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ABSTRACT. In this paper, we introduce Hardy spaces with variable exponents
defined on a probability space and develop the martingale theory of variable
Hardy spaces. We prove the weak-type and strong-type inequalities on Doob’s
maximal operator, and we get a (1,p(-),00)-atomic decomposition for Hardy
martingale spaces associated with conditional square functions. As applica-
tions, we obtain a dual theorem and the John-Nirenberg inequalities in the
frame of variable exponents. The key ingredient is that we find a condition
with a probabilistic characterization of p(-) to replace the so-called log-Holder
continuity condition in R".

1. INTRODUCTION

Let p(+) : R™ — (0, 00) be a measurable function such that 0 < inf,cgn p(x) <
Sup,cgn p(z) < 0o. The space LPU)(R™), the Lebesgue space with variable expo-
nent p(-), is defined as the set of all measurable functions f such that, for some

A >0,
/n<|f(;)|>p(x) dr < oo

1 llpcy == inf{A >0: /n(|f(>\x)|>p(x) dz < 1}.

Then (LPU), ||]|,() is a quasinormed space. Such Lebesgue spaces were introduced
by Orlicz [24] in 1931 and studied by O. Kovacik and J. Rékosnik [17], X. Fan and

with
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D. Zhao [9], and others. We refer to two new monographs [3] and [7] for the recent
progress on Lebesgue spaces with variable exponents and some applications in
PDEs and variational integrals with nonstandard growth conditions. We also note
that in recent years more attention has turned to the study of function spaces with
variable exponent in harmonic analysis (see, e.g., [1], [4], [5], [8], [22], [26], [30]).
Let 2 C R™. We say that a function p(-) : Q@ — R is locally log-Hélder continuous
on € if there exists ¢; > 0 such that

< c1
~ log(e +1/|z — yl)

for all z,y € Q. Heavily relying on the so-called log-Holder continuity conditions
on the variable exponent functions, in the pioneering work [6], Diening proved that
the HardyLittlewood maximal operator is bounded on L”()(R™). An example in
[25] showed that log-Hélder continuity of p(x) is essentially the optimal condition
when the maximal operator is bounded on variable exponent Lebesgue spaces
defined on Euclidean spaces (even in the doubling metric measure spaces; see
[12]). We refer to [18] for more questions related to the maximal operator in
variable LP().

Although variable exponent Lebesgue spaces on Euclidean space have attracted
a steadily increasing interest over the last couple of years, the variable exponent
framework has not yet been applied to the probability space setting. The pur-
pose of the present paper is to introduce Hardy martingale spaces with variable
exponent and to develop the martingale theory of variable Hardy spaces. To the
best of our knowledge, our paper is the first treating Hardy martingale spaces
from this perspective. For convenience, we first fix some notation. Let (Q, F,P)
be a complete probability space, and let P = P(£2) denote the collection of all
measurable functions p(-): © — (0, 00), which is called a variable exponent. For
a measurable set A C ), we denote

[p(z) — p(y)| (1.1)

py(A) = ilelgp(x), p-(4) = inf p(z)

and
P+ = p+(Q), p- = P—(Q)‘

Compared with the Euclidean space R™, the probability space €2 has no natural
metric structure. The main difficulty is how to overcome the log-Hélder continuity
(1.1) when p(z) is defined on a probability space (2, F,P).

The first aim of this paper is to discuss the weak-type and strong-type inequal-
ities about Doob’s maximal operator. Aoyama [2] proved that Doob’s maximal
inequality is true under some conditions. Namely, if 1 < p(-) < oo and there
exists a constant C' such that

1% < OE(}% ‘ ]-"n>, (1.2)

then
)
P(sup | f,] > A) < cp(.)/(”—;‘*)p dP, WA > 0. (1.3)
n Q
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And if 1 < p_ < p, < oo and p(-) is F,-measurable for all n > 0, then
[sup [£alll, ) < Coorllflloc- (1.4)

Obviously, the condition that p(-) is F,-measurable for all n > 0 is quite strict.
In 2013, Nakai and Sadasue [21] pointed out that there exists a variable exponent
p(+) such that p(-) is not Fp-measurable, but (1.4) still holds. In this paper, we
obtain the weak-type inequality (1.3) without condition (1.2). Unfortunately, we
cannot obtain (1.4) directly by using the weak-type inequality as the classical
case. This is because the space LP() is no longer a rearrangement invariant space,
and the formula

/Q‘f(x)|de:p/oootp1P(x €Q:|f(x)| >t)dt

has no variable exponent analogue (see [7]). In order to describe the strong-type
Doob maximal inequality, we find the following condition without metric char-
acterization of p(x) to replace log-Holder continuity in some sense; that is, there
exists an absolute constant /., > 1 depending only on p(-) such that

]P(A)ZL(A)_IM(A) < Kp(.), VA e F. (15)

We often denote K. simply by K if there is no confusion. Under the condi-
tion of (1.5), we prove that (1.4) is true for any martingale with respect to the
atom co-algebra filtration. It should be mentioned that the condition (1.5) is not
usually true (even in Euclidean space); however, if the exponent p(x) has a nice
uniform continuity with respect to Euclidean distance, then (1.5) holds. We refer
to Lemma 3.2 in [6] for this fact.

The second aim of this paper is the atomic characterization of variable Hardy
martingale spaces. Our result can be regarded as the probability version of [5] and
[22]; we do not use the log-Holder continuity of p(x), and it seems that our proofs
are simpler due to the stopping-time techniques used for them. Let 7 be the set
of all stopping times with respect to {F, }n>0. For a martingale f = (f,,)n>0 and
7 € T, we denote the stopped martingale by f™ = (f7)n>0 = (farr)n>0-

Definition 1.1. Given p(-) € P, a measurable function a is called a (1, p(-), 00)-
atom if there exists a stopping time 7 € T such that

(1) E(a| ) = 0,%n <7,
(2) 15(a) 1o < Ix{reoetll

Denote by A(s, p(-),00) the set of all sequences of pairs (ux,a®, ), where py,
are nonnegative numbers and a* are (1,p(-), 0o)-atoms satisfying (1) and (2).

In the remainder of the paper, we always denote p = min{p_, 1}.
Definition 1.2. Given p(-) € P, let us denote by H;f)t the space of those martin-
gales for which there exist a sequence (a*)ez of (1,p(+), 00)-atoms and a sequence
(g )kez of nonnegative real numbers such that

f= Z,ukak, a.e., (1.6)

kEZ
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and
H{Z< [k X {7 <o} )p}; =
= MIXr<oct I P()
Let
_ [kX {re<oc} \PY 7
At} Ay {nd) = | {3 (R == ) e
( ) % I i <o0} 1oy p()
We define

Pl = AG {04 (7). (e m) € As.p(0),0).
where the infimum is taken over all decompositions of the form (1.6).
In Section 4, we prove that
o = Hyy, p)€P,

with equivalent quasinorms (see Section 2 for the notation H ). We give some

applications of atomic decomposition in Section 5. Recall that the Lipschitz space
Ay(a)(a > 0,q > 1) is defined as the space of all functions f € L? for which

_1_, i
1 fllay@) = sup[{T < oo}| * || f = f7[ly < oc.

It was proved by Weisz in [27] that the dual space of H;(0 < p < 1) is equivalent to
As(a)(a = 1/p—1). The new Lipschitz space A (a(-)) is introduced in Section 5.
Let p(-) satisfy (1.5). We obtain

(Hy))" = Ms(a(), 0<p-<py <1,

where a(-) = 1/p(-) — 1.
Finally, we get the John—Nirenberg inequality in the frame of variable expo-
nents. If p(-) satisfies (1.5), then

[ fllemo, S [ fllemo, ., S 1fllevo,, 1 <p- <py < oo,

which can be regarded as the probability versions of Theorem 1.2 or Theorem 5.1
in [16] (see Section 5 for the definition of BMO,.)). Furthermore, we also obtain
the exponential integrability form of the John-Nirenberg inequality for BMO,.,
which is the probability analogue of Theorem 3.2 in [13]. We note that the gen-
eralized John-Nirenberg inequalities were proved in the frame of rearrangement
invariant spaces in [31], but the variable LP() spaces are not rearrangement invari-
ant spaces when p(-) is not a constant. Again, condition (1.5) plays an important
role in the above results that lead to our estimating the p(-)-norm of characteri-
zation function and to the availability of inverse Holder inequalities.

Throughout this paper, Z, N, and C denote the integer set, nonnegative integer
set, and set of complex numbers, respectively. We denote by C' the absolute
positive constant, which can vary from line to line, and we denote by Cj. the
constant depending only on p(-). The symbol A < B stands for the inequality
A< CBor A< CyyB. If we write A = B, then it stands for A < B S A,
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2. PRELIMINARIES AND LEMMAS

In this section, we give some preliminaries necessary to the whole paper. Given
p(-) € P, we always assume that 0 < p_ < p, < oo if there is no special
statement. The space LP() = LPU)(Q) is the collection of all measurable functions
f defined on (€2, F,P) such that, for some A > 0,

i = [ (LD p < oo

This becomes a quasi-Banach function space when it is equipped with the quasi-
norm

[ fllpey = inf{X > 0: p(f/N) < 1}.

The following facts are well known (see, e.g., [22]):

(1) (Positivity) [|fllpc) > 0; [[fllp) =0 = f=0.

(2) (Homogeneity) [|cfllp) = |el - [lf ) for c € C. ,
(3) (The p-triangle inequality) || f + 9”;(.) < ||f||;(.) + ||9||;(.)-
For p(-) € P and p_ > 1, we define the conjugate exponent p'(-) by the equation

1 n 1
p(z)  p(z)

We collect the following useful lemmas, which will be used in the paper.

Lemma 2.1 (see [5, p. 5]). Let p(-) € P, and let p_ > 1. Then, for all r > 0, we
have

H|f|THp(.) = ||f||:p(-)'

Lemma 2.2 (see [3, p. 24]). Given p(-) € P, we have, for all f € L) and

1£1lp) # 0,
/‘ f(z)
Q ”f”p(-)

Lemma 2.3 (see [9, Theorem 1.3] or [3, p. 22]). Given p(-) € P and f € LPV),
we have

(V) [ fllpy < 1 (= 1,> 1) if and only if p(f) < 1 (= 1,> 1);
(2) IFlIf ) > L, then p(5)Y7= < || fllpc) < p(F)r;
(3) 10 < |l < 1, then p(£)>~ < || flly < p(F)YP+.

Lemma 2.4 (Hoélder’s inequality; see [3]). Given p(-),q(-),7(-) € P such that
1 1 1

p@)  a@) (@)

p(z)

there exists a constant Cy.y such that, for all f € L) g € L', we have
fg €L,

1£allocy < Coey L Fllacy Ngllrcy-
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Now we introduce some standard notation from martingale theory. We refer
to [10], [20], and [28] for the classical martingale space theory. Let (2, F,P) be
a complete probability space. Recall that the conditional expectation operator
relative to F,, is denoted by Ez ; that is, E(f | F,) = Ez,(f). A sequence of
measurable functions f = (f,)n,>0 C L'(Q) is called a martingale with respect to
(Fn) if Ex, (fay1) = fo for every n > 0. If in addition f,, € LP0)| f is called an
LPO)-martingale with respect to (F,). In this case we set

£ oy = sup || fallpe)-
n>0

If || fllp¢) < oo, f is called a bounded LP)-martingale and denoted by f € LPU),
For a martingale relative to (£, F,P; (F,)n>0), define the maximal function and
the conditional square function of f, respectively, as follows (f_1 = fo):

Aﬁnf::SUp|th Affzzsgg|fﬁh

sm(f) = (iEfanan)%, s(f) = (f:EfnlmfnP)é.
n=0 n=0

Then we define the variable exponent martingale Hardy spaces analogous to clas-
sical martingale Hardy spaces as follows:

;(') - {f = (fn)nZO : Mf S Lp(‘)}v ||f|
Hi={f=(fanzo:s(f) e PV}, |f]

Hﬁ@ ::HﬂiprQﬁ

Hyoy = HS(f)Hp(-)'

3. DOOB’S MAXIMAL INEQUALITIES

In this section, we first prove the weak-type inequality (1.3) without condition
(1.2). We begin with the following lemma.

Lemma 3.1. Given p(:) € P and 1 < p_ < p; < o0, let f = (fn)o<n<oo be an
LPO) -martingale. Suppose that, for any stopping time T,

IP’(T<OO)</ @dﬂ”, VA > 0.
{T<o0} A

Then there exists a constant Cp(.) such that

@
P(r < 00) < (Jp(.)/ (Lf)p dP, YA > 0.

{r<o0}

Proof. We choose a sequence of simple functions {s,},>1 such that p, ({7 <
o0}) > s, > p_({T < 00}) for any n, and the sequence {s,},>1 increases mono-
tonically to p(z) on {7 < oco}. Then, for each n,

kn
sn(x) = ZanvaAn,j (),
j=1

where the sets {4, ;} are disjoint and (J; A, ; = {7 < oo}
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By Holder’s inequality and Young’s inequality, we have

1

/ |foo>fx)’ dP < </ <|foo>fx)’>a"’j dP) ai,j ]P)(An,j)a/"’j
An A
<1 /I%’.<|foo(x)|>aw ap &+ D(Ans)

/
O{nvj >\ n 7j

1 oo ()] o2 P(4,,)
Szo<{7<oo}>/An,j< ) P G T

Adding the above inequalities with j from 1 to k,,, we have

fe(@) 1 (@) P(r < x)
/{m} v S < /{T<oo}< e MR (=

This inequality holds for all n, and hence the monotone convergence theorem
implies that

P(1 < o00) < /{ } |f—;o| dP
T<00 (31)
1 IROING P(r < oo)
= (r <o) /{m}( ) B G < s

Since p; < oo, we have (p; ({7 < c0}))’ > 1. It follows that

1 1 | foo ()] \ P(®)
P <o) (1= =) < T /{m}( ) ®

Therefore, by a simple calculation, we have

(Ifoo(x)l)p@) P,

P(T < OO) < Cp(.)/ 3

{r<o0}

The following theorem corresponds to Proposition 4 in [2].

Theorem 3.2. Given p(-) € P and 1 < p_ < p, < o0, suppose that f =
(fn)o<n<oo is a bounded LP")-martingale. Then

P(Mf>)) <Gy, / <|f°°A(x)|>p(x) dP, ¥\ > 0.
Q

Proof. For any A > 0, we define a stopping time 7 = inf{n > 0: |f,,| > A} (with
the convention that inf @ = o). It is obvious that

{Mf >\ ={r <o}
and
{r < oo} C{|fs] > A}

Note that Eff(@) > 1 a.e. on the set {7 < oo}. We get that
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P(T<oo):/ 1dIED§/ JE;T<|M> dP
{r<o0} {r<oc0} A

_ [foo ()]
B /{’T<OO} A .

It follows immediately from Lemma 3.1 that

P(Mf > \) = P(r < 00) < Cy (‘f wA(x)‘)p(x) dP
{T<o0}

SCp(.)/QOfOO)Ex)‘)pm dP.

The proof is complete. O

Lemma 3.3. Given p(-) € P, we have
(sup |fn|)p(.) = sup(|fn|”(’)).
n>0 n>0

Although this lemma is very obvious, we will refer to it frequently below.
We now turn to consider the strong-type inequality (1.4). Let (2, F,P) be a
probability space. Let

D, = {A}}j>1, foreach n >0,

be decompositions of 2 such that (B,)n,>0 = (0(Dy))n>0 is increasing and F =
(U0 Bn)- It is clear that

[e.9]

Es, ()= (P@L) | f@) dIP) XAz

j=1

Then

/Q(Mf)pu) dP < /S]S%p{i<ﬁ /An‘f(deP)XA?}p(x) .

p(x)
/ {sup

p— p-
(x)| dP) "~ xap ) dP.
Lemma 3.4. Let p(-) € P, 1 < p_ < py < 00, and satisfy (1.5). Suppose that
f e LY and ||pr < 1/2. Then, for all measurable sets B,

/If \le M §K<ﬁ/}f(x)\i’mdﬁb+l>.

Proof. Let q(x ) p(z)/p—. Then, for any x € B,
q(x) < p(x) and 1 <q_ (B) < p(x).

Let f|g(x) = f(z),z € B. Then ||f|B||p(.) <1/2. Let g = f/Hf|B||p(.). It follows
from Lemma 2.2 that

(3.2)
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flz) o
/B‘ ||f‘B||p(~)

q-(B)
d]P’:/ lg(z)[** d]P’+/ lg(z)|*"? aP
Bn{lg|>1} Bn{|g|<1}

<1+ P(Q).
Then

118l < (L4 PO = || f]al0 < (1+PE))[ o) <1
Using Holder’s inequality and (1.5), we find that

o 1) < (5 / ) )

=P(B > S fl)0,
P
P

B
(B)” q<B>r|f|Bu3§
_a®)-q_(B) 1
) s [ a
a_(B)—ai(B)
SP(B) (B /‘f |q (B

p_(B)—py (B)
=P(B) ~ /!f )|© P ap

< K7=® (P(lB)/B(!f(y)}q +1) dIP)
SK(%/B(U@)]“”H) aP). -

Theorem 3.5. Let D,, = {A}};>1 for each n > 0 be decompositions of Q2 such
that (B,)nz0 = (0(Dn))n>0 is increasing and F = o({J,oBn). Let p(-) satisfy

(1.5) and 1 < p_ < py < 0. Then, for any martingale f € LPO) with respect to
(Bn)nzo;

HS?LP |fn‘||p(.) < Coo 1 llpcy-

Proof. We assume that || ||,y < 1/2 by homogeneity, and we let ¢(z) = p(z)/p-.
Then, by Lemma 3.4 and the classical Doob maximal inequality,

[ e [, 1) ")
/{supZK( / ok 1)d]P’)XA?}p7dIP

— KP- HsupEBn(mq +1)[]” P

<C, K| 41 < .

By (3.2), we have [,,(M f)P") dP < C. Now the proof is complete. O
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Remark 3.6. (1) We point out that there is a nonlog-Hélder continuous function
p(+) for which the maximal operator is bounded on the corresponding Lebesgue
spaces Ly (R™) (see [23]).

(2) Note that condition (1.5) could not cover the example given by Nakai and
Sadasue [21, p. 2169]. Indeed, we can verify a special case of their example. Let
((0,1],%, ) be a probability space such that p is the Lebesgue measure and
subalgebras {¥,},>0 generated as follows:

i
Y., = o-algebra generated by atoms (2]_717 J;—n], j=0,...,2" = 1.
For n > 0 we set B,, = (0, 37]. Then

(071]2803313"'38n"‘,

and we let
: =1
g(l‘) = SlIl(h(:L‘)), h(ﬂj) = nz; m(szn - Xanl)'
Denote h,,, := an:1 ln(21"e) — 1n(2"1L+1e)’ m > 1. It is easy to check that
hm — 00 as m — oo. (3.3)
Also, we have
2 2m

<— <=
~ (m+4+1)n2 3’

Given N, we shall show that there exists y € By such that 1 > g(y) > 1/2.
Choose the smallest integer & so that hy < 2km + %. Then, from (3.3) and (3.4),

it follows that there exists j > N satisfying h; € (2km + %, 2km + %”) This means

that, for any y € B; \ Bj11 C By, we have 1 > g(y) > 1/2. Similarly, there exists
z € By such that —1 < g(z) < 0. Now we obtain

,LL(BN)Q—(BN)—9+(BN) — (QN)9+(BN)—9—(BN) > (2N)g(y)—g(z) > (2]\{)1/2,

which implies that g(-) does not satisfy condition (1.5).

At the time of this writing, we do not know if the condition (1.5) is sufficient
for Doob’s maximal inequality in general probability spaces.

Problem 3.7. Let p(-) satisfy (1.5) with 1 < p_ < p; < oo. Then, for any
martingale f € LP1) with respect to (F,)n>0, do we have

Isuplfalll, ) < Coorllf oy ?

Remark 3.8. It is well known that |Ez, (f)[? < Eg, (|f|P) for 1 < p < oo; however,
it is easy to give inverse examples to show that one can never expect a variable
exponent version, namely,

\Efn(f)!p(') < CoEx, (IFPY), 1< p(-) < oo. (3.5)

Hence the main difficulty in dealing with Problem 3.7 is how to overcome or avoid
the use of inequality (3.5).
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4. ATOMIC CHARACTERIZATION OF THE VARIABLE HARDY
MARTINGALE SPACE

In this section we construct the atomic decomposition of the martingale Hardy
space with variable exponents. Here we use Definitions 1.1 and 1.2.

Proposition 4.1. Given p(-) € P, let f € H;Ef’)t; that is, f =5 ppa®.
(1) We have
(S )™ < Allmd '} ().

keZ
(2) If py <1, then

Z M < -A({:uk}> {ak}7 {Tk})

keZ
(3) For any k € Z, we have

||CL |Hsu.t <].

P()
Proof. (1) The convexity implies that

/(Z( ke X {r, <00} B / Hoe X {rp<o0} >p(gc) dP
Q Q

— AHX{rk@o}Hp = \AlIX{m<o0t I

p(z)
> ) e
keZ {1 <o} )‘||X{Tk<oo}||P()

1
Now, if we set A = (3,5 1, 7) "+, then we obtain

p(z)

[ ey ¥ e (" [ (et Y

“\ X re<ood lp) X ¢r<o0t ()

By the definition of A({ur}, {a*}, {m}), we get the desired result.
(2) and (3) are obvious. O
Theorem 4.2. Let p(-) € P. If the martingale f € H,, then there exist a

sequence (a¥)ez of (1,p(+), 00)-atoms and a sequence (juy)rez of nonnegative real
numbers such that, for alln > 0,

Z[LkE]:nak = fn a.e. (41)
kEZ
and

A} {d*} Am}) < Hy.

Moreover, the sum ), , pra converges to f in Hp . Conversely, if the martin-
gale f has a decomposition of (/.1), then

1, < inf A({u}, {a"}, {7:}),

where the infimum is taken over all the decompositions of the form (4.1).
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Proof. Assume that f € H () Let us consider the following stopping times for
all k € Z:

7o = inf{n € N : s,41(f) > 2*}.

The sequence of these stopping times is obviously nondecreasing. For each stop-
ping time 7, denote f7 = f,,. It is easy to see that

fo= > _(f7r = f79).

kez
Let

Tk+1
a—
Mk

If yy, = 0, then let a® = 0 for all k € Z,n € N. Then (a¥),>¢ is a martingale for
each fixed k € Z. Since s(f™) = s, (f) < 2%, we get

) < S sl
B [k

Hence it is easy to check that (a¥), ¢ is a bounded Lo-martingale. Consequently,
there exists an element a* € L, such that Ex a* = a*. If n < 73, then a*f =0,
and s(af) < ||X{Tk<oo}||p_(?)- Thus we conclude that a* is really a (1,p(-),o0)-
atom.

Denote Oy = {1 < oo} = {s(f) > 2¥}. Recalling that 74 is nondecreasing for
each k € Z, we have O D Oy1. Then

Z(B ' QkXOk (x))B

keZ

fy = 3 - 2k||x{7k<oo}||p(.), and let afL =

5((61]2)1120 < HX{Tk<°O}H;(})'

is the sum of the geometric sequence {(3-2*xo, (z))2}rez; thus, we can claim
that
p

Y (320, (2))E = (Z 3.2 yo, (x))g ~ (Z 3. 2’“X0k\ok+1(x)>*.

keZ kEZ
Indeed, for each fixed z € €, there is kg € Z such that xy € Ok, but ¢ Oy 41.

Then

ko ko 1

kX_:OO (3 . 2kX(9k ($0))£ = kZ_:OO(S . 2k>£ = (3 . 2160)81 9P
1 P
SG-2r(7)
ko P ko p
= ( Z 3- QkXOk(x0)>i N < Z 3- QkXOk\OkJrl(xO))i'
k=—00 k=—o00
Thus

A{p e} () = {30 (ke )21

keZ ||X{Tk<00}’|p()

(")
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(Sl

= H {2(3 : QkX{Tk<oo})B}

kEZ

S HZS 2" XOp\Og 1
keZ

—inf{A>0: /Q (X 2kx‘9;\o’f“<x>)p(z) ap <1}

kEZ

_ inf{)\ >0 Z/@k\om (3 'fk)p@ dP < 1}

keZ

. s(f)\r@)
%11’1f)\>01/— dP <15%.
{ Q( A > }
Therefore, we obtain

A({m} {d} An}) S Hs(f)Hp(-) = 1Lz,

We now verify the sum ), , ppak converges in H;(_). By the equality s(f —
f)? = s(f)? = s(f™)?, we have
s(f—f™),s(f™) <s(f) and s(f—=f™),s(f7*) =0 ae. ask — oo.

Consequently, by the dominated convergence theorem in variable LP() (see [3,
Theorem 2.62]),

(")

()

N
k|2 T p T—m |12
— < _ N+1 [[= M ||E£
|1 3 ma R st P Wil 9

()

converges to 0 a.e. as M, N — oo.
Conversely, by the definition of (1, p(-), c0)-atom, we have almost everywhere

S(O,) = S(Q)X{T<OO} < H H X{r<oo} < HX{T<OO}” X{T<OO}7

where a is a (1,p(+), 00)-atom. By the subadditivity of the conditional quadratic
variation operator, we obtain

f)SZ,MkS Z ATl X{mp<oo}

keZ keZ X {re<oo} o)

Thus
1fllazz,, = s, < HZ e X{ry<oc}
X{Tk<00}||p

<H{ i) )
:A({Mk}»{@ bAT}).
~ [ Fllas

(")

s and the proof is complete. 0J
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Remark 4.3. Tt is shown in Theorem 5.1 in [14] that, for the atomic decomposi-
tion of Hardy—Morrey spaces with variable exponents p(-) on R™, the exponent
function p(-) is not necessary to be log-Holder continuous.

5. DUALITY AND THE JOHN—NIRENBERG THEOREM

In this section, we establish the dual space of H ;(A) by the atomic decomposition
established in Section 4 and prove the John—Nirenberg inequalities in the setting
of variable exponents.

Proposition 5.1. Let p(-) € P satisfy (1.5) with 0 < p_ < p; < 00.
(1) If q(-) € P satisfies (1.5), then p(-) + q(-) also satisfies (1.5).

(2) The term p(l, satisfies (1.5).
(3) If =1, then q(-) satisﬁes (1.5).
(4) If q() € 73 satzsﬁes (1.5) and = ﬁ = ﬁ, then r(-) satisfies (1.5).

Proof. (1) Set h(-) = p(-) + ¢(+). Then
h-(A) = hi(A) = p-(A) + ¢-(A) — p(A) = ¢ (A).
Hence
[[D(A)h—(A)*th(A) < P<A)p—(A)fp+(A)+q—(A)fQ+(A) < Ky Ky LK
(2) We have

p—(A)—py(4)

]P;(A)l/m—(A)*l/P—(A) = P(A) P+@r-A) < KW

1
If p () > 1, then K /""" < K,). If 0 < p_(Q) <1, then

1
P (Ap_(A) 1/p2(Q) A
K0 <K,y =K

(3) Set h(-) =1— ]%. We get

1
P(A)h,(A)ffu(A) _ P(A>171/p,(A)71+1/p+(A) < Kppi(f)(mp,m) < Kl/p,(ﬂ) e

()
Hence we have that 1 — z% satisfies (1.5). Using (2), we get the desired result.
(4) It follows from (1) and (2). The proof is complete. O]

It is easy to prove that, for all B € F,
p(B)pf(B)—p(w) (and P(B)p(w)—m(B)) <K, Vze€B,
if p(-) satisfies (1.5). Using this result, we have the following lemma.

Lemma 5.2. Let p(-) € P satisfy (1.5) with 0 < p_ < py < oo. Then, for all set
B e F, we have

P(B)/?-B) ~ P(B)Y?@) ~ P(B)/?+B) 2 |Ixgl,, Yz € B.
p()
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Proof. Obviously, we have P(B)'/P-(B) < P(B)Y/?(®) < P(B)'/r+®) for all x € B.
Since (1.5), we have
P(B)'/r(®) p_(B)=p(x) T A
R A — p— (B)p(z) - £
pegy @ = L) <K, =K
This implies P(B)Y/?® < KP(B)Y/r-(B),
Then it is easy to check that P(B)Y/?-(B) ~ P(B)'/?@) ~ P(B)Y/P+(B) And we
have
xs(z)  xsl@) |
P(B)/r-(B) ~ P(B)\/p()’

that is,
() 0 o) xale) o
P(B)/-B) = BB) - \KP(B)/m®)
and so (@) . (@)
XB\T Pl XB\T
/Q<—]P’(B)1/P—(B)> sz/Q b =1
Consequently, ||xpl) ~ P(B)Y/P~®) and we get the desired result. O

Remark 5.3. Lemma 5.2 is also true for p, = oco. In this case, we need to employ
a slightly different definition of | - ||,y (see [3, Definition 2.16]).

Corollary 5.4. Let p(-) € P satisfy (1.5) with 0 < p_ < py < 00.
(1) Then, for all set B € F, we have

Ixall = [IxBllro)lXBlq);

where
1 1

+ .
() q(z)
(2) Let q(-) € P satisfy (1.5). Then, for all set B € F, we have

Ixallr¢) = Ixelleolxellq),

where
1 1 1

= + )
r(x)  ple)  qlx)
Proof. Tt follows from Proposition 5.1 and Lemma 5.2 that

1

1,1
HXBHT() ~ P(B)r(z) = ]P(B)P(z)"‘q(a:) ~ HXBHP()HXBH(]()7 vl' c B |:|

As an application of atomic decomposition, we now prove a duality theorem.
First let us introduce the new Lipschitz spaces with variable exponents.

Definition 5.5. Given that 1/a(-) is a variable exponent (1/a(-) = oo is allowed)
and a constant 1 < ¢ < oo, define A (a(-)) as the space of functions f € L? for
which

£ lag(acy) = sup HX{T<oo}H*1) IxXgr<ost g If = fTllg

1
a(-

is finite.
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Theorem 5.6. Given p(-) € P,0 < p_ <py <1 and p(-) satisfies (1.5). Then

(Hp))" =Ma(al),  a(z) =1/p(x) - 1.

Proof. We first claim that «(-) satisfies (1.5) by Proposition 5.1(1). Let ¢ €
Ao(a(+)) € L? and for all f € L? define

lo(f) = E(fp).

We shall show that [, is a bounded linear functional on H ()" By Theorem 4.2, we
know that L? is dense in H;(,). Take the same stopping times 73, atoms a*, and
nonnegative numbers i as we do in Theorem 4.2. It follows from Theorem 4.2

that f = >, ., ma” (Vf € Ly). Hence

L(f) =E(fe) =Y mE(d*p).

keZ

By the definition of the atom a*, E(a*y) = E(a*(p—¢™)) always holds. It follows
from Corollary 5.4 that

||X{7'k<00} ||p( )~ ||X{7'k<00}|| =0 HX{Tk<00}||2||X{Tk<<X>} ||2

Thus, using Holder’s inequality, we can conclude that

Zuk/ Ml — ™| dP

kEZ
<> lla®flalle = @™ la
kEZ
!{Tk < oo}z -
kEZ X{Tk<°0} p(+)
S nllellastacy-
kEZ

Then we obtain from Proposition 4.1 and Theorem 4.2 that

()] S 1IF]

Consequently, [, can be extended to H o0) uniquely.
On the other hand let [ be an arbitrary bounded linear functional on H 5 We
shall show that there exists ¢ € Ay(a(-)) such that [ = [, and

ws [llaztac):

[l Aatacy S NIE1I-
Since 0 < p_ < p; <1, it follows from Lemma 2.1 and Theorem 2.8 in [17] that

£z, = N5y = N7l

< @[s( [l )7 =2 [ls(N)ll, = 2 Iy VF € L2
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Then the space L? can be embedded continuously in H;(.). Consequently, there
exists ¢ € L? such that

() =E(fy), VfelL”
Let 7 be an arbitrary stopping time, and let
_ -
lp = @ llz2lIxtr<oot s X freoey ll2

9

Then g is not necessarily a (1, p(-), c0)-atom, but it satisfies (1) in Definition 1.1,
and thus we have

S(g) = S(Q)X{T<oo}-

Since
1 n 1 n 1
plz) 2 1/afz) 2
we have, by Holder’s inequality,
15 — ©)llpe)

Iz, =
0~ o= o Tliraml s Ixgreom

I5( = @)z lIXtr <ot | 1 X tr<oei 12

le = T l2llxr<oo | 1 X r<oo) 12

=1
Thus
I 2 1) =E(g(e — ¢7))
= ||X{T<oo}||;%||X{T<oo}||z_1||90 — &2,
and we get that ||¢]/a,)) S |/I|| and the proof is complete. O

We now turn to the John—Nirenberg theorem with variable exponents. Recall
that BMO,(1 < p < 00) is the space of those functions f for which

I fllBmo, = Sup IXgr<ost I = f7HIp < oo

Definition 5.7. Given that p(-) € P and T are the sets of all stopping times
relative to {F, }n>0, define

BMO,() = {f = (fa)nz0 : || fllBmo,, < o0},
where

1/ Bmo,,, = Sup X tr<oot sy |1 = £ -

Lemma 5.8 (see [28]). If 1 < p < oo, then

IfllBmo, = [ fllBmO, -
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Proposition 5.9. If p(-) € P satisfies (1.5) and 1 < p_ < p, < 0o, then we

have that, for all f € BMO;

1 fllemo, S 11 lemo,, < I1f[lBmo, -

Proof. By Hélder’s inequality and Corollary 5.4, we have that
Lf =Ml o = 7 o X r<oo )

IXfreoopllt ™ X {r<octln
=o)X r<oat oo X r<oo )
<ot o) X {reoop 1
< Cpeyll fllBmio, 5
where
1 o1
p@  pE

Hence | f([syo, < IfllBmo,, -
Since

1f = £ oty SUF = 7 lpe X r<ocyl par)

py—p(-
If =l

= S X (r<oot | 2ty X {r<ootlps
”X{T<°0}”p+ Py —p(

we have, by Lemma 5.8,

1f = oty S fllmatos I xgr<oc | a2 [X(r<oo)lps-

py—p(

Thus, by Corollary 5.4,

1= 7 Hlpe <
————= < || fllB™mO, [ X r<oo || 2501 X tr<ootlp X gr<oo} o)

| Xr<o0llp() e
< |1 f llwmos -

This means that

IfllBno,, S [1fllBmo

O

By applying Proposition 5.9, we prove the following exponential integrability
form of the John—Nirenberg theorem, which should be compared with the very

recent result of Theorem 3.2 in [13].

Theorem 5.10. Let p(-) € P satisfy (1.5) and 1 < p_ < p, < oo. Then there

exist constants C1,Cy > 0 such that, for every f € BMO; and 7 € T,

____Cot
IX{r<ootnlr—trazty oy < Cre Bvor iy yllpy, ¢ > 0.

Proof. Using Lemma 2.1 and Theorem 5.9, we point out that, for » > 1,

(1 A [
sup 2 = [ £llso,,, < Clfllsvo, 2 Co.
© [lxgr<oa i)
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This implies that
H|f - fT_1|THp(.) < CS||X{T<00}||P(')'
Then we get that

Xtr<octntr—r-izallo) < 1 = £ Xy < - < ot e
If t > 2C,, we take r = ﬁ > 1. Then
(@)T < 1 eTIn2 _ Tt 2 6_2cnf\\tBMo1 2 e_l\f\\?lvt[ol
t -2 ’

where Cy = % In 2.

Cyt

If t < 2C), take Cy = 5= 1n2. Then e MTeyor = (%)ﬁ > 1/4. Since

{r <o} nN{f—fro1 >t} C{r < o0},
it follows that

___Cot
X tr<ootntf—raz o) < Ixgr<ootlloe) < de B0 [Ix o coo o) -
We conclude this proof. O

Remark 5.11. The result above depends on condition (1.5), and we refer to Corol-
lary 3.5 in [15] for another John—Nirenberg theorem with a nonlog-Holder expo-
nent function p(-) on R™.

Remark 5.12. Recently, new results concerning martingale Hardy spaces with
variable exponents have emerged (see [11], [19], [29]).
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