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Abstract. Positivity of a 2 × 2 operator matrix
[

A B
B∗ C

]
≥ 0 implies√

‖A‖ · ‖C‖ ≥ ‖B‖ for operator norm ‖ · ‖. This can be considered as an op-
erator version of the Schwarz inequality. In this situation, for A,C ≥ 0, there
is a natural notion of geometric mean A]C, for which

√
‖A‖ · ‖C‖ ≥ ‖A]C‖.

In this paper, we study under what conditions on A, B, and C or on B alone
the norm inequality

√
‖A‖ · ‖C‖ ≥ ‖B‖ can be improved as ‖A]C‖ ≥ ‖B‖.

1. Introduction and preliminaries

Let A,B,C, . . . ,W,X, Y be bounded linear operators on a Hilbert space H
with inner product 〈 , 〉. Here A ≥ 0 means that A is positive (semidefinite);
that is, 〈x|Ax〉 ≥ 0 for all x ∈ H. When A ≥ 0 is invertible, we write A > 0. The
order relation X ≥ Y means that both X and Y are self-adjoint and X − Y ≥ 0.

A 2 × 2 operator matrix
[
X11 X12
X21 X22

]
is considered as a bounded linear operator

on the direct sum Hilbert space H⊕H in the natural way (see [5, Chapter 8]).
It is well known that positivity of a 2 × 2 operator matrix

[
A B
B∗ C

]
≥ 0 im-

plies
√

‖A‖ · ‖C‖ ≥ ‖B‖ for operator norm ‖ · ‖. This can be considered as an
operator version of the Schwarz inequality. In fact, since, for {X1, . . . , Xn} and
{Y1, . . . , Yn}, [∑n

j=1XjX
∗
j

∑n
j=1XjY

∗
j∑

j=1YjX
∗
j

∑n
j=1YjY

∗
j

]
=

n∑
j=1

[
Xj

Yj

]
·
[
Xj

Yj

]∗
≥ 0,
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the following Schwarz inequality follows:√√√√∥∥∥ n∑
j=1

XiX∗
j

∥∥∥ ·
∥∥∥ n∑
j=1

YjY ∗
j

∥∥∥ ≥
∥∥∥ n∑
j=1

XjY
∗
j

∥∥∥.
For other versions of the operator Schwarz-type inequalities, see [1] and [4] and

references therein.
On the other hand, there is a well-established notion of geometric mean A]C

for A,C ≥ 0, for which
√

‖A‖ · ‖C‖ ≥ ‖A]C‖ always.
In this paper, we study under what conditions on A, B, and C or on B alone[
A B
B∗ C

]
≥ 0 implies ‖A]C‖ ≥ ‖B‖. We say that the norm Schwarz inequality

holds for A,C ≥ 0 and B if ‖A]C‖ ≥ ‖B‖.
In particular, we are interested in establishing conditions on B such that[

A B
B∗ C

]
≥ 0 =⇒ ‖A]C‖ ≥ ‖B‖. (†)

In the remaining part of this section we summarize known properties of a 2×2
operator matrix and also those of geometric mean.

Lemma 1.1 ([3, Chapter 1]). The following statements are mutually equivalent:

(1)
[

A B
B∗ C

]
≥ 0;

(2)
[
C B∗
B A

]
≥ 0;

(3) A,C ≥ 0 and B = A1/2WC1/2 for some W with ‖W‖ ≤ 1;
(4) A ≥ 0 and C ≥ B∗(A + εI)−1B for all ε > 0 with identity operator I;

when A > 0, B∗(A+ εI)−1B can be replaced simply by B∗A−1B.

The geometric mean A]C for A,C > 0 is defined as

A]C := A1/2 · (A−1/2CA−1/2)1/2 · A1/2. (1.1)

Lemma 1.2 ([3, Chapter 4]). Geometric mean for A,C > 0 has the following
properties:

(1) A]C = C]A;
(2) A]C = (AC)1/2 when AC = CA;
(3) A−1]C−1 = (A]C)−1;
(4) (αA)](βC) =

√
αβ(A]C);

(5) A 7−→ A]C is monotone increasing;
(6)

[
A A]C

A]C C

]
≥ 0 and A]C = max{X ≥ 0;

[
A X
X C

]
≥ 0};

(7) (X∗AX)](X∗CX) ≥ X∗(A]C)X for all X.

In view of monotonicity, the notion of geometric mean is uniquely extended to
all A,C ≥ 0 as the limit in the strong operator topology:

A]C := lim
ε↓0

(A+ εI)](C + εI).

Since [
A B
B∗ C

]
≥ 0 ⇐⇒

[
A+ εI B
B∗ C + εI

]
∀ε > 0
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and

‖A]C‖ = lim
ε↓0

∥∥(A+ εI)](C + εI)
∥∥,

throughout our discussions on the norm Schwarz inequality we may assume always
that A > 0 and C > 0 in the inequality

[
A B
B∗ C

]
≥ 0.

2. A necessary condition for (†)

Let r(X) denote the spectral radius of X; that is,

r(X) := max
{
|λ|;λI −X is not invertible

}
.

Since it is known (see [5, p. 48]) that r(X) is described by using norms of iterates
of X as

r(X) = lim
n→∞

‖Xn‖1/n,
we can see

r(X) ≤ ‖X‖ and r(XY ) = r(Y X) ∀X,Y. (2.1)

An operator B is called normaloid if r(B) = ‖B‖. A normal operator B—
that is, B∗B = BB∗—in particular, a self-adjoint operator, is normaloid (see [5,
p. 110]).

Since, by Lemma 1.1,[
A B
B∗ C

]
≥ 0 =⇒ C ≥ B∗A−1B and

[
A B
B∗ B∗A−1B

]
≥ 0 (2.2)

and, by (1.1),

A](B∗A−1B) = A1/2 · |A−1/2BA−1/2| · A1/2, (2.3)

where |X| := (X∗X)1/2 is the modulus of X, property (†) for B is equivalent to
the following: ∥∥A1/2 · |A−1/2BA−1/2| · A1/2

∥∥ ≥ ‖B‖ ∀A > 0. (‡)

Lemma 2.1. We have ‖A−1/2BA1/2‖ ≥ ‖A1/2 · |A−1/2BA−1/2| ·A1/2‖ ∀A > 0, B.

Proof. Since both sides are positive homogeneous of order 1 with respect to B, it
suffices to prove that

1 = ‖A−1/2BA1/2‖ =⇒ I ≥ A1/2 · |A−1/2BA−1/2| · A1/2.

Now 1 = ‖A−1/2BA1/2‖ implies I ≥ A1/2B∗A−1BA1/2, and hence

A−2 ≥ |A−1/2BA−1/2|2.

In view of the Löwner theorem (see [3, p. 22]), this implies

A−1 ≥ |A−1/2BA−1/2|; hence I ≥ A1/2 · |A−1/2BA−1/2| · A1/2. �

Theorem 2.2. If (†), equivalently (‡), holds for B, then B is a normaloid.
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Proof. By Lemma 2.1 and (‡), we have

‖A−1/2BA1/2‖ ≥
∥∥A1/2 · |A−1/2BA−1/2| · A1/2

∥∥ ≥ ‖B‖ ∀A > 0.

Now the assertion follows from the following characterization of the spectral ra-
dius (see [5, p. 82]):

r(B) = inf
{
‖A−1/2BA1/2‖ : A > 0

}
. �

In the converse direction we have the following.

Theorem 2.3. If B is normaloid, then
[

A B
B∗ C

]
≥ 0 implies ‖A1/2C1/2‖ ≥ ‖B‖.

Proof. In view of Lemma 1.1, we have, by (2.1),

‖B‖ = r(B) = r(A1/2WC1/2)

= r(WC1/2A1/2) ≤ ‖C1/2A1/2‖ = ‖A1/2C1/2‖. �

Finally, since by Lemma 1.2
[

A A]C
A]C C

]
≥ 0 and A]C is self-adjoint, and hence

normaloid, we have, from Theorem 2.3,

‖A1/2C1/2‖ ≥ ‖A]C‖ ∀A,C ≥ 0.

A little sharper inequality holds (see [2, Corollary 3.4]):

‖A1/2C1/2‖ ≥ ‖A1/4C1/2A1/4‖ ≥ ‖A]C‖ ∀A,C ≥ 0.

3. Sufficient conditions

Lemma 3.1. We have[
Aj B
B∗ Cj

]
≥ 0 (j = 1, 2) =⇒

[
A1]A2 B
B∗ C1]C2

]
≥ 0.

Proof. In view of Lemma 1.1, the assumption means that B∗A−1
j B ≤ Cj (j =

1, 2), which implies, by Lemma 1.2,

B∗(A1]A2)
−1B = B∗(A−1

1 ]A−1
2 )B ≤ (B∗A−1

1 B)](B∗A−1
2 B) ≤ C1]C2.

Again, by Lemma 1.1, this implies
[
A1]A2 B
B∗ C1]C2

]
≥ 0. �

Theorem 3.2. We have√∥∥A](B∗A−1B)
∥∥ ·

∥∥A](BA−1B∗)
∥∥ ≥ ‖B‖ ∀A > 0, B.

Proof. This follows from Lemma 3.1 via[
A B
B∗ B∗A−1B

]
≥ 0 and

[
BA−1B∗ B

B∗ A

]
≥ 0.

�

Recall that the partial transpose of a 2×2 operator matrix
[
X11 X12
X21 X22

]
is defined

as its block-wise transpose, that is, as
[
X11 X21
X12 X22

]
.
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Theorem 3.3. If a 2 × 2 positive operator matrix
[

A B
B∗ C

]
has positive partial

transpose, then ‖A]C‖ ≥ ‖B‖; that is,[
A B
B∗ C

]
≥ 0 and

[
A B∗

B C

]
≥ 0 =⇒ ‖A]C‖ ≥ ‖B‖.

Proof. Since by Lemma 1.1 the second assumption is equivalent to
[

C B
B∗ A

]
≥ 0,

it follows from Lemma 3.1 that
[
A]C B
B∗ C]A

]
≥ 0, which implies

‖A]C‖ =
√
‖A]C‖ · ‖C]A‖ ≥ ‖B‖. �

Theorem 3.3 can be automatically applied to the case of self-adjoint B. But a
little more can be said as an extension of Lemma 1.2.

Theorem 3.4. If B is self-adjoint and
[
A B
B C

]
≥ 0, then A]C ≥ ±B.

Proof. In the proof of Theorem 3.3 it is shown that
[
A]C B
B A]C

]
≥ 0, which implies

immediately that A]C ≥ ±B. �

Theorem 3.5. If B is a scalar multiple of a unitary operator, then[
A B
B∗ C

]
≥ 0 =⇒ ‖A]C‖ ≥ ‖B‖.

Proof. We may assume that B is unitary, and we will prove via (2.2) that∥∥A](B∗A−1B)
∥∥ ≥ 1 = ‖B‖.

Suppose, by contradiction, that∥∥A](B∗A−1B)
∥∥ ≤ 1

1 + ε
∃ε > 0

or, equivalently, by Lemma 1.2,

A−1](B∗AB) ≥ (1 + ε)I ∃ε > 0.

Since A−1](B∗AB) = A−1/2|A1/2BA1/2|A−1/2 by (2.3), this leads to

|A1/2BA1/2| ≥ (1 + ε)A, and hence ‖A‖ ≥ (1 + ε)‖A‖,

which is a contradiction. �

Theorem 3.6. Positivity
[

A B
B∗ C

]
≥ 0 implies ‖A]C‖ ≥ ‖B‖ if one of the follow-

ing conditions is satisfied:

(1) AB = BA;
(2) B∗A−1B = BA−1B∗;
(3) C = αA ∃α > 0.

Proof. (1) Commutativity implies B∗A−1B = |B|A−1|B|, so that
[ A |B|
|B| C

]
≥ 0 by

Lemma 1.1. Now appeal to Lemma 1.2.
(2) Appeal to Theorem 3.2.
(3) Appeal to Lemma 1.2. �
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4. The case of normal B

Theorems 3.4 and 3.5 suggest that (†), equivalently (‡), will hold for all normal
B. At present we can settle (‡) for all normal B only when dim(H) = n = 2.
The proof, as seen below, is quite specialized to the case n = 2. We are rather
pessimistic even for the case n = 3, but we cannot find a counterexample.

Denote by M2 the space of 2 × 2 complex matrices, identified with the space
of all (bounded) linear operators on the 2-dimensional Hilbert space.

Theorem 4.1. For 0 < A ∈ M2 and normal B ∈ M2,∥∥A1/2 · |A−1/2BA−1/2| · A1/2
∥∥ ≥ ‖B‖. (‡)

Proof. We may assume that B 6= 0. Since both sides of the inequality in (‡) are
positive homogeneous of order 1 with respect to B, it suffices to show that

I ≥ D := A1/2 · |A−1/2BA−1/2| · A1/2 =⇒ 1 ≥ ‖B‖. (4.1)

Now we have, by definition of modulus,

A−1/2DA−1DA−1/2 = A−1/2B∗A−1BA−1/2,

and hence, with S := A−1 > 0,

B∗SB = DSD. (4.2)

Since B ∈ M2 is normal, we may assume that it is a diagonal matrix (see [5, p.
92]):

B =

[
λ1 0
0 λ2

]
. (4.3)

Write

D =

[
d11 d12
d21 d22

]
and S =

[
s11 s12
s21 s22

]
. (4.4)

Then it follows from D ≥ 0 and S > 0 that

d11, d22 ≥ 0, d12 = d21 and s11, s22 > 0, s12 = s21. (4.5)

If min(d11, d22) = 0, then D ≥ 0 implies d12 = 0 = d21. Then it follows from (4.2)
and (4.3) that |λj| = djj (j = 1, 2), so that

‖B‖ = max
(
|λ1|, |λ2|

)
= max(d11, d22) ≤ ‖D‖ ≤ 1.

Therefore we may assume that djj > 0 (j = 1, 2).
Taking determinants of both sides of (4.2) we have by (4.3)

|λ1λ2| = det(D) ≥ 0. (4.6)

Computing the (1, 1)-entry and the (2, 2)-entry of each side of (4.2), we have by
(4.3), (4.4), and (4.5),

s11|λ1|2 = s11d
2
11 + d11(s12d21 + s21d12) + s22|d12|2

and

s22|λ2|2 = s11|d12|2 + d22(s12d21 + s21d12) + s22d
2
22.
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Then it follows from (4.6) that

d22s11|λ1|2 − d11s22|λ2|2

= d22s11d
2
11 − d11s11|d12|2 + d22s22|d12|2 − d11s22d

2
22

= d11s11
(
d11d22 − |d12|2

)
+ d22s22

(
|d12|2 − d11d22

)
= (d11s11 − d22s22) det(D)

= (d11s11 − d22s22)|λ1| · |λ2|.
Therefore, we have (

s11|λ1|+ s22|λ2|
)(
d22|λ1| − d11|λ2|

)
= 0. (4.7)

Since s11, s22 > 0 and max(|λ1|, |λ2|) > 0, (4.7) implies

d22|λ1| = d11|λ2|. (4.8)

Then it follows from (4.6) and (4.8) that

|d12|2 = d11d22 − |λ1| · |λ2|

=
(
d211 − |λ1|2

)d22
d11

=
(
d222 − |λ2|2

)d11
d22

,

and hence, by (4.6),

|λ1|2 =
d11
d22

(
d11d22 − |d12|2

)
=

d11
d22

det(D)

and, correspondingly,

|λ2|2 =
d22
d11

det(D).

Since det(D) ≤ d11d22, we can conclude that

|λ1| ≤ d11 and |λ2| ≤ d22

and, finally,

‖B‖ = max
(
|λ1|, |λ2|

)
≤ max(d11, d22) ≤ ‖D‖ ≤ 1.

This completes the proof of (4.1). �

Acknowledgment. The author thanks Prof. A. Uchiyama of Yamagata Univer-
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