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ESSENTIAL NORM OF THE COMPOSITION OPERATORS ON
THE GENERAL SPACES Hω,p OF HARDY SPACES

S. REZAEI

Communicated by K. Guerlebeck

Abstract. We obtain estimates for the essential norm of the composition
operators acting on the general spaces Hω,p of Hardy spaces. Our characteri-
zation is given in terms of generalized Nevanlinna counting functions.

1. Introduction

Let D be the unit disk in the complex plane C, and let H(D) denote the algebra
of all analytic functions on D. For 0 < p < ∞, the Hardy space Hp is the space
of functions f ∈ H(D) such that

‖f‖Hp = sup
0≤r<1

Mp(r, f) < ∞,

where

Mp(r, f) =
{ 1

2π

∫ 2π

0

∣∣f(reiθ)∣∣p dθ}1/p

.

For −1 < α < ∞ and 0 < p < ∞, the classical weighted Bergman space Ap
α

consists of functions f ∈ H(D) for which

‖f‖pAp
α
= (α + 1)

∫
D

∣∣f(z)∣∣p(1− |z|2
)α

dA(z) < ∞,
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where dA(z) is the area measure on D. The following generalization of the
Littlewood–Paley formula was first used by Stanton [11]:

‖f‖pHp =
∣∣f(0)∣∣p + p2

2

∫
D

∣∣f(z)∣∣p−2∣∣f ′(z)
∣∣2(1− |z|2

)2
dA(z). (1.1)

There is also an analogue (see [10, Lemma 2.3]):

‖f‖pAp
α
�

∣∣f(0)∣∣p + ∫
D

∣∣f(z)∣∣p−2∣∣f ′(z)
∣∣2(1− |z|2

)α+2
dA(z). (1.2)

For two positive real-valued functions f1 and f2, we write f1 � f2 if there exists a
positive constant C independent of the argument such that f1 ≤ Cf2. Similarly,
f1 � f2 means that f1 � f2 and that f2 � f1.

In the present article, weight function means a positive integrable function
ω ∈ C2[0, 1) which is radial, ω(z) = ω(|z|). In order to state our results, first let
us generalize [4, Definition 1.1].

Definition 1.1. For 0 < p < ∞, a weight function ω is called admissible if

(ω1) ω is nonincreasing;

(ω2)
ω(r)

(1−r)(1+δ)
p
2
is nondecreasing for some δ > 0;

(ω3) limr→1− ω(r) = 0;
(ω4) one of the two properties of convexity is fulfilled:

(i) ω is convex and limr→1 ω
′(r) = 0, or

(ii) ω is concave.

If ω satisfies conditions (ω1)–(ω3) and (ω4)(i) (resp., (ω4)(ii)), then we say that
ω is (i)-admissible (resp., (ii)-admissible).

In view of results (1.1) and (1.2), the general space Hω,p of the Hardy space
is defined as follows (see [5]). For a weight function ω, Hω,p denotes the space of
analytic functions f on D such that

‖f‖pω,p =
∣∣f(0)∣∣p + p2

∫
D

∣∣f(z)∣∣p−2∣∣f ′(z)
∣∣2ω(z) dA(z) < ∞.

It is worth pointing out that, for p ≥ 2, if f(z) =
∑∞

n=0 anz
n is analytic in D,

then

‖f‖pω,p �
∞∑
n=0

|an|pωn, (1.3)

where ω0 = 1 and, for n ≥ 1,

ωn = 2πnp

∫ 1

0

rpn−p+1ω(r) dr.

This is because we first use the Holder inequality to obtain∣∣∣ ∞∑
n=1

anz
n
∣∣∣p−2

≤
{ ∞∑

n=1

|nanzn|p
} p−2

p
{ ∞∑

n=1

1

n
p

p−1

} (p−1)(p−2)
p

≤ C
{ ∞∑

n=1

np|an|p|z|(n−1)p
}1− 2

p
.
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Subsequently, since ϕ(t) = tp is convex for p ≥ 2, by the Jensen inequality we
have ∣∣∣ ∞∑

n=1

nanz
n−1

∣∣∣2 ≤ { ∞∑
n=1

|nanzn−1|p
} 2

p
.

Thus,

‖f‖pω,p ≤ |a0|p + C

∫
D

∞∑
n=1

np|an|p|z|(n−1)pω(z) dA(z)

= |a0|p + C

∫ 1

0

∞∑
n=1

np|an|pr(n−1)p+1ω(r) dr.

Conversely, let ∆ be the Laplacian since

∆
∣∣f(z)∣∣p = p2

∣∣f(z)∣∣p−2∣∣f ′(z)
∣∣2, (1.4)

and then whenever f(z) 6= 0, we have

r
d

dr

( 1

2π

∫ 2π

0

∣∣f(reiθ)∣∣p dθ) =
p2

2

∫
|z|<r

∣∣f(z)∣∣p−2∣∣f ′(z)
∣∣2 dA(z) (1.5)

(see[12]). By (1.5), the proof of the lower estimate is straightforward (see [5]). The
space Hω,p is linear by virtue of (1.4). For p ≥ 2, Lee in [5, Corollary 2.8] proved
that every function in Hω,p is the quotient of two bounded functions in Hω,p.

For p = 2, the space Hω,p is the weighted Hilbert space Hω (see [4]). Suppose
that p = 2, ωα(r) = (1 − r2)α for α > −1, and denote Hωα,2 by Hα. Then the
space H1 can be identified with the Hardy space H2. In the case 0 ≤ α < 1, Hα

is precisely the Dirichlet space Dα, and H0 corresponds to the classical Dirichlet
space D.

An important ingredient in our study is the use of Nϕ,ω, the generalized Nevan-
linna counting function associated with ϕ, ω, which is defined as follows. For a
nonconstant analytic self-map ϕ of D and a weight ω, the generalized Nevanlinna
counting function associated to ϕ, ω is defined by

Nϕ,ω(ξ) =
∑

ϕ(z)=ξ,z∈D

ω(z), ξ ∈ D�
{
ϕ(0)

}
.

Note that Nϕ,ω(ξ) = 0 when ξ /∈ ϕ(D). By convention, we define Nϕ,ω(z) = 0
when z = ϕ(0). In the special case when ω(r) = log 1

r
, r ∈ [0, 1), Nϕ,ω = Nϕ is the

usual Nevanlinna counting function associated to ϕ. The generalized Nevanlinna
counting function is considered in the special case of weighted Bergman spaces
with standard weights (see, e.g., [7]). By the following general change-of-variable
formula, and in view of generalized Nevanlinna counting functions, we obtain an
equivalent form of the norm on Hω,p.

Lemma 1.2 ([1, Proposition 2.1]). Let ϕ be a nonconstant analytic function in
D, and let u, ν be nonnegative measurable functions on C with respect to area
measure. Then∫

D
(u ◦ ϕ)ν|ϕ′|2 dA =

∫
ϕ(D)

u(ξ)
( ∑
ϕ(z)=ξ

ν(z)
)
dA(ξ). (1.6)
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Replacing u(ξ) = |ξ|p−2, ν(z) = ω(z), and ϕ(z) = f(z) in (1.6) with a noncon-
stant function f ∈ Hω,p, we have

‖f‖pω,p =
∣∣f(0)∣∣p + p2

∫
f(D)

|ξ|p−2Nω,f (ξ) dA(ξ).

Every analytic self-map ϕ of D induces a composition operator Cϕ on H(D),
defined by (Cϕf)(z) = f(ϕ(z)). (Some results of the composition operators can
be found in [2] and [9], for example.) Pau and Perez studied the essential norm of
composition operators on weighted Dirichlet spaces in [6]. Hassanlou generalized
the resullts of [6] to weighted Hilbert spaces of analytic functions [3]. The purpose
of the present paper is to generalize the results of [4] and [6] to theHω,p spaces and
to present the characterization of the essential norm of the composition operator
on the Hω,p space by using the generalized Nevanlinna counting function. Note
that, throughout the remainder of this paper, constants are denoted by C; they
are positive and may differ from one occurrence to the other.

2. Preliminaries

In this section we give some lemmas which will be used in our characterizations.
Per the following lemma, the generalized Nevanlinna counting function has the
submean value property.

Lemma 2.1 ([4, Lemmas 2.2, 2.3]). Let ω be an admissible weight, and let ϕ be
an analytic self-map of D such that ϕ(0) = 0. Then for every r > 0 and every
z ∈ D such that D(z, r) ⊂ D�D(0, 1

2
), we have

Nϕ,ω(z) ≤
2

r2

∫
D(z,r)

Nϕ,ω(ξ) dA(ξ),

where D(z, r) denotes the disk of radius r centered at z.

By the same method used in the proof of [4, Lemma 2.5], we have the following
lemma.

Lemma 2.2. Let ω be a weight satisfying (ω1) and (ω2). For a ∈ D, define

fa(z) =
1

p
√

ω(a)

(1− |a|2)1+δ

(1− āz)1+δ
, z ∈ D.

Then ‖fa‖Hω,p�1.

Proof. By virtue of (ω1) and (ω2), fa(0) =
(1−|a|2)1+δ

p
√

w(a)
is bounded by 21+δ

p
√

w(0)
. Using

simple computation,we have f ′
a(z) =

(1+δ)ā
p
√

w(a)

(1−|a|2)1+δ

(1−āz)2+δ . Thus,∫
D

∣∣fa(z)∣∣p−2∣∣f ′
a(z)

∣∣2ω(z) dA(z)
≤ (1 + δ)2|a|2

ω(a)

(
1− |a|2

)(1+δ)p
∫
D

ω(z)

|1− āz|p(1+δ)+2
dA(z).
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On one hand, applying (ω1) and the following well-known estimate (see [12, The-
orem 1.12]): ∫

D

(1− |z|2)c

|1− āz|2+c+d
� 1

(1− |a|2)d
, d > 0, c > −1, (2.1)

we obtain∫
|z|>|a|

ω(z)

|1− āz|p(1+δ)+2
dA(z) ≤ ω(a)

∫
D

1

|1− āz|p(1+δ)+2
dA(z)

� ω(a)

(1− |a|2)p(1+δ)
.

On the other hand, by (ω2) and (2.1), we have∫
|z|≤|a|

ω(z)

|1− āz|p(1+δ)+2
dA(z) ≤ ω(a)

(1− |a|2) p
2
(1+δ)

∫
|z|≤|a|

(1− |z|2) p
2
(1+δ)

|1− āz|p(1+δ)+2
dA(z)

� ω(a)

(1− |a|2)p(1+δ)
. �

Lemma 2.3. Let σa be the automorphism of the unit disk given by

σa(z) =
a− z

1− āz
, z ∈ D,

and let ϕ be an analytic self-map of D. If ω satisfies (ω1) and (ω2), then

ω(z) � ω
(
σϕ(0)(z)

)
.

Proof. The proof is similar to the proof of [4, Lemma 2.1]. �

Throughout this paper, by Lemma 2.3, we will assume that ϕ(0) = 0.

3. Main results

The main result of the paper will concern the essential norm of Cϕ on Hω,p.
Nevertheless, we have to ensure the boundedness of Cϕ.

For the case of (i)-admissible weights, Cϕ is a bounded operator onHω,p. Indeed,

if we assume that ϕr(z) = ϕ(rz), for every 0 < r < 1 and d2ω
dr2

= σ, then by the
proof of Lemma 2.2 in [4], we have

Nϕ,ω(z) ≤
∫ 1

0

Nϕr(z)σ(r) dr ≤ 2Nϕ,ω(z). (3.1)

Using the classical Littlewood inequality, for the function r−1ϕr, we get Nϕr(z) ≤
log( r

|z|). So by (3.1), ω1 and ω3, we get

Nϕ,ω(z) ≤
∫ 1

0

Nϕr(z)σ(r) dr =

∫ 1

|z|
Nϕr(z)σ(r) dr ≤

∫ 1

|z|
log

( r

|z|

)
σ(r) dr ≤ 2ω(z).
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Therefore, using the change-of-variable formula (1.6), since Nϕ,ω(z) = 0 when
z /∈ ϕ(D), we have

‖Cϕf‖pHω,p
=

∣∣f(ϕ(0))∣∣p + p2
∫
D

∣∣f(ϕ(z))∣∣p−2∣∣f ′(ϕ(z))∣∣2∣∣ϕ′(z)
∣∣2ω(z) dA(z)

=
∣∣f(0)∣∣p + p2

∫
ϕ(D)

∣∣f(z)∣∣p−2∣∣f ′(z)
∣∣2Nϕ,ω(z) dA(z)

=
∣∣f(0)∣∣p + p2

∫
D

∣∣f(z)∣∣p−2∣∣f ′(z)
∣∣2Nϕ,ω(z) dA(z)

≤
∣∣f(0)∣∣p + 2p2

∫
D

∣∣f(z)∣∣p−2∣∣f ′(z)
∣∣2ω(z) dA(z)

≤ 2‖f‖pHω,p
, (3.2)

which shows that for the (i)-admissible weight ω, Cϕ is a bounded operator on
Hω,p.

For the case of (ii)-admissible weights, we have the following theorem.

Theorem 3.1. Let ω be a (ii)-admissible weight. Then Cϕ is bounded on Hω,p if
and only if

sup
|z|<1

Nϕ,ω(z)

ω(z)
< ∞. (3.3)

Proof. Assume that (3.3) holds. It is clear that, in a way similar to (3.2), for each
(ii)-admissible weight, Cϕ is a bounded operator on Hω,p.

Conversely, assume that Cϕ is a bounded operator on Hω,p. Let fa be the
test function defined as Lemma 2.2. In the case where |a| is close enough to 1,

D(a, 1−|a|
2

) ⊂ DrD(0, 1
2
). Using the change-of-variable formula (1.6), Lemma 2.1,

and the well-known fact that |1− āz| � (1− |a|) for z ∈ D(a, 1−|a|
2

), we have

‖Cϕfa‖pHω,p
≥ p2

∫
D

∣∣fa(ϕ(z))∣∣p−2∣∣f ′
a

(
ϕ(z)

)∣∣2∣∣ϕ′(z)
∣∣2ω(z) dA(z)

= p2
∫
ϕ(D)

∣∣fa(z)∣∣p−2∣∣f ′
a(z)

∣∣2Nϕ,ω(z) dA(z)

≥ C
(1− |a|2)p(1+δ)

ω(a)

∫
ϕ(D)

Nϕ,ω(z)

|1− āz|p(1+δ)+2
dA(z)

≥ C
(1− |a|2)p(1+δ)

ω(a)

∫
D(a,

1−|a|
2

)

Nϕ,ω(z)

|1− āz|p(1+δ)+2
dA(z)

≥ C
1

(1− |a|2)2ω(a)

∫
D(a,

1−|a|
2

)

Nϕ,ω(z) dA(z)

≥ C
Nϕ,ω(a)

ω(a)
, (3.4)
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where C does not depend on the point a. This gives

sup
a∈D

Nϕ,ω(a)

ω(a)
≤ C sup

a∈D
‖Cϕfa‖pHω,p

≤ C‖Cϕ‖p sup
a∈D

‖fa‖pHω,p
.

Thus (3.3) holds by virtue of Lemma 2.2 and the boundedness of Cϕ on Hω,p. �

Recall that the essential norm ‖T‖e of a bounded linear operator T is its
distance (in the operator norm) from compact operators; that is,

‖T‖e = inf
K

‖T −K‖,

where K is compact. In [6, Theorem 3.2], Pau and Perez estimated the essential
norm of Cϕ on Dα, 0 < α < 1, as follows:

‖Cϕ‖2e � lim sup
|z|→1

Nϕ,α(z)

(1− |z|2)α
. (3.5)

This result was later generalized by Hassanlou to the weighted Hilbert spaces Hω

in [3] as well:

‖Cϕ‖2e � lim sup
|z|→1

Nϕ,ω(z)

ω(z)
, (3.6)

where ω is an admissible weight.
We generalize the results (3.5) and (3.6) for the spaces Hω,p in the following

theorem.

Theorem 3.2. Let ω be an admissible weight, and let Cϕ be a bounded operator
on Hω,p. Then

‖Cϕ‖pe � lim sup
|z|→1

Nϕ,ω(z)

ω(z)
. (3.7)

Proof. For the lower estimate, we use the same technique used in the proof of [8,
Theorem 2.1]. Suppose that

L := lim sup
|z|→1

Nϕ,ω(z)

ω(z)
.

For an analytic function f(z) =
∑∞

n=0 anz
n in D, let

Tkf(z) =
k∑

n=0

anz
n, Rkf(z) =

∞∑
n=k+1

anz
n.

Since Tk is compact and Cϕ is bounded, we have

‖Cϕ‖e =
∥∥Cϕ(Tk +Rk)

∥∥
e
≤ ‖CϕTk‖e + ‖CϕRk‖e ≤ ‖CϕRk‖,
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for each k ∈ N. It follows that

‖Cϕ‖pe ≤ lim inf
k→∞

‖CϕRk‖p

≤ lim inf
k→∞

sup
‖f‖Hω,p≤1

∥∥(CϕRk)(f)
∥∥p

= p2 lim inf
k→∞

sup
‖f‖Hω,p≤1

∫
D

∣∣(Rkf)(z)
∣∣p−2∣∣(Rkf)

′(z)
∣∣2Nϕ,ω(z) dA(z)

≤ p2L lim inf
k→∞

sup
‖f‖Hω,p≤1

∫
D

∣∣(Rkf)(z)
∣∣p−2∣∣(Rkf)

′(z)
∣∣2ω(z) dA(z)

= p2L lim inf
k→∞

sup
‖f‖Hω,p≤1

‖Rkf‖pHω,p

≤ CL.

Proof of the upper estimate is similar to [6, Theorem 3.2]. Consider the functions
fa defined in Lemma 2.2. Applying (ω2), we conclude that fa → 0 uniformly on
compact subsets of D as |a| → 1. Hence for every compact operator K on Hω,p,
we have lim|a|→1− ‖Kfa‖Hω,p = 0. Thus

‖Cϕ −K‖ ≥ lim sup
|a|→1

‖Cϕfa −Kfa‖Hω,p

≥ lim sup
|a|→1

‖Cϕfa‖Hω,p − lim sup
|a|→1

‖Kfa‖Hω,p

= lim sup
|a|→1

‖Cϕfa‖Hω,p .

Moreover, it follows that

‖Cϕ‖pe ≥ lim sup
|a|→1

p2
∫
D

∣∣fa(ϕ(z))∣∣p−2∣∣f ′
a

(
ϕ(z)

)∣∣2∣∣ϕ′(z)
∣∣2ω(z) dA(z)

since |fa(ϕ(0))| → 0 as |a| → 1. Therefore, from (3.4), it holds that

‖Cϕ‖pe ≥ C lim sup
|a|→1

Nϕ,ω(a)

ω(a)
.

�

Corollary 3.3. Let ω be an admissible weight. Then Cϕ is compact on Hω,p if
and only if

lim
|z|→1

Nϕ,ω(z)

ω(z)
= 0.

In the following example we are going to characterize the weight function ωµ

associated to µ, which ensures that Ap
µ(D) ⊇ Hωµ,p, for p ≥ 2.

Example 3.4. For 0 < p < ∞ and a continuous function µ : [0, 1) → (0,∞) such
that µ ∈ L1(0, 1), the weighted Bergman space Ap

µ(D) is the space of all analytic
functions in D such that

‖f‖pµ =

∫
D

∣∣f(z)∣∣pµ(|z|) dA(z) < ∞.
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For p ≥ 2, by the Jensen inequality, a function f(z) =
∑∞

n=0 anz
n belongs to

Ap
µ(D) if and only if

‖f‖pµ �
∑
n≥0

|an|pµn < ∞,

where

µn =

∫ 1

0

rnp+1µ(r) dr, n ≥ 0.

Using the same techniques used in [4], the weight function associated to µ is
defined by

ωµ(r) =

∫ 1

r

(t− r)µ(t) dt.

Since µ ∈ L1(0, 1), we deduce that

lim
r→1−

ω′
µ(r) = lim

r→1−
−
∫ 1

r

µ(t) dt = 0.

Note that ω′′
µ(r) = µ(r). We have

µn+1

(n+ 1)p
�

∫ 1

0

rnp+1ωµ(r) dr, n ≥ 0.

Thus for every f ∈ Ap
µ(D), we have

‖f‖pµ � ‖f‖pωµ,p,

which ensures that Ap
µ(D) ⊇ Hωµ,p.

Moreover, the weight ωµ always satisfied (ω1), (ω3), and (i). Thus ωµ is (i)-
admissible if and only if it satisfies (ω2).
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