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ON OPERATORS WITH CLOSED NUMERICAL RANGES
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Abstract. In this article we investigate the numerical ranges of several classes
of operators. It is shown that, if we let T be a hyponormal operator and let
ε > 0, then there exists a compact operator K with norm less than ε such that
T + K is hyponormal and has a closed numerical range. Moreover we prove
that the statement of the above type holds for other operator classes, including
weighted shifts, normaloid operators, triangular operators, and block-diagonal
operators.

1. Introduction

In this paper, let H be a complex separable Hilbert space endowed with the
inner product 〈·, ·〉, and let B(H) and K(H) denote the algebra of all bounded lin-
ear operators acting on H and the ideal of compact operators on H, respectively.
The numerical range of an operator T ∈ B(H) is defined as

W (T ) =
{
〈Tx, x〉 : x ∈ H, ‖x‖ = 1

}
.

Clearly, W (T ) is a nonempty bounded subset of C.
The classical Toeplitz–Hausdorff theorem asserts that the numerical range

W (T ) of T is always convex (see [9], [14]). Moreover it is well known that

conv σ(T ) ⊆ W (T ) (see [8, p. 115]), where σ(T ) denotes the spectrum of T ,

conv σ(T ) denotes the convex hull of σ(T ), and W (T ) denotes the closure of
W (T ). Let w(T ) and r(T ) denote the numerical radius and the spectral radius
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of T , that is, w(T ) = sup{|λ| : λ ∈ W (T )}, and r(T ) = sup{|λ| : λ ∈ σ(T )}. It is
known that r(T ) ≤ w(T ) ≤ ‖T‖. It is also well known that the numerical range
of a direct sum is the convex hull of the numerical ranges of the summands. Some
other properties of numerical range can be found in [7], [8].

Despite the conceptual simplicity of the definition of numerical range, numer-
ical range and its generalizations have been studied extensively because of their
connections and applications to many different areas, including operator theory,
C∗-algebras, quantum theory, dilation theory, Krein space operators, and unitary
similarity (see [2], [7], [8], [12]). It is also well known that the numerical range
W (T ) of T ∈ B(H) is always closed when H is finite-dimensional; however, when
H is infinite-dimensional, the numerical range of an operator in B(H) may be
open. For instance, the numerical range of the unilateral shift operator is an open
disk centered at the origin (see [8, p. 317]).

One natural question is whether operators with closed numerical ranges are
dense with respect to the uniform (norm) topology. In 2003, Bourin ([3, Proposi-
tion 1.3]) proved that, if T ∈ B(H) and ε > 0, then there must exist a compact
operator K with ‖K‖ < ε such that W (T + K) is closed. In his proof, he even
used a finite-rank operator to achieve this conclusion. In 2015, S. Zhu in [15]
strengthened Bourin’s result by proving that, if T is normal (transaloid) and if
ε > 0, then there exists a K ∈ K(H) with ‖K‖ < ε such that W (T +K) is closed,
and T +K is still normal (transaloid, resp.).

The main aim of this paper is to investigate which classes of operators have
the above-mentioned property. For convenience, we say that an operator class A
is strongly numerically closed, if, for any T ∈ A and any ε > 0, there exists a
compact operator K with ‖K‖ < ε such that T + K ∈ A and W (T + K) is
closed.

Thus the class of normal operators and the class of transaloid operators are
strongly numerically closed. We are interested in determining which special classes
of operators are strongly numerically closed. For some classes of Hilbert space
operators, including weighted shift operators, normaloid operators, hyponormal
operators, triangular operators, and block-diagonal operators, we give an affirma-
tive answer. Our results strengthen Bourin’s and Zhu’s results mentioned above.
We also prove that the class of pure quasinormal operators is not strongly numer-
ically closed (see Proposition 4.12).

The rest of this paper is organized as follows. In Section 2, we show that the
class of unilateral weighted shifts and the class of bilateral weighted shifts are both
strongly numerically closed. In Section 3, we prove that the class of triangular
operators and the class of block-diagonal operators are both strongly numerically
closed. Section 4 is devoted to showing that the class of hyponormal operators
and the class of normaloid operators are both strongly numerically closed.

2. Weighted shift operators

Let A ∈ B(H). If there is an orthonormal basis {en}∞n=1 of H and a sequence
{an}∞n=1 ⊆ C such that Aen = anen+1 for all n ≥ 1, then A is called a unilateral
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weighted shift with weights {an}∞n=1. The main result of this section is the following
theorem.

Theorem 2.1. The class of unilateral weighted shifts is strongly numerically
closed.

To give the proof of Theorem 2.1, we give some useful results concerning numer-
ical ranges of unilateral weighted shifts.

Lemma 2.2 ([12, Proposition 1]). If A is a unilateral weighted shift with weights

{an}∞n=1, then A is unitarily equivalent to the unilateral weighted shift Ã with
weights {|an|}∞n=1.

By Lemma 2.2 and the definition of numerical range, it is easy to verify that

W (A) = W (Ã); hence we can assume that, from time to time, the weights of
unilateral weighted shifts are nonnegative.

The following lemma is clear. For the reader’s convenience we give its proof.

Lemma 2.3. If A is a unilateral weighted shift, then W (A) is a disk centered at
the origin.

Proof. By Lemma 2.2, A is unitarily equivalent to cA for any c ∈ C with |c| = 1.
Thus W (A) = W (cA) = cW (A) for any c ∈ C when |c| = 1. This implies that
W (A) has circular symmetry. Note that W (A) is always convex. We deduce that
W (A) is a disk centered at the origin, either open or closed. �

Using the same method as that used in Lemma 2.3, we can easily obtain the
following corollary.

Corollary 2.4. Let A ∈ B(Cn), and assume that A can be written as

A =


0
a1 0 0

a2 0
. . . . . .

0 an−1 0


relative to some orthonormal basis of Cn. Thus W (A) is a closed disk centered at
the origin.

Recall that the essential numerical range of T ∈ B(H) is the nonempty set

We(T ) =
⋂

K∈K(H)

W (T +K).

According to the definition of We(T ), it is apparent that We(T ) is convex, closed,
and invariant under compact perturbation. And it is well known that σe(T ) ⊆
We(T ), where σe(T ) denotes the essential spectrum of T . (For references on the
theory of essential numerical range, see [1] and [6].)

In his paper, Lancaster [11] described the following relationship between the
numerical range and the essential numerical range of an operator.

Lemma 2.5 ([11, Theorem 1]). If T ∈ B(H), then W (T ) = conv{W (T )∪We(T )}.
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Lemma 2.5 gives a necessary and sufficient condition for the numerical range of
an operator to be closed. That is, W (T ) is closed if and only if We(T ) ⊆ W (T ).

The following two lemmas describe the relationship between the numerical
range of an operator and the numerical range of its compression.

Lemma 2.6. Let T ∈ B(H), and let M be a closed subspace of H. If we denote
by P the orthogonal projection onto M , then W (PT |M) ⊆ W (T ).

Proof. Since M ⊆ H, we have

〈PT |Mx, x〉 = 〈T |Mx, Px〉 = 〈Tx, x〉 ∈ W (T )

for any x ∈ M with ‖x‖ = 1; hence W (PT |M) ⊆ W (T ). �

Throughout this paper, we denote by PF(H) the set of all finite-rank orthog-
onal projections in B(H).

Because the following result is obvious, its proof is omitted.

Lemma 2.7. Let {Pn}∞n=1 be a (not necessarily increasing) sequence in PF(H)
such that Pn → I in the strong operator topology. Given A ∈ B(H), denote

An = PnA|PnH for each n ≥ 1. Then W (A) =
⋃∞

n=1W (An), and w(An) → w(A).

Lemma 2.8. Let {en}∞n=1 be an othonormal basis of H, and let A ∈ B(H) with

Aen = anen+1 for n ≥ 1. If an ≥ 0 for all n ≥ 1, then W (A) ( W (A + εS) for
every ε > 0, where S is the canonical unilateral shift defined as Sen = en+1 for
all n ≥ 1.

Proof. Without loss of generality, we assume that w(A) = 1. By Lemma 2.3,
both W (A) and W (A+ εS) are disks centered at the origin for each ε > 0. So it
suffices to show that w(A + εS) > 1 = w(A) for every ε > 0. Since w(A) = 1,
then, for any fixed ε > 0, there exists a unit vector x0 = (η1, η2, . . .) such that
|〈Ax0, x0〉 − 1| < δε, where δ = 1

‖A‖+ε
. Accordingly,

1− δε <
∣∣〈Ax0, x0〉

∣∣ = ∣∣∣ ∞∑
k=1

akηkηk+1

∣∣∣
≤

∞∑
k=1

ak|ηk||ηk+1|

= 〈Ay0, y0〉,

where y0 = (|η1|, |η2|, . . .). Namely, 〈Ay0, y0〉 > 1 − δε. On the other hand, note
that, if 0 ≤ ak ≤ ‖A‖ for all k ≥ 1, then

1− δε <
∣∣〈Ax0, x0〉

∣∣ ≤ ∞∑
k=1

ak|ηk||ηk+1|

≤ ‖A‖
∞∑
k=1

|ηk||ηk+1|

= ‖A‖〈Sy0, y0〉;
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hence

〈εSy0, y0〉 >
ε(1− δε)

‖A‖
.

We then have 〈
(A+ εS)y0, y0

〉
= 〈Ay0, y0〉+ 〈εSy0, y0〉

> 1− δε+
ε(1− δε)

‖A‖
= 1.

This implies that w(A+ εS) > 1 = w(A). The proof is complete. �

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Suppose that A is a unilateral weighted shift such that
Aen = anen+1 for n ≥ 1, where {en}∞n=1 is an orthonormal basis. Without loss of
generality we assume that an ≥ 0 for all n ≥ 1.

If we denote by Pn the orthogonal projection onto Mn = span{ek : 1 ≤ k ≤ n},
then {Pn}∞n=1 is an increasing sequence in PF(H) with Pn → I in the strong
operator topology. For any fixed ε > 0, by Lemma 2.8, we have

W (A) ( W
(
A+

ε

2
S
)

and w(A) < w
(
A+

ε

2
S
)
.

Set Tn = Pn(A + ε
2
S)|PnH for each n ≥ 1. According to Lemma 2.7, w(Tn) →

w(A + ε
2
S); thus there exists a sufficiently large n0 such that w(A) < w(Tn0).

Moreover, according to Lemma 2.3 and Corollary 2.4, we know that both W (A)
and W (Tn0) are disks centered at the origin. From the argument above, we then

have W (A) ( W (Tn0).
If we let K = ε

2
Pn0SPn0 , then K is compact with ‖K‖ = ε/2 < ε. By the

preceding argument and by Lemma 2.6, we have

W (A) ( W (Tn0) = W
(
Pn0

(
A+

ε

2
S
)∣∣∣

Pn0H

)
= W

(
Pn0(A+K)

∣∣
Pn0H

)
⊆W (A+K).

Note that

We(A+K) = We(A) ⊆ W (A).

We conclude that We(A +K) ⊆ W (A +K). According to Lemma 2.5, we know
that W (A + K) is closed. On the other hand, by the construction of K it is
obvious that A+K is a unilateral weighted shift. The proof is complete. �

Remark 2.9. Recall that an operator A ∈ B(H) is a bilateral weighted shift if there
exists an orthonormal basis {en}+∞

−∞, and if {an}+∞
−∞ ⊆ C such that Aen = anen+1

for all n ∈ Z. Using similar arguments we can prove that the class of bilateral
weighted shifts is also strongly numerically closed.
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3. Triangular operators and block-diagonal operators

Recall that an operator T ∈ B(H) is triangular if T admits an upper triangular
matrix; that is,

A =


a11 a11 a11 . . .

a11 a11 . . .
a11 . . .

0
. . .

 ,

with respect to a suitable orthonormal basis.
The following theorem is the main result of this section.

Theorem 3.1. The class of triangular operators is strongly numerically closed.

Proof. Suppose that T is triangular with respect to an orthonormal basis {en}∞n=1.
Denote by Pn the orthogonal projection onto the finite-dimensional subspace
spanned by {ei : 1 ≤ i ≤ n}. Hence {Pn}∞n=1 is an increasing sequence in PF(H),
and Pn → I in the strong operator topology.

For any fixed ε > 0, we can choose a1, a2, . . . , an ∈ ∂We(T ) such that ∂We(T ) ⊆⋃n
k=1B(ak,

ε
4
), where ∂We(T ) denotes the boundary of We(T ). For each 1 ≤ k ≤

n, there exist µk,1, µk,2, µk,3 such that

|µk,j − ak| =
ε

2
, j = 1, 2, 3, and B

(
ak,

ε

4

)
⊆ conv{µk,j : j = 1, 2, 3}.

If we set λ3k = λ3k−1 = λ3k−2 = ak, and µ3(k−1)+j = µk,j for all 1 ≤ k ≤ n, and
1 ≤ j ≤ 3, then

We(T ) = conv ∂We(T ) ⊆ conv
{ n⋃

k=1

B
(
ak,

ε

4

)}
⊆ conv{µk : 1 ≤ k ≤ 3n}.

Since λ1 ∈ We(T ) ⊆ W (T ), then, by Lemma 2.7, there exists a sufficiently
large integer m1 and a unit vector g1 ∈ Pm1H such that∣∣〈Tg1, g1〉 − λ1

∣∣ = ∣∣〈Pm1T |Pm1Hg1, g1〉 − λ1

∣∣ < ε

8
.

Moreover note that λ2 ∈ We((I − Pm1)T |(I−Pm1 )H) = We(T ). Using Lemma 2.7
again, we see that there exists a sufficiently large m2 with m2 > m1 and a unit
vector g2 ∈ (Pm2 − Pm1)H such that∣∣〈Tg2, g2〉 − λ2

∣∣ < ε

8
.

Repeating the argument above, for each λk, 1 ≤ k ≤ 3n, we can find a sufficiently
large integer mk with mk > mk−1 and a unit vector gk ∈ (Pmk

− Pmk−1
)H such

that ∣∣〈Tgk, gk〉 − λk

∣∣ < ε

8
,

where Pm0 = 0. From the choices of {gk}3nk=1, we know that {gk}3nk=1 is a finite
sequence of pairwise orthogonal unit vectors in H.

If we set F =
∑3n

k=1(µk−ωk)gk⊗gk, where ωk = 〈Tgk, gk〉 for each 1 ≤ k ≤ 3n,
then F is finite rank with ‖F‖ < ε. A simple computation then shows that
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µk = 〈(T + F )gk, gk〉 for each 1 ≤ k ≤ 3n; that is, µk ∈ W (T + F ) for each
1 ≤ k ≤ 3n; hence

We(T + F ) = We(T ) ⊆ conv{µk : 1 ≤ k ≤ 3n} ⊆ W (T + F ).

According to Lemma 2.5, we know that W (T + F ) is closed. On the other hand,
if we let M = span{ek : 1 ≤ k ≤ m3n}, then T + F can be written as

T + F =

[
A ∗
0 T1

]
M
M⊥,

where T1 is upper triangular under {ek}∞k=m3n+1. Since A acts on the finite-
dimensional space M , then A admits an upper triangular matrix under a suitable
orthonormal basis {fk}m3n

k=1 of M . If we let fk = ek for k > m3n, then it is clear
that {fn}∞n=1 forms an orthonormal basis of H under which T + F is triangular.
This completes the proof. �

Recall that an operator T ∈ B(H) is block-diagonal if there exists an increasing
sequence {Pn}∞n=1 in PF(H) with Pn → I in the strong operator topology such
that PnT = TPn for all n ≥ 1. With an argument similar to that in the proof of
Theorem 3.1, we conclude the following theorem.

Theorem 3.2. The class of block-diagonal operators is strongly numerically
closed.

Recall that an operator T is quasidiagonal if there exists an increasing sequence
{Pn}∞n=1 in PF(H) such that Pn → I in the strong operator topology, and ‖PnT−
TPn‖ → 0. By [10, Theorem 6.12], an operator A ∈ B(H) is quasidiagonal if and
only if, for any ε > 0, T can be written as A = Aε+Kε, where Aε is block-diagonal,
and where Kε is compact with ‖Kε‖ < ε.

An operator T is quasitriangular if there exists an increasing sequence
{Pn}∞n=1 in PF(H) with Pn → I in the strong operator topology such that
‖(I − Pn)TPn‖ → 0. By [10, Theorem 6.4], an operator A ∈ B(H) is quasi-
triangular if and only if, for any ε > 0, A can be written as A = Aε +Kε, where
Aε is triangular, Kε is compact with ‖Kε‖ < ε.

The following is an immediate corollary of Theorem 3.1 and Theorem 3.2.

Corollary 3.3. The class of quasidiagonal operators and the class of quasitrian-
gular operators are both strongly numerically closed.

4. Normaloid operators and hyponormal operators

In [15], it is proved that the class of transaloid operators and the class of normal
operators are both strongly numerically closed. In this section, we shall show that
the class of normaloid operators and the class of hyponormal operators are also
strongly numerically closed.

We begin with some fundamentals. Recall that an operator T is normaloid if
‖T‖ = r(T ). An operator T is transaloid if T − λ is normaloid for all λ ∈ C, and
T is hyponormal if T ∗T − TT ∗ ≥ 0. For more results on these operators, see [5]
and [15].
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Let T ∈ B(H). Denote by kerT the kernel of T , and denote by ranT the range
of T . If ranT is closed, and either dim kerT or dimkerT ∗ is finite, then T is called
a semi-Fredholm operator. The Wolf spectrum σlre(T ) of T is defined by

σlre(T ) := {λ ∈ C : T − λ is not semi-Fredholm}.

The set of normal eigenvalues of T is denoted by σ0(T ); that is,

σ0(T ) =
{
λ ∈ C : λ /∈ σlre(T ), and λ is an isolated point of σ(T )

}
.

Let σp(T ) denote the set of all eigenvalues of T . It is well known that σ0(T ) ⊆
σp(T ). The reader is referred to [10, p. 5] and [4, p. 366] for more details about
this terminology.

Lemma 4.1 ([4, p. 366]). If we let T ∈ B(H), then ∂σ(T ) ⊆ σ0(T ) ∪ σlre(T ).

Lemma 4.2. If T is normaloid, then, given ε > 0, there exists a compact K with
‖K‖ < ε and a unit vector e ∈ H such that

T +K =

[
λ 0
0 A

]
Ce

(Ce)⊥,

where λ ∈ C and A acting on (Ce)⊥ satisfies ‖A‖ ≤ |λ| = ‖T‖.

Proof. As T is normaloid, there exists a λ ∈ σ(T ) such that |λ| = ‖T‖. This
implies that λ ∈ ∂σ(T ). According to Lemma 4.1, we have λ ∈ σ0(T ) or λ ∈
σlre(T ). Note that σ0(T ) ⊆ σp(T ). If λ ∈ σ0(T ), one can easily show that ker(T −
λ) reduces T . Then

T =

[
λ 0
0 A

]
Ce

(Ce)⊥,

where e is a unit eigenvector for T corresponding to the eigenvalue λ, and where
A ∈ B((Ce)⊥) with ‖A‖ ≤ |λ|.

Now consider the case where λ ∈ σlre(T ). Note that, if σlre(T ) ⊆ σe(T ) ⊆
We(T ), then we have λ ∈ We(T ). Hence, for any fixed ε > 0, there exists a unit
vector e such that |〈Te, e〉 − λ| < ε/2. Consequently T can be written as

T =

[
µ F1

F2 A

]
Ce

(Ce)⊥,

where A : (Ce)⊥ → (Ce)⊥ with ‖A‖ ≤ ‖T‖ = |λ|, F1 : (Ce)⊥ → Ce, and
F2 : Ce → (Ce)⊥ are rank 1 with ‖Fi‖ < ε/2 for i = 1, 2. Denote

K =

[
λ− µ −F1

−F2 0

]
Ce

(Ce)⊥.

It is apparent that K is compact with ‖K‖ < ε and that

T +K =

[
λ 0
0 A

]
Ce

(Ce)⊥.

The proof is complete. �

Theorem 4.3. The class of normaloid operators is strongly numerically closed.
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Proof. Suppose that T is normaloid. Then there exists a λ ∈ σ(T ) such that
|λ| = ‖T‖. It follows from Lemma 4.2 that, if ε > 0, then there exists a unit
vector e ∈ H, a compact operator K1 with ‖K1‖ < ε/2 and an operator A with
‖A‖ ≤ |λ| such that

T +K1 =

[
λ 0
0 A

]
Ce

(Ce)⊥.

Furthermore, for operator A, there exists a compact K̃2 with ‖K̃2‖ < ε/2 such

that W (A+ K̃2) is closed. If we let

λ = eiθ|λ|, K2 =

[
ε/2eiθ 0

0 K̃2

]
Ce

(Ce)⊥ and K = K1 +K2,

then K is compact with ‖K‖ < ε, and

T +K = T +K1 +K2 =

[
λ+ ε/2eiθ 0

0 A+ K̃2

]
Ce

(Ce)⊥.

Note that W (A+ K̃2) is closed; thus W (T +K) is closed.
On the other hand, note that

λ+
ε

2
eiθ ∈ σ(T +K)

and that

‖A+ K̃2‖ ≤ ‖A‖+ ‖K̃2‖ ≤ |λ|+ ε

2
=

∣∣∣λ+
ε

2
eiθ

∣∣∣.
Then

‖T +K‖ = max
{∣∣∣λ+

ε

2
eiθ

∣∣∣, ‖A+ K̃2‖
}
=

∣∣∣λ+
ε

2
eiθ

∣∣∣ ≤ r(T +K) ≤ ‖T +K‖;

hence T +K is normaloid. This completes the proof. �

For hyponormal operators we have the following result.

Theorem 4.4. The class of hyponormal operators is strongly numerically closed.

To give the proof of Theorem 4.4, we set forth some first principles.

Lemma 4.5 ([13]). If T is hyponormal, then

(i) T − λ is also hyponormal for any λ ∈ C;
(ii) ‖T‖ = r(T ).

The lemma above shows that hyponormal operators must be normaloid. The
following lemma is well known. We write down its proof for the reader’s conve-
nience.

Lemma 4.6. Let T be hyponormal. If λ ∈ σp(T ), then ker(T − λ) reduces T .

Proof. If λ ∈ σp(T ), then ker(T − λ) is an invariant subspace of T − λ.
In addition, by Lemma 4.5 and by the definition of hyponormal operator, we

have ∥∥(T − λ)x
∥∥ ≥

∥∥(T − λ)∗x
∥∥, ∀x ∈ H;
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hence ker(T − λ) ⊆ ker(T − λ)∗. This implies that ker(T − λ) is also an invariant
subspace of (T − λ)∗; thus ker(T − λ) reduces T − λ, and, naturally, ker(T − λ)
reduces T . �

Lemma 4.7. If T is hyponormal, then W (T ) = conv σ(T ).

Proof. It is well known that W (T ) ⊇ conv σ(T ); therefore it suffices to show that

W (T ) ⊆ conv σ(T ). Otherwise, we have conv σ(T ) ( W (T ). By their convexity
there exists µ ∈ C such that

sup
z∈W (T )

|z − µ| > sup
z∈σ(T )

|z − µ|.

Then w(T − µ) > r(T − µ). It implies that ‖T − µ‖ > r(T − µ). This contradicts

Lemma 4.5; hence W (T ) ⊆ conv σ(T ). The proof is complete. �

Lemma 4.7 generalizes the fact thatW (N) = conv σ(N) for normal operatorN .
For normal operators, there is the following result.

Lemma 4.8 ([15, Proposition 5.1]). Let N ∈ B(H) be normal. Then, given ε > 0,
there exists a K ∈ K(H) with ‖K‖ < ε such that N +K is normal, and

W (N) ⊆ W (N +K) = W (N +K).

Recall that two operators A,B ∈ B(H) are said to be approximately unitarily
equivalent, denoted by A 'a B, if there exist unitary operators {Un}∞n=1 such that
‖UnA−BUn‖ → 0.

Lemma 4.9 ([10, Proposition 4.21(iv)]). If A and B are approximately unitarily
equivalent, then, given ε > 0, there exists a unitary operator U and a compact
operator K such that ‖K‖ < ε and A+K = U∗BU .

Lemma 4.10 ([10, Proposition 4.28]). If we let T be hyponormal, and we let N
be any normal operator with σ(N) ⊆ σlre(T ), then T 'a T ⊕N .

Proof of Theorem 4.4. Suppose that T is hyponormal. We may directly assume
that σ0(T ) = ∅. In fact, if not, then we can assume that σ0(T ) = {λ1, λ2, . . .}.
Since σ0(T ) ⊆ σp(T ), by applying Lemma 4.6, T can be written as

T =

[
N0 0
0 A

]
=


λ1I1

λ2I2
. . .

A

 ,

where N0 is normal, and A is hyponormal with σ0(A) = ∅. It follows from
Lemma 4.8 that, given ε > 0, one can find a compact

K̃0 =

[
K0 0
0 0

]
with ‖K̃0‖ < ε such that N0 +K0 is normal, and that

W (N0) ⊆ W (N0 +K0) = W (N0 +K0).
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Note that

W (T + K̃0) = conv
{
W (N0 +K0) ∪W (A)

}
.

To finish the proof, it suffices to address A. We may directly assume that
σ0(T ) = ∅.

According to Lemma 4.1, we know that ∂σ(T ) ⊆ σlre(T ). If we let N be a
diagonal operator with σ(N) = ∂σ(T ), then, by Lemma 4.10, we have T 'a T⊕N .
It follows from Lemma 4.9 that, for any fixed ε > 0, there exists a compact
operator K1 with ‖K1‖ < ε

2
such that

T +K1
∼=

[
T 0
0 N

]
.

Without loss of generality, we may assume that

T +K1 =

[
T 0
0 N

]
.

Applying Lemma 4.8, we can find a compact operator

K̃2 =

[
0 0
0 K2

]
with ‖K̃2‖ = ‖K2‖ < ε/2 such that N +K2 is normal, and

W (N) ⊆ W (N +K2) = W (N +K2).

Set K = K1 + K̃2. It is completely apparent that K is compact with ‖K‖ < ε
and that

T +K =

[
T 0
0 N +K2

]
is hyponormal. Furthermore, by Lemma 4.7, we have

W (T ) = conv σ(T ) = conv ∂σ(T ) = conv σ(N) = W (N) ⊆ W (N +K2);

hence

W (T +K) = conv
{
W (T ) ∪W (N +K2)

}
= W (N +K2),

and W (T +K) is closed. Now the proof is complete. �

Recall that T ∈ B(H) is subnormal if there exists a Hilbert space L containing
H and a normal operator N ∈ B(L) such that NH ⊆ H, and T = N |H. Recall
also that T is quasinormal if T commutes with T ∗T . It is well known that quasi-
normal operators and subnormal operators are always hyponormal. Using similar
arguments, we can prove the following.

Proposition 4.11. The class of subnormal operators and the class of quasinor-
mal operators are both strongly numerically closed.

In the rest of this section, we prove that the class of pure quasinormal operators
is not strongly numerically closed. Recall that an operator T is pure quasinormal
if T is quasinormal, and it has no nonzero reducing subspace M such that T |M is
normal. In fact, for pure quasinormal operators, we have the following proposition.
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Proposition 4.12. If T ∈ B(H) is pure quasinormal, then W (T ) is always an
open disk centered at the origin.

Proof. By [5, p. 44], we may assume that

T =


0
A 0 0

A 0

A
. . .

0
. . .

 ,

where A is positive and injective acting on some Hilbert space L. It is easy to
show that T is unitarily equivalent to λT for any λ ∈ C with |λ| = 1; hence

W (T ) = W (λT ) = λW (T )

for any λ ∈ C with |λ| = 1. This implies that W (T ) has circular symmetry. By
the convexity of W (T ), we know that W (T ) is a disk centered at the origin.

To finish the proof, it suffices to show thatW (T ) is open. If not, and we suppose
that W (T ) is closed disk centered at the origin, then w(T ) ∈ W (T ). Moreover, it
is easy to prove that

w(T ) = r(T ) = ‖T‖.

By [8, p. 316], we have w(T ) ∈ σp(T ); however a simple calculation shows that
σp(T ) = ∅. This is a contradiction; hence W (T ) is an open disk centered at the
origin. This completes the proof. �
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