D =D([0,T] x D(A); D(A)), Dy = D(A).

By Theorem 2.15, to prove the theorem, we need to verify (C1) and (C2), which
is approached through a few propositions and lemmas.
For u. = (1, pe) € U, consider the following controlled equation:
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dX U (t) € —A(X U (8)) dt + b(X U (t)) dt + o (X% () )ahe (t) dt
+Vea (XS4 (t)) dW (t)
+ fyy(Xeue (t=),y)(eN< ¥« (dt,dy) — v(dy) dt)
Xoue(0)=x9€ D(A4), e€(0,1].

(10)

By Girsanov’s theorem (see Lemma 2.11), it admits a unique solution. We denote
the solution as (X% (-, xq), K% (-, 20)).

PROPOSITION 3.2

Let (XY (- 1), KO" (-, 21)), and let (X% (-, x2), K" (-, 22)) be the solutions
of (10) with initial values x1 and xo, respectively. Then for any e € (0,1) and
p > 1, there exists a constant C' such that

Esup | X" (t,m;) — Xt (t,mg)\zfg <Clz — :172|2p.
t<T

Proof
Denote
Z€Me(t) := XM (t,mq) — XU (8, 22)
A(t) U(XG’“€ (t,xl)) — U(XE’"E (t,a:g))
R(t) := 'y(XE’“‘ (t, 1), y) - 'y(XE’uﬁ (t,xg),y).
By Itd’s formula, (H2), (H4), and Lemma 2.4, for p > 2,
Zo )P

= |71 — 2a|P

+p /O e ()2 2 (), (X (3, 0)) — b(XE (s,23)) )
ep [ 129 E 6 A ) ds

Ve [ 1200 (P22 (9,46 W 5)

e [ [ 1200 P2 (9, R 6 )~ Dt s
- e ()P (5), A s, ) — A (5, 2)

+pe/0 |2 ()P (IAS)? + (0 = D(Z" (5), As) A" () 2" (s))

J|Ze(s)P) ds

+ [ [z s+ Ry = 120 () p)
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X (N "% (ds, dy) — Lo (s, y)v(dy) ds)
/ / (1250 (5—) + eR(s— [P — |25 (s—) P
— plZe () [P 26 (5-), eR(5—)) )L pel,y)(dy) ds

t t
<oy —mafP +C / |25 (s)|P ds + p / 1250 () P [[be(s) 12 dis
0 0

+p/0 /FIZe,us(s)lpwe(s,y)v(dy)ds+|]1(t)\+‘[2(t)|+|v(t)|7

where

) = [ 1250 )2 (), A W ()

// (125 (=) + eR(s )| = 2% (s-)I")

N¢ 95 (ds, dy) — ¢ i (s,y)v(dy) ds)

// (129 (s=) + eR(s=)|P — [ 2" (s—)|P

— |z (s=) P22 (s-), eR(s—) ) e o5, y)v(dy) ds.

Using Taylor’s expansion and (H2), we obtain

/ [0z )+ ey = 2 (o)

= |2 (s=)|PT2(Z9 (5), €R(s—)) ) e~ pe(s,y)w(dy) ds

<Gy /0 /|€R |ZE ue (s —)|p72+\GR(S—)|p72)€71gpe(s,y)y(dy) ds

<Cpe / [ 1z sl ety ds.

Thus we have

t t
|25 ()P < a1 — al? +C / 1250 ()P ds + p / 1250 () Pl (5) = dis
0 0
(11) t
e / / 125 () Pioe (s, ) (dy) ds + 1T ()] + 1 Fa0)]

Since u, is Sys-valued,

T T
(12) / [be(s)]|7 ds < 2M, / / we(s,y)v(dy)ds < M, almost surely.
0 o Jr

Applying Gronwall’s lemma to (11) yields

sup| 7" (5)|? < e (| — wa? + sup| 1 (5)] + sup|(s)] ),
s<t s<t s<t
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which furthermore leads to

(13)  suplZe () < C(Jor — wal + supl i (s) 2 + sup| o(s) ).
s<t s<t s<t

By Doob’s maximal inequality, Jensen’s inequality, (H2), and (12),
Esup|I(s)]* < 4E|L(t)|?
s<t

t t
< CpeE | sup|Z©te (r)|?P ds < Cpe Esup\ZE ue (r)|?P ds.

0 r<s r<s

Similarly by Taylor’s expansion and Doob’s maximal inequality,

Esup|I(s)|?
s<t

<OF [ (755 +eRlsm)p = 1254 (6P s
<OF [ IRt (2% (P~ R~ e oot s

< ceE(supwfv“e(s)Fp / [ edspman i)

s<t

< CMeE(sup|ZE’“E (5)|2p).

s<t
Substituting the two estimates in (13), we get
Esup|Z<(s)[*
s<t

< (jar —wa +Esgpul<s>\2 +Esgpuz<s>\2)
s<t s<t

< C(|x1 — 29| 4 € Ebup|ZE ey )|2pds) + C'MeE(sup|Z€’“€(s)|2p).

r<s s<t

Hence for € < 2CJV[’

t
Esup|Z©"<(s)|?F < C’<|3:1 — x| 4 € Ebup|Z€ te(p )|2pds>.
s<t r<s

Using Gronwall’s lemma again we obtain
Esup|Z&"(t)|?’ < Clxy — 22]*?, p>2.
t<T
Now the proof is completed using Holder’s inequality for the case 1 <p<2. O
PROPOSITION 3.3

For xg € D(A), denote by (X" (t,x¢), K" (t,x0)) the solution (10) with the
initial value xo. Then under the assumptions, there exists a constant C' = C(T,
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M, xq) such that for any p>1,
Bsup| X< (6, 20)|? + BIK (-, z0)|§ < C.

t<T

Proof

In the proof of Proposition 3.2 we have actually proved

(14) E_‘Supl)(ﬁuE (t7x0)|2p SC(p,$0,M,T)~
t<T

Let a be the same as in Lemma 2.5. We get by 1td’s formula and (H2),
| Xt (t, 20) — af?

=|zo —al’ + 2/Ot<X€’“€(s,ac0) —a,b(X“"(s,20))) ds

+2 /0 (X5 (5,00) — a1, (XE (5,00) )6 5)) ds

+2v/e /0 (X (5,0) — a, (X5 (5,0)) AW ()

b0 o) = 2 (X (,20).) b)) )

+ t J (e (s za) )P + 2 (5m0) = (X7 (s=0).9)

X (N (ds,dy) — o (s, y)v(dy) ds)

) /O (X (s, 20) — a, dK“ (5, 20))

+€/OtHU(X€’“€(S,fCo))H122 dS+G/OtAIW(XE’“‘(S—7wo),y)\2%(873/)”(612/) ds
<l|ao —af? + 0(1 + /Ot | XEte (5, 29) — a|2) ds

V[0 o) — .0 (X o)) AW ()

[ [ e 20 o)~ al) () ) )

t
- 2/ (X% (s,20) — a,dK " (s,20)).
0

Note that by Lemma 2.5,

T
2/ (X% (s,20) — a,dK“"(s,xq))
0

> 27| Kt

T
T u/ | X (s,20) — alds — yuT,
0
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which together with (14) gives the desired result. O

Now consider the deterministic equation

X“(t,xo):xo+/ b(X"(s,20)) ds—l—/o o(X"(s,x0))p(s)ds

/ / (s,20),y) (¢(s,y) — 1)v(dy)ds — K*(t, o).

Note that it can be solved uniquely (see [2]). Suppose that (X“(¢,x), K*(t,x0))
is the solution.

(15)

LEMMA 3.4

Let ue = (Ye, 0c),u = (¥, p) €Upr such that as € — 0, ue =5 u as random vari-
ables in Sys. Denote

() ;z/'a(x (5,20)) (e(s) — 1(s)) ds

Ve (t // “(s,20),y) (e(s,9) — @(s,y))v(dy) ds.

Then there exists a subsequence (still denoted by {€} ) such that sup, <7 [v1 ()| —

0 and sup;<p [v2,(t)] =50 as € — 0.

Proof

(1) sup;<p v1,(t)] == 0 obviously follows from Ascoli-Arzela’s theorem (see
also [4, Lemma 3.2]).

(2) To prove sup;<r |v2 (t)] 2%, 0, we first prove that for any ¢ € [0,77,

(16) / / (5:20),y) (9e(s,y) — ¢(s,y))v(dy) ds == 0.

By the topology endowed to Ss ar, ¢ — ¢ if and only if for any compact subset
K CY and any bounded continuous function f, as € — 0,

//fyTﬁ (ds,dy) //fI/T (ds, dy) //f v(dy) ds — 0.

We divide the proof of (16) into two cases.
(i) If fOT Jre(s,y)v(dy)ds =0, then ¢ =0, v(dy) x ds almost surely. In
this case, (16) can be written as

(18) // “(s,z0), )<p€(s,y)1/(dy)ds—>0.

Since + is measurable and bounded, denote the bound by Cy. By (17), we have
as € — 0,

’// “(s,20),y) we(s,y)v(dy) ds

<Co/ /soe s, y)v(dy)ds — 0,
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and (18) follows.
(i) If fOT Jre(s,y)v(dy)ds >0, by taking f =1 in (17), we have as e — 0,

T
(19) vg([0.T] x T) — ([0, T] x T) = / / (e(s,) — o(s,9))(dy) ds — 0.

Thus for € small enough,

(20) O<%uﬁ([0,T] xT') <v2([0,T] xT) < M.
Set
_pev(dy)ds _pv(dy)ds _wv(dy)ds
=T T o< YT ao )

Then pi, p, and 6 are all probability measures on [0,7] x T'. Moreover, . con-
verges to p weakly by (17) and (19)—(20). On the other hand, since ¢, € S,

R(pc]0) = / tog (% ) .

1
= (0.7]x D)

x / oe(1og pe +1ogvr((0,T] x T) — log v ([0,T] x T))w(dy) ds

< C(M) < oo,
where C does not depend on e. That is to say, sup, R(u.||¢) < co. Therefore by

Proposition 2.8,
/ v dpe — / vdu,

1 1
W/’Y%V(dy) ds — W/’W’/(dy)d&

Using (19) and (20) again, we get
/ Ypev(dy) ds — / vev(dy) ds.

that is,

Hence we get (16).
Now we turn to prove that sup,<r|vac(t)| — 0. Recall that 0(ds,dy) =

7}};(%31/%#:” is a probability measure on [0,7] x I and that for g(z) := xlogz —
21,
_g(x) 0
lim 2% = B (glou(sy) < — 0 .
a0 @ - sup B glelsw) < o <

Thus {p.} is uniformly integrable with respect to 6, leading to the fact that the
indefinite integration of {¢.} with respect to v(dy)ds is uniformly bounded and
uniformly absolutely continuous. Note that « is bounded. Thus {v(X"“(s,zo),
Y)(e(s,y) — @(s,y))} is uniformly integrable with respect to v(dy)ds as well;
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whence we can deduce that {vs } is uniformly bounded and equicontinuous on
[0,T]. Therefore sup,<r |v2(t)] — 0 follows from Ascoli-Arzela’s theorem and
the above arguments. |

PROPOSITION 3.5

Let xe,x0 € D(A) such that x. — xg, uc = (Y, ¢°) — u:= (¥, @) almost surely
as random variables in Spy. Let (X% (-, xc), K" (-, x.)) solve (10) with initial
value z¢, and let (X“(xg), K"(xo)) solve (15) with x¢ being the initial value.
Then X% (x,) Ei X"(xg).

Proof )

(1) First, we prove X< (¢,xq) Eil X¥(t,xg).

Denote we(s,xg) := X% (s,x9) — X*(s,20). By Ito’s formula, (H2), and
(H4), we have

| XU (t,20) — Xt 20) |

=2 [ el m0) X 5,0)) = b (5 0)) ) s
#2 [ o) (X (500) = (X520
2 [ oo, 0),0 (X 20) (c(5) 0050 s
+2\/E/Ot<w6(s,x0),o(X€’“€(s,mo))dW(s)>

+2/0 <we(8ax0>7A(V(X€7u€(svxo)’y> _7<Xu(8’x0)’y))>
X (pe(s,y) — 1)v(dy) ds

2 [ (s [ (00 (5.00).9) ) (2elovn) = o)l ds

+/(; A[€|7(X6’ug(s_ax0)7y)‘2+2<w€(5_7m0)77(X67u€(3_7x0)ay)>}
x(eNEfl‘Pf — (s, y)v(dy) ds) - 2/0 (we(s,mg), dK " (s,20) — dK"(s,20))
+6/0 HO’(XE’UE(S,xo))H;dS

b [ e sma0).) Feds iy ds

t t
gc/ |w€(s,aso)|2ds+0/ lwe (s, 20) [l (s) |12 ds
0 0
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+O/0 \we(s,x0)|2/r(<p€(s,y)—l)y(dy)ds

+ @O+ [J2(8)] + [J3(£)] + [Ja(D)]

t
+e/ HO’(XE’UE(&xo))HZQZdS
0
¢ 2
+e/ /{W(XG’“ﬁ(s—,xo),yH Pe(s,y)v(dy) ds
o Jr
t t
SCe—i—C/ \we(s,x0)|2ds+0/ |w€(s,x0)\2||1/}6(s)\|lzds
0 0

+c/0 \we<s,xo>|2/rwe<s7z>u<dy>ds+|J1<t>|+|J2<t>|+|J3<t>|+|J4<t>\7

where

Ji(t) == 2/0 (we(s,20), dv1 e(s))
Jo(t) := 2\/2/0 (we(s,20),0(X"(s,20)) dW(s))
Js(t) == 2/0 (we(s,20), dva e(s))

Jal) = /0 /F [e[y(xe (s w0). ) [

+ 2<u}€(s—7 xo),v(Xe’“ﬁ (s—,xg), y)>] (eNEfl“” — (s, y)v(dy) ds).

Notice that fOT |1be ()| ds < 2M, fOT Jy ©e(s,y)v(dy) ds < M almost surely. By
Gronwall’s lemma, we get

sup | XU (s, 20) — X“(s,20)|?
s<t

<M (Ce+ sup |J1(t)| 4+ sup |J2(t)| + sup |J5(¢)| + sup |J4(t)|>.
s<t s<t s<t s<t

By (H2), BDG’s inequality, and Young’s inequality,

B{sup 2001) < OV [t oo o )

ot 1/2 1
< cﬁE(/ wels, zo) P ds) " < Ceot 2 (sup (s, o))
0 4

s<t

Similarly by Burkholder’s inequality, we get

_ _/ [t 1/2
Bsup|Ji(s)] < CM? 4+ OVeE( [ funls—,a) [ ouls,y)vidy) ds)
0 T

s<t

1 -
< CMe? + CMe+ ZEsup|w6(s7x0)|2.

s<t
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Thus
(21) Esup |w6(s,x0)\2 < C(e + Esup|Ji(s)| + Esup |J3(s)|).
s<t s<t

s<t

By Ito’s formula,

(we(t,0), v1,6(t))

_ / o1.e(8) du. (s, 0) — / we(5,20) dvn o(5)

:/ vlye(s)(b(XE’“ﬁ(s,xo))fb(X"(s,xO))) dsf/ we(s,x0) dvy ()
0 0
n / 01,6(3) (0 (X (5, 20) e (5) — o (X (5, 20))b(5)) dis
+\/_/ v1,e(8)o (X% (s,20)) AW (s)
- / 01.e() (K (s,20) — dK™ (5, 20))

/ /1115 X““(s xo), )(goe(s,y)—l)
Y(X¥(s,20),y) (o(s,9) — 1) v(dy) ds

+ /O /Y V(5= )7 (X5 (5=, 20), ) (N ¥ — oo (s,y)v(dy) ds)

Lilt) = 35:0)

i
Mm

1
By (14), for any 6 > 0,

15( up| (we (¢, o), v1.c (£))| > 5)

t<T

.
Il

= P (sup|(we(t,0), v1.c(£))] > 8, supsuplw (t,z0) | < )
t<T e t<T

+ P(sup|(w6(t,x0),vl,e(t)ﬂ > 4, sup sup|we (¢, zo)| > N)
t<T e t<T

_ s _
< P(Sup|vl,€(t)| > —) + P(supsup\we(t,xoﬂ > N).
t<T N € t<T

Let € — 0, and then let N — oo. By Proposition 3.3 and Lemma 3.4,

p(fgy<we(t,$0),'01,e(t)>| > 5) — 0.

Analogously by (H2),

sup|L;(t)| — 0, in probability, i=1,2.
t<T
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By Proposition 3.3 and Lemma 3.4,

sup Ly (t) < suploy o (£)|(| K" |3 + [K*[3) — 0
t<T t<T

Moreover, using Doob’s martingale inequality and Lemma 3.4 again, we get

E(sup|L3(t)|> < Ce, E(§2¥|L6(t)\) < Ce.

t<T
As to Ls,

/ /vle Xéue(s xo)vy)((:OE(Svy)il)
—(X“(s,w0),y) (¢(s,y) — 1) |v(dy) ds

/ /<v1 . X6 e (s,x0), y) —W(X“(s,xo),y»(goe(s,y) — 1)V(dy) ds

/ /vle (s,20),y) (@e(s,9) — @(s,y))v(dy) ds.

Thus for any § > 0,

P (suplzs (1) > )
<p( / ! / [01,6(5) |we s, 20) | (e, ) + 1) v(dy) ds > %)
+p(/OT/F [01,(5)|(c(5,) + 0(s,y))v(dy) ds > %)
~r(/ : J 10160l () + )l s> 5o suplo(t,z)] < )
P[] oncs) e, (o) + 1)t

g
C(t >N
> 5o Suple(t,0) = N)

+p(/0 /F‘U176(5)|(90€(57y)JrQD(s,y))y(dy) ds > %)

SP(/OT/FU1,5(3)|(906(57y)+1)V(dy)d5> QCiN)

_ _ 5
>
+ P(flglnge(t,xo)l > N) + P(fgg\vl ()] > 4CM)

With Proposition 3.3 and Lemma 3.4, we have

llmP(sgg\L5( )| > 5) =
¢
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Summing up all these inequalities gives
(22) sup|Jy (¢ )|725up| we(t, o), vy (t |+SupZ|L |’»O.
t<T t<T

In the same way, we can prove that

(23) sup|J5(t)| — 0 in probability.
t<T
Note that by Proposition 3.3,
(24) supE(sup|J1(t)|2> < 00, supE(sup|J3( )| ) < 00.
e t<T t<T

Therefore combining (22)—(24) gives
E(sup (|5 (0)] +15(8)]) ) = 0.
t<T
Substituting this estimate in (21), we get

E(sup|Xﬁ’“‘ (t,x0) — X“(t,xo)\Q) < Ce.
t<T

(2) By Chebyshev’s inequality and Proposition 3.2, for any ¢ > 0,
P(Sup|X€’“f (t,xe) — X (t,z0)| > 6)

t<T
]- €,U u 2
<= (sup|X’ “(t,ze) — X" (t, @o)] )
0 t<T
1 =
< B (sup (X7 () = X (,20) X7 (0,20) = X1, 20)]%))
t
<leo 2
<5 (|Jxe —20]°+€) — 0, ase—0,

and we complete the proof. O

Proof of Theorem 3.1.
Define G : Dy x V—D as
X4(-,x) if (w,m) = ([ 9(s)ds,v}) eV
GOz, w,m) := and q=(g,h) € S,
0 otherwise.

Suppose that u.,u € Up; and ue — u in distribution. For the solution X" to
(10) with the initial value ., like (7), it has a representation

XE“‘—QE(xe,\fW /we )ds,eN© %)

Since Sy is compact, the law of (ue, W, N) is tight. By Prohorov’s theorem, there
exists a subsequence the law of which converges weakly to, say u. By Skorohod’s
representation theorem, there exists another probability space (Q',F’, P') and
(ul,W!,N!) and (uv',W’,N’) on it satisfying the following:
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(1) (ul,W!,N!) has the same law as (u., W, N);
(2) the law of (uv/, W' N') is u;
(3) (ul,W!,N!) converges to (u', W', N’) almost surely.

Then by Proposition 3.5,

0" (e VW () + [ el ds. N #) 6 (aa. [ (o))

and (C1) thus follows. Assertion (C2) can be proved in a similar way to Propo-
sition 3.5. Now it remains to verify that @ — I, is lower semicontinuous. By (8),

(=, il {Lurle) + Lar()}, o€ D0

where X7 solves (15). If D(A) 3 x,, — « € D(A), then it follows from an argument
similar to the proof of Proposition 3.2 that

fu() = XUt 2,) 225 X9(t,2) =: f(t), Vte]0,T).
Thus liminf, I(f,) > I(f) follows from Remark 2.13. Summing up these argu-
ments gives

liminf I, =lminf I(f,) > I(f) = L.,

and the proof is now complete. O

NOTE

It is worth mentioning that the large deviation principle can be established for
MSDEs in Banach spaces similarly. Only the calculations may be more compli-
cated.

4. Examples

In this section, we apply the result to SDEs and reflected SDEs driven by Brow-
nian motions plus a Poisson random measure.

4.1. SDEs with Brownian motions and Poisson random measure

If A=0, then our result covers the example given in [6] as an application; that
is, the large deviation principle is established under (H2)—(H4) for solutions to
the following SDE:

(25) dX (t) = b(X (1)) dt + o (X () dW (1) + [, ¥(X (¢=),y) N (dt, dy),
X(O) =T € R4,

4.2. SDEs with reflecting boundaries
Let D be a convex closed region with nonempty interior, and let Ip(z) be the
indicator function of D. We have

0 zeD,
Ip(x) =
o(®) {oo otherwise.
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Take A to be the subdifferential operator 0Ip defined by
{0} zelnt(D),
Alp(z)=< I, xe€dD,
0 otherwise.

Then (1) becomes the following SDE with reflecting boundary (see [12]):

X(8) = [y bX“(s))ds + [y Veo (X<(s))dW (s)
[y o (XE(5=),y) (eN (ds, dy) — v(dy) ds) — K(t)
X¢(0)=z0€ D, €€(0,1],

and our result shows that a uniform large deviation principle holds for the solu-
tions to such reflected SDEs under (H2)-(H4).
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