Ann. Funct. Anal. 9 (2018), no. 4, 566-573
https://doi.org/10.1215/20088752-2018-0002
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

GENERALIZATIONS OF JENSEN'S OPERATOR INEQUALITY FOR CONVEX FUNCTIONS TO NORMAL OPERATORS

LÁSZLÓ HORVÁTH

Communicated by Y. Seo

Abstract

In this article, we generalize a well-known operator version of Jensen's inequality to normal operators. The main techniques employed here are the spectral theory for bounded normal operators on a Hilbert space, and different Jensen-type inequalities. We emphasize the application of a vector version of Jensen's inequality. By applying our results, some classical inequalities obtained for self-adjoint operators can also be extended.

1. Introduction

Throughout this article $(H,\langle\cdot, \cdot\rangle)$ means a complex Hilbert space. The Banach algebra of all bounded linear operators on H is denoted by $\mathcal{B}(H)$. The operator norm on $\mathcal{B}(H)$ is defined as usual by

$$
\|A\|:=\sup _{\|x\| \leq 1}\|A x\|, \quad A \in \mathcal{B}(H)
$$

An operator $A \in \mathcal{B}(H)$ is said to be normal (especially self-adjoint) if $A A^{*}=A^{*} A$ $\left(A=A^{*}\right)$. The spectrum of an operator $A \in \mathcal{B}(H)$ is denoted by $\sigma(A)$. For a set $K \subset \mathbb{C}, N(K)$ means the class of all normal operators from $\mathcal{B}(H)$ whose spectra are contained in K. Similarly, if $J \subset \mathbb{R}$ is an interval, then $S(J)$ denotes the class of all self-adjoint operators from $\mathcal{B}(H)$ whose spectra are contained in J.

Different types of inequalities between self-adjoint operators in $\mathcal{B}(H)$ have undergone extensive study and have many applications (see, e.g., Pečarić, Furuta, Mićić, and Seo [9]). The treatment of a large group of such inequalities depends

[^0]on the continuous functional calculus for self-adjoint operators (see Rudin [11]), and the important notions of operator convexity and operator monotonicity. For normal operators in $\mathcal{B}(H)$, on the other hand, there are only a few papers in which convexity or monotonicity is used (see Sookia and Gonpot [12]), although there exists a functional calculus for normal operators too. Other types of inequalities for normal operators have been investigated by various authors (see Conde [1], Dragomir [2], Dragomir and Moslehian [3], and Menkad and Seddik [7]).

In this article, we generalize the following well-known operator version of Jensen's inequality to normal operators.

Theorem 1.1 (see [8, Theorem 1], [9, p. 5]). Let $J \subset \mathbb{R}$ be an interval. Let $A_{i} \in S(J)$ and $x_{i} \in H(i=1, \ldots, n)$ with $\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}=1$. If $f: J \rightarrow \mathbb{R}$ is continuous and convex, then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n}\left\langle A_{i} x_{i}, x_{i}\right\rangle\right) \leq \sum_{i=1}^{n}\left\langle f\left(A_{i}\right) x_{i}, x_{i}\right\rangle . \tag{1.1}
\end{equation*}
$$

The main techniques employed here are the spectral theory for normal operators in $\mathcal{B}(H)$ and different Jensen-type inequalities. We emphasize the application of a vector version of Jensen's inequality based on Perlman [10]. By applying our results, some classical inequalities obtained for self-adjoint operators (e.g., Hölder-McCarthy-type inequalities) can also be extended.

2. Preliminaries

In this section, we recall spectral theory and some notions and results corresponding to convexity. First, following Rudin [11] mainly, we briefly summarize the spectral theory for normal operators in $\mathcal{B}(H)$. For every normal operator $A \in \mathcal{B}(H)$ there exists a unique resolution E of the identity (called the spectral decomposition of A, and it depends on A) on the Borel subsets of $\sigma(A)$ which satisfies

$$
\begin{equation*}
A=\int_{\sigma(A)} \lambda d E(\lambda) \tag{2.1}
\end{equation*}
$$

By using E, for every bounded Borel function $f: \sigma(A) \rightarrow \mathbb{C}$ we can define the operator

$$
\begin{equation*}
\int_{\sigma(A)} f d E \tag{2.2}
\end{equation*}
$$

which is denoted by $f(A)$ as usual. The integral (2.2) is the abbreviation for

$$
\langle f(A) x, y\rangle=\int_{\sigma(A)} f d E_{x, y}, \quad x, y \in H
$$

where $E_{x, y}$ denotes the complex measure

$$
E_{x, y}(\omega):=\langle E(\omega) x, y\rangle
$$

on the Borel subsets of $\sigma(A)$. If $x \in H$ and $\|x\|=1$, then $E_{x, x}$ is a probability measure.

The following statements about the numerical range of an operator can be found in Gustafson and Rao [4]. The numerical range of an operator $A \in \mathcal{B}(H)$ is defined by

$$
W(A):=\{\langle A x, x\rangle \in \mathbb{C} \mid\|x\|=1\} .
$$

By the Toeplitz-Hausdorff theorem, $W(A)$ is convex. The closure of $W(A)$ (denoted by $\bar{W}(A)$) contains $\sigma(A)$. If A is normal, then $\bar{W}(A)$ is the smallest closed and convex set containing $\sigma(A)$. We only need two special cases of Jensen's inequality for convex vector-valued functions (more general results can be found in Perlman [10]).

We briefly discuss partial orderings on \mathbb{C} to formulate these assertions. The following notions and results can be found in a more general context in Kelley and Namioka [5] or Perlman [10]. A binary relation \preceq on \mathbb{C} is called a partial ordering on \mathbb{C} if it is reflexive, transitive, and antisymmetric. We say that the partial ordering \preceq on \mathbb{C} is a closed cone ordering if it satisfies the following additional conditions.
(i) If $z_{1}, z_{2} \in \mathbb{C}$ such that $z_{1} \preceq z_{2}$, then for every $z_{3} \in \mathbb{C}$ and for every $\alpha \geq 0$ we have $\alpha\left(z_{1}+z_{3}\right) \preceq \alpha\left(z_{2}+z_{3}\right)$.
(ii) If $\left(z_{n}\right)_{n=1}^{\infty}$ and $\left(w_{n}\right)_{n=1}^{\infty}$ are convergent sequences in \mathbb{C} such that $z_{n} \preceq w_{n}$ for all $n \geq 1$, then $\lim _{n \rightarrow \infty} z_{n} \preceq \lim _{n \rightarrow \infty} w_{n}$.
A subset K of \mathbb{C} is called a cone if, for every $z \in K$ and for every $\alpha \geq 0$, we have $\alpha z \in K$. The cone $K \subset \mathbb{C}$ is said to be pointed if $K \cap(-K)=\{0\}$. There is a one-to-one correspondence between closed cone orderings and pointed closed convex cones on \mathbb{C}. If $K \subset \mathbb{C}$ is a pointed closed convex cone, then the binary relation

$$
\preceq_{K}:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid z_{2}-z_{1} \in K\right\}
$$

is a closed cone ordering. Conversely, if \preceq is a closed cone ordering, then

$$
\begin{equation*}
K:=\{z \in \mathbb{C} \mid 0 \preceq z\} \tag{2.3}
\end{equation*}
$$

is a pointed closed convex cone and $\preceq_{K}=\preceq$.
Remark 2.1. Let K be a pointed closed convex cone in \mathbb{C}. It is not hard to check that K is either a closed half-line with endpoint 0 or that there are two independent $z, w \in \mathbb{C}$ such that K is spanned by these numbers; that is,

$$
K=\{\alpha z+\beta w \in \mathbb{C} \mid \alpha, \beta \geq 0\}
$$

Definition 2.2. Let $C \subset \mathbb{C}$ be a convex set, let \preceq be a closed cone ordering on \mathbb{C}, and let $f: C \rightarrow \mathbb{C}$. We say that f is convex with respect to \preceq if

$$
\begin{equation*}
f(\lambda z+(1-\lambda) w) \preceq \lambda f(z)+(1-\lambda) f(w), \quad z, w \in C, \leq \lambda \leq 1 \tag{2.4}
\end{equation*}
$$

Lemma 2.3. Let $C \subset \mathbb{C}$ be a convex set, and let $f: C \rightarrow \mathbb{R}$ be a real-valued complex function. Then f is convex with respect to a closed cone ordering on \mathbb{C} exactly if f is either convex or concave in the usual sense, that is, either

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y), \quad x, y \in C, \leq \lambda \leq 1
$$

or

$$
f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y), \quad x, y \in C, \leq \lambda \leq 1
$$

Proof. Assume that f is convex with respect to a closed cone ordering \preceq on \mathbb{C}. Since the restriction of \preceq to \mathbb{R} is either \leq or \geq or $=$, it follows from (2.4) that f is either convex or concave.

Conversely, assume that f is convex. If \preceq is a closed cone ordering on \mathbb{C} such that the corresponding pointed closed convex cone (see (2.3)) contains the closed half-line

$$
\{x+y i \in \mathbb{C} \mid x \geq 0, y=0\}
$$

then f is convex with respect to \preceq. The concave case can be handled similarly. The proof is complete.

Example 2.4. Let $m_{1}<m_{2}$ be fixed, and let $K_{m_{1}}^{m_{2}} \subset \mathbb{C}$ be defined by

$$
\begin{equation*}
K_{m_{1}}^{m_{2}}:=\left\{x+y i \in \mathbb{C} \mid m_{1} x \leq y \leq m_{2} x\right\} \tag{2.5}
\end{equation*}
$$

Then $K_{m_{1}}^{m_{2}}$ is a pointed closed convex cone, and the closed cone ordering on \mathbb{C} generated by $K_{m_{1}}^{m_{2}}$ is

$$
\begin{equation*}
u+v i \preceq_{m_{1}}^{m_{2}} x+y i \Longleftrightarrow m_{1}(x-u) \leq y-v \leq m_{2}(x-u) . \tag{2.6}
\end{equation*}
$$

Let $C \subset \mathbb{C}$ be a convex set, and let $f=f_{1}+f_{2} i: C \rightarrow \mathbb{C}$. It follows from (2.6) that f is convex with respect to $\preceq_{m_{1}}^{m_{2}}$ if and only if the inequalities

$$
\begin{aligned}
& m_{1}\left(\lambda f_{1}(z)+(1-\lambda) f_{1}(w)-f_{1}(\lambda z+(1-\lambda) w)\right) \\
& \quad \leq \lambda f_{2}(z)+(1-\lambda) f_{2}(w)-f_{2}(\lambda z+(1-\lambda) w) \\
& \quad \leq m_{2}\left(\lambda f_{1}(z)+(1-\lambda) f_{1}(w)-f_{1}(\lambda z+(1-\lambda) w)\right)
\end{aligned}
$$

hold for every $z, w \in C$ and for all $0 \leq \lambda \leq 1$. By rearranging the previous inequalities, we can see that f is convex with respect to $\preceq_{m_{1}}^{m_{2}}$ exactly if the functions

$$
f_{2}-m_{1} f_{1} \quad \text { and } \quad m_{2} f_{1}-f_{2}
$$

are convex. This implies that f_{1} must be convex.
It is easy to check that the function

$$
f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(x+y i)=\left(f_{1}+f_{2} i\right)(x+y i)=x^{2}+y^{2}+2 x y i
$$

is convex with respect to \preceq_{-1}^{1}, but f_{2} is neither convex nor concave. It is worth noting that K_{-1}^{1} is the smaller cone among the cones in (2.5) for which f is convex.

Finally, we give the aforementioned Jensen-type inequalities.
Theorem 2.5 (Vector version of Jensen's discrete inequality; see [10, p. 55]). Let \preceq be a closed cone ordering on \mathbb{C}, and let C be a convex subset of \mathbb{C}. If $f: C \rightarrow \mathbb{C}$ is a convex function with respect to $\preceq, x_{i} \in C, p_{i} \geq 0(i=1, \ldots, n)$, and $\sum_{i=1}^{n} p_{i}=1$, then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \preceq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) . \tag{2.7}
\end{equation*}
$$

Theorem 2.6 (Vector version of Jensen's integral inequality; [10, Theorem 3.6]). Let \preceq be a closed cone ordering on \mathbb{C}, and let g be an integrable function on a probability space (X, \mathcal{A}, P) taking values in a closed and convex set $C \subset \mathbb{C}$. Then $\int_{X} g d P$ lies in C. If $f: C \rightarrow \mathbb{C}$ is a continuous and convex function with respect to \preceq such that $f \circ g$ is P-integrable, then

$$
\begin{equation*}
f\left(\int_{X} g d P\right) \preceq \int_{X} f \circ g d P . \tag{2.8}
\end{equation*}
$$

3. Main results

Our main result generalizes Theorem 1.1 for normal operators.
Theorem 3.1. Let \preceq be a closed cone ordering on \mathbb{C}. Assume that C is a closed and convex subset of \mathbb{C}, that $A_{i} \in N(C)(i=1, \ldots, n)$, and that $f: C \rightarrow \mathbb{C}$ is a continuous and convex function with respect to \preceq.
(a) If $x_{i} \in H(i=1, \ldots, n)$ such that $\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}=1$, then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n}\left\langle A_{i} x_{i}, x_{i}\right\rangle\right) \preceq \sum_{i=1}^{n}\left\langle f\left(A_{i}\right) x_{i}, x_{i}\right\rangle . \tag{3.1}
\end{equation*}
$$

(b) If $x \in H$ with $\|x\|=1$, and $p_{i} \geq 0(i=1, \ldots, n)$ such that $\sum_{i=1}^{n} p_{i}=1$, then

$$
f\left(\sum_{i=1}^{n}\left\langle p_{i} A_{i} x, x\right\rangle\right) \preceq\left\langle\sum_{i=1}^{n} p_{i} f\left(A_{i}\right) x, x\right\rangle .
$$

Proof. (a) We can obviously suppose that $x_{i} \neq 0(i=1, \ldots, n)$. By (2.1),

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle A_{i} x_{i}, x_{i}\right\rangle=\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\left\langle A_{i} \frac{x_{i}}{\left\|x_{i}\right\|}, \frac{x_{i}}{\left\|x_{i}\right\|}\right\rangle=\sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \int_{\sigma\left(A_{i}\right)} \lambda d E_{\frac{x_{i}}{i}, \frac{x_{i}}{\| x_{i}},\left\|x_{i}\right\|} \tag{3.2}
\end{equation*}
$$

where E^{i} denotes the spectral decomposition of $A_{i}(i=1, \ldots, n)$. Since $\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}=1$, and $E^{i} \frac{x_{i}}{\left\|x_{i}\right\|}, \frac{x_{i}}{x_{i} \|}$ is a probability measure on the Borel sets of $\sigma\left(A_{i}\right)(i=1, \ldots, n),(3.2)$ shows that

$$
\sum_{i=1}^{n}\left\langle A_{i} x_{i}, x_{i}\right\rangle \in C
$$

By applying vector versions of Jensen's discrete and integral inequalities to the last expression in (3.2), we obtain

$$
\begin{aligned}
f\left(\sum_{i=1}^{n}\left\langle A_{i} x_{i}, x_{i}\right\rangle\right) & \preceq \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} f\left(\int_{\sigma\left(A_{i}\right)} \lambda d E_{\frac{x_{i}}{i}, \frac{x_{i}}{\left\|x_{i}\right\|}}^{\left\|x_{i}\right\|}\right. \\
& \preceq \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \int_{\sigma\left(A_{i}\right)} f(\lambda) d E_{\frac{x_{i}}{i}, \frac{x_{i}}{\left\|x_{i}\right\|}, \cdot\left\|x_{i}\right\|} \\
& =\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\left\langle f\left(A_{i}\right) \frac{x_{i}}{\left\|x_{i}\right\|}, \frac{x_{i}}{\left\|x_{i}\right\|}\right\rangle=\sum_{i=1}^{n}\left\langle f\left(A_{i}\right) x_{i}, x_{i}\right\rangle .
\end{aligned}
$$

(b) This follows from (a) by choosing $x_{i}=\sqrt{p_{i}} x(i=1, \ldots, n)$. The proof is complete.
Corollary 3.2. Assume that C is a closed and convex subset of \mathbb{C}, that $A_{i} \in$ $N(C)(i=1, \ldots, n)$, and that $f: C \rightarrow \mathbb{R}$ is a continuous and convex function.
(a) If $x_{i} \in H(i=1, \ldots, n)$ such that $\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}=1$, then

$$
f\left(\sum_{i=1}^{n}\left\langle A_{i} x_{i}, x_{i}\right\rangle\right) \leq \sum_{i=1}^{n}\left\langle f\left(A_{i}\right) x_{i}, x_{i}\right\rangle .
$$

(b) If $x \in H$ with $\|x\|=1$, and $p_{i} \geq 0(i=1, \ldots, n)$ such that $\sum_{i=1}^{n} p_{i}=1$, then

$$
f\left(\sum_{i=1}^{n}\left\langle p_{i} A_{i} x, x\right\rangle\right) \leq\left\langle\sum_{i=1}^{n} p_{i} f\left(A_{i}\right) x, x\right\rangle .
$$

Proof. The proof follows from Theorem 3.1, by using Lemma 2.3 and the fact that $f\left(A_{i}\right)(i=1, \ldots, n)$ is self-adjoint.

Remark 3.3. Consider the special case $n=1$ of the previous theorem. If \preceq is a closed cone ordering on \mathbb{C}, C is a closed and convex subset of $\mathbb{C}, A \in N(C)$, $f: C \rightarrow \mathbb{C}$ is a continuous and convex function with respect to \preceq, and $x \in H$ such that $\|x\|=1$, then

$$
f(\langle A x, x\rangle) \preceq\langle f(A) x, x\rangle .
$$

In this case the closure of the numerical range of A is the smallest closed and convex set containing $\sigma(A)$.
Example 3.4. In Example 2.4 we defined the closed cone ordering \preceq_{-1}^{1} on \mathbb{C}, and we have seen that the function

$$
f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(x+y i)=\left(f_{1}+f_{2} i\right)(x+y i)=x^{2}+y^{2}+2 x y i
$$

is convex with respect to \preceq_{-1}^{1}. If $A \in N(\mathbb{C})$ and $x \in H$ such that $\|x\|=1$, then by Remark 3.3,

$$
f(\langle A x, x\rangle) \preceq_{-1}^{1}\langle f(A) x, x\rangle .
$$

As a first consequence of the previous theorem, a Hölder-McCarthy-type inequality (see McCarthy [6]) is derived for normal operators.

Corollary 3.5. Assume that $A_{i} \in \mathcal{B}(H)(i=1, \ldots, n)$ are normal operators and that $x_{i} \in H, x_{i} \neq 0(i=1, \ldots, n)$ with $\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}=1$. Then for every $\alpha \geq 1$

$$
\begin{equation*}
\left.\left|\sum_{i=1}^{n}\left\langle A_{i} x_{i}, x_{i}\right\rangle\right|^{\alpha} \leq\left.\sum_{i=1}^{n}\langle | A_{i}\right|^{\alpha} x_{i}, x_{i}\right\rangle \tag{3.3}
\end{equation*}
$$

Proof. It is easy to check that the function

$$
\begin{equation*}
z \rightarrow|z|^{\alpha}, \quad z \in \mathbb{C} \tag{3.4}
\end{equation*}
$$

is convex if $\alpha \geq 1$, and therefore Corollary 3.2(a) can be applied.

Remark 3.6. (a) If $\alpha \in]-\infty, 1[, \alpha \neq 0$, then the function (3.4) is neither convex nor concave.
(b) For $\alpha=2$, (3.3) can be written as

$$
\left|\sum_{i=1}^{n}\left\langle A_{i} x_{i}, x_{i}\right\rangle\right|^{2} \leq \sum_{i=1}^{n}\left\|A_{i} x_{i}\right\|^{2}
$$

Really, in this case $\left|A_{i}\right|^{2}=A_{i}^{*} A_{i}(i=1, \ldots, n)$.
Next, we apply Theorem 3.1 to get some norm inequalities.
Corollary 3.7. Assume that $A_{i} \in \mathcal{B}(H)(i=1, \ldots, n)$ are normal operators and that $p_{i} \geq 0(i=1, \ldots, n)$ such that $\sum_{i=1}^{n} p_{i}=1$. If $\sum_{i=1}^{n} p_{i} A_{i}$ is normal, and $f:[0, \infty[\rightarrow \mathbb{R}$ is a nonnegative, continuous, increasing, and convex function, then

$$
\begin{equation*}
f\left(\left\|\sum_{i=1}^{n} p_{i} A_{i}\right\|\right) \leq\left\|\sum_{i=1}^{n} p_{i} f\left(\left|A_{i}\right|\right)\right\| \tag{3.5}
\end{equation*}
$$

Proof. The operator $\sum_{i=1}^{n} p_{i} f\left(\left|A_{i}\right|\right)$ is positive, because f and $p_{i}(i=1, \ldots, n)$ are nonnegative.

If $A \in \mathcal{B}(H)$ is a normal operator, then $\|A\|=\sup _{\|x\|=1}|\langle A x, x\rangle|$. By using this, the continuity and the increase of f yield

$$
f\left(\left\|\sum_{i=1}^{n} p_{i} A_{i}\right\|\right)=f\left(\sup _{\|x\|=1}\left|\left\langle\sum_{i=1}^{n} p_{i} A_{i} x, x\right\rangle\right|\right)=\sup _{\|x\|=1} f\left(\left|\left\langle\sum_{i=1}^{n} p_{i} A_{i} x, x\right\rangle\right|\right)
$$

Since f is convex and increasing, and the function (3.4) with $\alpha=1$ is convex, the composition

$$
z \rightarrow f(|z|), \quad z \in \mathbb{C}
$$

is also convex, and therefore Corollary $3.2(\mathrm{~b})$ shows that

$$
f\left(\left\|\sum_{i=1}^{n} p_{i} A_{i}\right\|\right) \leq \sup _{\|x\|=1}\left\langle\sum_{i=1}^{n} p_{i} f\left(\left|A_{i}\right|\right) x, x\right\rangle=\left\|\sum_{i=1}^{n} p_{i} f\left(\left|A_{i}\right|\right)\right\|
$$

The proof is now complete.
Remark 3.8. For example, a sufficient condition for the normality of the operator $\sum_{i=1}^{n} p_{i} A_{i}$ is $A_{i} A_{j}=A_{j} A_{i}(i, j=1, \ldots, n)$.

We mention some special cases of the previous result.
Remark 3.9. Assume that $A_{i} \in \mathcal{B}(H)(i=1, \ldots, n)$ are normal operators, that $p_{i} \geq 0(i=1, \ldots, n)$ such that $\sum_{i=1}^{n} p_{i}=1$, and that $\sum_{i=1}^{n} p_{i} A_{i}$ is normal.
(a) If $f(x)=x^{\alpha}(x \geq 0)$ with $\alpha \geq 1$, then (3.5) gives

$$
\left\|\sum_{i=1}^{n} p_{i} A_{i}\right\|^{\alpha} \leq\left\|\sum_{i=1}^{n} p_{i}\left|A_{i}\right|^{\alpha}\right\|
$$

(b) If $f(x)=e^{x}(x \geq 0)$, then (3.5) gives

$$
\exp \left(\left\|\sum_{i=1}^{n} p_{i} A_{i}\right\|\right) \leq\left\|\sum_{i=1}^{n} p_{i} \exp \left(\left|A_{i}\right|\right)\right\| .
$$

Acknowledgment. Horváth's work was partially supported by Hungarian National Foundations for Scientific Research grant K120186. The author would like to thank the referees for their valuable comments.

References

1. C. Conde, Normal operators and inequalities in norm ideals, Linear Algebra Appl. 431 (2009), no. 10, 1744-1777. Zbl 1177.47030. MR2567789. DOI 10.1016/j.laa.2009.06.016. 567
2. S. S. Dragomir, Inequalities for normal operators in Hilbert spaces, Appl. Anal. Discrete Math. 1 (2007), no. 1, 92-110. Zbl 1199.47084. MR2316590. DOI 10.2298/AADM0701092D. 567
3. S. S. Dragomir and M. S. Moslehian, Some inequalities for (α, β)-normal operators in Hilbert spaces, Facta Univ. Ser. Math. Inform. 23 (2008), 39-47. Zbl 1199.47052. MR2490454. 567
4. K. E. Gustafson and D. K. M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Universitext, Springer, New York, 1997. Zbl 0874.47003. MR1417493. DOI 10.1007/978-1-4613-8498-4. 568
5. J. L. Kelley and I. Namioka, Linear Topological Spaces, van Nostrand, Princeton, 1963. Zbl 0115.09902. MR0166578. 568
6. C. A. McCarthy, c_{p}, Israel J. Math. 5 (1967), 249-271. Zbl 0156.37902. MR0225140. DOI 10.1007/BF02771613. 571
7. S. Menkad and A. Seddik, Operator inequalities and normal operators, Banach J. Math. Anal. 6 (2012), no. 2, 204-210. Zbl 1266.47023. MR2945998. DOI 10.15352/bjma/ 1342210170. 567
8. B. Mond and J. Pečarić, Convex inequalities in Hilbert space, Houston J. Math. 19 (1993), no. 3, 405-420. Zbl 0813.46016. MR1242427. 567
9. J. Pečarić, T. Furuta, J. Mićić Hot, and Y. Seo, Mond-Pečarić Method in Operator Inequalities: Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Monogr. Inequal. 1, Element, Zagreb, 2005. Zbl 1135.47012. MR3026316. 566, 567
10. M. D. Perlman, Jensen's inequality for a convex vector-valued function on an infinitedimensional space, J. Multivariate Anal. 4 (1974), 52-65. Zbl 0274.28012. MR0362421. DOI 10.1016/0047-259X(74)90005-0. 567, 568, 569, 570
11. W. Rudin, Functional Analysis, 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991. Zbl 0867.46001. MR1157815. 567
12. N. Sookia and P. N. Gonpot, Berezin-Lieb inequality: An extension to normal operators, Univ. Mauritius Res. J. 17 (2011), 15-26. 567

Department of Mathematics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary.

E-mail address: lhorvath@almos.uni-pannon.hu

[^0]: Copyright 2018 by the Tusi Mathematical Research Group.
 Received Oct. 12, 2017; Accepted Jan. 9, 2018.
 First published online Sep. 28, 2018.
 2010 Mathematics Subject Classification. Primary 47A63; Secondary 26A51.
 Keywords. normal operators, convexity, Jensen-type inequalities.

