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Abstract. A cohomology for product systems of Hilbert bimodules is defined
via the Ext functor. For the class of product systems corresponding to irre-
versible algebraic dynamics, relevant resolutions are found explicitly and it is
shown how the underlying product system can be twisted by 2-cocycles. In par-
ticular, this process gives rise to cohomological deformations of the C∗-algebras
associated with the product system. Concrete examples of deformations of the
Cuntz’s algebra QN arising this way are investigated, and we show that they
are simple and purely infinite.

1. Introduction

The application of cohomology to deformations of C∗-algebras and von Neu-
mann algebras has been studied for decades, and yet it remains an active area of
research in this field. Among the most recent contributions, we would like to men-
tion the work of Buss and Exel on inverse semigroups in [3] and of Kumjian, Pask,
and Sims on higher-rank graphs in [14]. Often the deformation of the C∗-algebra
is related to a cohomological perturbation of another underlying object. A typical
example of such a process comes from a twisted (semi)group action leading to the
twisted crossed product.

In the present article, we introduce a cohomology theory for product systems
of Hilbert bimodules over discrete semigroups as defined by Fowler in [10]. Inter-
estingly, better understanding of twisting of semigroup actions was one of the
motivations behind the very introduction of such product systems. In Section 3,
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we take the classical point of view as found in [1], and we define cohomology
groups of a product system X via the Ext functor applied to a suitable module
M of a ring R naturally associated with X. First examples include cohomologies
of groups, graphs, and certain product systems arising from semigroup actions
on abelian groups.

In Section 4, we restrict our attention to a certain class of product systems
arising from irreversible algebraic dynamics, corresponding to actions of discrete
semigroups P on compact groups. For such product systems, we construct explic-
itly a free resolution of module M and thus obtain working formulas for cocycles
and coboundaries. The construction of the resolution takes advantage of the fact
that all fibers Xp of these systems X =

⊔
p∈P Xp are free modules over the

coefficient C∗-algebra A. To each 2-cocyle ξ, we associate a twisted product sys-
tem Xξ. The twisting is obtained by perturbing multiplication between the fibers.
Then each twisted product system Xξ gives rise to several C∗-algebras, including
the Toeplitz algebra T (Xξ) and the Cuntz–Pimsner algebra O(Xξ). These alge-
bras may be considered twisted versions of the Toeplitz algebra T (X) and the
Cuntz–Pimsner algebra O(X), respectively, associated with the original product
system X.

In Section 5, we test this deformation procedure on the product systemX whose
Cuntz–Pimsner algebraO(X) coincides with Cuntz’s algebraQN associated to the
ax + b-semigroup over N (see [5], [11]). We look at certain numerical 2-cocycles
ξ and we show that the corresponding twisted C∗-algebras O(Xξ) are purely
infinite and simple.

2. Preliminaries on product systems

Let A be a C∗-algebra andX be a complex vector space with a right action of A.
Suppose that there is an A-valued inner product 〈·, ·〉A on X which is conjugate
linear in the first variable and which satisfies

(1) 〈ξ, η〉A = 〈η, ξ〉∗A,
(2) 〈ξ, η · a〉A = 〈ξ, η〉Aa,
(3) 〈ξ, ξ〉A ≥ 0, and 〈ξ, ξ〉A = 0 ⇐⇒ ξ = 0,

for ξ, η ∈ X and for a ∈ A. Then X becomes a right Hilbert A-module when it
is complete with respect to the norm given by ‖ξ‖ := ‖〈ξ, ξ〉A‖1/2 for ξ ∈ X.

A module map T : X → X is said to be adjointable if there is a map T ∗ : X →
X such that

〈Tξ, ζ〉A = 〈ξ, T ∗ζ〉A
for all ξ, η ∈ X. An adjointable map is automatically norm-bounded, and the
set L(X) of all adjointable operators on X endowed with the operator norm is a
C∗-algebra. The rank 1 operator θξ,η defined on X as

θξ,η(ζ) = ξ〈η, ζ〉A for ξ, η, ζ ∈ X

is adjointable, and we have θ∗ξ,η = θη,ξ. Then K(X) = span{θξ,η | ξ, η ∈ X} is the
ideal of compact operators in L(X).

Suppose thatX is a right Hilbert A-module. A ∗-homomorphism ϕ : A→ L(X)
induces a left action of A on X by aξ := ϕ(a)ξ, for a ∈ A and for ξ ∈ X. Then
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X becomes a right Hilbert A–A-bimodule (or C∗-correspondence over A). The
standard bimodule AAA is equipped with 〈a, b〉A = a∗b, and the right and left
actions are simply given by right and left multiplication in A, respectively.

For right Hilbert A–A-bimodulesX and Y , the balanced tensor productX⊗AY
becomes a right Hilbert A–A-bimodule with the right action from Y , the left
action implemented by the homomorphism A 3 a 7→ ϕ(a)⊗A idY ∈ L(X ⊗A Y ),
and the A-valued inner product given by

〈ξ1 ⊗A η1, ξ2 ⊗A η2〉A =
〈
η1, 〈ξ1, ξ2〉A · η2

〉
A

for ξi ∈ X and ηi ∈ Y , i = 1, 2.
Let P be a multiplicative semigroup with identity e, and let A be a C∗-algebra.

Throughout this article, we make a standing assumption that all semigroups we
consider are right cancellative. For each p ∈ P , let Xp be a complex vector space.
Then the disjoint union X :=

⊔
p∈P Xp is a product system over P if the following

conditions hold.

(PS1) For each p ∈ P \ {e}, Xp is a right Hilbert A–A-bimodule.
(PS2) Xe is the standard bimodule AAA.
(PS3) X is a semigroup such that ξη ∈ Xpq for ξ ∈ Xp and η ∈ Xq, p, q ∈

P \ {e}. It is assumed in this particular case that this product extends to
an isomorphism F p,q : Xp ⊗A Xq → Xpq of right Hilbert A–A-bimodules.
If p or q equals e, then the corresponding product in X is induced by the
left or the right action of A, respectively.

Remark 2.1. For p ∈ P there are maps F p,e : Xp ⊗A Xe → Xp and F e,p :
Xe ⊗A Xp → Xp by multiplication (i.e., F p,e(ξ ⊗ a) = ξa and F e,p(a ⊗ ξ) = aξ
for a ∈ A and ξ ∈ Xp). Note that F p,e is always an isomorphism. However, F e,p

is an isomorphism only if ϕ(A)Xp = Xp or, in the terminology from [10], if Xp is
“essential.” In all interesting examples we have come across, Xp is essential for
all p.

For each p ∈ P , we denote by 〈·, ·〉p the A-valued inner product on Xp and by
ϕp the ∗-homomorphism from A into L(Xp). Due to associativity of the multipli-
cation on X, we have ϕpq(a)(ξη) = (ϕp(a)ξ)η for all ξ ∈ Xp, η ∈ Xq, and a ∈ A.
For each pair p, q ∈ P \ {e}, the isomorphism F p,q : Xp⊗AXq → Xpq allows us to
define a ∗-homomorphism ipqp : L(Xp) → L(Xpq) by i

pq
p (S) = F p,q(S⊗A Iq)(F

p,q)∗

for S ∈ L(Xp). In the case r 6= pq, we define irp : L(Xp) → L(Xr) to be the zero
map irp(S) = 0 for all S ∈ L(Xp). Further, we let iqe = ϕq.

Let X =
⊔

p∈P Xp be a product system over P of right Hilbert A–A-bimodules.
A map ψ from X to a C∗-algebra C is a Toeplitz representation of X if the
following conditions hold:

(T1) for each p ∈ P \ {e}, ψp := ψ|Xp is linear,
(T2) ψe : A→ C is a ∗-homomorphism,
(T3) ψp(ξ)ψq(η) = ψpq(ξη) for ξ ∈ Xp, η ∈ Xq, p, q ∈ P ,
(T4) ψp(ξ)

∗ψp(η) = ψe(〈ξ, η〉p) for ξ, η ∈ Xp.

We separated condition (T2) for emphasis only. In fact, assuming (T1) for all
p ∈ P , condition (T2) follows from (T1), (T3) and (T4).
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For each p ∈ P there exists a ∗-homomorphism ψ(p) : K(Xp) → C such that
ψ(p)(θξ,η) = ψp(ξ)ψp(η)

∗, for ξ, η ∈ Xp. A Toeplitz representation ψ is Cuntz–
Pimsner covariant (see [10]) if

(CP) ψ(p)(ϕp(a)) = ψe(a) for a ∈ ϕ−1
p (K(Xp)) and all p ∈ P .

The Toeplitz algebra T (X) associated to the product system X was defined
by Fowler as the universal C∗-algebra for Toeplitz representations (see [10]).
The Cuntz–Pimsner algebra O(X) is universal for the Cuntz–Pimsner covari-
ant Toeplitz representations. A number of other related constructions exist in the
literature, but we do not discuss them here. However, we would like to mention
couniversal algebras studied by Carlsen, Larsen, Sims, and Vittadello in [4], and
reduced Cuntz–Pimsner algebras investigated by Kwaśniewski and Szymański in
[15].

3. A cohomology for product systems

Let X be a product system of Hilbert bimodules over a semigroup P and with
the coefficient (unital) C∗-algebra A. Then the direct sum of A–A-bimodules

R :=
⊕
p∈P

Xp (3.1)

becomes a ring graded over P with the multiplication borrowed from X. We
assume that there exists a unital left A-module map Ψ : R → A such that

Ψ(xy) = Ψ
(
xΨ(y)

)
, (3.2)

for all x, y ∈ R. Then A = Xe becomes a left R-module, with the R-action ⇀
given by the composition of the multiplication in R with Ψ; that is,

x ⇀ a := Ψ(xa), (3.3)

for x ∈ R, a ∈ A. We denote this module M and we define the nth-cohomology
group of the product system X relative to Ψ as

Hn
Ψ(X) := ExtnR(M,M) (3.4)

(see [1]). Before describing some examples, we want to point out that such a
map Ψ always exists—for example, one may take the canonical projection from
R onto A. However, not every choice of Ψ may lead to interesting cohomology
H∗

Ψ(X).

Example 3.1. Let E be a finite directed graph, with vertices E0, edges E1, and
range and source mappings r : E1 → E0 and s : E1 → E0, respectively. Let X1

be the standard Hilbert bimodule associated with E (see [13]), with the finite-
dimensional coefficient algebra A generated by vertex projections. Let X be the
product system over the additive semigroup N generated by X1. For each n ∈ N,
Xn is the C-span of paths of length n (paths of length zero being vertices). Multi-
plication in ring R is simply given by concatenation of directed paths. For a path
µ, we set Ψ(µ) := s(µ). Then for a path µ and a vertex v, we have µ ⇀ v = s(µ)
if v = r(µ), and 0 otherwise.
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Example 3.2. Let G be a countable group. We set P = G and Xg = Cg for all
g ∈ G. Then X is a product system with the usual group algebra multiplication
and the inner products 〈zg, wg〉g = zw1 for g ∈ G and z, w ∈ C. We have R =
CG, the usual complex group algebra. In this case, Ψ is the trivial representation
of CG and M is the trivial module.

Example 3.3. Here we consider a product system studied in [16] in connection with
Exel’s approach to semigroup crossed products via transfer operator in [8], and
studied in [18] and [11] in connection with Cuntz’s algebra QN in [5]. The product
system X is over the multiplicative semigroup N×. The coefficient algebra A is
C(T), and each fiber Xp is a free left A-module of rank 1 with a basis vector 1p.
The right action of A is determined by 1pa = αp(a)1p, where αp : A → A is
an endomorphism such that αp(a)(z) = a(zp) for a ∈ A and z ∈ T. The inner
product in fiber Xp is given by 〈a1p, b1p〉p = Lp(a

∗b), where Lp : A → A is a
transfer operator for αp such that Lp(a)(z) =

1
p

∑
wp=z a(w). Fibers are multiplied

according to the rule (a1p)(b1q) = aαp(b)1pq.
It was shown in [11, Lemma 3.1] that the left action of A on each fiber is by

compact operators. In fact, this product system belongs to the class of singly
generated product systems of finite type, as introduced in [12, Definition 3.5]. We
set Ψ(a1p) := a, for p ∈ N× and a ∈ A. Then the action of R on M is determined
by 1p ⇀ a = αp(a), for p ∈ N× and a ∈ M.

4. Irreversible algebraic dynamics

In this section, we consider irreversible dynamical systems corresponding to
injective homomorphisms of abelian groups. We follow the approach of Stam-
meier, [17] (see also [2]), building on the work of Exel and Vershik [9] and of
Cuntz and Vershik [6].

Let G be a countable abelian group, and let P be a semigroup with identity e.
Let θ be an action of P on G by injective group homomorphisms. We denote
by A := C∗(G) the group C∗-algebra of G. For each p ∈ P , let Xp be a free
left A-module of rank 1 with a basis element 1p. The right action of A on Xp is
determined by 1pa = θp(a)1p, a ∈ A. The inner product in Xp is defined as

〈a1p, b1p〉p := θ−1
p Ep(a

∗b), (4.1)

for p ∈ N× and a, b ∈ A. Here Ep : C∗(G) → C∗(θp(G)) is the conditional
expectation given by restriction. For a = g and b = h with g, h ∈ G, this yields

〈g1p, h1p〉p =
{
θ−1
p (g−1h) if g−1h ∈ θp(G),
0 otherwise.

(4.2)

If index [G : θp(G)] is finite, then in the dual picture, with θ̂p acting on C(Ĝ),
this inner product corresponds to the transfer operator given by averaging over
the finitely many inverse image points (see [17]). Finally, fibers are multiplied
according to the rule

(a1p)(b1q) = aθp(b)1pq. (4.3)
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In this case, ring R is the skew product ZGoθ P , with multiplication

(gp)(hq) =
(
gθp(h)

)
(pq),

g, h ∈ G, p, q ∈ P . We take Ψ(g1p) := g, g ∈ G, p ∈ P . Then the action of R on
M is given by

(g1p)⇀ h = gθp(h),

g, h ∈ G, p ∈ P . Example 3.3 from Section 3 arises as a special case of this
construction.

Now, we describe an acyclic, free resolution of the R-module M. To this end,
we define a complex of R-modules and maps

· · · ∂2−→ F2
∂1−→ F1

∂0−→ F0
∂−1−→ M −→ 0, (4.4)

as follows. We let F0 be a free left R-module of rank 1 with a basis element [ ].
For n ≥ 1, we let Fn be a free left R-module with a basis{

[p1, . . . , pn]
∣∣ pk ∈ P, k = 1, . . . , n

}
. (4.5)

The maps ∂∗ are defined as R-module homomorphisms such that

∂−1

(
[ ]
)
= 11,

∂0
(
[p]

)
= (1p − 11)[ ],

and for n ≥ 2, we set

∂n−1

(
[p1, . . . , pn]

)
= 1p1 [p2, . . . , pn]

+
n−1∑
i=1

(−1)i[p1, . . . , pi−1, pipi+1, pi+2, . . . , pn]

+ (−1)n[p1, . . . , pn−1].

A routine calculation shows that

∂n∂n+1 = 0

for all n ≥ −1.
To show that complex (4.4) is acyclic, we construct splitting homotopies. That

is, we define abelian group homomorphisms h−1 : M → F0 and hn : Fn → Fn+1,
n ≥ 0, such that

∂−1h−1 = idM,

∂nhn + hn−1∂n−1 = idFn for n ≥ 0.

For example, we may take

h−1(a) = a[ ],

h0
(
a1p[ ]

)
= a[p],

hn
(
a1p0 [p1, . . . , pn]

)
= a[p0, p1, . . . , pn], n ≥ 1,

for a ∈ C∗(G). Now, applying the HomR(∗,M) functor to chain complex (4.4),
with M deleted, we obtain the following complex of homogeneous cochains:

0 −→ HomR(F0,M)
∂∗
0−→ HomR(F1,M)

∂∗
1−→ · · · . (4.6)
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By definition, we have

Hn
Ψ(X) =

ker(∂∗n)

im(∂∗n−1)
. (4.7)

Restricting in (4.6) elements of HomR(Fn,M) to the basis (4.5) of the free R-
module Fn, we obtain the following complex of inhomogeneous cochains:

0 −→ C0(P,M)
∂0

−→ C1(P,M)
∂1

−→ C2(P,M)
∂2

−→ · · · . (4.8)

Here we denote

C0(P,M) = M,

Cn(P,M) = {ξ : P n → M}, n ≥ 1.

The cochain maps are

∂0(a)(p) = θp(a)− a,

∂n(ξ)(p1, . . . , pn+1) = θp1
(
ξ(p2, . . . , pn+1)

)
+

n∑
i=1

(−1)iξ(p1, . . . , pi−1, pipi+1, pi+2, . . . , pn+1)

+ (−1)n+1ξ(p1, . . . , pn),

for n ≥ 1, a ∈ M, ξ ∈ Cn(P,M), p and p1, . . . , pn+1 ∈ P . We have

Hn
Ψ(X) ∼=

ker(∂n)

im(∂n−1)
. (4.9)

Now, let ξ : P × P → Asa be a normalized (i.e. ξ(p, q) = 0 if p = 1 or q = 1)
2-cocycle with self-adjoint values. We define a new product system Xξ over P and
with coefficients in A, as follows. For each p ∈ P , fiber Xξ

p coincides with Xp (but

we denote the generator by 1ξ
p to avoid confusion). However, the multiplication

between fibers is twisted by ξ according to the rule

(a1ξ
p)(b1

ξ
q) := exp

(
iξ(p, q)

)
aθp(b)1

ξ
pq. (4.10)

It is not difficult to verify that Xξ satisfies axioms (PS1)–(PS3) of a product sys-
tem as given in our preceding Section 2. Consequently, the corresponding Toeplitz
and Cuntz–Pimsner algebras T (Xξ) and O(Xξ), respectively, may be considered
as ξ-twisted versions of T (X) and O(X), respectively.

Proposition 4.1. Let ξ, η be normalized, self-adjoint 2-cocycles such that [ξ] = [η]
in H2

Ψ(X). Then the corresponding twisted product systems Xξ and Xη are iso-
morphic.

Proof. By hypothesis, there is a ψ : P → M such that ξ − η = ∂1(ψ). Replacing
ψ with 1

2
(ψ + ψ∗) if necessary, we may assume that ψ(p) is self-adjoint for all

p ∈ P . Define a map Xξ → Xη so that a1ξ
p 7→ exp(iψ(p))a1η

p for all p ∈ P ,
a ∈ A. One easily verifies that this map yields the required isomorphism between
Xξ and Xη. �
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5. Twisted QN

In this section, we apply the twisting procedure described in Section 4 to the
product system X discussed in Example 3.3 from Section 3. We begin by having
a quick look at the 0-, 1-, and 2-cohomology groups.

The 0-cohomology is clear. Indeed, it follows from (4.9) that we simply have

H0
Ψ(X) =

{
a ∈ A

∣∣ αp(a) = a,∀p ∈ N×}
= C1.

To define a normalized 1-cocycle ξ : N× → A = C(T), let ξ(1) = 0 and ξ(p) ∈ A
be arbitrary for each prime p ∈ N×. Suppose that 1 6= q ∈ N× have prime
factorization q = p1 · · · pm, with p1 ≤ p2 ≤ · · · ≤ pm. Proceeding by induction
on m, define ξ(q) := αq/pm(ξ(pm)) + ξ(q/pm). Then ξ : q 7→ ξ(q), q ∈ N×, is
a 1-cocycle, and in fact all normalized 1-cocycles arise this way. For ξ to be a
1-coboundary, there must exist a function ψ ∈ C(T) such that, for all prime
p ∈ N× and all z ∈ T, we have

ψ(z) = ψ(zp)− ξ(p)(z).

To construct such a ψ, fix a prime p for a moment and define ψ(z) for z ∈ T such

that zp
k
= 1, by induction on k, as follows:

ψ(1) := 0,

ψ(z) := ψ(zp)− ξ(p)(z).

In this way, ψ is densely defined on T at all roots of unity. It follows that ξ is a
1-coboundary if and only if ψ can be extended to a continuous function on the
entire circle T.

For a 2-cocycle ξ : N× × N× → A, suppose that ψ : N× → A is such that
ξ = ∂1(ψ). Then for any two primes p, q, we must have

ψ(pq) = αp

(
ψ(q)

)
+ ψ(p)− ξ(p, q)

= αq

(
ψ(p)

)
+ ψ(q)− ξ(q, p),

and hence(
ψ(q)(zp)− ψ(q)(z)

)
−

(
ψ(p)(zq)− ψ(p)(z)

)
= ξ(p, q)− ξ(q, p) (5.1)

for all z ∈ T. Thus, for ξ to give a nonzero element in H2
Ψ(X), it suffices to have

ξ(p, q)(1) 6= ξ(q, p)(1) for some primes p and q. For a more specific example, let
ξ : N× × N× → C1 be a map such that

ξ(mn, k) = ξ(m, k) + ξ(n, k) and ξ(m,nk) = ξ(m,n) + ξ(m, k). (5.2)

Then ξ is a 2-cocycle. For example, given two distinct primes p and q and complex
numbers a, b, c, d, we can set

ξ(mpkql, nprqj) := (ak + bl)(cr + dj), (5.3)

with m,n relatively prime with both p and q. By the above, if ad 6= bc, then ξ is
not a coboundary.



290 J. H. HONG, M. J. SON, and W. SZYMAŃSKI

Let ξ : N× × N× → R1 be a 2-cocycle defined in (5.3), with a, b, c, d real
numbers. We denote by u the standard unitary generator of A = C(T) and for

m ∈ N× we denote by sm the canonical image of 1ξ
m in Qξ

N := O(Xξ). (Of course,
sm depends also on ξ. We do not indicate this explicitly to lighten the notation.)
Similarly to [5] and [11], each sm is an isometry and the following relations hold:

(QX1) smsn = ei(ak+bl)(cr+dj)smn,
(QX2) smu

l = umlsm, for all l ∈ Z,
(QX3)

∑m−1
k=0 u

ksms
∗
mu

−k = 1,

where k, r are the numbers of p-factors of m and n, respectively, and l, j are the
numbers of q-factors of m and n, respectively.

Proposition 5.1. The C∗-algebra Qξ
N is simple.

A proof of simplicity of Qξ
N, claimed in Proposition 5.1 above, may be given

as an application of [15, Theorem 5.10]. This requires showing minimality and
topological aperiodicity (in the sense of Definition 5.7 and Definition 5.3 of [15],
respectively) of the underlying product system Xξ. Since both proofs are essen-
tially the same as those from [15, Section 6.5] (treating the case of untwisted QN),
we omit the details.

We want to investigate the structure of C∗-algebra Qξ
N a little bit further.

To this end, we note that Xξ is a regular product system (i.e., the left action
ϕm on each fiber Xξ

m is injective and by compacts; see [15, Definition 3.1]) over
an Ore semigroup N×. Thus, it follows from a very general argument (see [15,
Lemma 3.7]) that

Qξ
N = span{asms∗nb | m,n ∈ N×, a, b ∈ A}.

Furthermore,

F ξ
N := span{asms∗mb | m ∈ N×, a, b ∈ A}

is a unital ∗-subalgebra of Qξ
N. Since the ξ-twist does not affect F ξ

N, this algebra
is unchanged by introduction of the cocycle. In fact, as shown by Cuntz in [5,
Section 3], it is a simple Bunce–Deddens algebra with a unique trace.

In the present situation, since the enveloping group Q×
+ of N× is amenable,

Qξ
N = O(Xξ) coincides with the reduced algebra O((Xξ)r) (see [7] and [15])

and with the couniversal algebra NOr
Xξ (see [4]). Thus, there exists a faithful

conditional expectation E : Qξ
N → F ξ

N onto F ξ
N such that for all m,n ∈ N×,

a, b ∈ A, we have

E(asms
∗
nb) = 0 if m 6= n.

Let Dξ
N be the C∗-subalgebra of F ξ

N generated by all projections uksms
∗
mu

−k;
that is

Dξ
N := span{uksms∗mu−k | m ∈ N×, k ∈ Z}.

Then, as in [5, Section 3],Dξ
N is commutative and there exists a faithful conditional

expectation F : F ξ
N → Dξ

N onto Dξ
N such that for all m ∈ N×, k, l ∈ Z, we have

F (uksms
∗
mu

−l) = 0 if k 6= l.
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The composition G := F ◦ E yields a faithful conditional expectation from Qξ
N

onto Dξ
N. We also recall from [5, Lemma 3.2(a)] that for all k ∈ Z and m,n ∈ N×,

we have

uksms
∗
mu

−k =
n−1∑
j=0

uk+jmsmns
∗
mnu

−k−jm. (5.4)

One immediate consequence of this identity is that

s∗ru
tsr = 0 unless t is divisible by r. (5.5)

Another one is the identity

sms
∗
msns

∗
n = sm∨ns

∗
m∨n, (5.6)

where symbol ∨ denotes the least common multiple of two positive integers.

Lemma 5.2. Let k, l ∈ Z and m,n ∈ N×. Then

uksms
∗
mu

−k ≤ ulsns
∗
nu

−l

if and only if both m and k − l are divisible by n.

Proof. By (5.4), we have

uksms
∗
mu

−k =
n−1∑
j=0

uk+jmsmns
∗
mnu

−k−jm,

ulsns
∗
nu

−l =
m−1∑
j=0

ul+jnsmns
∗
mnu

−l−jn.

Thus, uksms
∗
mu

−k ≤ ulsns
∗
nu

−l if and only if for each j ∈ {0, . . . , n − 1} there is
a j′ ∈ {0, . . . ,m− 1} such that k+ jm = l+ j′n in Zmn. This clearly implies the
claim. �

Now, we will show that C∗-algebraQξ
N is purely infinite, as in the untwisted case

(see [5, Theorem 3.4]). Our proof imitates the classical argument of Cuntz, which
was employed also in [6, Theorem 2.6], and it relies on the following technical
lemma.

Lemma 5.3. Let Q be a nonzero projection in Dξ
N, and let k0, l0 ∈ Z, m0, n0 ∈ N×

be such that either k0 6= l0 or m0 6= n0. Then there exist k ∈ Z and m ∈ N× such
that

(1) uksms
∗
mu

−k ≤ Q, and
(2) (uksms

∗
mu

−k)(uk0sm0s
∗
n0
u−l0)(uksms

∗
mu

−k) = 0.

Proof. By the definition of Dξ
N, there exist k′ ∈ Z and m′ ∈ N× such that

uk
′
sm′s∗m′u−k′ ≤ Q. Thus, it suffices to work with uk

′
sm′s∗m′u−k′ instead of Q.

If uk
′
sm′s∗m′u−k′ is not a subprojection of either uk0sm0s

∗
m0
u−k0 or ul0sn0s

∗
n0
u−l0 ,

then to have (i) and (ii) satisfied it suffices to take k ∈ Z and m ∈ N× such
that either uksms

∗
mu

−k ≤ uk
′
sm′s∗m′u−k′(1 − uk0sm0s

∗
m0
u−k0) or uksms

∗
mu

−k ≤
uk

′
sm′s∗m′u−k′(1− ul0sn0s

∗
n0
u−l0), respectively.
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Now, we may assume that uk
′
sm′s∗m′u−k′ is a subprojection of both

uk0sm0s
∗
m0
u−k0 and ul0sn0s

∗
n0
u−l0 . Thus, by virtue of Lemma 5.2, both m′ and

k′ − k0 are divisible by m0, while both m′ and k′ − l0 are divisible by n0. Hence

(uk
′
sm′s∗m′u−k′)(uk0sm0s

∗
n0
u−l0)(uk

′
sm′s∗m′u−k′)

= uk
′
sm′s∗m′sm0u

(k0−k′)/m0−(l0−k′)/n0s∗n0
sm′s∗m′u−k′

is a partial isometry with the domain projection

g = (uk
′
sm′s∗m′u−k′)ul0−n0(k0−k′)/m0sn0(m′/m0∨m′/n0)

× s∗n0(m′/m0∨m′/n0)
u−(l0−n0(k0−k′)/m0)

and the range projection

f = (uk
′
sm′s∗m′u−k′)uk0−m0(l0−k′)/n0sm0(m′/m0∨m′/n0)

× s∗m0(m′/m0∨m′/n0)
u−(k0−m0(l0−k′)/n0).

Clearly, both g and f are subprojections of uk
′
sm′s∗m′u−k′ . If either g 6=

uk
′
sm′s∗m′u−k′ or f 6= uk

′
sm′s∗m′u−k′ , then we can argue as above. So suppose

that both g = uk
′
sm′s∗m′u−k′ and f = uk

′
sm′s∗m′u−k′ . Then by Lemma 5.2, m′

is divisible by both n0(m
′/m0 ∨m′/n0) and m0(m

′/m0 ∨m′/n0). This can only
happen if m0 = n0.

Now, since m0 = n0, we have that 0 6= k0 − l0 is divisible by m0. If we take
r ∈ Z relatively prime with k0 − l0, then

(uk
′
srs

∗
ru

−k′)(uk0sm0s
∗
m0
u−l0)(uk

′
srs

∗
ru

−k′) = uk
′
srs

∗
ru

k0−l0srs
∗
rsm0s

∗
m0
u−k′ = 0

by (5.5). Thus, in this case, it suffices to put k = k′ and m = r ∨m′. �

Theorem 5.4. The C∗-algebra Qξ
N is purely infinite.

Proof. Let 0 6= x ∈ Qξ
N. Since Q

ξ
N is simple, to show it is purely infinite as well we

must find elements T,R such that TxR is invertible. We have 0 6= G(xx∗) ≥ 0.

Thus there exists a projection Q ∈ Dξ
N such that G(xx∗) is invertible in QDξ

N. So

let d be a positive element of Dξ
N such that G(dxx∗d) = d2G(xx∗) = Q.

Now, take a small ε > 0. There exists a finite collection mj, nj ∈ N×, kj, lj ∈ Z,
λj ∈ C such that ∥∥∥dxx∗d−∑

j

λju
kjsmj

s∗nj
u−lj

∥∥∥ < ε.

Applying conditional expectation G, we get∥∥∥Q−
∑

j:mj=nj ,kj=lj

λju
kjsmj

s∗mj
u−kj

∥∥∥ < ε.

Combining the two preceding inequalities, we see that∥∥∥dxx∗d−Q−
∑

j:mj 6=nj or kj 6=lj

λju
kjsmj

s∗nj
u−lj

∥∥∥ < 2ε. (5.7)



COHOMOLOGY FOR PRODUCT SYSTEMS 293

Now, applying repeatedly Lemma 5.3, we find a k ∈ Z and an m ∈ N× such that
uksms

∗
mu

−k ≤ Q and (uksms
∗
mu

−k)(ukjsmj
s∗nj
u−lj)(uksms

∗
mu

−k) = 0 for all j with

mj 6= nj or kj 6= lj. Thus inequality (5.7) yields∥∥(uksms∗mu−k)dxx∗d(uksms
∗
mu

−k)− uksms
∗
mu

−k
∥∥ < 2ε.

Setting T := s∗mu
−kd and R := x∗duksm, we then have

‖TxR− 1‖ < 2ε,

and TxR is invertible if ε ≤ 1/2. This proves that Qξ
N is purely infinite. �
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