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ABSTRACT. Positivity of a 2 x 2 operator matrix [é“* g] > 0 implies

VAl - IC]| > || B]| for operator norm || - ||. This can be considered as an op-
erator version of the Schwarz inequality. In this situation, for A,C > 0, there
is a natural notion of geometric mean A$C, for which +/||A| - ||C|| > [|A4C].
In this paper, we study under what conditions on A, B, and C or on B alone
the norm inequality /AT - [CT > [ B]| can be improved as [A:C| > |[B]|

1. INTRODUCTION AND PRELIMINARIES

Let A,B,C,...,W,X,Y be bounded linear operators on a Hilbert space H
with inner product ( , ). Here A > 0 means that A is positive (semidefinite);
that is, (z|Az) > 0 for all x € H. When A > 0 is invertible, we write A > 0. The
order relation X > Y means that both X and Y are self-adjoint and X —Y > 0.

A 2 x 2 operator matrix [ﬁ; %ﬂ is considered as a bounded linear operator
on the direct sum Hilbert space H @ H in the natural way (see [5, Chapter §]).

It is well known that positivity of a 2 x 2 operator matrix [ i g} > 0 im-

plies v/||A]l - ||C]| > ||B|| for operator norm || - ||. This can be considered as an
operator version of the Schwarz inequality. In fact, since, for {X,..., X, } and
{}/17 ) Yn})

>0

- Y

Z;L:IXJX; Z;L:lXjY;'*] _ i {X]} . [Xj]*
Do VX5 YY) Yl LY,
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the following Schwarz inequality follows:

| x| [ vy = [ X v
j=1 j=1 j=1

For other versions of the operator Schwarz-type inequalities, see [1] and [4] and
references therein.

On the other hand, there is a well-established notion of geometric mean AfC
for A,C > 0, for which /|| A|| - ||C]| > ||ALC|| always.

In this paper, we study under what conditions on A, B, and C' or on B alone
[~ 5] > 0 implies ||AiC| > ||B||. We say that the norm Schwarz inequality
holds for A,C' > 0 and B if ||AtC|| > ||B||.

In particular, we are interested in establishing conditions on B such that

A B
BE

} >0 = [AxC| >8] (1)

In the remaining part of this section we summarize known properties of a 2 x 2
operator matrix and also those of geometric mean.

Lemma 1.1 ([3, Chapter 1]). The following statements are mutually equivalent:

(1) [4 8] =0;

2 [§%] =0

(3) A,C >0 and B = AYV?WCY? for some W with |W|| < 1;

(4) A> 0 and C > B*(A+ €el)™'B for all € > 0 with zdentzty operator I ;

when A > 0, B*(A+ el)™'B can be replaced simply by B*A™1B.
The geometric mean AfC for A,C' > 0 is defined as
AJC = A2 (AT12C ATV A2, (1.1)

Lemma 1.2 ([3, Chapter 4]). Geometric mean for A,C > 0 has the following
properties:
(1) AfC = CtA;
) AtC = (AC)1/2 when AC = CA;
) ATHCT = (Af0)
) (@A)i(BC) = Va (AﬁC)
) A+—— AfC is monotone increasing;
6) [A?c Agc} >0 and A$C = max{X > 0; [3‘} )C‘;} > 0};
(7) (X*AX)H(X*CX) > X*(AC)X for all X.

(2
(3
(4
(5
(

In view of monotonicity, the notion of geometric mean is uniquely extended to
all A,C > 0 as the limit in the strong operator topology:

AfC = hiél(A +e)i(C + €l).
Since

A B A+el B
{ }>0 = [B* C el

} Ve >0
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and

| A5CI| = lim | (A + eD)3(C + eD)

throughout our discussions on the norm Schwarz inequality we may assume always
that A > 0 and C' > 0 in the inequality [ & 2] > 0.

2. A NECESSARY CONDITION FOR (T)
Let r(X) denote the spectral radius of X; that is,
r(X) := max{|A|; A\I — X is not invertible}.

Since it is known (see [5, p. 48]) that r(X) is described by using norms of iterates
of X as

— 7 n||l/n
r(X) = Tim [LX7,
we can see
r(X) < | X]|| and r(XY)=r{YX) VXY (2.1)

An operator B is called normaloid if r(B) = ||B||. A normal operator B—
that is, B*B = BB*—in particular, a self-adjoint operator, is normaloid (see [5,

p. 110]).
Since, by Lemma 1.1,
A B R A B
A0 = coman wa [AoP00s0 e
and, by (1.1),
Af(B*ATIB) = AY? . |A7V2BATY?) . AV (2.3)

where | X| := (X*X)'? is the modulus of X, property (f) for B is equivalent to
the following:

|AY2 - |ATV2BATY?| AVR|| > ||B|| VA > 0. (1)
Lemma 2.1. We have ||[A~Y2BAY?|| > |AY2.|A~Y2BA~1/2|. AV?|| VA > 0, B.

Proof. Since both sides are positive homogeneous of order 1 with respect to B, it
suffices to prove that

1= |AV2BAY?|| —s  [> AY2.|A"V2BAV?|. A2,
Now 1 = ||A"Y/2BAY2|| implies I > AY2B*A~'BA'? and hence
A7 > |ATV2BAT V2P,
In view of the Lowner theorem (see [3, p. 22]), this implies
ATV > |ATVEBATY?; hence I > AVZ.|ATV2BATY?|L AV O
Theorem 2.2. If (1), equivalently (1), holds for B, then B is a normaloid.
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Proof. By Lemma 2.1 and (1), we have
|ATV2BAY?|| > ||AY? - |ATVEBATV?| AVR|| > ||B|| VA > 0.

Now the assertion follows from the following characterization of the spectral ra-
dius (see [5, p. 82]):

r(B) = inf{||A7/2BAY?|| : A > 0}. O
In the converse direction we have the following.
Theorem 2.3. If B is normaloid, then | jx B] > 0 implies | AY2CV?| > || BJ|.
Proof. In view of Lemma 1.1, we have, by (2.1),
IB|| = r(B) = r(AV*WCY?)
— F(WCY2AY2) < ||OV2AY2|| = ||AV2CV2)). ]

Finally, since by Lemma 1.2 [ A‘;‘C Agc] > 0 and AfC is self-adjoint, and hence
normaloid, we have, from Theorem 2.3,

|AVZCH2(| > | AfC]| VA, C > 0.
A little sharper inequality holds (see [2, Corollary 3.4]):
[AYV2CH2|| = |AYACH2AYY| > [JARC| VA, C > 0.

3. SUFFICIENT CONDITIONS

Lemma 3.1. We have

A, B
{B* C, 2 0.

]20 =12 = [Agi% Cj@]

Proof. In view of Lemma 1.1, the assumption means that B"‘Aj_1 B<C(C;(j=
1,2), which implies, by Lemma 1.2,
B*(A18A2) 1B = B (AT "A) B < (B*A{'B)(B* A5 ' B) < C1fCs.

Again, by Lemma 1.1, this implies [AlBﬂfb Cﬁcz} > 0. O

Theorem 3.2. We have

\/HAa(B*Ale)” ||A#(BA-1B¥)

> |B| VA>0,B.

Proof. This follows from Lemma 3.1 via
{A B BA™'B* B

B* B*AlB] 20 and { B A

E

OJ

Recall that the partial transpose of a 2 x 2 operator matrix [ﬁ; ﬁ;i] is defined

as its block-wise transpose, that is, as [ {32! ].
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Theorem 3.3. If a 2 X 2 positive operator matrix [é“* g] has positive partial

transpose, then ||AgC|| > || B||; that is,

A B A B*
[B* C] 50 and [B C] >0 — |lagC) =Bl
Proof. Since by Lemma 1.1 the second assumption is equivalent to [ S ﬁ} > 0,
it follows from Lemma 3.1 that [%ﬁ*c CfA] > 0, which implies
1A£Cll = V[ AC| - [[C1A] > || B 0

Theorem 3.3 can be automatically applied to the case of self-adjoint B. But a
little more can be said as an extension of Lemma 1.2.

Theorem 3.4. If B is self-adjoint and [ 4 B] > 0, then AfC > £B.
Proof. In the proof of Theorem 3.3 it is shown that [Agc A?C} > 0, which implies
immediately that AfC' > +B. O

Theorem 3.5. If B is a scalar multiple of a unitary operator, then
A B
bo|z0 = iz
Proof. We may assume that B is unitary, and we will prove via (2.2) that
| A" B)| > 1= B,

Suppose, by contradiction, that

|As(B*A7'B)|| < Je >0

1+e€
or, equivalently, by Lemma 1.2,
A M(B*AB) > (1+¢)I Je > 0.
Since A7'(B*AB) = A7'/2|AY2BAY2|A=Y/2 by (2.3), this leads to
|AY2BAY? > (14 €)A, and hence |Al > (1+¢)|| Al

which is a contradiction. O
Theorem 3.6. Positivity | ;2 B] > 0 implies || A§C|| > || B|| if one of the follow-
ing conditions is satisfied:

(1) AB = BA;

(2) B*A™'B = BA™1B*;

(3) C =aA Ja > 0.
Proof. (1) Commutativity implies B*A™'B = |B|A™!|B|, so that [él ‘g‘] > 0 by
Lemma 1.1. Now appeal to Lemma 1.2.

(2) Appeal to Theorem 3.2.
(3) Appeal to Lemma 1.2. O
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4. THE CASE OF NORMAL B

Theorems 3.4 and 3.5 suggest that (1), equivalently (1), will hold for all normal
B. At present we can settle () for all normal B only when dim(H) = n = 2.
The proof, as seen below, is quite specialized to the case n = 2. We are rather
pessimistic even for the case n = 3, but we cannot find a counterexample.

Denote by M, the space of 2 x 2 complex matrices, identified with the space
of all (bounded) linear operators on the 2-dimensional Hilbert space.

Theorem 4.1. For 0 < A € My and normal B € M,
A2 |ATVZBATY?| L AVZ|| > | B, (1)

Proof. We may assume that B # 0. Since both sides of the inequality in (f) are
positive homogeneous of order 1 with respect to B, it suffices to show that

[>D:=AY2. |A712BA~Y? . AY?  —  1>|B|. (4.1)
Now we have, by definition of modulus,
A—l/ZDA—lDA—l/Q _ 14—1/23*14—1314—1/27
and hence, with S := A= > 0,

B*SB = DSD. (4.2)
Since B € M is normal, we may assume that it is a diagonal matrix (see [5, p.
92]):
M0
B= {0 AJ . (4.3)
Write
d11 d12 511 S12
D= d S = . 4.4
|:d21 da2 o S21 S22 (44)
Then it follows from D > 0 and S > 0 that
diy,dy > 0, dis = do; and S11, 822 > 0, S12 = Sa1. (4.5)

If min(dy1, dae) = 0, then D > 0 implies djs = 0 = dy;. Then it follows from (4.2)
and (4.3) that |\;| = d;; (j = 1,2), so that

|B|| = max(|\1], [A2]) = max(dyy, dao) < ||D]| < 1.

Therefore we may assume that d;; > 0 (j = 1,2).
Taking determinants of both sides of (4.2) we have by (4.3)

Computing the (1, 1)-entry and the (2, 2)-entry of each side of (4.2), we have by
(4.3), (4.4), and (4.5),

S11|)\1| = 811d%1 + di1(s12d21 + s21d12) + 522|d12|2

and
2 2 2
S22|/\2| = 811|d12| + doo(s12d21 + 821d12) + Sg9d5,.
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Then it follows from (4.6) that
6522511|)\1|2 - d11822|)\2|2

= d22511d%1 - d11$11\d12|2 + d22822|d12|2 - d11322d§2

= d11511 (d11d22 - |d12|2) + d22822(|d12|2 - d11d22)

= (d11511 — da2522) det(D)

= (d11811 - d22822)|)\1| : |)\2|-

Therefore, we have

(811’)\1’ + 522|)\2|) (dgg‘)\l‘ — dll’)\Q’) =0. (47)
Since $11, S22 > 0 and max (||, [A2]) > 0, (4.7) implies
doa| M| = dyi| Ao, (4.8)

Then it follows from (4.6) and (4.8) that
|dia]? = dirdas — |M] - |Xs]

do2
= (- ) 22
diy
= (d§2 - |)\2|2)d_227
and hence, by (4.6),
d d
M [? = d—;(dndm — |d12|2) = d—;det(D)
and, correspondingly,
d
Ao|? = 2 det(D).
diy

Since det(D) < dy1da2, we can conclude that
M| < diy and |Aa] < dao
and, finally,
| B = max (||, [A2]) < max(di1,da) < || D] < 1.
This completes the proof of (4.1). O

Acknowledgment. The author thanks Prof. A. Uchiyama of Yamagata Univer-
sity for his suggestions on simplifying the proof of Theorem 4.1.
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