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GENERALIZATIONS OF JENSEN’S OPERATOR INEQUALITY
FOR CONVEX FUNCTIONS TO NORMAL OPERATORS

LÁSZLÓ HORVÁTH

Communicated by Y. Seo

Abstract. In this article, we generalize a well-known operator version of
Jensen’s inequality to normal operators. The main techniques employed here
are the spectral theory for bounded normal operators on a Hilbert space, and
different Jensen-type inequalities. We emphasize the application of a vector ver-
sion of Jensen’s inequality. By applying our results, some classical inequalities
obtained for self-adjoint operators can also be extended.

1. Introduction

Throughout this article (H, 〈·, ·〉) means a complex Hilbert space. The Banach
algebra of all bounded linear operators on H is denoted by B(H). The operator
norm on B(H) is defined as usual by

‖A‖ := sup
‖x‖≤1

‖Ax‖, A ∈ B(H).

An operator A ∈ B(H) is said to be normal (especially self-adjoint) if AA∗ = A∗A
(A = A∗). The spectrum of an operator A ∈ B(H) is denoted by σ(A). For a set
K ⊂ C, N(K) means the class of all normal operators from B(H) whose spectra
are contained in K. Similarly, if J ⊂ R is an interval, then S(J) denotes the class
of all self-adjoint operators from B(H) whose spectra are contained in J .

Different types of inequalities between self-adjoint operators in B(H) have
undergone extensive study and have many applications (see, e.g., Pečarić, Furuta,
Mićić, and Seo [9]). The treatment of a large group of such inequalities depends
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on the continuous functional calculus for self-adjoint operators (see Rudin [11]),
and the important notions of operator convexity and operator monotonicity. For
normal operators in B(H), on the other hand, there are only a few papers in which
convexity or monotonicity is used (see Sookia and Gonpot [12]), although there
exists a functional calculus for normal operators too. Other types of inequalities
for normal operators have been investigated by various authors (see Conde [1],
Dragomir [2], Dragomir and Moslehian [3], and Menkad and Seddik [7]).

In this article, we generalize the following well-known operator version of
Jensen’s inequality to normal operators.

Theorem 1.1 (see [8, Theorem 1], [9, p. 5]). Let J ⊂ R be an interval. Let
Ai ∈ S(J) and xi ∈ H (i = 1, . . . , n) with

∑n
i=1 ‖xi‖2 = 1. If f : J → R is

continuous and convex, then

f
( n∑

i=1

〈Aixi, xi〉
)
≤

n∑
i=1

〈
f(Ai)xi, xi

〉
. (1.1)

The main techniques employed here are the spectral theory for normal oper-
ators in B(H) and different Jensen-type inequalities. We emphasize the applica-
tion of a vector version of Jensen’s inequality based on Perlman [10]. By applying
our results, some classical inequalities obtained for self-adjoint operators (e.g.,
Hölder–McCarthy-type inequalities) can also be extended.

2. Preliminaries

In this section, we recall spectral theory and some notions and results corre-
sponding to convexity. First, following Rudin [11] mainly, we briefly summarize
the spectral theory for normal operators in B(H). For every normal operator
A ∈ B(H) there exists a unique resolution E of the identity (called the spectral
decomposition of A, and it depends on A) on the Borel subsets of σ(A) which
satisfies

A =

∫
σ(A)

λ dE(λ). (2.1)

By using E, for every bounded Borel function f : σ(A) → C we can define the
operator ∫

σ(A)

f dE (2.2)

which is denoted by f(A) as usual. The integral (2.2) is the abbreviation for〈
f(A)x, y

〉
=

∫
σ(A)

f dEx,y, x, y ∈ H,

where Ex,y denotes the complex measure

Ex,y(ω) :=
〈
E(ω)x, y

〉
on the Borel subsets of σ(A). If x ∈ H and ‖x‖ = 1, then Ex,x is a probability
measure.
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The following statements about the numerical range of an operator can be
found in Gustafson and Rao [4]. The numerical range of an operator A ∈ B(H)
is defined by

W (A) :=
{
〈Ax, x〉 ∈ C

∣∣ ‖x‖ = 1
}
.

By the Toeplitz–Hausdorff theorem, W (A) is convex. The closure of W (A)
(denoted by W (A)) contains σ(A). If A is normal, then W (A) is the smallest
closed and convex set containing σ(A). We only need two special cases of Jensen’s
inequality for convex vector-valued functions (more general results can be found
in Perlman [10]).

We briefly discuss partial orderings on C to formulate these assertions. The
following notions and results can be found in a more general context in Kelley
and Namioka [5] or Perlman [10]. A binary relation � on C is called a partial
ordering on C if it is reflexive, transitive, and antisymmetric. We say that the
partial ordering � on C is a closed cone ordering if it satisfies the following
additional conditions.

(i) If z1, z2 ∈ C such that z1 � z2, then for every z3 ∈ C and for every α ≥ 0
we have α(z1 + z3) � α(z2 + z3).

(ii) If (zn)
∞
n=1 and (wn)

∞
n=1 are convergent sequences in C such that zn � wn

for all n ≥ 1, then limn→∞ zn � limn→∞wn.

A subset K of C is called a cone if, for every z ∈ K and for every α ≥ 0, we
have αz ∈ K. The cone K ⊂ C is said to be pointed if K ∩ (−K) = {0}. There
is a one-to-one correspondence between closed cone orderings and pointed closed
convex cones on C. If K ⊂ C is a pointed closed convex cone, then the binary
relation

�K :=
{
(z1, z2) ∈ C2

∣∣ z2 − z1 ∈ K
}

is a closed cone ordering. Conversely, if � is a closed cone ordering, then

K := {z ∈ C | 0 � z} (2.3)

is a pointed closed convex cone and �K = �.

Remark 2.1. Let K be a pointed closed convex cone in C. It is not hard to
check that K is either a closed half-line with endpoint 0 or that there are two
independent z, w ∈ C such that K is spanned by these numbers; that is,

K = {αz + βw ∈ C | α, β ≥ 0}.
Definition 2.2. Let C ⊂ C be a convex set, let � be a closed cone ordering on C,
and let f : C → C. We say that f is convex with respect to � if

f
(
λz + (1− λ)w

)
� λf(z) + (1− λ)f(w), z, w ∈ C,≤ λ ≤ 1. (2.4)

Lemma 2.3. Let C ⊂ C be a convex set, and let f : C → R be a real-valued
complex function. Then f is convex with respect to a closed cone ordering on C
exactly if f is either convex or concave in the usual sense, that is, either

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y), x, y ∈ C,≤ λ ≤ 1

or

f
(
λx+ (1− λ)y

)
≥ λf(x) + (1− λ)f(y), x, y ∈ C,≤ λ ≤ 1.
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Proof. Assume that f is convex with respect to a closed cone ordering � on C.
Since the restriction of � to R is either ≤ or ≥ or =, it follows from (2.4) that f
is either convex or concave.

Conversely, assume that f is convex. If � is a closed cone ordering on C such
that the corresponding pointed closed convex cone (see (2.3)) contains the closed
half-line

{x+ yi ∈ C | x ≥ 0, y = 0},
then f is convex with respect to �. The concave case can be handled similarly.
The proof is complete. �

Example 2.4. Let m1 < m2 be fixed, and let Km2
m1

⊂ C be defined by

Km2
m1

:= {x+ yi ∈ C | m1x ≤ y ≤ m2x}. (2.5)

Then Km2
m1

is a pointed closed convex cone, and the closed cone ordering on C
generated by Km2

m1
is

u+ vi �m2
m1

x+ yi ⇐⇒ m1(x− u) ≤ y − v ≤ m2(x− u). (2.6)

Let C ⊂ C be a convex set, and let f = f1 + f2i : C → C. It follows from (2.6)
that f is convex with respect to �m2

m1
if and only if the inequalities

m1

(
λf1(z) + (1− λ)f1(w)− f1

(
λz + (1− λ)w

))
≤ λf2(z) + (1− λ)f2(w)− f2

(
λz + (1− λ)w

)
≤ m2

(
λf1(z) + (1− λ)f1(w)− f1

(
λz + (1− λ)w

))
hold for every z, w ∈ C and for all 0 ≤ λ ≤ 1. By rearranging the previous
inequalities, we can see that f is convex with respect to �m2

m1
exactly if the func-

tions

f2 −m1f1 and m2f1 − f2

are convex. This implies that f1 must be convex.
It is easy to check that the function

f : C → C, f(x+ yi) = (f1 + f2i)(x+ yi) = x2 + y2 + 2xyi

is convex with respect to �1
−1, but f2 is neither convex nor concave. It is worth

noting that K1
−1 is the smaller cone among the cones in (2.5) for which f is

convex.

Finally, we give the aforementioned Jensen-type inequalities.

Theorem 2.5 (Vector version of Jensen’s discrete inequality; see [10, p. 55]).
Let � be a closed cone ordering on C, and let C be a convex subset of C. If
f : C → C is a convex function with respect to �, xi ∈ C, pi ≥ 0 (i = 1, . . . , n),
and

∑n
i=1 pi = 1, then

f
( n∑

i=1

pixi

)
�

n∑
i=1

pif(xi). (2.7)
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Theorem 2.6 (Vector version of Jensen’s integral inequality; [10, Theorem 3.6]).
Let � be a closed cone ordering on C, and let g be an integrable function on a
probability space (X,A, P ) taking values in a closed and convex set C ⊂ C. Then∫
X
g dP lies in C. If f : C → C is a continuous and convex function with respect

to � such that f ◦ g is P -integrable, then

f
(∫

X

g dP
)
�

∫
X

f ◦ g dP. (2.8)

3. Main results

Our main result generalizes Theorem 1.1 for normal operators.

Theorem 3.1. Let � be a closed cone ordering on C. Assume that C is a closed
and convex subset of C, that Ai ∈ N(C) (i = 1, . . . , n), and that f : C → C is a
continuous and convex function with respect to �.

(a) If xi ∈ H (i = 1, . . . , n) such that
∑n

i=1 ‖xi‖2 = 1, then

f
( n∑

i=1

〈Aixi, xi〉
)
�

n∑
i=1

〈
f(Ai)xi, xi

〉
. (3.1)

(b) If x ∈ H with ‖x‖ = 1, and pi ≥ 0 (i = 1, . . . , n) such that
∑n

i=1 pi = 1,
then

f
( n∑

i=1

〈piAix, x〉
)
�

〈 n∑
i=1

pif(Ai)x, x
〉
.

Proof. (a) We can obviously suppose that xi 6= 0 (i = 1, . . . , n). By (2.1),

n∑
i=1

〈Aixi, xi〉 =
n∑

i=1

‖xi‖2
〈
Ai

xi

‖xi‖
,

xi

‖xi‖

〉
=

n∑
i=1

‖xi‖2
∫
σ(Ai)

λ dEi
xi

‖xi‖
,

xi
‖xi‖

, (3.2)

where Ei denotes the spectral decomposition of Ai (i = 1, . . . , n). Since∑n
i=1 ‖xi‖2 = 1, and Ei

xi
‖xi‖

,
xi

‖xi‖
is a probability measure on the Borel sets of

σ(Ai) (i = 1, . . . , n), (3.2) shows that

n∑
i=1

〈Aixi, xi〉 ∈ C.

By applying vector versions of Jensen’s discrete and integral inequalities to the
last expression in (3.2), we obtain

f
( n∑

i=1

〈Aixi, xi〉
)
�

n∑
i=1

‖xi‖2f
(∫

σ(Ai)

λ dEi
xi

‖xi‖
,

xi
‖xi‖

)
�

n∑
i=1

‖xi‖2
∫
σ(Ai)

f(λ) dEi
xi

‖xi‖
,

xi
‖xi‖

=
n∑

i=1

‖xi‖2
〈
f(Ai)

xi

‖xi‖
,

xi

‖xi‖

〉
=

n∑
i=1

〈
f(Ai)xi, xi

〉
.
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(b) This follows from (a) by choosing xi =
√
pix (i = 1, . . . , n). The proof is

complete. �

Corollary 3.2. Assume that C is a closed and convex subset of C, that Ai ∈
N(C) (i = 1, . . . , n), and that f : C → R is a continuous and convex function.

(a) If xi ∈ H (i = 1, . . . , n) such that
∑n

i=1 ‖xi‖2 = 1, then

f
( n∑

i=1

〈Aixi, xi〉
)
≤

n∑
i=1

〈
f(Ai)xi, xi

〉
.

(b) If x ∈ H with ‖x‖ = 1, and pi ≥ 0 (i = 1, . . . , n) such that
∑n

i=1 pi = 1,
then

f
( n∑

i=1

〈piAix, x〉
)
≤

〈 n∑
i=1

pif(Ai)x, x
〉
.

Proof. The proof follows from Theorem 3.1, by using Lemma 2.3 and the fact
that f(Ai) (i = 1, . . . , n) is self-adjoint. �

Remark 3.3. Consider the special case n = 1 of the previous theorem. If � is
a closed cone ordering on C, C is a closed and convex subset of C, A ∈ N(C),
f : C → C is a continuous and convex function with respect to �, and x ∈ H
such that ‖x‖ = 1, then

f
(
〈Ax, x〉

)
�

〈
f(A)x, x

〉
.

In this case the closure of the numerical range of A is the smallest closed and
convex set containing σ(A).

Example 3.4. In Example 2.4 we defined the closed cone ordering �1
−1 on C, and

we have seen that the function

f : C → C, f(x+ yi) = (f1 + f2i)(x+ yi) = x2 + y2 + 2xyi

is convex with respect to �1
−1. If A ∈ N(C) and x ∈ H such that ‖x‖ = 1, then

by Remark 3.3,

f
(
〈Ax, x〉

)
�1

−1

〈
f(A)x, x

〉
.

As a first consequence of the previous theorem, a Hölder–McCarthy-type
inequality (see McCarthy [6]) is derived for normal operators.

Corollary 3.5. Assume that Ai ∈ B(H) (i = 1, . . . , n) are normal operators and
that xi ∈ H, xi 6= 0 (i = 1, . . . , n) with

∑n
i=1 ‖xi‖2 = 1. Then for every α ≥ 1∣∣∣ n∑

i=1

〈Aixi, xi〉
∣∣∣α ≤

n∑
i=1

〈
|Ai|αxi, xi

〉
. (3.3)

Proof. It is easy to check that the function

z → |z|α, z ∈ C (3.4)

is convex if α ≥ 1, and therefore Corollary 3.2(a) can be applied. �



572 L. HORVÁTH

Remark 3.6. (a) If α ∈ ]−∞, 1[, α 6= 0, then the function (3.4) is neither convex
nor concave.

(b) For α = 2, (3.3) can be written as∣∣∣ n∑
i=1

〈Aixi, xi〉
∣∣∣2 ≤ n∑

i=1

‖Aixi‖2.

Really, in this case |Ai|2 = A∗
iAi (i = 1, . . . , n).

Next, we apply Theorem 3.1 to get some norm inequalities.

Corollary 3.7. Assume that Ai ∈ B(H) (i = 1, . . . , n) are normal operators and
that pi ≥ 0 (i = 1, . . . , n) such that

∑n
i=1 pi = 1. If

∑n
i=1 piAi is normal, and

f : [0,∞[→ R is a nonnegative, continuous, increasing, and convex function,
then

f
(∥∥∥ n∑

i=1

piAi

∥∥∥) ≤
∥∥∥ n∑

i=1

pif
(
|Ai|

)∥∥∥. (3.5)

Proof. The operator
∑n

i=1 pif(|Ai|) is positive, because f and pi (i = 1, . . . , n)
are nonnegative.

If A ∈ B(H) is a normal operator, then ‖A‖ = sup‖x‖=1 |〈Ax, x〉|. By using
this, the continuity and the increase of f yield

f
(∥∥∥ n∑

i=1

piAi

∥∥∥) = f
(
sup
‖x‖=1

∣∣∣〈 n∑
i=1

piAix, x
〉∣∣∣) = sup

‖x‖=1

f
(∣∣∣〈 n∑

i=1

piAix, x
〉∣∣∣).

Since f is convex and increasing, and the function (3.4) with α = 1 is convex,
the composition

z → f
(
|z|

)
, z ∈ C

is also convex, and therefore Corollary 3.2(b) shows that

f
(∥∥∥ n∑

i=1

piAi

∥∥∥) ≤ sup
‖x‖=1

〈 n∑
i=1

pif
(
|Ai|

)
x, x

〉
=

∥∥∥ n∑
i=1

pif
(
|Ai|

)∥∥∥.
The proof is now complete. �

Remark 3.8. For example, a sufficient condition for the normality of the operator∑n
i=1 piAi is AiAj = AjAi (i, j = 1, . . . , n).

We mention some special cases of the previous result.

Remark 3.9. Assume that Ai ∈ B(H) (i = 1, . . . , n) are normal operators, that
pi ≥ 0 (i = 1, . . . , n) such that

∑n
i=1 pi = 1, and that

∑n
i=1 piAi is normal.

(a) If f(x) = xα (x ≥ 0) with α ≥ 1, then (3.5) gives∥∥∥ n∑
i=1

piAi

∥∥∥α

≤
∥∥∥ n∑

i=1

pi|Ai|α
∥∥∥.
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(b) If f(x) = ex (x ≥ 0), then (3.5) gives

exp
(∥∥∥ n∑

i=1

piAi

∥∥∥) ≤
∥∥∥ n∑

i=1

pi exp
(
|Ai|

)∥∥∥.
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ities: Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Monogr. Inequal.
1, Element, Zagreb, 2005. Zbl 1135.47012. MR3026316. 566, 567

10. M. D. Perlman, Jensen’s inequality for a convex vector-valued function on an infinite-
dimensional space, J. Multivariate Anal. 4 (1974), 52–65. Zbl 0274.28012. MR0362421.
DOI 10.1016/0047-259X(74)90005-0. 567, 568, 569, 570

11. W. Rudin, Functional Analysis, 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill,
New York, 1991. Zbl 0867.46001. MR1157815. 567

12. N. Sookia and P. N. Gonpot, Berezin-Lieb inequality: An extension to normal operators,
Univ. Mauritius Res. J. 17 (2011), 15–26. 567

Department of Mathematics, University of Pannonia, Egyetem u. 10, 8200
Veszprém, Hungary.

E-mail address: lhorvath@almos.uni-pannon.hu

http://www.emis.de/cgi-bin/MATH-item?1177.47030
http://www.ams.org/mathscinet-getitem?mr=2567789
https://doi.org/10.1016/j.laa.2009.06.016
http://www.emis.de/cgi-bin/MATH-item?1199.47084
http://www.ams.org/mathscinet-getitem?mr=2316590
https://doi.org/10.2298/AADM0701092D
http://www.emis.de/cgi-bin/MATH-item?1199.47052
http://www.ams.org/mathscinet-getitem?mr=2490454
http://www.emis.de/cgi-bin/MATH-item?0874.47003
http://www.ams.org/mathscinet-getitem?mr=1417493
https://doi.org/10.1007/978-1-4613-8498-4
http://www.emis.de/cgi-bin/MATH-item?0115.09902
http://www.ams.org/mathscinet-getitem?mr=0166578
http://www.emis.de/cgi-bin/MATH-item?0156.37902
http://www.ams.org/mathscinet-getitem?mr=0225140
https://doi.org/10.1007/BF02771613
https://doi.org/10.1007/BF02771613
http://www.emis.de/cgi-bin/MATH-item?1266.47023
http://www.ams.org/mathscinet-getitem?mr=2945998
https://doi.org/10.15352/bjma/1342210170
https://doi.org/10.15352/bjma/1342210170
http://www.emis.de/cgi-bin/MATH-item?0813.46016
http://www.ams.org/mathscinet-getitem?mr=1242427
http://www.emis.de/cgi-bin/MATH-item?1135.47012
http://www.ams.org/mathscinet-getitem?mr=3026316
http://www.emis.de/cgi-bin/MATH-item?0274.28012
http://www.ams.org/mathscinet-getitem?mr=0362421
https://doi.org/10.1016/0047-259X(74)90005-0
http://www.emis.de/cgi-bin/MATH-item?0867.46001
http://www.ams.org/mathscinet-getitem?mr=1157815
mailto:lhorvath@almos.uni-pannon.hu

	1 Introduction
	2 Preliminaries
	3 Main results
	Acknowledgment
	References
	Author's addresses

