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ABSTRACT. In this article, we generalize a well-known operator version of
Jensen’s inequality to normal operators. The main techniques employed here
are the spectral theory for bounded normal operators on a Hilbert space, and
different Jensen-type inequalities. We emphasize the application of a vector ver-
sion of Jensen’s inequality. By applying our results, some classical inequalities
obtained for self-adjoint operators can also be extended.

1. Introduction

Throughout this article (H, (-, -)) means a complex Hilbert space. The Banach
algebra of all bounded linear operators on H is denoted by B(H). The operator
norm on B(H) is defined as usual by

IA[l:= sup [[Az]l, A e B(H).
=<1
An operator A € B(H) is said to be normal (especially self-adjoint) if AA* = A*A
(A = A*). The spectrum of an operator A € B(H) is denoted by o(A). For a set
K C C, N(K) means the class of all normal operators from B(H) whose spectra
are contained in K. Similarly, if J C R is an interval, then S(.J) denotes the class
of all self-adjoint operators from B(H) whose spectra are contained in J.

Different types of inequalities between self-adjoint operators in B(H) have
undergone extensive study and have many applications (see, e.g., Pecari¢, Furuta,
Mié¢ié¢, and Seo [9]). The treatment of a large group of such inequalities depends
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on the continuous functional calculus for self-adjoint operators (see Rudin [11]),
and the important notions of operator convexity and operator monotonicity. For
normal operators in B(H ), on the other hand, there are only a few papers in which
convexity or monotonicity is used (see Sookia and Gonpot [12]), although there
exists a functional calculus for normal operators too. Other types of inequalities
for normal operators have been investigated by various authors (see Conde [1],
Dragomir [2], Dragomir and Moslehian [3], and Menkad and Seddik [7]).

In this article, we generalize the following well-known operator version of
Jensen’s inequality to normal operators.

Theorem 1.1 (see [8, Theorem 1], [9, p. 5]). Let J C R be an interval. Let
AeSWU)andz; € H (i =1,....n) with > |lwl*> = 1. If f : J = R is

continuous and convex, then

f(iAxl,xl) Z(f Vi, 72, (1.1)

The main techniques employed here are the spectral theory for normal oper-
ators in B(H) and different Jensen-type inequalities. We emphasize the applica-
tion of a vector version of Jensen’s inequality based on Perlman [10]. By applying
our results, some classical inequalities obtained for self-adjoint operators (e.g.,
Holder-McCarthy-type inequalities) can also be extended.

2. Preliminaries

In this section, we recall spectral theory and some notions and results corre-
sponding to convexity. First, following Rudin [11] mainly, we briefly summarize
the spectral theory for normal operators in B(H). For every normal operator
A € B(H) there exists a unique resolution E of the identity (called the spectral
decomposition of A, and it depends on A) on the Borel subsets of o(A) which
satisfies

A= /U . AdE(N). (2.1)

By using E, for every bounded Borel function f : 0(A) — C we can define the

operator
/ fdE (2.2)
o(A)

which is denoted by f(A) as usual. The integral (2.2) is the abbreviation for
<f(A)ZL’,y> = dex,ya T,y € H»
o(A)
where E, , denotes the complex measure
Epy(w) = <E(w)x,y>

on the Borel subsets of o(A). If x € H and ||z|| = 1, then E, . is a probability
measure.
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The following statements about the numerical range of an operator can be
found in Gustafson and Rao [4]. The numerical range of an operator A € B(H)
is defined by

W(A) = {(Ax,x) e C ! ||| = 1}.
By the Toeplitz—Hausdorff theorem, W(A) is convex. The closure of W (A)
(denoted by W (A)) contains o(A). If A is normal, then W(A) is the smallest
closed and convex set containing o(A). We only need two special cases of Jensen’s
inequality for convex vector-valued functions (more general results can be found
in Perlman [10]).

We briefly discuss partial orderings on C to formulate these assertions. The
following notions and results can be found in a more general context in Kelley
and Namioka [5] or Perlman [10]. A binary relation =< on C is called a partial
ordering on C if it is reflexive, transitive, and antisymmetric. We say that the
partial ordering < on C is a closed cone ordering if it satisfies the following
additional conditions.

(i) If 21, 29 € C such that z; < 25, then for every z3 € C and for every a > 0
we have a(z + 23) = a2 + 23).

(ii) If (2,)9,; and (w,)22, are convergent sequences in C such that z, < w,
for all n > 1, then lim,,_, 2, =< lim,, s W,.

A subset K of C is called a cone if, for every z € K and for every a > 0, we
have az € K. The cone K C C is said to be pointed if K N (—K) = {0}. There
is a one-to-one correspondence between closed cone orderings and pointed closed
convex cones on C. If K C C is a pointed closed convex cone, then the binary
relation

<gi= {(21722) e C? ‘ 29— 21 € K}
is a closed cone ordering. Conversely, if < is a closed cone ordering, then
K:={e€C|0=<2z} (2.3)
is a pointed closed convex cone and <x = <.

Remark 2.1. Let K be a pointed closed convex cone in C. It is not hard to

check that K is either a closed half-line with endpoint 0 or that there are two

independent z, w € C such that K is spanned by these numbers; that is,
K={az+pweCla,p>0}

Definition 2.2. Let C' C C be a convex set, let < be a closed cone ordering on C,
and let f: C'— C. We say that f is conver with respect to < if

FOz+ (1 =Nw) 2Af(2)+ (1 =N f(w), zwel, <A< (2.4)

Lemma 2.3. Let C' C C be a convex set, and let f : C' — R be a real-valued
complex function. Then f is convex with respect to a closed cone ordering on C
exactly if f is either convex or concave in the usual sense, that is, either

FOe+(1=Ny) <Af(@)+ (1 =Nf(y), zyeC <A<

or

fz+ (1= Ny) 2 M(2) +(1=N)f(y), zyeC <AL
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Proof. Assume that f is convex with respect to a closed cone ordering < on C.
Since the restriction of < to R is either < or > or =, it follows from (2.4) that f
is either convex or concave.

Conversely, assume that f is convex. If < is a closed cone ordering on C such
that the corresponding pointed closed convex cone (see (2.3)) contains the closed
half-line

{r+yieClx>0y=0}

then f is convex with respect to <. The concave case can be handled similarly.
The proof is complete. |

Ezample 2.4. Let my < my be fixed, and let K}? C C be defined by
K3 ={z+yi e C|lmuzx <y < mox}. (2.5)
Then K? is a pointed closed convex cone, and the closed cone ordering on C
generated by K2 is
utvi 52 +yi = mi(z—u) <y—v<me(r—u). (2.6)
Let C' C C be a convex set, and let f = f; + foi : C' — C. It follows from (2.6)
that f is convex with respect to <72 if and only if the inequalities
mi(M1(2) + (1= M) fi(w) = fi(Az + (1 = Nw))
<A fa(2) + (1= N) fo(w) = fo(Az + (1 = Nw)
<ma(Mf1(2) + (1= A) fi(w) — fi(Az + (1 = Nw))

hold for every z, w € C and for all 0 < A < 1. By rearranging the previous
inequalities, we can see that f is convex with respect to <72 exactly if the func-
tions

Jo—mafi and mafi — fo
are convex. This implies that f; must be convex.
It is easy to check that the function
f:C—=C, flx+uyi)=(fi+ foi)(x+yi)=2>+y° + 2zyi

is convex with respect to <!, but f is neither convex nor concave. It is worth
noting that K', is the smaller cone among the cones in (2.5) for which f is
convex.

Finally, we give the aforementioned Jensen-type inequalities.

Theorem 2.5 (Vector version of Jensen’s discrete inequality; see [10, p. 55]).
Let = be a closed cone ordering on C, and let C be a convex subset of C. If
f:C — C is a convex function with respect to <X, z; € C, p; >0 (i =1,...,n),
and Y r  p; =1, then

f<ipzxz> = ipzf(l"z) (2.7)
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Theorem 2.6 (Vector version of Jensen’s integral inequality; [10, Theorem 3.6]).
Let = be a closed cone ordering on C, and let g be an integrable function on a
probability space (X, A, P) taking values in a closed and convez set C C C. Then
fX gdP lies in C. If f: C — C is a continuous and convex function with respect
to = such that f o g is P-integrable, then

f</ngP> j/XfogdP. (2.8)

3. Main results
Our main result generalizes Theorem 1.1 for normal operators.

Theorem 3.1. Let < be a closed cone ordering on C. Assume that C' is a closed
and convex subset of C, that A; € N(C) (i =1,...,n), and that f : C — C is a
continuous and convex function with respect to <.

a) Ife, € H (i=1,... such that z;||2 =1, then
() T 11

f(i (Ajz;, x; ) Z<f xz,xz (3.1)

(b) If x € H with ||z|| =1, and p; > 0 (t = 1,...,n) such that >  p; =1,

then
1 widiw.a)) = (3 pis(Aa.x).

1=

Proof. (a) We can obviously suppose that x; #0 (i = 1,...,n). By (2.1),

S (A ) = Zn (A ) = ZHxZn?/ M (32)
=1

[RAIEZA]
where E' denotes the spectral decomposition of A; (i = 1,...,n). Since
Sor @il = 1, and E%; ., is a probability measure on the Borel sets of

[EAEA]

o(A;) (i=1,...,n), (3.2) shows that

Z<All‘2, J,’z> € C

=1

By applying vector versions of Jensen’s discrete and integral inequalities to the
last expression in (3.2), we obtain

f(; Aiwi, > ZH%H f(/ )\dET\ianzﬁu)

<Zux@u2 [ i
_Z\lxllr< I HZH>=;<]C(AZ-);E¢,$1->.
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(b) This follows from (a) by choosing x; = /p;z (i = 1,...,n). The proof is
complete. O

Corollary 3.2. Assume that C' is a closed and convex subset of C, that A; €
N(C) (i=1,...,n), and that f : C — R is a continuous and convex function.

(a) Ifw; € H (i =1,...,n) such that Y ;| ||z;||> =1, then

f(i (Ajz;, x; ) Z<f xl,xz

(b) If € H with ||z|| =1, and p; > 0 (¢ = 1,...,n) such that >  p; =1,

then
f(i(pw‘lﬂ,x)) < <ipif(z4i)x,x>.

Proof. The proof follows from Theorem 3.1, by using Lemma 2.3 and the fact
that f(A;) (i =1,...,n) is self-adjoint. O

Remark 3.3. Consider the special case n = 1 of the previous theorem. If < is
a closed cone ordering on C, C' is a closed and convex subset of C, A € N(C),
f : C — C is a continuous and convex function with respect to <, and r € H
such that [|z|| = 1, then

f((Az,2)) = (f(A)z,z).

In this case the closure of the numerical range of A is the smallest closed and
convex set containing o(A).

Ezample 3.4. In Example 2.4 we defined the closed cone ordering <!, on C, and
we have seen that the function

f:C=C, flz+yi)=(fi+ foi)(z + yi) = 2° + y* + 2ayi

is convex with respect to <! . If A € N(C) and = € H such that ||z|| = 1, then
by Remark 3.3,

f(Az,z)) =1, (f(A)z, ).

As a first consequence of the previous theorem, a Holder—McCarthy-type
inequality (see McCarthy [6]) is derived for normal operators.

Corollary 3.5. Assume that A; € B(H) (i =1,...,n) are normal operators and
that vy € H, x; #0 (1 =1,...,n) with >, ||lz;]|* = 1. Then for every a > 1

’Z<Ai$i; ;)
i=1
Proof. 1t is easy to check that the function
z— 2%, ze€C (3.4)

S Z<|Al|a$“l’l> (33)
i=1

is convex if & > 1, and therefore Corollary 3.2(a) can be applied. O
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Remark 3.6. (a) If @ €] — 00, 1], a # 0, then the function (3.4) is neither convex
nor concave.
(b) For o = 2, (3.3) can be written as

n 2 n
‘Z<Aixiu z;i)| < Z | Agas |,
i=1 i=1

Really, in this case |A;|*> = A7A; (i=1,...,n).

Next, we apply Theorem 3.1 to get some norm inequalities.

Corollary 3.7. Assume that A; € B(H) (i = 1,...,n) are normal operators and
that p; > 0 (i = 1,...,n) such that > " p; = 1. If "7 | p;A; is normal, and
f :[0,00[— R is a nonnegative, continuous, increasing, and convez function,

then
f(HipzAz ) < Hipzf(\AzDH (3.5)

Proof. The operator > | p;f(|A;]) is positive, because f and p; (i = 1,...,n)
are nonnegative.

If A € B(H) is a normal operator, then [|Al = sup,_; [{Az,z)|. By using
this, the continuity and the increase of f yield

(IS ma]) = 1 (s [(petea)]) = o 5 ([t

[lz]l=1 [[el=1
Since f is convex and increasing, and the function (3.4) with @ = 1 is convex,
the composition

z—>f(]z\), zeC

is also convex, and therefore Corollary 3.2(b) shows that

f(ngiAi ) < sup <ZP1 ‘A’ xr ﬂU> = Hzpz |A| H

llxfl=1
The proof is now complete. 0

Remark 3.8. For example, a sufficient condition for the normality of the operator

Z?:1 pid; is AiAj = Ain (Z,] =1,... ,n).
We mention some special cases of the previous result.

Remark 3.9. Assume that A; € B(H) (i = 1,...,n) are normal operators, that
pi >0 (i=1,...,n)such that Y !, p; = 1, and that > | p;A; is normal.

(a) If f(z) = 2% (x > 0) with a > 1, then (3.5) gives

HZP%AZ i S Hzpz
=1 i=1
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(b) If f(z) =€" (z > 0), then (3.5) gives

exp(HépiAi ) < Hé]h’exp(’AiDH-
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