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Abstract. This article presents a systematic study for abstract harmonic
analysis aspects of wave-packet transforms over locally compact abelian (LCA)
groups. Let H be a locally compact group, let K be an LCA group, and let
θ : H → Aut(K) be a continuous homomorphism. We introduce the abstract
notion of the wave-packet group generated by θ, and we study basic properties
of wave-packet groups. Then we study theoretical aspects of wave-packet trans-
forms. Finally, we will illustrate application of these techniques in the case of
some well-known examples.

1. Introduction

The abstract theory of coherent states and covariant transforms is the math-
ematical basis of modern high frequency approximation techniques and time-
frequency (resp., time-scale) analysis (see [1], [22], [26], and references therein).
Over the last decades, abstract and computational aspects of coherent state and
covariant transforms have achieved significant popularity in coherent-state anal-
ysis and mathematical physics (see [23]–[25], and references therein). Coherent-
state transforms are obtained by a given coherent-function system. Then admis-
sibility conditions on the coherent system imply the analyzing of functions with
respect to the system by the inner-product evaluation (see [7], [8], [16]). From
aspects of functional analysis, coherent structures are classically originated from
representation theory of locally compact groups (see [1], [10], and references
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therein). Commonly used coherent-state transforms in mathematical analysis are
wavelet transforms (see [4], [5], [20]), Gabor transforms (see [15], [27]), and wave-
packet transforms (see [6], [12]–[14], [19], [29], [28]).

The theory of Gabor analysis is based on the coherent state generated by
modulations and translations of a given window function. Theoretical aspects of
Gabor analysis over locally compact abelian (LCA) groups are studied in depth
in [15]. Wavelet analysis is a time-scale analysis which is based on the continuous
affine group as the group of dilations and translations. Abstract harmonic analysis
extensions of wavelet analysis are studied in [2], [3], [10], [11], and [21].

The present article focuses on abstract aspects of wave-packet transforms over
LCA groups. Our aim is to further develop the concept of wave-packet transforms
over LCA groups, which has not been studied as extensively as the abstract Gabor
(resp., wavelet) transforms on LCA groups. We also address analytic aspects of
wave-packet transforms over LCA groups as coherent-state transforms, using tools
from abstract harmonic analysis and representation theory.

This article contains five sections. Section 2 is devoted to fixing notation and a
brief summary of Fourier analysis on LCA groups and classical harmonic analysis
on locally compact semidirect product groups. In Section 3 we assume that H is a
locally compact group, K is an LCA group, and θ : H → Aut(K) is a continuous
homomorphism. Then we present the abstract notion of the wave-packet group
generated by θ. We also show that the group structure of the wave-packet group
canonically determines a (unitary) projective-group representation of the wave-
packet group which is called wave-packet representation. Then we introduce the
abstract notion of wave-packet transforms over LCA groups, and we study basic
properties of this transform from harmonic analysis aspects. It is also shown that
for all nonzero window functions satisfying an admissibility condition, we can
continuously reconstruct any L2-function from wave-packet coefficients. Finally,
we will illustrate application of these techniques in the case of some well-known
examples.

2. Preliminaries and notation

Let R and S be locally compact groups with identity elements eR and eS,
respectively. Let mR (resp., nR) be a left (resp., right) Haar measure of R and
simultaneously mS (resp., nS) a left (resp., right) Haar measure of S. Let τ : R →
Aut(S) be a homomorphism, where Aut(S) denotes the automorphism group of S.
Then τ is called continuous if the map (r, s) 7→ τr(s) is continuous from R × S
onto S, where the automorphism τr : S → S denotes the homomorphism τ applied
to r. It is worthwhile to mention that there is also a natural topology, sometimes
called Braconnier topology, turning Aut(S) into a Hausdorff topological group
(not necessarily locally compact), which is defined by the sub-base of identity
neighborhoods

B(F,U) =
{
α ∈ Aut(S) : α(a), α−1(a) ∈ Ua ∀a ∈ F

}
,

where F ⊆ S is compact and U ⊆ S is a neighborhood of the identity. If Aut(S)
is equipped with the Braconnier topology, then continuity of the homomorphism
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τ : R → Aut(S) is equivalent to the continuity of the map (r, s) 7→ τr(s) from
R× S onto S (see [17], [18]).

The semidirect product Gτ = Roτ S is the locally compact topological group
with underlying set R × S which is equipped by the product topology, and the
group operation is defined by

(r, s)oτ (r
′, s′) =

(
rr′, τr′−1(s)s′

)
and (r, s)−1 =

(
r−1, τr(s

−1)
)
.

If R1 := {(r, eS) : r ∈ R} and S1 := {(eR, s) : s ∈ S}, then R1 is a closed
subgroup and S1 is a closed normal subgroup of Gτ . Under this identification,
one can consider R ∼= R1 (resp., S ∼= S1) as a closed (resp., closed normal)
subgroup of Gτ .

Let γ = γτR,S : R → (0,∞) be the positive continuous homomorphism which
satisfies

dnS
(
τr(s)

)
= γ(r) dnS(s) for r ∈ R.

Existence of γ(r) for r ∈ R is guaranteed by the uniqueness (up to scaling) of the
right Haar measure on S. Then

dmGτ (r, s) = dmR(r) dmS(s) (2.1)

is a left Haar measure of the locally compact group Gτ , and a right Haar measure
of Gτ is given by

dnGτ (r, s) = γ(r) dnR(r) dnS(s). (2.2)

(For a comprehensive picture of basic results concerning the classical harmonic
analysis on locally compact semidirect product groups, see [1] and [17, Sec-
tion 15.26 and Section 15.29].)

By convention, we denote the operation of any abelian group by + except
the circle group T = {z ∈ C : |z| = 1}. Let K be an LCA group. Then, by
Schur’s lemma, all irreducible representations of K are 1-dimensional. Thus any
irreducible unitary representation (π,Hπ) of K satisfies Hπ = C, and hence there
exists a continuous homomorphism ω of K into the circle group T such that, for
each k ∈ K and z ∈ C, we have π(k)(z) = ω(k)z. Such homomorphisms are

called characters of K, and the set of all such characters of K is denoted by K̂.

If K̂ is equipped with the topology of compact convergence on K which coincides

with the w∗-topology that K̂ inherits as a subset of L∞(K), then K̂ with respect
to the product of characters is an LCA group which is called the dual group of

K. The linear map FK : L1(K) → C(K̂) defined by f 7→ FK(f) = f̂ via

FK(f)(ω) = f̂(ω) =

∫
K

f(s)ω(s) dmK(s) (2.3)

is called the Fourier transform on K. It is a norm-decreasing ∗-homomorphism

from L1(K) into C0(K̂) with a uniformly dense range in C0(K̂). If a Haar measure

mK on K is given and fixed, then there is a Haar measure mK̂ on K̂ which is
called the normalized Plancherel measure associated to mK such that the Fourier
transform (2.3) is an isometric transform on L1(K) ∩ L2(K), and hence it can

be extended uniquely to a unitary isomorphism from L2(K) onto L2(K̂) (see
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[9], [17]). Then each f ∈ L1(K) with f̂ ∈ L1(K̂) satisfies the following Fourier
inversion formula:

f(s) =

∫
K̂

f̂(ω)ω(s) dmK̂(ω) for a.e. s ∈ K. (2.4)

For k ∈ K and f ∈ L2(K), the translation of f by k is defined by Tkf(s) = f(s−k)
for s ∈ K. The translation Tk : L

2(K) → L2(K) is a unitary operator. For ω ∈ K̂

and f ∈ L2(K), the modulation of f by ω is defined by Mωf(s) = ω(s)f(s) for
s ∈ K. The modulation operator Mω : L2(K) → L2(K) is unitary as well. The
modulation and translation operators are connected via the Fourier transform by

M̂ωf = T−ωf̂ , T̂kf =Mkf̂ (2.5)

for all f ∈ L2(K), ω ∈ K̂, and k ∈ K (see [9], [17]).

3. Abstract wave-packet groups

Throughout this paper, we assume that H is a locally compact group with a
left (resp., right) Haar measure mH (resp., nH), K is an LCA group with a Haar

measure mK , and dual group K̂ has the normalized Plancherel measure mK̂ . It
is also assumed that θ : H → Aut(K) is a continuous homomorphism and that
δ : H → (0,∞) is the positive continuous homomorphism which satisfies

dmK(k) = δ(h) dmK

(
θh(k)

)
. (3.1)

From now on, and due to the simplicity in notation, we may use kh instead of
θh(k) at times.

3.1. Structure of the wave-packet group. The first step to extend the
abstract theory of wave-packet analysis on LCA groups is the generalization of
the notion of wave-packet groups. The wave-packet group is placed as the phase
space of the wave-packet analysis.

Let h ∈ H. For ω ∈ K̂, define ωh ∈ K̂ via

ωh(k) := ω ◦ θh−1(k) = ω
(
θh−1(k)

)
for k ∈ K.

Then, for k ∈ K and ω, ω′ ∈ K̂, we can write

(ω + ω′)h(k) = (ω + ω′) ◦ θh−1(k)

= (ω + ω′)
(
θh−1(k)

)
= ω

(
θh−1(k)

)
ω′(θh−1(k)

)
= ωh(k)ω

′
h(k),

which implies that θ̂h : K̂ → K̂ defined by

θ̂h(ω) := ωh for ω ∈ K̂

satisfies

θ̂h(ω + ω′) = θ̂h(ω) + θ̂h(ω
′) for ω, ω′ ∈ K̂.
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Thus θ̂h : K̂ → K̂ is a group homomorphism. It is straightforward to see that the

homomorphism θ̂h is an automorphism of K̂, as well.

Let θ̂ : H → Aut(K̂) be given by h 7→ θ̂h. If h, h
′ ∈ H, ω ∈ K̂, then we have

θ̂hh′(ω) = ωhh′

= ω ◦ θ(hh′)−1

= ω ◦ θh′−1h−1

= ω ◦ θh′−1 ◦ θh−1

= θ̂h(ω ◦ θh′−1)

= θ̂h
(
θ̂h′(ω)

)
,

which guarantees that θ̂ is a group homomorphism of H into Aut(K̂).

If h ∈ H, then the automorphism θ̂h : K̂ → K̂ induces the positive Radon

measure mK̂ ◦ θ̂h on K̂ in a canonical way by

dmK̂ ◦ θ̂h(ω) = dmK̂(ωh);

that is,

mK̂ ◦ θ̂h(E) = mK̂

(
θ̂h(E)

)
for all Borel subsets E ⊆ K̂, where θ̂h(E) = {θ̂h(ω) = ωh : ω ∈ E}.

The following theorem indicates that the measure mK̂ ◦ θ̂h is connected with
the normalized Plancherel measure mK̂ via δ.

Theorem 3.1. Let H be a locally compact group, let K be an LCA group with

Haar measure mK, and let mK̂ be the normalized Plancherel measure on K̂. Let
θ : H → Aut(K) be a continuous homomorphism, and let δ : H → (0,∞) be the
positive continuous homomorphism which satisfies (3.1). Then we have

mK̂ ◦ θ̂h = δ(h) ·mK̂ for h ∈ H. (3.2)

Proof. Let h ∈ H be given. Then mK̂ ◦ θ̂h is a nonzero translation invariant

measure (Haar measure) on the LCA group K̂. To check this, let E ⊆ K̂ be

a Borel subset, and let ξ ∈ K̂. By the translation invariance of the normalized
Plancherel measure mK̂ , we can write

mK̂ ◦ θ̂h(ξ + E) =mK̂ ◦ θ̂h
(
{ξ + ω : ω ∈ E}

)
=mK̂

(
θ̂h{ξ + ω : ω ∈ E}

)
=mK̂

({
θ̂h(ξ + ω) : ω ∈ E

})
=mK̂

(
{ξh + ωh : ω ∈ E}

)
=mK̂

(
ξh + {ωh : ω ∈ E}

)
=mK̂

(
{ωh : ω ∈ E}

)
=mK̂ ◦ θ̂h(E).
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Thus, by the uniqueness (up to scaling) of the Haar measure on locally compact
groups, we deduce that

mK̂ ◦ θ̂h = βh ·mK̂ ,

where βh is a positive constant which depends on h. Now we claim that βh = δ(h).
To prove this, let f ∈ L1(K). Then, using (3.1), we have f ◦ θh ∈ L1(K) with

‖f ◦ θh‖L1(K) = δ(h)‖f‖L1(K). Thus, for ω ∈ K̂, we get

f̂ ◦ θh(ω) =
∫
K

f ◦ θh(k)ω(k) dmK(k)

=

∫
K

f
(
θh(k)

)
ω(k) dmK(k)

=

∫
K

f(k)ω
(
θh−1(k)

)
dmK

(
θh−1(k)

)
=

∫
K

f(k)ωh(k) dmK

(
θh−1(k)

)
= δ(h)

∫
K

f(k)ωh(k) dmK(k)

= δ(h)f̂(ωh).

If f ∈ L1(K)∩L2(K) is a nonzero function, then, by the Plancherel theorem, we
can write ∫

K̂

∣∣f̂(ω)∣∣2 dmK̂(ωh) =

∫
K̂

∣∣f̂(ωh−1)
∣∣2 dmK̂(ω)

= δ(h)2
∫
K̂

∣∣ ̂f ◦ θh−1(ω)
∣∣2 dmK̂(ω)

= δ(h)2
∫
K

∣∣f ◦ θh−1(k)
∣∣2 dmK(k)

= δ(h)2
∫
K

∣∣f(k)∣∣2 dmK

(
θh(k)

)
= δ(h)

∫
K

∣∣f(k)∣∣2 dmK(k)

= δ(h)

∫
K̂

∣∣f̂(ω)∣∣2 dmK̂(ω),

which implies that

βh‖f̂‖2L2(K̂)
= βh

∫
K̂

∣∣f̂(ω)∣∣2 dmK̂(ω)

=

∫
K̂

∣∣f̂(ω)∣∣2 dmK̂(ωh)

= δ(h)

∫
K̂

∣∣f̂(ω)∣∣2 dmK̂(ω)

= δ(h)‖f̂‖2
L2(K̂)

.

Since f and hence ‖f̂‖L2(K) are nonzero, we conclude that βh = δ(h). �
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Now we are in the position to present the abstract notion of wave-packet
groups on LCA groups. The motivation for this definition of wave-packet group is
originated from the classical abstract harmonic analysis approach in Gabor and
wavelet analysis on LCA groups (see [3], [10], [15], and references therein).

For h ∈ H, define Θh : K × K̂ → K × K̂ by

Θh(k, ω) :=
(
θh(k), θ̂h(ω)

)
= (kh, ωh) for (k, ω) ∈ K × K̂. (3.3)

Let (k, ω), (k′, ω′) ∈ K × K̂. Then we have

Θh

(
(k, ω) + (k′, ω′)

)
= Θh(k + k′, ω + ω′)

=
(
(k + k′)h, (ω + ω′)h

)
= (kh + k′h, ωh + ω′

h)

= (kh, ωh) + (k′h, ω′
h)

= Θh(k, ω) + Θh(k
′, ω′),

which guarantees that Θh is a homomorphism of K × K̂. Since θh and θ̂h are

automorphisms of K and K̂, respectively, we achieve that Θh ∈ Aut(K × K̂).

Let h, h′ ∈ H, and let (k, ω) ∈ K × K̂. Then we can write

Θhh′(k, ω) = (khh
′
, ωhh′)

=
(
(kh

′
)h, (ωh′)h

)
= Θh(k

h′ , ωh′)

= ΘhΘh′(k, ω),

which implies that the mapping Θ : H → Aut(K × K̂) given by h 7→ Θh is a
well-defined homomorphism.

Definition 3.2. Let H be a locally compact group, let K be an LCA group with

dual group K̂, and let θ : H → Aut(K) be a continuous homomorphism. The

semidirect product group GΘ := H oΘ (K × K̂) is considered the wave-packet
group associated to the continuous homomorphism θ : H → Aut(K) or the
wave-packet group generated by θ.

Remark 3.3. The group operations for (h, k, ω), (h′, k′, ω′) ∈ GΘ are

(h, k, ω)oΘ (h′, k′, ω′) =
(
hh′,Θh′−1(k, ω) + (k′, ω′)

)
=

(
hh′,

(
θh′−1(k), ωh′−1

)
+ (k′, ω′)

)
=

(
hh′, θh′−1(k) + k′, ωh′−1 + ω′),

and

(h, k, ω)−1 =
(
h−1,Θh(−k,−ω)

)
= (h−1,−kh,−ωh).

The following theorem lists basic properties of the wave-packet group from the
abstract harmonic-analysis perspective.
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Theorem 3.4. Let H be a locally compact group with left (resp., right) Haar
measure mH (resp., nH) and modular function ∆H . Let K be an LCA group with

Haar measure mK and normalized Plancherel measure mK̂ on K̂. Let θ : H →
Aut(K) be a continuous homomorphism. Then the following hold.

(1) The product Haar measure mK×K̂ = mK · mK̂ of the LCA group K × K̂
satisfies

dmK×K̂(k
h, ωh) = dmK×K̂(k, ω) for h ∈ H.

(2) The result Θ : H → Aut(K × K̂) given by (3.3) is a continuous homomor-
phism, and the semidirect product

GΘ := H oΘ (K × K̂)

is a locally compact group with a left Haar measure

dmGΘ
(h, k, ω) = dmH(h) dmK(k) dmK̂(ω)

and a right Haar measure

dnGΘ
(h, k, ω) = dnH(h) dmK(k) dmK̂(ω).

(3) The modular function ∆GΘ
: GΘ → (0,∞) is given by

∆GΘ
(h, k, ω) = ∆H(h) for (h, k, ω) ∈ GΘ.

Proof. (1) Due to (3.1), (3.2), and (3.3), for h ∈ H we have

dmK×K̂(k
h, ωh) = dmK(k

h) dmK̂(ωh)

= δ(h)−1 dmK(k)δ(h) dmK̂(ω)

= dmK(k) dmK̂(ω)

= dmK×K̂(k, ω).

(2) Continuity of the homomorphism Θ : H → Aut(K × K̂) given in (3.3) is
guaranteed by Theorem 26.9 of [17]. Thus the semidirect product GΘ = H oΘ

(K × K̂) is a locally compact group with left Haar measure

dmGΘ
(h, k, ω) = dmH(h) dmK(k) dmK̂(ω)

and right Haar measure

dnGΘ
(h, k, ω) = dnH(h) dmK(k) dmK̂(ω).

(3) This proof is straightforward. �

Corollary 3.5. The wave-packet group GΘ is unimodular if and only if H is
unimodular.

Next we state basic algebraic-analytic properties of the wave-packet group GΘ.

Proposition 3.6. Let H be a locally compact group, and let K be an LCA group

with dual group K̂. Let θ : H → Aut(K) be a continuous homomorphism. Then
we have the following.

(1) The wave-packet group GΘ contains K × K̂ as a closed normal abelian
subgroup.
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(2) The closed subgroup H is normal in GΘ if and only if θ is the identity
homomorphism.

(3) The semidirect product groups H oθK and H oθ̂ K̂ are closed nonabelian
subgroups of GΘ.

3.2. Structure of the wave-packet representation. Next we will show that
the structure of the wave-packet group GΘ is firmly attached with a canonical
projective unitary group representation, which is called the wave-packet represen-
tation.

For h ∈ H and a function f : K → C, define the θ-dilation of f by h via

Dθ
hf(k) := δ(h)1/2f

(
θh−1(k)

)
for k ∈ K.

Similarly, for h ∈ H and a function φ : K̂ → C, define the θ̂-dilation of φ by h
via

D̂θ̂
hφ(ω) := δ(h)−1/2φ

(
θ̂h−1(ω)

)
for ω ∈ K̂.

For simplicity in notation, we may use Dh and D̂h instead of Dθ
h and D̂θ̂

h, respec-
tively.

The following proposition states some fundamental analytic aspects of dilation
operators.

Proposition 3.7. Let H be a locally compact group, and let K be an LCA group.
Let θ : H → Aut(K) be a continuous homomorphism. Then

(1) The map D : H → U(L2(K)) given by h 7→ D(h) := Dh is a unitary
representation of H on the Hilbert space L2(K).

(2) For h ∈ H and f ∈ L2(K), we have D̂hf = D̂hf̂ .

(3) The map D̂ : H → U(L2(K̂)) given by h 7→ D̂(h) := D̂h is a unitary

representation of H on the Hilbert space L2(K̂).

Proof. Let θ : H → Aut(K) be a continuous homomorphism. Then
(1) Let f ∈ L2(K) be given. For h ∈ H and k ∈ K, we have

‖Dhf‖2L2(K) =

∫
K

∣∣Dhf(k)
∣∣2 dmK(k)

= δ(h)

∫
K

∣∣f(θh−1(k)
)∣∣2 dmK(k)

= δ(h)

∫
K

∣∣f(k)∣∣2 dmK

(
θh(k)

)
=

∫
K

∣∣f(k)∣∣2 dmK(k)

= ‖f‖2L2(K).

Thus Dh : L
2(K) → L2(K) is an isometric operator.

For h, h′ ∈ H and k ∈ K, we have

Dhh′f(k) = δ(hh′)1/2f
(
θ(hh′)−1(k)

)
= δ(h)1/2δ(h′)1/2f

(
θ(hh′)−1(k)

)
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= δ(h)1/2δ(h′)1/2f
(
θh′−1h−1(k)

)
= δ(h)1/2δ(h′)1/2f

(
θh′−1θh−1(k)

)
= δ(h)1/2Dh′f

(
θh−1(k)

)
= DhDh′f(k),

which implies that Dhh′ = DhDh′ . Therefore, we get DhDh−1 = Dh−1Dh = I,
where I is the identity operator on L2(K). Thus we deduce that Dh : L2(K) →
L2(K) is invertible, and hence it is surjective. Since Dh is an isometric operator,
we derive that Dh is unitary as well, and so the map D : H → U(L2(K)) given
by h 7→ D(h) = Dh is a unitary representation of H on the Hilbert space L2(K).

(2) Let f ∈ L2(K), and let h ∈ H. For ω ∈ K̂, we have

D̂hf(ω) =

∫
K

Dhf(k)ω(k) dmK(k)

= δ(h)1/2
∫
K

f
(
θh−1(k)

)
ω(k) dmK(k)

= δ(h)1/2
∫
K

f(k)ω
(
θh(k)

)
dmK

(
θh(k)

)
= δ(h)−1/2

∫
K

f(k)ω
(
θh(k)

)
dmK(k)

= δ(h)−1/2f̂(ω ◦ θh)
= δ(h)−1/2f̂(ωh−1)

= δ(h)−1/2f̂
(
θ̂h−1(ω)

)
= D̂hf̂(ω).

(3) This can be proved in a way similar to that used in (1). �

The following proposition briefly summarizes commuting relations of basic
operators in wave-packet analysis.

Proposition 3.8. Let H be a locally compact group, and let K be an LCA group.
Let θ : H → Aut(K) be a continuous homomorphism. Then

(1) For (h, k) ∈ H ×K, we have DhTk = TkhDh.

(2) For (h, ω) ∈ H × K̂, we have DhMω =Mωh
Dh.

(3) For (k, ω) ∈ K × K̂, we have TkMω = ω(k)MωTk.

Proof. Let f ∈ L2(K), and let s ∈ K. Then
(1) For (h, k) ∈ H ×K, we have

[TkhDhf ](s) = Dhf(s− kh)

= δ(h)1/2f
(
θh−1(s− kh)

)
= δ(h)1/2f

(
θh−1(s)− θh−1(kh)

)
= δ(h)1/2f

(
θh−1(s)− k

)
= δ(h)1/2[Tkf ]

(
θh−1(s)

)
= [DhTkf ](s).
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(2) For (h, ω) ∈ H × K̂, we have

[Mωh
Dhf ](s) = ωh(s)[Dhf ](s)

= δ(h)1/2ωh(s)f
(
θh−1(s)

)
= δ(h)1/2ω

(
θh−1(s)

)
f
(
θh−1(s)

)
= δ(h)1/2[Mωf ]

(
θh−1(s)

)
= [DhMωf ](s).

(3) For (k, ω) ∈ K × K̂, we have

[TkMωf ](s) = [Mωf ](s− k)

= ω(s− k)f(s− k)

= ω(k)ω(s)f(s− k)

= ω(k)ω(s)[Tkf ](s)

= ω(k)[MωTkf ](s). �

For (h, k, ω) ∈ GΘ, define the linear operator Γ(h, k, ω) : L2(K) → L2(K) by

Γ(h, k, ω) := DhTkMω. (3.4)

Thus, for f ∈ L2(K) and s ∈ K, we get[
Γ(h, k, ω)f

]
(s) = DhTkMωf(s)

= δ(h)1/2TkMωf
(
θh−1(s)

)
= δ(h)1/2Mωf

(
θh−1(s)− k

)
= δ(h)1/2ω(k)ωh(s)f

(
θh−1(s)− k

)
.

Remark 3.9. It should be mentioned that restriction of the wave-packet repre-

sentation to the closed subgroup K × K̂ is unitarily equivalent to the projective

Schrödinger representation of the group K× K̂ on L2(K) (see [15] and references
therein), and, similarly, restriction of the wave-packet representation to the closed
subgroup H ×K is unitarily equivalent to the quasiregular representation of the
group H oθ K on L2(K) (see [2], [3], and references therein).

In the following theorem, we show that (h, k, ω) 7→ Γ(h, k, ω) given by (3.4)
defines a unitary projective group representation of the wave-packet group GΘ

on the Hilbert space L2(K).

Theorem 3.10. Let H be a locally compact group, and let K be an LCA group

with dual group K̂. Let θ : H → Aut(K) be a continuous homomorphism. Then
Γ : GΘ → U(L2(K)) given by Γ(h, k, ω) = DhTkMω is a unitary irreducible
projective group representation of the locally compact group GΘ on the Hilbert
space L2(K).

Proof. It is evident to check that Γ(eH , eK , eK̂) = I. Then the operator Γ(h, k,
ω) = DhTkMω is a unitary operator on L2(K) for all (h, k, ω) ∈ GΘ because
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it is the composition of three unitary operators, namely Dh, Tk, and Mω. Let
(h, k, ω), (h′, k′, ω′) ∈ GΘ. Then we have

Dhh′Tθ
h′−1 (k)+k′Mω

h′−1+ω′ = Dh(Dh′Tθ
h′−1 (k))Tk′Mω

h′−1Mω′

= Dh(TkDh′)Tk′Mω
h′−1Mω′

= DhTkDh′(Tk′Mω
h′−1 )Mω′

= ωh′−1(k′)DhTkDh′(Mω
h′−1Tk′)Mω′

= ωh′−1(k′)DhTk(Dh′Mω
h′−1 )Tk′Mω′

= ωh′−1(k′)DhTk(MωDh′)Tk′Mω′

= ωh′−1(k′)(DhTkMω)(Dh′Tk′Mω′).

Thus, invoking the group law of the wave-packet group GΘ (see Remark 3.3), we
get

Γ
(
(h, k, ω)o (h′, k′, ω′)

)
= Γ

(
hh′, θh′−1(k) + k′, ωh′−1 + ω′)

= Dhh′Tθ
h′−1 (k)+k′Mω

h′−1+ω′

= ωh′−1(k′)(DhTkMω)(Dh′Tk′Mω′)

= ωh′−1(k′)Γ(h, k, ω)Γ(h′, k′, ω′),

which implies that Γ : GΘ → U(L2(K)) is a unitary projective group repre-
sentation of the locally compact group GΘ on the Hilbert space L2(K). Using

Remark 3.9 and the fact that the projective Schrödinger representation of K× K̂
is irreducible on L2(K), we deduce that Γ is a unitary irreducible projective group
representation of the locally compact group GΘ on the Hilbert space L2(K), as
well. �

4. Abstract wave-packet transforms

In this section, we present the abstract theory of wave-packet transforms over
LCA groups. Let ψ ∈ L2(K) be a window function. The wave-packet transform of
f ∈ L2(K) with respect to the window function ψ is given by the voice transform
associated to the wave-packet representation; that is,

Vψf(h, k, ω) :=
〈
f,Γ(h, k, ω)ψ

〉
L2(K)

= 〈f,DhTkMωψ〉L2(K) (4.1)

for (h, k, ω) ∈ GΘ.
Evidently f 7→ Vψf is linear, and we have

〈f,DhTkMωψ〉L2(K) = 〈Dh−1f, TkMωψ〉L2(K)

= 〈T−kDh−1f,Mωψ〉L2(K)

= 〈M−ωT−kDh−1f, ψ〉L2(K).

Since

DhTkMω = TkhDhMω = TkhMωh
Dh,

we achieve

Vψf(h, k, ω) = 〈f, Tθh(k)Mωh
Dhψ〉L2(K). (4.2)
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The following proposition presents interesting representations of the wave-
packet transform.

Proposition 4.1. Let ψ ∈ L2(K) be a window function, let f ∈ L2(K), and let
(h, k, ω) ∈ GΘ. Then we have

(1) Vψf(h, k, ω) = 〈D̂h−1f, T̂kMωψ〉L2(K̂).

(2) Vψf(h, k, ω) = 〈D̂h−1 f̂ ,MkM̂ωψ〉L2(K̂).

(3) Vψf(h, k, ω) = 〈D̂h−1 f̂ ,MkT−ωψ̂〉L2(K̂).

(4) Vψf(h, k, ω) = FK̂(D̂h−1 f̂ · T−ωψ̂)(−k).
(5) Vψf(h, k, ω) = FK̂(T−ωh

D̂hψ̂ · f̂)(−θh(k)).

Proof. (1), (2), and (3) are straightforward using the Plancherel formula and basic
properties of wave-packet operators.

(4) Using the Plancherel formula and (1), we can write

Vψf(h, k, ω) = 〈D̂h−1 f̂ ,MkT−ωψ̂〉L2(K̂)

=

∫
K̂

D̂h−1 f̂(ξ)MkT−ωψ̂(ξ) dmK̂(ξ)

=

∫
K̂

D̂h−1 f̂(ξ)ξ(k)T−ωψ̂(ξ) dmK̂(ξ)

=

∫
K̂

D̂h−1 f̂(ξ)T−ωψ̂(ξ)ξ(k) dmK̂(ξ)

=

∫
K̂

D̂h−1 f̂(ξ)T−ωψ̂(ξ)ξ(−k) dmK̂(ξ)

= FK̂(D̂h−1 f̂ · T−ωψ̂)(−k).

(5) By (4.2) and the Plancherel formula, we get

Vψf(h, k, ω) = 〈f, Tθh(k)Mωh
Dhψ〉L2(K)

= 〈T−θh(k)f,Mωh
Dhψ〉L2(K)

= 〈 ̂T−θh(k)f, M̂ωh
Dhψ〉L2(K̂)

= 〈M−θh(k)f̂ , T−ωh
D̂hψ〉L2(K̂)

= 〈M−θh(k)f̂ , T−ωh
D̂hψ̂〉L2(K̂)

=

∫
K̂

M−θh(k)f̂(ξ)T−ωh
D̂hψ̂(ξ) dmK̂(ξ)

=

∫
K̂

T−ωh
D̂hψ̂(ξ)f̂(ξ)ξ

(
−θh(k)

)
dmK̂(ξ)

= FK̂(T−ωh
D̂hψ̂ · f̂)

(
−θh(k)

)
. �
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Let mH (resp., nH) be a left (resp., right) Haar measure on H. For ψ ∈ L2(K),

let αψ, βψ : K̂ → C be given by

αψ(ω) :=

∫
H

∣∣D̂hψ̂(ω)
∣∣2 dmH(h)

=

∫
H

∣∣ψ̂(ω ◦ θh)
∣∣2δ(h)−1 dmH(h) for ω ∈ K̂,

and

βψ(ω) :=

∫
H

∣∣D̂hψ̂(ω)
∣∣2 dnH(h) = ∫

H

∣∣ψ̂(ω ◦ θh)
∣∣2δ(h)−1 dnH(h) for ω ∈ K̂.

The function ψ ∈ L2(K) is called left Γ-admissible (resp., right Γ-admissible) if

and only if αψ ∈ L1(K̂) (resp., βψ ∈ L1(K̂)). Then we put

aψ :=

∫
K̂

αψ(ω) dmK̂(ω) =

∫
K̂

∫
H

∣∣D̂hψ̂(ω)
∣∣2 dmH(h) dmK̂(ω),

bψ :=

∫
K̂

βψ(ω) dmK̂(ω) =

∫
K̂

∫
H

∣∣D̂hψ̂(ω)
∣∣2 dnH(h) dmK̂(ω).

In the following theorem, we present a Plancherel formula for the wave-packet
transform.

Theorem 4.2. Let mH (resp., nH) be a left (resp., right) Haar measure on H,
and let f ∈ L2(K). Then we have the following.

(1) For any left Γ-admissible window function ψ ∈ L2(K), we have∫
H

∫
K

∫
K̂

∣∣Vψf(h, k, ω)∣∣2 dmH(h) dmK(k) dmK̂(ω) = aψ

∫
K

∣∣f(k)∣∣2 dmK(k).

(2) For any right Γ-admissible window function ψ ∈ L2(K), we have∫
H

∫
K

∫
K̂

∣∣Vψf(h, k, ω)∣∣2 dnH(h) dmK(k) dmK̂(ω) = bψ

∫
K

∣∣f(k)∣∣2 dmK(k).

Proof. (1) By Proposition 4.1 and the Plancherel formula, we have∫
K

∣∣Vψf(h, k, ω)∣∣2 dmK(k) =

∫
K

∣∣FK̂(T−ωh
D̂hψ̂.f̂)

(
−θh(k)

)∣∣2 dmK(k)

=

∫
K

∣∣FK̂(T−ωh
D̂hψ̂ · f̂)(−k)

∣∣2 dmK

(
θh−1(k)

)
= δ(h)

∫
K

∣∣FK̂(T−ωh
D̂hψ̂ · f̂)(−k)

∣∣2 dmK(k)

= δ(h)

∫
K

∣∣FK̂(T−ωh
D̂hψ̂ · f̂)(k)

∣∣2 dmK(−k)

= δ(h)

∫
K

∣∣FK̂(T−ωh
D̂hψ̂ · f̂)(k)

∣∣2 dmK(k)

= δ(h)

∫
K̂

∣∣(T−ωh
D̂hψ̂ · f̂)(ξ)

∣∣2 dmK̂(ξ)
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= δ(h)

∫
K̂

∣∣T−ωh
D̂hψ̂(ξ)

∣∣2∣∣f̂(ξ)∣∣2 dmK̂(ξ)

= δ(h)

∫
K̂

∣∣D̂hψ̂(ξ + ωh)
∣∣2∣∣f̂(ξ)∣∣2 dmK̂(ξ).

Then we can write

‖Vψf‖2L2(GΘ,mGΘ
)

=

∫
H

∫
K

∫
K̂

∣∣〈f,Γ(h, k, ω)ψ〉
L2(K)

∣∣2 dmH(h) dmK(k) dmK̂(ω)

=

∫
H

∫
K̂

(∫
K

∣∣〈f,Γ(h, k, ω)ψ〉
L2(K)

∣∣2 dmK(k)
)
dmH(h) dmK̂(ω)

=

∫
H

∫
K̂

(∫
K̂

∣∣D̂hψ̂(ξ + ωh)
∣∣2∣∣f̂(ξ)∣∣2 dmK̂(ξ)

)
δ(h) dmH(h) dmK̂(ω)

=

∫
H

∫
K̂

(∫
K̂

∣∣D̂hψ̂(ξ + ωh)
∣∣2 dmK̂(ω)

)∣∣f̂(ξ)∣∣2 dmK̂(ξ)δ(h) dmH(h)

=

∫
H

∫
K̂

(∫
K̂

∣∣D̂hψ̂(ξ + ω)
∣∣2 dmK̂(ωh−1)

)∣∣f̂(ξ)∣∣2 dmK̂(ξ)δ(h) dmH(h)

=

∫
H

∫
K̂

(∫
K̂

∣∣D̂hψ̂(ξ + ω)
∣∣2 dmK̂(ω)

)∣∣f̂(ξ)∣∣2 dmK̂(ξ) dmH(h)

=

∫
H

∫
K̂

(∫
K̂

∣∣D̂hψ̂(ω)
∣∣2 dmK̂(ω)

)∣∣f̂(ξ)∣∣2 dmK̂(ξ) dmH(h)

=
(∫

K̂

∫
H

∣∣D̂hψ̂(ω)
∣∣2 dmH(h) dmK̂(ω)

)(∫
K̂

∣∣f̂(ξ)∣∣2 dmK̂(ξ)
)

=
(∫

K̂

αψ(ω) dmK̂(ω)
)(∫

K̂

∣∣f̂(ξ)∣∣2 dmK̂(ξ)
)

= aψ‖f̂‖2L2(K̂)

= aψ‖f‖2L2(K).

(2) This can be proved by an argument similar to that used in (1). �

As an immediate consequence of Theorem 4.2, we deduce the following orthog-
onality relation concerning the wave-packet transform.

Corollary 4.3. Let mH (resp., nH) be a left (resp., right) Haar measure on H.
The wave-packet transform satisfies the following orthogonality relations.

(1) For any left Γ-admissible window function ψ ∈ L2(K), we have

〈Vψf,Vψg〉L2(GΘ,mGΘ
) = aψ〈f, g〉L2(K) for f, g ∈ L2(K).

(2) For any right Γ-admissible window function ψ ∈ L2(K), we have

〈Vψf,Vψg〉L2(GΘ,nGΘ
) = bψ〈f, g〉L2(K) for f, g ∈ L2(K).

The next result is an inversion (reconstruction) formula for the wave-packet
transform defined by (4.1).
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Theorem 4.4. Let mH (resp., nH) be a left (resp., right) Haar measure on H,
and let f ∈ L2(K). Then we have the following.

(1) For any left Γ-admissible window function ψ ∈ L2(K), we have

f = a−1
ψ

∫
H

∫
K

∫
K̂

Vψf(h, k, ω)Γ(h, k, ω)ψ dmH(h) dmK(k) dmK̂(ω). (4.3)

(2) For any right Γ-admissible window function ψ ∈ L2(K), we have

f = b−1
ψ

∫
H

∫
K

∫
K̂

Vψf(h, k, ω)Γ(h, k, ω)ψ dnH(h) dmK(k) dmK̂(ω). (4.4)

Proof. (1) Let ψ ∈ L2(K) be a left Γ-admissible window function. For f ∈ L2(K),
define

f(ψ) :=

∫
H

∫
K

∫
K̂

Vψf(h, k, ω)Γ(h, k, ω)ψ dmH(h) dmK(k) dmK̂(ω)

in L2(K) in the weak sense. Then, for all g ∈ L2(K), we have

〈f(ψ), g〉 =
∫
H

∫
K

∫
K̂

Vψf(h, k, ω)
〈
Γ(h, k, ω)ψ, g

〉
dmH(h) dmK(k) dmK̂(ω)

=

∫
H

∫
K

∫
K̂

Vψf(h, k, ω)Vψg(h, k, ω) dmH(h) dmK(k) dmK̂(ω)

= 〈Vψf,Vψg〉L2(GΘ,mGΘ
)

= aψ〈f, g〉L2(K).

Then f(ψ) ∈ L2(K) and f(ψ) = aψf in L2(K), implying the reconstruction formula
(4.3).

(2) The same argument implies (4.4). �

The next theorem can be considered as a criterion for the existence of Γ-
admissible functions/vectors.

Theorem 4.5. Let H be a locally compact group, and let K be an LCA group

with dual group K̂. Let θ : H → Aut(K) be a continuous homomorphism. There
exists a nonzero left Γ-admissible (resp., right Γ-admissible) in L2(K) if and only
if H is compact.

Proof. Let H be a compact group. Then it is easy to check that each nonzero
function in L2(K) is both left and right Γ-admissible. Conversely, let ψ ∈ L2(K)
be a nonzero left Γ-admissible function. Then, by Fubini’s theorem, we get aψ =
mH(H)‖ψ‖2L2(K), and hence we deduce that mH(H) is finite. Thus H is compact.

The same argument works if ψ ∈ L2(K) is a nonzero right Γ-admissible function.
�

5. Examples

Throughout this section, we will illustrate the application of the abstract theory
of wave-packet transforms in the case of some well-known examples.
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5.1. Wave-packet transform on R. Let H = R+ = (0,+∞), and let K = R.
Let θ : H → Aut(K) be given by a 7→ θa, where θa(x) = ax for all x ∈ R. Then
the continuous homomorphism δ : H → (0,∞) is given by δ(a) = a−1 for all

a ∈ H = R+. Identifying R̂ with R via ω(x) = 〈x, ω〉 = e2πiωx for each ω ∈ R̂
and the continuous homomorphism θ̂ : H → Aut(K̂) is given by a 7→ θ̂a via the
duality notation

〈x, ωa〉 =
〈
x, θ̂a(ω)

〉
=

〈
θa−1(x), ω

〉
= 〈a−1x, ω〉
= e2πiωa

−1x.

Then the continuous homomorphism Θ : R+ → Aut(R× R) is given by

Θa(x, ω) =
(
θa(x), θ̂a(ω)

)
= (ax, a−1ω)

for all a ∈ R+ and (x, ω) ∈ R × R̂. Thus the wave-packet group GΘ has the
underlying manifold

R+ × R× R̂ = R+ × R× R,
which is equipped with the following group law:

(a, x, ω)oΘ (a′, x′, ω′) = (aa′, a′
−1
x+ x′, a′ω + ω′)

for all (a, x, ω), (b, y, ζ) ∈ GΘ = R+oΘ(R×R). Then dmGΘ
(a, x, ω) = a−1 da dx dω

is a Haar measure for the wave-packet group GΘ. The wave-packet representation

Γ : GΘ = R+ oΘ (R× R) → U
(
L2(R)

)
is given by Γ(a, x, ω) = DaTxMω for all (a, x, ω) ∈ GΘ. Let ψ ∈ L2(R) be a
window function. The wave-packet transform of f ∈ L2(R) with respect to the
window function ψ is given by

Vψf(a, x, ω) =
〈
f,Γ(a, x, ω)ψ

〉
L2(R) = 〈f,DaTxMωψ〉L2(R)

for all (a, x, ω) ∈ GΘ. In integral terms, we have

Vψf(a, x, ω) = a−1/2ω(x)

∫ ∞

−∞
f(y)e2πia

−1yωψ(a−1y − x) dy.

For ψ ∈ L2(R), the function αψ : R̂ → C for ω ∈ R̂ is given by

αψ(ω) =

∫ ∞

0

∣∣Daψ̂(ω)
∣∣2a−1 da =

∫ ∞

0

∣∣ψ̂(aω)∣∣2 da.
Thus ψ ∈ L2(R) is Γ-admissible if and only if αψ ∈ L1(R̂), which means that

aψ :=

∫ +∞

−∞
αψ(ω) dω =

∫ +∞

−∞

∫ ∞

0

∣∣ψ̂(aω)∣∣2 da dω <∞.

Then we deduce that any nonzero ψ ∈ L2(R) is not Γ-admissible.
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5.2. Wave-packet transform on Rn, n > 1. Let n ∈ N with n > 1. Let
H = SO(n), and let K = Rn. Let θ : H → Aut(K) be given by A 7→ θA, where
θA(x) = Ax for all x ∈ Rn. Since H is compact, the continuous homomorphism

δ : H → (0,∞) is 1. Identifying R̂n with Rn via w(x) = 〈x,w〉 = e2πiw.x for each

w ∈ R̂n and the continuous homomorphism θ̂ : H → Aut(K̂) is given by A 7→ θ̂A
via the duality notation

〈x,wA〉 =
〈
x, θ̂A(w)

〉
=

〈
θA−1(x),w

〉
= 〈A−1x,w〉
= e2πiw.A

−1x

= e2πiw.A
∗x.

Then the continuous homomorphism Θ : SO(n) → Aut(Rn × R̂n) is given by

ΘA(x,w) =
(
θA(x), θ̂A(w)

)
= (Ax, A−1w)

for all A ∈ SO(n) and (x,w) ∈ Rn× R̂n. Thus the wave-packet group GΘ has the
underlying manifold

SO(n)× Rn × R̂n = SO(n)× Rn × Rn,

which is equipped with the following group law:

(A,x,w)oΘ (A′,x′,w′) = (AA′, A′−1
x+ x′, A′w +w′)

for all (A,x,w), (A′,x′,w′) ∈ GΘ = SO(n)oΘ (Rn×Rn). Then dmGΘ
(A,x,w) =

dAdx dw is a Haar measure for the wave-packet group GΘ. The wave-packet
representation

Γ : GΘ = SO(n)oΘ (Rn × Rn) → U
(
L2(Rn)

)
is given by Γ(A,x,w) = DATxMw for all (A,x,w) ∈ GΘ. Let ψ ∈ L2(Rn) be a
window function. The wave-packet transform of f ∈ L2(Rn) with respect to the
window function ψ is given by

Vψf(A,x,w) =
〈
f,Γ(A,x,w)ψ

〉
L2(Rn)

= 〈f,DATxMwψ〉L2(Rn)

for all (A,x,w) ∈ GΘ. In integral terms, we have

Vψf(A,x,w) = w(x)

∫
Rn

f(y)e2πiw.A
−1yψ(A−1y − x) dy.

For ψ ∈ L2(Rn), the function αψ : R̂n → C for w ∈ R̂n is given by

αψ(w) =

∫
SO(n)

∣∣DAψ̂(w)
∣∣2 dA =

∫
SO(n)

∣∣ψ̂(Aw)
∣∣2 dA.

Thus ψ ∈ L2(Rn) is Γ-admissible if and only if αψ ∈ L1(R̂n), which means that

aψ :=

∫
Rn

αψ(w) dw =

∫
Rn

∫
SO(n)

∣∣ψ̂(Aw)
∣∣2 dAdw <∞.
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Theorem 4.2 guarantees the following Plancherel formula:∫
SO(n)

∫
Rn

∫
R̂n

∣∣〈f,Γ(A,x,w)ψ
〉
L2(Rn)

∣∣2 dAdx dw = aψ

∫
Rn

∣∣f(y)∣∣2 dw;

or, equivalently, it guarantees the following reconstruction formula in L2(R):

f = a−1
ψ

∫
SO(n)

∫
Rn

∫
R̂n

Vψf(A,x,w)Γ(A,x,w)ψ dAdx dw.

5.3. Wave-packet transform on finite cyclic groups. Let N be a positive
integer, and let K = ZN . Then K is a finite abelian additive group with respect
to addition module N and the counting measure as the Haar measure. Evidently,

in this case we have CN = L2(K). The character group ẐN of ZN is isomorphic
with ZN via the group isomorphism ` 7→ ω`, where ω`(k) = e2πi`k/N . Let H :=
Aut(ZN). Then H = {m ∈ ZN : 1 ≤ m ≤ N, gcd(m,N) = 1}, and also H is a
finite abelian multiplicative group of order ϕ(N) with respect to multiplication
module N and the counting measure as the Haar measure, where ϕ is Euler’s
totient function. For m ∈ H, define θm : K → K by θm(s) = ms for all s ∈ K.
Then θm ∈ Aut(K), and θ : H → Aut(K) given by m 7→ θm is a well-defined
homomorphism. For m ∈ H, the dilation operator Dm : CN → CN is given
by Dmx(s) = x(mNs) for all x ∈ CN and 0 ≤ s ≤ N − 1, where mN is the

multiplicative inverse of m ∈ H (i.e., an element mN ∈ H with mmN
N≡ mNm

N≡
1) which satisfies mNm + nN = 1 for some n ∈ Z, which can be done by the
Bezout lemma. Then the finite wave-packet group GΘ is the underlying set

H × {0, 1, . . . , N − 1} × {0, 1, . . . , N − 1}

equipped with the following group operations:

(m, k, `)o (m′, k′, `′) = (mm′,m′
Nk + k′,m′`+ `′) for (m, k, `), (m′, k′, `′) ∈ GΘ,

(m, k, `)−1 =
(
mN ,m · (N − k),mN · (N − `)

)
for (m, k, `) ∈ GΘ,

where mN ,m
′
N are multiplicative inverses of m,m′ in H. Then GΘ is a finite

nonabelian group of order N2ϕ(N) with the identity element (1, 0, 0). The map
Γ : GΘ → U(CN) defined by (m, k, `) 7→ Γ(m, k, `) = DmTkM` is the wave-packet
representation of the finite wavelet-packet group GΘ on the finite-dimensional
Hilbert space CN (see [14], [12]). Let y ∈ CN be a window signal. Then the
wave-packet transform of a given function/vector x ∈ CN with respect to the
window vector y is a vector defined on the wave-packet group GΘ by

Vyx(m, k, `) =
N−1∑
s=0

x(s)e2πi`(mNs−k)/Ny(mNs− k) for (m, k, `) ∈ GΘ.

Let y ∈ CN be a window vector. Then αy : ẐN → C given by

αy(ω) =
∑
m∈H

∣∣Dmŷ(ω)
∣∣2 for ω ∈ ẐN
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belongs to CN = L1(ẐN). Hence we achieve

ay =
N−1∑
ω=0

αy(ω)

=
N−1∑
ω=0

∑
m∈H

∣∣Dmŷ(ω)
∣∣2

=
∑
m∈H

N−1∑
ω=0

∣∣Dmŷ(ω)
∣∣2

=
∑
m∈H

‖Dmŷ‖22

=
∑
m∈H

‖ŷ‖22

= ϕ(N) · ‖ŷ‖22
= ϕ(N) ·N · ‖y‖22.

Thus, if x ∈ CN , then we have

∑
m∈H

N−1∑
k=0

N−1∑
`=0

∣∣Vyx(m, k, `)
∣∣2 = N · ϕ(N) · ‖y‖22‖x‖22,

and also

x(s) =
‖y‖−2

2

N · ϕ(N)

∑
m∈H

N−1∑
k=0

N−1∑
`=0

Vyx(m, k, `)DmTkM`y(s) for 0 ≤ s ≤ N − 1.
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Führ for stimulating discussions and for pointing out various references during
the June 2014 “International Centre for Theoretical Physics (ICTP)-The World
Academy of Sciences (TWAS)” school in Trieste, Italy.

References

1. S. T. Ali, J. P. Antoine, and J. P. Gazeau, Coherent States, Wavelets and Their Gener-
alizations, 2nd ed., Springer, New York, 2014. Zbl 06210594. MR3154614. DOI 10.1007/
978-1-4614-8535-3. 50, 52

2. A. A. Arefijamaal and R. A. Kamyabi-Gol, On construction of coherent states associated
with semidirect products, Int. J. Wavelets Multiresolut. Inf. Process 6 (2008), no. 5, 749–759.
Zbl 1151.81342. MR2449874. DOI 10.1142/S021969130800263X. 51, 60

3. A. A. Arefijamaal and R. A. Kamyabi-Gol, On the square integrability of quasi regular
representation on semidirect product groups, J. Geom. Anal. 19 (2009), no. 3, 541–552.
Zbl 1168.43002. MR2496565. DOI 10.1007/s12220-009-9069-8. 51, 56, 60

4. J. J. Benedetto and G. E. Pfander, Periodic wavelet transforms and periodicity detection,
SIAM J. Appl. Math. 62 (2002), no. 4, 1329–1368. Zbl 1005.42023. MR1898524. DOI
10.1137/S0036139900379638. 51

http://www.emis.de/cgi-bin/MATH-item?06210594
http://www.ams.org/mathscinet-getitem?mr=3154614
http://dx.doi.org/10.1007/978-1-4614-8535-3
http://dx.doi.org/10.1007/978-1-4614-8535-3
http://www.emis.de/cgi-bin/MATH-item?1151.81342
http://www.ams.org/mathscinet-getitem?mr=2449874
http://dx.doi.org/10.1142/S021969130800263X
http://www.emis.de/cgi-bin/MATH-item?1168.43002
http://www.ams.org/mathscinet-getitem?mr=2496565
http://dx.doi.org/10.1007/s12220-009-9069-8
http://www.emis.de/cgi-bin/MATH-item?1005.42023
http://www.ams.org/mathscinet-getitem?mr=1898524
http://dx.doi.org/10.1137/S0036139900379638
http://dx.doi.org/10.1137/S0036139900379638


70 A. GHAANI FARASHAHI

5. D. Bernier and K. F. Taylor, Wavelets from square-integrable representations, SIAM J.
Math. Anal. 27 (1996), no. 2, 594–608. Zbl 0843.42018. MR1377491. DOI 10.1137/
S0036141093256265. 51

6. O. Christensen and A. Rahimi, Frame properties of wave packet systems in L2(Rd), Adv.
Comput. Math. 29 (2008), no. 2, 101–111. Zbl 1152.42013. MR2420867. DOI 10.1007/
s10444-007-9038-3. 51
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23. V. Kisil, Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of
SL2(R), Imperial College Press, London, 2012. Zbl 1254.30001. MR2977041. DOI 10.1142/
p835. 50

24. V. Kisil, Operator covariant transform and local principle, J. Phys. A. 45 (2012), no. 24,
art ID 244022. Zbl 1298.81111. MR2930517. DOI 10.1088/1751-8113/45/24/244022. 50

http://www.emis.de/cgi-bin/MATH-item?0843.42018
http://www.ams.org/mathscinet-getitem?mr=1377491
http://dx.doi.org/10.1137/S0036141093256265
http://dx.doi.org/10.1137/S0036141093256265
http://www.emis.de/cgi-bin/MATH-item?1152.42013
http://www.ams.org/mathscinet-getitem?mr=2420867
http://dx.doi.org/10.1007/s10444-007-9038-3
http://dx.doi.org/10.1007/s10444-007-9038-3
http://www.emis.de/cgi-bin/MATH-item?0691.46011
http://www.ams.org/mathscinet-getitem?mr=1021139
http://dx.doi.org/10.1016/0022-1236(89)90055-4
http://www.emis.de/cgi-bin/MATH-item?0713.43004
http://www.ams.org/mathscinet-getitem?mr=1026614
http://dx.doi.org/10.1007/BF01308667
http://www.emis.de/cgi-bin/MATH-item?0857.43001
http://www.ams.org/mathscinet-getitem?mr=1397028
http://www.emis.de/cgi-bin/MATH-item?1060.43002
http://www.ams.org/mathscinet-getitem?mr=2130226
http://www.emis.de/cgi-bin/MATH-item?1100.42030
http://www.ams.org/mathscinet-getitem?mr=1912636
http://dx.doi.org/10.1007/s00041-002-0018-1
http://www.emis.de/cgi-bin/MATH-item?06431322
http://www.ams.org/mathscinet-getitem?mr=3302846
http://dx.doi.org/10.1142/S0219691314500416
http://www.emis.de/cgi-bin/MATH-item?1329.42035
http://www.ams.org/mathscinet-getitem?mr=3414310
http://dx.doi.org/10.13001/1081-3810.2903
http://www.emis.de/cgi-bin/MATH-item?1327.42038
http://www.ams.org/mathscinet-getitem?mr=3421839
http://dx.doi.org/10.1016/j.laa.2015.10.001
http://www.emis.de/cgi-bin/MATH-item?0890.42011
http://www.ams.org/mathscinet-getitem?mr=1601095
http://www.emis.de/cgi-bin/MATH-item?0571.22021
http://www.ams.org/mathscinet-getitem?mr=0803788
http://dx.doi.org/10.1063/1.526761
http://www.emis.de/cgi-bin/MATH-item?0115.10603
http://www.ams.org/mathscinet-getitem?mr=0156915
http://www.emis.de/cgi-bin/MATH-item?0131.02702
http://www.ams.org/mathscinet-getitem?mr=0207883
http://www.emis.de/cgi-bin/MATH-item?0923.43004
http://www.ams.org/mathscinet-getitem?mr=1277217
http://www.emis.de/cgi-bin/MATH-item?0955.42024
http://www.ams.org/mathscinet-getitem?mr=1740458
http://dx.doi.org/10.1023/A:1006394832290
http://www.emis.de/cgi-bin/MATH-item?1272.42024
http://www.ams.org/mathscinet-getitem?mr=2766965
http://dx.doi.org/10.1142/9789814313179_0029
http://www.emis.de/cgi-bin/MATH-item?1271.30025
http://www.ams.org/mathscinet-getitem?mr=3220526
http://dx.doi.org/10.1007/978-3-0348-0417-2_1
http://dx.doi.org/10.1007/978-3-0348-0417-2_1
http://www.emis.de/cgi-bin/MATH-item?1254.30001
http://www.ams.org/mathscinet-getitem?mr=2977041
http://dx.doi.org/10.1142/p835
http://dx.doi.org/10.1142/p835
http://www.emis.de/cgi-bin/MATH-item?1298.81111
http://www.ams.org/mathscinet-getitem?mr=2930517
http://dx.doi.org/10.1088/1751-8113/45/24/244022


ABSTRACT WAVE-PACKET TRANSFORMS OVER LCA GROUPS 71

25. V. Kisil, Calculus of operators: Covariant transform and relative convolutions, Banach J.
Math. Anal. 8 (2014), no. 2, 156–184. Zbl 1305.43009. MR3189548. 50

26. F. Luef and Z. Rahbani, On pseudodifferential operators with symbols in generalized Shubin
classes and an application to Landau-Weyl operators, Banach J. Math. Anal. 5 (2011), no.
2, 59–72. Zbl 1236.47046. MR2792499. DOI 10.15352/bjma/1313363002. 50

27. G. E. Pfander, “Gabor Frames in Finite Dimensions” in Finite Frames, Appl. Numer.
Harmon. Anal., Birkhauser, Boston, 2013, 193–239. Zbl 1264.42012. MR2964011. DOI
10.1007/978-0-8176-8373-3 6. 51

28. B. Torrésani, Wavelets associated with representations of the affine Weyl-Heisenberg group,
J. Math. Phys. 32 (1991), no. 5, 1273–1279. Zbl 0748.46046. MR1103481. DOI 10.1063/
1.529325. 51

29. B. Torrésani, Time-frequency representation: wavelet packets and optimal decomposition,
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