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Abstract. In this work we derive a convex dual representation for increasing
convex functionals on a space of real-valued Borel measurable functions defined
on a countable product of metric spaces. Our main assumption is that the
functionals fulfill marginal constraints satisfying a certain tightness condition.
In the special case where the marginal constraints are given by expectations
or maxima of expectations, we obtain linear and sublinear versions of Kan-
torovich’s transport duality and the recently discovered martingale transport
duality on products of countably many metric spaces.

1. Introduction

We consider an increasing convex functional φ : Bb → R, where Bb is the space
of all bounded Borel measurable functions f : X → R defined on a countable
product of metric spaces X =

∏
nXn. Under the assumption that there exist

certain mappings φn defined on the bounded Borel measurable functions gn :
Xn → R+, such that

φ(f) ≤
∑
n

φn(gn) whenever f(x) ≤
∑
n

gn(xn) for all x ∈ X,

we show that φ can be represented as

φ(f) = max
µ∈ca+

(
〈f, µ〉 − φ∗

Cb
(µ)

)
for all f ∈ Cb, (1.1)
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where ca+ is the set of finite Borel measures, Cb is the set of bounded continuous
functions f : X → R, 〈f, µ〉 is the integral

∫
f dµ, and φ∗

Cb
is the convex conjugate

defined by

φ∗
Cb
(µ) := sup

f∈Cb

(
〈f, µ〉 − φ(f)

)
.

We also provide equivalent conditions under which the representation (1.1)
extends to all bounded upper semicontinuous functions f : X → R. In the special
case where the mappings φn are linear, our arguments can be generalized to cover
functionals φ that are defined on spaces of unbounded functions f : X → R. This
yields variants of the representation (1.1) for unbounded continuous and upper
semicontinuous functions f : X → R.

As an application we derive versions of Kantorovich’s transport duality and
the recently discovered martingale transport duality in the case where the state
space is a countable product of metric spaces. A standard Monge–Kantorovich
transport problem consists in finding a probability measure on the product of
two metric spaces with fixed marginals that minimizes the expectation of a given
cost function. It is a linear optimization problem whose dual has the form of a
subreplication problem (which, after changing the sign, becomes a superreplica-
tion problem). Kantorovich [14] first showed that there is no duality gap between
the two problems under compactness and continuity assumptions. Since then,
the result has been generalized in various directions (see, e.g., [1], [16], [17] for
an overview). We establish linear and sublinear versions of Kantorovich’s duality
for countable products of metric spaces and lower semicontinuous cost functions
(corresponding to upper semicontinuous functions f : X → R in our setup). It
has been shown that in the case where the state space is a finite product of Polish
spaces, Kantorovich’s duality even holds for Borel measurable cost functions (see,
e.g., [3], [4], [15]). However, we provide a counterexample illustrating that this is
no longer true if the state space is a countable product of compact metric spaces.

Martingale transport duality was discovered by [2] and [11] in the context of
model-independent finance, the authors noting that the superreplication problem
in the presence of liquid markets for European call and put options can be viewed
as the analogue of a transport problem in which the optimization is carried out
over the set of all martingale measures. While [2] considers a discrete-time model
with finitely many marginal distributions, [11] studies a continuous-time model
with just two marginal distributions. In the present article, we obtain a martingale
transport duality for countably many time periods and equally many marginal
constraints (for martingale transport in continuous time, see, e.g., [8], [12], and the
references therein). Standard martingale transport duality describes a situation
where a financial asset can be traded dynamically without transaction costs and
any European derivative can efficiently be replicated with a static investment in
European call and put options. From our general results, we obtain a sublinear
generalization of the martingale transport duality corresponding to proportional
transaction costs and incomplete markets of European call and put options. This
extends the duality of [7] to a setup with countably many time periods and
markets for European options with all maturities.
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Our proofs differ from the standard arguments used in establishing Kantorovich
duality and martingale transport duality in that they view the subreplication (or
superreplication) problem as the primal problem and they use the Daniell–Stone
theorem to deduce that increasing convex functionals on certain function spaces
have a max-representation with countably additive measures if they are continu-
ous from above under pointwise decreasing sequences.

The rest of this paper has the following organization. In Section 2, we derive two
general representation results for increasing convex functionals satisfying count-
ably many tight marginal constraints. In Section 3, we focus on the special cases
where the constraints are linear and sublinear. In Section 4, we derive linear and
sublinear versions of Kantorovich’s transport duality and the martingale trans-
port duality for countably many marginal constraints.

2. Main representation results

Let (Xn) be a countable (finite or countably infinite) family of metric spaces,
and consider the product topology on X =

∏
nXn. Denote by Cb, Ub, and Bb

all bounded functions f : X → R that are continuous, upper semicontinuous, or
Borel measurable, respectively. Similarly, let Cb,n, Ub,n, and Bb,n be all bounded
functions f : Xn → R that are continuous, upper semicontinuous, or Borel mea-
surable, respectively. By ca+ we denote all finite Borel measures on X, and by
ca+n we denote all finite Borel measures on Xn. For a measure µ ∈ ca+, we denote
by µn the nth marginal distribution; that is, µn := µ◦π−1

n , where πn : X → Xn is
the projection on the nth coordinate x 7→ πn(x) := xn. For a sequence gn ∈ B+

b,n,

where B+
b,n is the set of all bounded Borel measurable functions f : Xn → R+,

we define ⊕g :=
∑

n gn ◦ πn : X → R+ ∪ {+∞}. When we write fj ↓ f , we mean
that fj is a decreasing sequence of functions that converges pointwise to f .

Our goal in this section is to derive a dual representation for an increasing
convex functional φ : Bb → R, where by “increasing” we mean that φ(f) ≥ φ(g)
whenever f ≥ g and the second inequality is understood pointwise. For every n,
let φn : B+

b,n → R+ be a mapping satisfying the following tightness condition: for
all m, ε ∈ R+ \ {0}, there exists a compact set Kn ⊆ Xn such that

φn(m1Kc
n
) ≤ ε. (2.1)

(In the special case where φn is given by φn(f) = supν∈Pn

∫
f dν for a set of Borel

probability measures Pn on Xn, (2.1) means that Pn is tight in the standard
sense (see, e.g., [5]). A related condition for convex risk measures was introduced
in [10].) We use the notation 〈f, µ〉 :=

∫
f dµ, and define the convex conjugate

φ∗
Cb

: ca+ → R ∪ {+∞} by φ∗
Cb
(µ) := sup

f∈Cb

(
〈f, µ〉 − φ(f)

)
.

Then the following holds.

Theorem 2.1. Let φ : Bb → R be an increasing convex functional satisfying
φ(f) ≤

∑
n φn(gn) for all f ∈ Bb and gn ∈ B+

b,n such that f ≤ ⊕g. Then

φ(f) = max
µ∈ca+

(
〈f, µ〉 − φ∗

Cb
(µ)

)
for all f ∈ Cb.
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Proof. Fix f ∈ Cb, and let (fj) be a sequence in Cb such that fj ↓ 0. Since
α 7→ φ(αf) is a real-valued convex function on R, it is continuous, and so, for a
given constant ε > 0, one can choose α ∈ (0, 1) small enough such that

(1− α)φ
( f

1− α

)
− φ(f) ≤ ε.

By assumption, there exist compact sets Kn ⊆ Xn such that
∑

n φn(gn) ≤ ε,
where

gn :=
2

α
‖f1‖∞1Kc

n
.

By Tychonoff’s theorem, K :=
∏

nKn ⊆ X is compact. Since the function

φ̃(·) := φ(·+ f)− φ(f) : Bb → R

is convex, one has

φ̃(fj) ≤
φ̃(2fj1K) + φ̃(2f11Kc)

2
.

By Dini’s lemma, fj → 0 uniformly on the compact K. Then, since

limα→0 φ̃(α1) = 0, it follows by monotonicity that φ̃(2fj1K) → 0. On the other
hand, one obtains from 2

α
f11Kc ≤ ⊕g that

φ
( 2

α
f11Kc

)
≤

∑
n

φn(gn) ≤ ε,

and therefore that

φ̃(2f11Kc) ≤ αφ
( 2

α
f11Kc

)
+ (1− α)φ

( f

1− α

)
− φ(f) ≤ 2ε.

This shows φ(f+fj) ↓ φ(f). By the Hahn–Banach extension theorem, there exists
a positive linear functional ψ : Cb → R such that

ψ(g) ≤ φ̃(g) = φ(f + g)− φ(f) for all g ∈ Cb.

Since ψ(gj) ↓ 0 for every sequence (gj) in Cb satisfying gj ↓ 0, one obtains from the
Daniell–Stone theorem (see, e.g., [9, Theorem 4.5.2]) that there exists a ν ∈ ca+

such that ψ(g) = 〈g, ν〉 for all g ∈ Cb. It follows that φ(f) + φ∗
Cb
(ν) ≤ 〈f, ν〉,

which together with φ(f) ≥ supµ∈ca+(〈f, µ〉 − φ∗
Cb
(µ)) yields

φ(f) = max
µ∈ca+

(
〈f, µ〉 − φ∗

Cb
(µ)

)
. �

The next result gives conditions under which the dual representation of Theo-
rem 2.1 extends to the set of bounded upper semicontinuous functions Ub. We call
a subset Λ of ca+ sequentially compact if every sequence in Λ has a subsequence
that converges to some µ ∈ Λ with respect to the topology σ(ca+, Cb).

Theorem 2.2. Let φ : Bb → R be an increasing convex functional satisfying the
assumption of Theorem 2.1. Then the lower level sets

Λa :=
{
µ ∈ ca+ : φ∗

Cb
(µ) ≤ a

}
, a ∈ R,

are sequentially compact, and the following are equivalent:
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(i) φ(f) = maxµ∈ca+(〈f, µ〉 − φ∗
Cb
(µ)) for all f ∈ Ub,

(ii) φ(fj) ↓ φ(f) for all f ∈ Ub and every sequence (fj) in Cb satisfying fj ↓ f ,
(iii) φ(f) = infg∈Cb,g≥f φ(g) for all f ∈ Ub,
(iv) φ∗

Cb
(µ) = φ∗

Ub
(µ) := supf∈Ub

(〈f, µ〉 − φ(f)) for all µ ∈ ca+.

Proof. It is clear that, for all a ∈ R, Λa is σ(ca+, Cb)-closed. Moreover, for all
µ ∈ ca+,

φ∗
Cb
(µ) ≥ sup

x∈R+

(
〈x1, µ〉 − φ(x1)

)
= γ

(
〈1, µ〉

)
,

where γ : R+ → R ∪ {+∞} is the increasing convex function given by

γ(y) := sup
x∈R+

(
xy − φ(x1)

)
.

Since φ is real-valued, γ has the property limy→+∞ γ(y)/y = +∞ from which it
follows that the right-continuous inverse γ−1 : R → R+ given by

γ−1(x) := sup
{
y ∈ R+ : γ(y) ≤ x

}
with sup ∅ := 0

is increasing and satisfies limx→+∞ γ−1(x)/x = 0. For every ε > 0 there exist m ∈
N such that (a+1)/m ≤ ε and compact sets Kn ⊆ Xn so that

∑
n φn(m1Kc

n
) ≤ 1.

Since m1Kc ≤ ⊕g for the compact K :=
∏

nKn and gn := m1Kc
n
, one has

φ(m1Kc) ≤
∑

n φn(m1Kc
n
) ≤ 1. Moreover, the product topology on X is metriz-

able, and m1Kc is lower semicontinuous. Therefore, there exists a sequence (gj)
in Cb such that gj ↑ m1Kc . Since φ(gj) ≤ φ(m1Kc) ≤ 1, one has, for all µ ∈ Λa,

mµ(Kc) = sup
j
〈gj, µ〉 ≤ sup

j

(
〈gj, µ〉 − φ(gj) + 1

)
≤ φ∗

Cb
(µ) + 1 ≤ a+ 1.

In particular, µ(Kc) ≤ ε, and µ(X) = 〈1, µ〉 ≤ γ−1(φ∗
Cb
(µ)) ≤ γ−1(a). Now one

obtains from the first half of Prokhorov’s theorem (see, e.g., Theorem 5.1 in [5])
that Λa is sequentially compact.

(i) ⇒ (ii): Fix f ∈ Ub, and assume that (fj) is a sequence in Cb such that
fj ↓ f . If (i) holds, there exists a sequence (µj) in ca

+ such that

φ(fj) = 〈fj, µj〉 − φ∗
Cb
(µj) ≤ ‖f1‖∞〈1, µj〉 − φ∗

Cb
(µj)

≤ ‖f1‖∞γ−1
(
φ∗
Cb
(µj)

)
− φ∗

Cb
(µj).

It follows that (µj) is in Λa for some a ∈ R large enough. Therefore, after possibly
passing to a subsequence, µj converges to a measure µ ∈ Λa in σ(ca

+, Cb). Clearly,
φ∗
Cb

is σ(ca+, Cb)-lower semicontinuous, and so

φ∗
Cb
(µ) ≤ lim inf

j
φ∗
Cb
(µj).

Moreover, for every ε > 0, there is a k such that 〈fk, µ〉 ≤ 〈f, µ〉+ ε. Now choose
j ≥ k such that 〈fk, µj〉 ≤ 〈fk, µ〉+ ε. Then

〈fj, µj〉 ≤ 〈fk, µj〉 ≤ 〈fk, µ〉+ ε ≤ 〈f, µ〉+ 2ε.

It follows that lim supj〈fj, µj〉 ≤ 〈f, µ〉, and therefore that

lim
j
φ(fj) = lim

j

(
〈fj, µj〉 − φ∗

Cb
(µj)

)
≤ 〈f, µ〉 − φ∗

Cb
(µ) ≤ φ(f),
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showing that φ(fj) ↓ φ(f).
(ii) ⇒ (iii): This follows from the fact that, for every f ∈ Ub, there exists a

sequence (fj) in Cb such that fj ↓ f .
(iii) ⇒ (vi): It is immediate from the definitions that φ∗

Ub
≥ φ∗

Cb
. On the other

hand, if (iii) holds, then, for every f ∈ Ub, there is a sequence (fj) in Cb such that
fj ≥ f and φ(fj) ↓ φ(f). In particular,

sup
j

(
〈fj, µ〉 − φ(fj)

)
≥ 〈f, µ〉 − φ(f)

from which one obtains φ∗
Cb

≥ φ∗
Ub
.

(iv) ⇒ (i): Fix f ∈ Ub. It is a direct consequence of the definition of φ∗
Ub

that

φ(f) ≥ sup
µ∈ca+

(
〈f, µ〉 − φ∗

Ub
(µ)

)
= sup

µ∈ca+

(
〈f, µ〉 − φ∗

Cb
(µ)

)
.

On the other hand, there exists a sequence (fj) in Cb such that fj ↓ f . Since

〈fj, µ〉 ≤ 〈f1, µ〉 ≤ ‖f1‖∞〈1, µ〉 ≤ ‖f1‖∞γ−1
(
φ∗
Cb
(µ)

)
,

it follows from Theorem 2.1 that one can choose a ∈ R large enough such that

φ(fj) = 〈fj, µj〉 − φ∗
Cb
(µj)

for a sequence (µj) in the sequentially compact set Λa. After passing to a subse-
quence, µj converges to a µ in σ(ca+, Cb). Then it follows as above that

φ(f) ≤ lim
j
φ(fj) = lim

j

(
〈fj, µj〉 − φ∗

Cb
(µj)

)
≤ 〈f, µ〉 − φ∗

Cb
(µ)

from which one obtains φ(f) = maxµ∈ca+(〈f, µ〉 − φ∗
Cb
(µ)). �

3. Linear and Sublinear marginal constraints

In this section we assume the Xn to be Polish spaces, and we assume the
mappings φn : B+

b,n → R to be of the form

φn(g) = sup
νn∈Pn

〈g, νn〉,

where Pn is a nonempty convex σ(ca+n , Cb,n)-compact set of Borel probability
measures on Xn. Then all φn are increasing and sublinear. Moreover, they have
the translation property

φn(g +m) = φn(g) +m, g ∈ Bb,n,m ∈ R,

and it follows from Prokhorov’s theorem that they satisfy the tightness condition
(2.1) (see, e.g., [5]). By P we denote the set of Borel probability measures µ on
the product X =

∏
nXn whose marginal distributions µn := µ ◦ π−1

n are in Pn
for all n. Under these circumstances the following holds.

Proposition 3.1. Let φ : Bb → R be an increasing convex functional satisfying

φ(f) ≤ m+
∑
n

φn(gn) (3.1)
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whenever f ≤ m+⊕g for some m ∈ R and gn ∈ B+
b,n. Then

φ(f) = max
µ∈P

(
〈f, µ〉 − φ∗

Cb
(µ)

)
for all f ∈ Cb. (3.2)

If, in addition, φ∗
Cb
(µ) = φ∗

Ub
(µ) for all µ ∈ P, the representation (3.2) extends

to all f ∈ Ub.

Proof. One obtains from Theorem 2.1 that

φ(f) = max
µ∈ca+

(
〈f, µ〉 − φ∗

Cb
(µ)

)
for all f ∈ Cb,

and Theorem 2.2 implies that the representation holds for all f ∈ Ub if φ
∗
Cb

= φ∗
Ub
.

Therefore, the proposition follows if we can show that φ∗
Cb
(µ) = +∞ for all

µ ∈ ca+ \P . To do that, fix a µ ∈ ca+ \P . If it is not a probability measure, then

φ∗
Cb
(µ) ≥ sup

m∈R

(
〈m,µ〉 − φ(m)

)
≥ sup

m∈R

(
〈m,µ〉 −m

)
= +∞.

On the other hand, if µ is a probability measure, but does not belong to P ,
one obtains from the Hahn–Banach separation theorem that there exist n and
gn ∈ Cb,n such that 〈gn, µn〉 > φn(gn). Moreover, since φn has the translation
property, gn can be shifted until it is nonnegative. Then

φ(mgn ◦ πn) ≤ φn(mgn) = mφn(gn) for all m ∈ R+,

and therefore

φ∗
Cb
(µ) ≥ sup

m∈R+

(
〈mgn ◦ πn, µ〉 − φ(mgn ◦ πn)

)
≥ sup

m∈R+

m
(
〈gn, µn〉 − φn(gn)

)
= +∞. �

In the next step we concentrate on the special case where every Pn consists of
just one Borel probability measure νn on Xn. Then the mappings φn are of the
form φn(g) = 〈g, νn〉. In particular, they are linear, and the representation (3.2)
can be extended to unbounded functions f .

Let us denote by P(ν) the set of all Borel probabilities on X with marginals
µn = νn. Furthermore, let B be the space of all Borel measurable functions
f : X → R, let U be the subset of upper semicontinuous functions f : X → R,
and let B+

n be the set of all Borel measurable functions f : Xn → R+. Consider
the following sets:

G(ν) :=
{
⊕g : (gn) ∈

∏
n

B+
n such that

∑
n

〈gn, νn〉 < +∞
}
,

B(ν) :=
{
f ∈ B : |f | ≤ ⊕g for some ⊕ g ∈ G(ν)

}
,

U(ν) :=
{
f ∈ U : f+ ∈ Bb and f

− ∈ B(ν)
}
.

Note that G(ν) is not contained in B(ν) since a function ⊕g ∈ G(ν) can take on
the value +∞. But one has 〈⊕g, µ〉 =

∑
n〈gn, νn〉 < +∞ for all ⊕g ∈ G(ν) and

µ ∈ P(ν). This shows that G(ν) is contained in L1(µ), and every ⊕g ∈ G(ν) is
finite µ-almost surely.
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Proposition 3.2. Let φ : B(ν) → R be increasing and convex such that

φ(f) ≤ m+
∑
n

〈gn, νn〉 (3.3)

if f ≤ m+⊕g for some m ∈ R and ⊕g ∈ G(ν). Moreover, assume that

φ∗
Cb
(µ) = φ∗

U(ν)(µ) := sup
f∈U(ν)

(
〈f, µ〉 − φ(f)

)
for all µ ∈ P(ν).

Then

φ(f) = max
µ∈P(ν)

(
〈f, µ〉 − φ∗

Cb
(µ)

)
for all f ∈ B(ν) ∩

(
U(ν) +G(ν)

)
.

Proof. By Proposition 3.1, one has

φ(f) = max
P(ν)

(
〈f, µ〉 − φ∗

Cb
(µ)

)
for all f ∈ Cb.

Furthermore, for given f ∈ U(ν), there exists a sequence (fj) in Cb such that
fj ↓ f , and it follows as in the proof of (iv) ⇒ (i) in Theorem 2.2 that there
exists a µ ∈ P(ν) such that φ(f) ≤ 〈f, µ〉 − φ∗

Cb
(µ). Since, on the other hand,

φ(f) ≥ sup
µ∈P(ν)

(
〈f, µ〉 − φ∗

U(ν)(µ)
)
= sup

µ∈P(ν)

(
〈f, µ〉 − φ∗

Cb
(µ)

)
,

one obtains

φ(f) = max
µ∈P(ν)

(
〈f, µ〉 − φ∗

Cb
(µ)

)
.

Next, notice that it follows as in the proof of Theorem 2.1 from the Hahn–Banach
extension theorem that

φ(f) = max
ψ∈B′(ν)

(
ψ(f)− φ∗(ψ)

)
for all f ∈ B(ν),

where B′(ν) is the algebraic dual of B(ν) and φ∗(ψ) := supf∈B(ν)(ψ(f) − φ(f)),
ψ ∈ B′(ν). For ψ ∈ B′(ν) with φ∗(ψ) < +∞, one has, for all ⊕g ∈ G(ν) ∩B(ν),

ψ(⊕g)−
∑
n

〈gn, νn〉 ≤ ψ(⊕g)− φ(⊕g) ≤ φ∗(ψ) < +∞,

and therefore ψ(⊕g) ≤
∑

n〈gn, νn〉. On the other hand, if one sets gNn := gn ∧N
for n ≤ N and gNn := 0 for n > N , then

ψ(N2 −⊕gN) ≤ N2 −
N∑
n=1

〈gn ∧N, νn〉

from which one obtains

ψ(⊕g) ≥ lim
N
ψ(⊕gN) ≥ lim

N

N∑
n=1

〈gn ∧N, νn〉 =
∑
n

〈gn, νn〉.

This shows that ψ(⊕g) =
∑

n〈gn, νn〉 for all ⊕g ∈ G(ν) ∩B(ν), and, as a result,

φ(f −⊕g) = max
ψ∈B′(ν)

(
ψ(f −⊕g)− φ∗(ψ)

)
= φ(f)−

∑
n

〈gn, νn〉
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for all f ∈ B(ν) and ⊕g ∈ G(ν). Finally, let f ∈ B(ν) be of the form f = ⊕g+ h
for ⊕g ∈ G(ν) and h ∈ U(ν). Then f − ⊕g ∈ U(ν) and ⊕g ∈ G(ν) ∩ B(ν).
Therefore,

φ(f)−
∑
n

〈gn, νn〉 = φ(f −⊕g) = max
µ∈P(ν)

(
〈f −⊕g, µ〉 − φ∗

Cb
(µ)

)
= max

µ∈P(ν)

(
〈f, µ〉 − φ∗

Cb
(µ)

)
−
∑
n

〈gn, νn〉,

and hence, φ(f) = maxµ∈P(ν)(〈f, µ〉 − φ∗
Cb
(µ)). �

4. Generalized (martingale) transport dualities

In this section we derive generalizations of Kantorovich’s transport duality and
the more recently introduced martingale transport duality.

4.1. Generalized transport dualities. As in Section 3, letXn be Polish spaces.
We first study the case where a probability measure νn is given on each Xn. For
given f ∈ B(ν), consider the minimization problem

φ(f) := inf
{
m+

∑
n

〈gn, νn〉 : m ∈ R,⊕g ∈ G(ν) such that m+⊕g ≥ f
}
. (4.1)

Remark 4.1. Up to a different sign, (4.1) can be viewed as a generalized version
of the dual of a transport problem. A standard transport problem in the sense
of Kantorovich consists in finding a Borel probability measure µ on the product
of two metric spaces X1 ×X2 with given marginals ν1 and ν2 that minimizes the
expectation Eµc of a cost function c : X1 ×X2 → R. The (negative of the) dual
problem is a minimization problem of the form

inf
2∑

n=1

〈gn, νn〉, (4.2)

where the infimum is taken over all gn ∈ L1(νn) such that ⊕g ≥ f := −c. To
relate (4.1) to (4.2) more closely, note that ⊕g1 − ⊕g2 is well defined for all
⊕g1 ∈ G(ν) and ⊕g2 ∈ G(ν) ∩ B(ν), and so, instead of (4.1), we could have
defined φ(f) equivalently as

inf
{∑

n

〈g1n − g2n, νn〉 :
⊕g1 ∈ G(ν),⊕g2 ∈ G(ν) ∩B(ν)
such that ⊕ g1 −⊕g2 ≥ f

}
.

Indeed, it is clear that the above infimum minorizes φ(f). On the other hand,

since limN→+∞
∑N

n=1〈g2n ∧N, νn〉 =
∑

n〈g2n, νn〉, it cannot be strictly smaller.

As a consequence of the results in Section 3, one obtains the following version
of Kantorovich’s transport duality with countably many marginal distributions.

Corollary 4.2. We have the following:

φ(f) = max
µ∈P(ν)

〈f, µ〉 for all f ∈ B(ν) ∩
(
U(ν) +G(ν)

)
. (4.3)
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Proof. Clearly, φ(f) < +∞ for all f ∈ B(ν). On the other hand, since P(ν) is
nonempty (it contains the product measure ⊗nνn), one has

m+
∑
n

〈gn, νn〉 ≥ sup
µ∈P(ν)

〈f, µ〉 > −∞

for all m ∈ R, ⊕g ∈ G(ν) and f ∈ B(ν) such that m + ⊕g ≥ f . It follows that
φ : B(ν) → R is an increasing sublinear functional satisfying

φ(f) ≥ sup
µ∈P(ν)

〈f, µ〉 for all f ∈ B(ν).

In particular, φ(0) = 0, and φ∗
Cb
(µ) = φ∗

U(ν)(µ) = 0 for all µ ∈ P(ν). Therefore,

the duality (4.3) follows from Proposition 3.2. �

Remark 4.3. If X is a finite product of Polish spaces, it can be shown that

φ(f) = sup
µ∈P(ν)

〈f, µ〉 for all f ∈ Bb

(see, e.g., [3], [4], [15]). But for countably infinite products, there may arise a
duality gap; that is, it may happen that

φ(f) > sup
µ∈P(ν)

〈f, µ〉 for some f ∈ Bb.

For instance, if X is the product of Xn = {0, 1}, n ∈ N, and νn = 1
2
(δ0 + δ1) for

all n, then f := lim infn πn belongs to Bb, and it follows from Fatou’s lemma that

〈f, µ〉 ≤ lim inf
n

〈πn, µ〉 =
1

2
for all µ ∈ P(ν).

On the other hand, assume that f ≤ m + ⊕g for some m ∈ R and ⊕g ∈ G(ν).
Since

1

2

∑
n

(
gn(0) + gn(1)

)
=

∑
n

〈gn, νn〉 < +∞,

one has
∑

n gn(xn) < +∞ for all x ∈ X, and therefore

inf
k∈N

min
(y1,...,yk)∈{0,1}k

(∑
n≤k

gn(yn) +
∑
n>k

gn(xn)
)
=

∑
n

min
yn∈{0,1}

gn(yn) ≤
∑
n

〈gn, νn〉.

Consequently,

1 = inf
k∈N

min
(y1,...,yk)∈{0,1}k

f(y1, . . . , yk, 1, 1, . . . ) ≤ m+
∑
n

〈gn, νn〉

from which it follows that φ(f) ≥ 1.

In the more general case where the φn : Bb,n → R are sublinear functionals
given by

φn(g) = sup
νn∈Pn

〈g, νn〉

for nonempty convex σ(ca+n , Cb,n)-compact sets of Borel probability measures Pn
on Xn, we obtain a generalized Kantorovich duality with countably many sets of
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marginal distributions. As in Section 3, P denotes the set of probability distribu-
tions such that µn ∈ Pn for all n. Compared to Corollary 4.2, one has to modify
the definition of φ slightly:

φ(f) := inf
{
m+

∑
n

φn(gn) : m ∈ R, gn ∈ B+
b,n such that m+⊕g ≥ f

}
. (4.4)

Then an application of Proposition 3.1 and essentially the same arguments as in
the proof of Corollary 4.2 yield the following duality.

Corollary 4.4. We have the following:

φ(f) = max
µ∈P

〈f, µ〉 for all f ∈ Ub. (4.5)

Proof. As in the proof of Corollary 4.2, it is easy to see that φ : Bb → R is an
increasing sublinear functional such that

φ(f) ≥ sup
µ∈P

〈f, µ〉 for all f ∈ Bb.

Since P is nonempty (it contains all product measures ⊗nνn for νn ∈ Pn), it
follows that φ(0) = 0 and φ∗

Cb
(µ) = φ∗

Ub
(µ) = 0 for all µ ∈ P . Hence (4.5) follows

from Proposition 3.1. �

4.2. Generalized martingale transport dualities. Next, we derive linear and
sublinear versions of the martingale transport duality with countably many mar-
ginal constraints. Let Xn be nonempty closed subsets of Rd, and model the
discounted prices of d financial assets by S0 := s0 ∈ Rd and Sn(x) := xn,
x ∈ X =

∏
nXn. The corresponding filtration is given by Fn := σ(Sj : j ≤ n).

We first assume that each space Xn carries a single Borel probability mea-
sure νn. Moreover, we suppose that money can be lent and borrowed at the same
interest rate, and European options with general discounted payoffs gn ∈ B+

n

can be bought at price 〈gn, νn〉 (we suppose they either exist as structured prod-
ucts or they can be synthesized by investing in more standard options; see, e.g.,
[6] for the form of νn if European call options exist with maturity n and all
strikes). A function ⊕g ∈ G(ν) then corresponds to a static option portfolio cost-
ing

∑
n〈gn, νn〉. In addition, the underlying assets can be traded dynamically.

The set H of dynamic trading strategies consists of all finite sequences h1, . . . , hN
such that each hn is an Rd-valued Fn−1-measurable function on X. An h ∈ H
generates gains of the form

(h · S)N :=
N∑
n=1

hn · (Sn − Sn−1).

A triple (m,⊕g, h) ∈ Θ := R×G(ν)×H describes a semistatic trading strategy
with cost m+

∑
n〈gn, νn〉 and outcome m+⊕g + (h · S)N .

A strategy (m,⊕g, h) ∈ Θ is said to be a model-independent arbitrage if

m+
∑
n

〈gn, νn〉 ≤ 0 and m+⊕g + (h · S)N > 0.
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Similarly, we call a strategy (m,⊕g, h) ∈ Θ a uniform arbitrage if

m+
∑
n

〈gn, νn〉 < 0 and m+⊕g + (h · S)N ≥ 0.

Consider the superhedging functional

φ(f) := inf
{
m+

∑
n

〈gn, νn〉 :
(m,⊕g, h) ∈ Θ such that
m+⊕g + (h · S)N ≥ f

}
, (4.6)

and denote by M(ν) the set of probability measures µ ∈ P(ν) under which S is
a d-dimensional martingale.

Remark 4.5. The static part of a semistatic strategy in Θ consists of a cash
position and a portfolio of options with nonnegative payoffs. But one could extend
the set of strategies to include portfolios with outcomes ⊕g1−⊕g2+(h ·S)N and
prices

∑
n〈g1n − g2n, νn〉 for g1 ∈ G(ν), g2 ∈ G(ν) ∩ B(ν), and h ∈ H. It follows

as in Remark 4.1 that this would not change the superhedging functional (4.6),
the definition of a model-independent arbitrage, or the definition of a uniform
arbitrage.

The following corollary extends the superhedging duality of [2] to a model with
countably many time periods, and contains a model-independent fundamental
theorem of asset pricing as a consequence. For x ∈ Xn ⊆ Rd, denote by |x| the
Euclidean norm of x.

Corollary 4.6. Assume that
∫
Xn

|x| dνn(x) < +∞ for all n. Then the following
are equivalent:

(i) there is no model-independent arbitrage,
(ii) there is no uniform arbitrage,
(iii) M(ν) 6= ∅.

Moreover, if (i)–(iii) hold, then

φ(f) = max
µ∈M(ν)

〈f, µ〉 for all f ∈ B(ν) ∩
(
U(ν) +G(ν)

)
. (4.7)

Proof. It is clear that (i) implies (ii) since, for every uniform arbitrage (m,⊕g, h),
there exists an ε > 0 such that (m+ ε,⊕g, h) is a model-independent arbitrage.

Furthermore, if (iii) holds, there exists a µ in M(ν). Let (m,⊕g, h) ∈ Θ be a
strategy such that m+⊕g+(h ·S)N > 0. Then Eµ(h ·S)−N ≤ m++

∑
n〈gn, νn〉 <

+∞, and it follows that (h ·S)n, n = 1, . . . , N , is a martingale under µ (see, e.g.,
[13]). In particular, Eµ(h · S)N = 0, and therefore

m+
∑
n

〈gn, νn〉 =
〈
m+⊕g + (h · S)N , µ

〉
> 0.

So there is no model-independent arbitrage, showing that (i) is satisfied.
Now let us assume (ii). Then φ : B(ν) → R∪ {−∞} is an increasing sublinear

functional with the property that φ(f) ≤ m+
∑

n≥1〈gn, νn〉 whenever f ≤ m+⊕g
for some m ∈ R and ⊕g ∈ G(ν). If there is no uniform arbitrage, one has
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φ(0) = 0 from which it follows by subadditivity that φ(f) > −∞ for all f ∈ B(ν).
Moreover, if

m+⊕g + (h · S)N ≥ f

for (m,⊕g, h) ∈ Θ and f ∈ B(ν), one has. for all µ ∈ M(ν),

Eµ(h · S)−N ≤ m+ +
∑
n

〈gn, νn〉+ 〈f−, µ〉 < +∞.

It follows as above that Eµ(h · S)N = 0, and therefore m +
∑

n〈gn, νn〉 ≥ 〈f, µ〉.
This implies that φ(f) ≥ 〈f, µ〉, and, consequently, that φ∗

Cb
(µ) = φ∗

U(ν)(µ) = 0

for all µ ∈ M(ν). Therefore, if we can show that

φ∗
Cb
(µ) = +∞ for all µ ∈ P(ν) \M(ν), (4.8)

then we obtain from Proposition 3.2 that (4.7) holds, which in turn implies that
M(ν) cannot be empty.

To show (4.8), let µ ∈ P(ν). If EµS1 = s0 and Eµ[v(x1, . . . , xn)·(xn+1−xn)] = 0
for all n ≥ 1 and every bounded continuous function v :

∏n
j=1Xj → Rd, then S is

a martingale under µ, and therefore µ ∈ M(ν). Hence, for µ ∈ P(ν)\M(ν), there
must exist a continuous function f ∈ B(ν) with 〈f, µ〉 > 0 such that f is either of
the form f(x) = v·(x1−s0) for a vector v ∈ Rd or f(x) = v(x1, . . . , xn) · (xn+1−xn)
for some n ≥ 1 and a bounded continuous function v :

∏n
j=1Xj → Rd. For k ∈ N,

fk := f ∧ k is bounded above and fkk := fk ∨ (−k) bounded. By monotonicity,
then, φ(fk) ≤ φ(f) ≤ 0. Moreover,

fkk (x) = fk(x) +
(
k + f(x)

)− ≤ fk(x) + wk(x),

where

wk(x) :=
(
c|xn| − k/2

)+
+
(
c|xn+1| − k/2

)+
and c ∈ R+ is a bound on |v|. Since wk is in G(ν), we have

φ(wk) ≤
∫
Xn

(
c|xn| − k/2

)+
dνn(xn) +

∫
Xn+1

(
c|xn+1| − k/2

)+
dνn+1(xn+1) → 0

for k → +∞. Thus, for k large enough, one obtains from monotonicity and
subadditivity that

〈fkk , µ〉 − φ(fkk ) ≥ 〈fk, µ〉 − φ(fk)− φ(wk) ≥ 〈fk, µ〉 − φ(wk) > 0,

and, as a result, that φ∗
Cb
(µ) = +∞. �

Now, we extend the setting of Corollary 4.6 by adding friction and incomplete-
ness. To simplify the presentation, we assume that each Xn is a nonempty closed
subset of Rd

+. As above, S0 = s0 ∈ R+
d , Sn(x) = xn, x ∈ X, and the set of dynamic

trading strategiesH is given by all finite sequences h1, . . . , hN of Fn−1-measurable
mappings hn : X → Rd. But now we assume that dynamic trading incurs propor-
tional transaction costs. If the bid and ask prices of asset i are given by (1−εi)Sin
and (1 + εi)S

i
n for a constant εi ≥ 0, a strategy h ∈ H leads to an outcome of

h(S) :=
N∑
n=1

d∑
i=1

hin(S
i
n − Sin−1)− εi|hin − hin−1|Sin−1, where hi0 := 0.
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(We assume there are no initial asset holdings; consequently, there is a transaction
cost at time 0. On the other hand, asset holdings at time N are valued at hN ·SN ,
and do not have to be converted into cash.) Similarly, a European option with
payoff gn ∈ B+

n at time n is assumed to cost

φn(gn) = sup
νn∈Pn

〈gn, νn〉,

where Pn is a nonempty convex σ(ca+n , Cb,n)-compact set of Borel probability
measures on Xn (nonlinear prices φn(gn) may arise if, e.g., not enough liquidly
traded vanilla options exist to exactly replicate the payoffs gn, or there are positive
bid-ask spreads in the vanilla options market; see, e.g., [7]). Compared to the
frictionless case, we now have to require a little bit more integrability of the
option portfolio. As in Section 3, we denote by P the set of all Borel probability
measures µ on X =

∏
nXn with marginal distributions in Pn. We introduce the

sets

G(P) :=
{
⊕g : (gn) ∈

∏
n

B+
n such that

∑
n

φn(gn) < +∞
}
,

B(P) :=
{
f ∈ B : |f | ≤ ⊕g for some ⊕ g ∈ G(P)

}
,

and consider option portfolios with payoffs ⊕g for functions gn ∈ B+
n such that∑

n φn(gn) < +∞. We still denote the set of corresponding strategies (m,⊕g, h)
by Θ. The corresponding superhedging functional is given by

φ(f) :=
{
m+

∑
n

φn(gn) :
(m,⊕g, h) ∈ Θ such that
m+⊕g + h(S) ≥ f

}
. (4.9)

A model-independent arbitrage now consists of a strategy (m,⊕g, h) ∈ Θ such
that

m+
∑
n

φn(gn) ≤ 0 and m+⊕g + h(S) > 0,

and a uniform arbitrage of a strategy (m,⊕g, h) ∈ Θ satisfying

m+
∑
n

φn(gn) < 0 and m+⊕g + h(S) ≥ 0.

The set of martingale measures has to be extended to the set M(P) of all mea-
sures µ ∈ P satisfying

(1− εi)S
i
n ≤ Eµ[SiN | Fn] ≤ (1 + εi)S

i
n for all i, N and n ≤ N. (4.10)

The following is a variant of Corollary 4.6 with friction and incompleteness. It
extends the duality result of [7] to the case of countably many time periods and
European options with all maturities.

Corollary 4.7. Assume that limk→+∞ supνn∈Pn

∫
Xn

(|x| − k)+ dνn(x) = 0 for all
n. Then the following are equivalent:

(i) there is no model-independent arbitrage,
(ii) there is no uniform arbitrage,
(iii) M(P) 6= ∅.
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Moreover, if (i)–(iii) hold, then

φ(f) = max
µ∈M(P)

〈f, µ〉 for all f ∈ Ub. (4.11)

Proof. As in the proof of Corollary 4.6, the implication (i) ⇒ (ii) is straightfor-
ward since the existence of a uniform arbitrage implies the existence of a model-
independent arbitrage.

If (iii) holds, then there exists a µ in M(P), and so if (m,⊕g, h) ∈ Θ is a
strategy with m+⊕g + h(S) > 0, then

Eµh(S)− ≤ m+ + 〈⊕g, µ〉 ≤ m+ +
∑
n

φn(gn) < +∞.

Moreover, for all i,

N∑
n=1

hin(S
i
n − Sin−1)− εi|hin − hin−1|Sin−1

=
N∑
n=1

n∑
k=1

(hik − hik−1)(S
i
n − Sin−1)− εi|hin − hin−1|Sin−1

=
N∑
k=1

(hik − hik−1)(S
i
N − Sik−1)− εi|hik − hik−1|Sik−1.

Denote S̃in = Eµ[SiN | Fn] and

Yn =
n∑
k=1

d∑
i=1

(hik − hik−1)(S̃
i
n − Sik−1)− εi|hik − hik−1|Sik−1 with Y0 = 0.

Then YN = h(S), and if the conditional expectation is understood in the general
sense of [13], we have

Eµ[Yn | Fn−1]− Yn−1

=
d∑
i=1

Eµ
[
(hin − hin−1)(S̃

i
n − Sin−1)− εi|hin − hin−1|Sin−1 | Fn−1

]
=

d∑
i=1

(hin − hin−1)(S̃
i
n−1 − Sin−1)− εi|hin − hin−1|Sin−1 ≤ 0.

This shows that Yn is of the form Yn = Mn − An, where Mn is a generalized
µ-martingale starting at 0, and

An =
n∑
k=1

Yk−1 − Eµ[Yk | Fk−1],

a predictable increasing process. Since EµM−
N ≤ EµY −

N = Eµh(S)− < +∞, one
obtains from [13] that (Mn) is a true µ-martingale. In particular, h(S) =MN−AN
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is µ-integrable with Eµh(S) ≤ 0. Therefore,

m+
∑
n

φn(gn) ≥ m+
∑
n

〈gn, νn〉 ≥ Eµ
[
m+⊕g + h(S)

]
> 0,

which shows that (m,⊕g, h) cannot be a model-independent arbitrage.
Finally, let us assume (ii). Then it follows as in the proof of Corollary 4.2 that

φ is a real-valued increasing convex functional on B(P) such that φ(0) = 0 and
φ(f) ≤ m +

∑
n φn(gn) whenever f ≤ m +⊕g for some m ∈ R and ⊕g ∈ G(P).

Moreover, if

m+⊕g + h(S) ≥ f

for a strategy (m,⊕g, h) ∈ Θ and f ∈ B(P), one has, for all µ ∈ M(P),

Eµh(S)− ≤ m+ +
∑
n

〈gn, νn〉+ 〈f−, µ〉 ≤ m+ +
∑
n

φn(gn) + 〈f−, µ〉 < +∞.

So it follows as above that Eµh(S) ≤ 0, and therefore m +
∑

n φn(gn) ≥ 〈f, µ〉.
This implies that φ(f) ≥ 〈f, µ〉, and, consequently, φ∗

Cb
(µ) = φ∗

Ub
(µ) = 0 for all

µ ∈ M(P). It remains to show that

φ∗
Cb
(µ) = +∞ for µ ∈ P \M(P). (4.12)

Then Proposition 3.1 implies (4.11) and thereby also (iii).
To show (4.12), fix µ ∈ P . If

(1− εi)s
i
0 ≤ EµxiN ≤ (1 + εi)s

i
0

as well as

Eµ
[
v(x1, . . . , xn)

(
xiN − (1 + εi)x

i
n

)]
≤ 0

and

Eµ
[
v(x1, . . . , xn)

(
(1− εi)x

i
n − xiN

)]
≤ 0,

for all i, N , n ≤ N and every bounded continuous function v :
∏n

j=1Xj → R+,
then

(1− εi)S
i
n ≤ Eµ[SiN | Fn] ≤ (1 + εi)S

i
n for all i, N, and n ≤ N.

Thus, for µ ∈ P \ M(P), there exists an f with 〈f, µ〉 > 0, where f is of the
form f(x) = xiN − (1 + εi)s

i
0, f(x) = (1− εi)s

i
0 − xiN , f(x) = v(x1, . . . , xn)(x

i
N −

(1 + εi)x
i
n), or f(x) = v(x1, . . . , xn)((1 − εi)x

i
n − xiN) for a bounded continuous

function v :
∏n

j=1Xj → R+. For k ∈ N, define fk := f ∧ k and fkk := fk ∨ (−k).
By monotonicity, one has φ(fk) ≤ φ(f) ≤ 0. Moreover,

fkk (x) = fk(x) +
(
k + f(x)

)− ≤ fk(x) +
(
c|xin| − k/2

)+
+
(
c|xiN | − k/2

)+
for c ∈ R+ large enough. Since wk(x) := (c|xin| − k/2)+ + (c|xiN | − k/2)+ belongs
to G(P), one gets

φ(wk) ≤ φn
((
c|xn| − k/2

)+)
+ φN

((
c|xN | − k/2

)+) → 0 for k → +∞
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by our assumption on Pn. Hence, for k large enough, one has

〈fkk , µ〉 − φ(fkk ) ≥ 〈fk, µ〉 − φ(fk)− φ(wk) ≥ 〈fk, µ〉 − φ(wk) > 0,

and therefore φ∗
Cb
(µ) = +∞. �
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4. M. Beiglböck and W. Schachermayer, Duality for Borel measurable cost functions. Trans.
Amer. Math. Soc. 363 (2011), no. 8, 4203–4224. Zbl 1228.49046. MR2792985. DOI 10.1090/
S0002-9947-2011-05174-3. 73, 81

5. P. Billingsley, Convergence of Probability Measures, 2nd ed., Wiley Ser. Prob. Stat., Wiley,
Chichester, 1999. Zbl 0944.60003. MR1700749. DOI 10.1002/9780470316962. 74, 76, 77

6. D. Breeden and R. Litzenberger, Prices of state-contingent claims implicit in option prices,
J. Business 51 (1978), 621–651. 82

7. Y. Dolinsky and H. M. Soner, Robust hedging with proportional transaction costs,
Finance Stoch. 18 (2014), no. 2, 327–347. Zbl 1304.91189. MR3177409. DOI 10.1007/
s00780-014-0227-x. 73, 85

8. Y. Dolinsky and H. M. Soner, Martingale optimal transport and robust hedging in contin-
uous time, Probab Theory Related Fields 160 (2014), no. 1–2, 391–427. Zbl 1305.91215.
MR3256817. DOI 10.1007/s00440-013-0531-y. 73

9. R. M. Dudley, Real Analysis and Probability, Cambridge Stud. Adv. Math. 74, Cam-
bridge Univ. Press, Cambridge, 2002. Zbl 1023.60001. MR1932358. DOI 10.1017/
CBO9780511755347. 75
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