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Abstract. We obtain two results stating the uniform openness of bilinear
operators and multilinear functionals. The first result deals with Banach spaces
Lp := Lp

K (over K ∈ {R,C}) and pointwise multiplication from Lp × Lq to Lr

(where 1/p + 1/q = 1/r). The second result is concerned with the nontrivial
n-linear functionals from the product X1 × · · · × Xn of normed spaces (over
K ∈ {R,C}) to the field K.

1. Introduction

Assume that X and Y are metric spaces. A mapping T : X → Y is called
open if it sends every open set in X to an open set in Y . For x0 ∈ X we say
that T is (locally) open at x0 if for every ε > 0 there exists δ > 0 such that
B(T (x0), δ) ⊂ T [B(x0, ε)] (see [8, Section 13, XIII]). Here B(z, r) stands for the
open ball with center z and radius r > 0 in a given space. Note that in the above
definition one can use closed balls instead of open balls. Obviously, T is open if
and only if it is open at every x ∈ X. Note that the notion of local openness is
still interesting for various mappings in topology (see, e.g., [5]).

In [1], T is called uniformly open if T is locally open at every x and, for given
ε, the δ can be chosen such that it does not depend on x. An open mapping need
not be uniformly open; the function arctan serves as an easy example.

The classical Banach open mapping principle states that every linear contin-
uous surjection between two Banach spaces is an open mapping. In fact, it is
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uniformly open since its openness at the origin implies the openness at the re-
maining points with the same δ. It is known that the counterpart of this principle
for bilinear continuous surjections is false. The problem concerned with this fact
was initiated by Rudin [11] (see also [4], [6] for the solutions with nonopenness
at zero). Note that there are several generalizations of the Banach open mapping
principle, but they do not discuss bilinear maps (see [9]). The following simple
counterexample can be found in Rudin’s book [12, Chapter 2, Exercise 11].

Example. Let T : R× R2 → R2 be defined by T (t, x) := tx. This map is bilinear
and continuous, and it fails to be locally open at the elements of ({0} × R2) \
{(0, (0, 0))}.

Pointwise multiplication is a natural example of a bilinear continuous surjec-
tive operator for several function spaces X. However, in general it need not be
open. A well-known counterexample is the Banach algebra C[0, 1] of real-valued
continuous functions on [0, 1] endowed with the supremum norm (see [2]). The set
of points where pointwise multiplication in C[0, 1] is not open forms a nowhere
dense subset of C[0, 1] × C[0, 1]; this follows from the characterization due to
Behrends [3] where products of more than 2 factors were also examined.

The general case of the Banach algebra CK of real-valued continuous functions
on a compact topological space K was investigated by Komisarski [7]. He proved
that multiplication in CK is open if and only if the topological dimension dimK
is 0. If dimK = 1, then multiplication in CK is not open but is weakly open,
which means that the interior of B(f, ε) · B(g, ε) is nonempty for all f, g ∈ CK
and ε > 0. Finally, if dimK > 1, then multiplication in CK is not weakly open.
In particular, multiplication is not open on a nonempty open subset of CK×CK.

Remarkably, in the case of CC[0, 1], the respective Banach algebra of complex-
valued continuous functions, the multiplication is open (see [3]). In [1], one can
find other examples where multiplication in function spaces is open or even uni-
formly open.

In the present paper, we investigate pointwise multiplication on spaces of mea-
surable functions and scalar-valued multilinear maps. Our main results state that
there—in contrast to the case of continuous functions and of vector-valued mul-
tilinear maps—uniform openness can always be guaranteed.

Given a measure space (Ω,A,P), consider the Banach space Lp
K(Ω) (abbrevi-

ated as Lp) over the scalar field K ∈ {R,C}. Let p, q, r ∈ [1,∞] be numbers such
that 1/p+1/q = 1/r. (Here we adopt the convention that 1/∞ = 0 so that, e.g.,
p = r, q = ∞, even p = q = r = ∞, are admissible choices.) It is well known that
the pointwise multiplication from Lp×Lq to Lr is a well-defined continuous map.

Theorem 1.1. Given any numbers p, q, r ∈ [1,∞] with 1/p + 1/q = 1/r, the
pointwise multiplication from Lp × Lq to Lr is a uniformly open map.

Theorem 1.2. Let X1, . . . , Xn be normed spaces over the scalar field K ∈ {R,C},
and let T from X1 × · · · ×Xn to K be a nontrivial n-linear functional. Then T is
uniformly open.

The products Lp × Lq (in Theorem 1.1) and X1 × · · · ×Xn (in Theorem 1.2)
are provided with the maximum norm.
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Note that Theorem 1.1 extends the result of [1], where the openness of the map
was shown for r = 1 and K = R. The uniform openness in this case (which solves
the problem from [1]) was proved in [10]. Here we present a different proof in a
general case. The dissertation [10] contains the result of Theorem 1.2 in the case
of K = R and n = 2 with a different proof.

Theorem 1.1 will be proved in Section 2, and Theorem 1.2 will be proved in
Section 3. Section 4 contains some supplements.

2. Pointwise multiplication on spaces of measurable functions

Let f, g : Ω → K be measurable functions. In order to prove that multiplication
is locally open at (f, g), one has to find for a given “small” function d two “small”
functions d1, d2 such that (f + d1)(g+ d2) = fg+ d; that is, fd2+ gd1+ d1d2 = d.
To state it otherwise, given numbers a, b, c ∈ K, we aim at finding x, y ∈ K such
that

• ax+ by + xy = c;
• x, y depend measurably on a, b, c;
• for “small” c the x, y are also “small.”

We will show in the next proposition that a suitable x-y-choice is in fact possible,
and this will be the key preparation to prove Theorem 1.1.

Proposition 2.1.

(i) Suppose that p, q, r ∈ ]1,∞[ are such that 1/p+1/q = 1/r. Then there are
Borel-measurable maps φp,q,r;1, φp,q,r;2 : K3 → K with the following prop-
erty: for all (a, b, c) ∈ K3 one has ax+ by + xy = c and |x| ≤ |c|r/p, |y| ≤
|c|r/q (here x stands for φp,q,r;1(a, b, c) and y for φp,q,r;2(a, b, c)).

(ii) Let ε be a positive number. Then there are Borel-measurable maps φε;1, φε;2 :
K3 → K with the following property: for all (a, b, c) ∈ K3 one has ax+by+
xy = c and |x| ≤ ε, |y| ≤ |c|/ε (here x := φε;1(a, b, c) and y := φε;2(a, b, c)).

Proof.
The case K = R, assertion (i). Denote by C1 the set {(α, β) | α, β ∈ R, α ≥ 0}.

We claim that there is a Borel-measurable map φ : C1 → [−1, 1] such that one
has, with t = φ(α, β), tα + t2β = β for all α, β. Such a map can be defined as
follows:

• φ(α, 0) := 0 for all α;

• φ(α, β) := (−α +
√
α2 + 4β2)/(2β) if β 6= 0.

It is easy to see that φ has the claimed properties.
For the definition of the φp,q,r;1, φp,q,r;2, we partition R3 into four measurable

sets and construct these mappings there separately. The partition is defined as
follows:

P1 :=
{
(a, b, c) | c ≥ 0, acr/p + bcr/q ≥ 0

}
;

P2 :=
{
(a, b, c) | c ≥ 0, acr/p + bcr/q < 0

}
;

P3 :=
{
(a, b, c) | c < 0, a|c|r/p − b|c|r/q ≥ 0

}
;

P4 :=
{
(a, b, c) | c < 0, a|c|r/p − b|c|r/q < 0

}
.
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Let us deal with P1 first. We are looking for x, y such that ax+ by + xy = c and
|x| ≤ |c|r/p, |y| ≤ |c|r/q. As a first approach we try it with x0 := cr/p, y0 := cr/q.
Then ax0+ by0+x0y0 = ax0+ by0+ c, a number that might be larger than c since
α := ax0+by0 is nonnegative by assumption. But with t := φ(α, c) we would have
exactly αt + ct2 = c. This means that x := tx0, y := ty0 would have the desired
properties. To put it more formally, on P1 we could define

φp,q,r;1(a, b, c) := φ(acr/p + bcr/q, c)cr/p,

φp,q,r;2(a, b, c) := φ(acr/p + bcr/q, c)cr/q.

These maps are Borel-measurable since φ has this property. (This can easily be
verified.)

On the other sets of the partition we proceed similarly; as a further example
we consider P3.

We start with x0 := |c|r/p, y0 := −|c|r/q. Then ax0+by0+x0y0 = α−|c| = α+c,
where α := (a|c|r/p − b|c|r/q) ≥ 0. Therefore, x := φ(α, c)x0, y := φ(α, c)y0 will
behave as desired. Here is the formal definition:

φp,q,r;1(a, b, c) := φ
(
a|c|r/p − b|c|r/q, c

)
|c|r/p,

φp,q,r;2(a, b, c) := −φ
(
a|c|r/p + b|c|r/q, c

)
|c|r/q.

The case K = R, assertion (ii). The strategy is similar. This time R3 is parti-
tioned as the disjoint union of Q1, Q2, Q3, Q4 where

Q1 :=
{
(a, b, c) | c ≥ 0, aε+ cb/ε ≥ 0

}
;

Q2 :=
{
(a, b, c) | c ≥ 0, aε+ cb/ε < 0

}
;

Q3 :=
{
(a, b, c) | c < 0, aε− |c|b/ε ≥ 0

}
;

Q4 :=
{
(a, b, c) | c < 0, aε− |c|b/ε < 0

}
.

What has to be done on Q1? First one tries it with x0 := ε and y0 := c/ε, but
ax0 + by0 + x0y0 = aε + cb/ε + c might be too large. Therefore, one passes to
x := tx0, y := ty0 with t := φ(aε + cb/ε, c). It should be clear how one has to
argue on Q2, Q3, and Q4.

The case K = C, assertion (i). In the complex case we have to argue much
more subtly. For complex a, b, c we have to find x, y ∈ C such that ax+by+xy = c
and also |x| ≤ |c|r/p, |y| ≤ |c|r/q hold. It will suffice to assume that c 6= 0 since for
c = 0 one can simply put x = y = 0.

In order to copy the strategy for the real case, we will first have to rotate a, b
such that ax+ by are “in the same direction” as c. Here is our road map.

Claim 1. For all a, b there exist z1, z2 with |z1| = |z2| = z1z2 = 1 such that
az1 + bz2 + z1z2 = 1+ r for some r ≥ 0. To state it otherwise, there exists z with
|z| = 1 such that az + bz ∈ [0,∞[. This will have to be done in such a way that
(a, b) 7→ (z, r) is measurable.

Claim 2. For a, b, and c there exist z′1, z
′
2, and r ≥ 0 such that

• z′1z′2 = c, |z′1| ≤ |c|r/p, |z′2| ≤ |c|r/q;
• az′1 + bz′2 + z′1z

′
2 = (1 + r)c.
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Claim 3. Whenever complex numbers A,B “point to the same direction” (i.e.,
if there is an r ≥ 0 such that A = rB), then there exists a t ∈ [0, 1] with
At+Bt2 = B. (This corresponds to the φ-function defined in the real case.)

It will remain to find t for the special case A = az′1 + bz′2 and B = c. Then
x := tz′1 and y := tz′2 will have the desired properties.

Proof of Claim 1. Let a, b be given. We have to find z with |z| = 1 such that
az+ bz ∈ [0,∞[. This is simple if a = 0 = b (choose an arbitrary z), or a 6= 0 = b
(put z := a/|a|), or a = 0 6= b (put z := b/|b|), or 0 < |a| = |b| (choose z such
that z2 = −b/a). Thus, we may concentrate on a situation where 0 < |b| < |a|.
(The case |a| < |b| can be treated similarly.)

What are the r ≥ 0 where one finds a z with |z| = 1 such that az + bz = r?
One must find a z with |z| = 1 that solves the quadratic equation az2 + b = rz.
The solutions are

z1,2 =
r ±

√
r2 − 4ab

2a

so that it would suffice to find a nonnegative r with the property

|r +
√
r2 − 4ab| = |2a|,

where the square root is defined suitably.
But precisely this is prepared in the following lemma, where it is also shown

that the map (a, b) 7→ (z, r) can be chosen to be Borel-measurable. �

Lemma 2.2. Let C−
2 be the set {(a, b) | a, b ∈ C, |b| < |a|, Im(ab) ≤ 0} (Re z and

Im z denote the real and the imaginary parts of a complex number). Denote by
W+ : {z | Im z ≥ 0} → {z | Im z,Re z ≥ 0} the natural square root: if z is written
as reiφ with φ ∈ [0, π], then W+(z) :=

√
reiφ/2. There is a Borel-measurable

ψ− : C−
2 → [0,∞[ with the following property: if one puts r := ψ−(a, b), then

|r +W+(r2 − 4ab)| = |2a|.
Similarly, we define C+

2 as {(a, b) | a, b ∈ C, |b| < |a|, Im(ab) > 0} and W− :
{z | Im z < 0} → {z | Im z < 0,Re z ≥ 0} as the function that maps reiφ (with
φ ∈ [−π, 0]) to

√
reiφ/2. There is a Borel-measurable ψ+ : C+

2 → [0,∞[ with the
following property: if one puts r := ψ+(a, b), then |r +W−(r2 − 4ab)| = |2a|.

Proof. Let (a, b) ∈ C−
2 be given. Consider the map h : t 7→ |t+W+(t2 − 4ab)| for

t ≥ 0. For t = 0 the absolute value of h is 2
√

|a||b| < 2|a|, whereas for t > 2|a|
one has |h(t)| > 2|a|. (Here one uses the fact that Re tW+(t− 4ab) ≥ 0 and that
|z + w|2 ≥ |z|2 + |w|2 if Re zw ≥ 0.)

Therefore, the following definition is reasonable:

ψ−(a, b) := sup
{
t
∣∣ 0 ≤ t,

∣∣t+W+(t2 − 4ab)
∣∣ < 2|a|

}
.

Then ψ− is Borel-measurable since, as a consequence of the continuity of W+,
the sets {(a, b) | ψ+(a, b) > η} are open for every real η.

The second assertion is proved in a similar way. �
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Proof of Claim 2. Choose any w1, w2 such that w1w2 = c and |w1| ≤ |c|r/p and
|w2| ≤ |c|r/q. We note in passing that this choice is possible in such a way that c 7→
(w1, w2) is Borel-measurable. We have assumed that c 6= 0, and so w1 6= 0 6= w2.
Thus, it is reasonable to apply the assertion of Claim 1 as follows: there are z1, z2
of absolute value one with z1z2 = 1 such that (a/w2)z1+(b/w1)z2+z1z2 = 1+r for
a suitable r ≥ 0. We multiply this equation with c and put z′1 := w1z1, z

′
2 := w2z2.

These numbers have the claimed properties. �

Proof of Claim 3. Let A,B be codirectional: A = rB with an r ≥ 0. If we multi-
ply this equation with B/|B| and put α := AB/|B|, β := B/|B|, then we arrive
at a situation where we can apply our mapping φ from the beginning of the proof
of the real case. Thus, with t := φ(α, β) ∈ [0, 1] we know that tα+ t2β = β; that
is, tA+ t2B = B. �

As already noted, this completes the proof of part (i) of the proposition. All
constructions were explicit so that the definition

φp,q,r;1(a, b, c) := x, φp,q,r;2(a, b, c) := y

(with x, y as above) gives rise to two Borel-measurable maps. We omit to make
this precise with some clumsy formulas.

The case K = C, assertion (ii). With an easy modification of the preceding
proof we can also treat part (ii) of the proposition. This time, in Claim 2, we
choose w1, w2 simply as w1 := ε and w2 := c/ε. All other steps are completely
similar. �

We now turn to the proof of Theorem 1.1.
The case p, q, r < ∞. Let ε0 > 0 and f ∈ Lp, g ∈ Lq be given. We have to

find δ0 > 0 such that for h ∈ Lr with ‖h‖r ≤ δ0 one can select d1 ∈ Lp with
‖d1‖p ≤ ε0 and d2 ∈ Lq with ‖d2‖q ≤ ε0 such that (f + d1)(g+ d2) = fg+h; that
is, gd1 + fd2 + d1d2 = h.

Let such f, g be given. We define d1, d2 as follows:

d1(ω) := φp,q,r;1

(
g(ω), f(ω), h(ω)

)
, d2(ω) := φp,q,r;2

(
g(ω), f(ω), h(ω)

)
.

Then d1, d2 are measurable as compositions of A-measurable maps with Borel-
measurable ones. As a consequence of |d1(ω)| ≤ |h(ω)|r/p and |d2(ω)| ≤ |h(ω)|r/q
we have the following estimation:

‖d1‖pp =
∫
Ω

∣∣d1(ω)∣∣p dω ≤
∫
Ω

∣∣h(ω)∣∣r dω = ‖h‖rr;

that is, ‖d1‖p ≤ ‖h‖r/pr , and, similarly, one has ‖d2‖q ≤ ‖h‖r/qr . Thus, it suffices

to choose δ0 so small that δ0 ≤ min{εp/r0 , ε
q/r
0 }. For example, the special case

p = q = 2 and r = 1 leads to the condition δ0 ≤ ε20.
The case q = r < ∞ = p. Here the mappings φε0;1, φε0;2 come into play. If

we use them in the definition of d1, d2, then we know that |d1(ω)| ≤ ε0 and
|d2(ω)| ≤ |h(ω)|/ε0 for all ω. Consequently, ‖d1‖∞ ≤ ε0 and ‖d2‖q ≤ ‖h‖q/ε0.
Hence, it suffices to choose δ0 > 0 so small that δ0/ε0 ≤ ε0; that is, δ0 ≤ ε20.

The case p = r <∞ = q. Here one simply has to reverse the roles of f and g.
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The case p = q = r = ∞. The mappings φ2,2,1;1 and φ2,2,1;2 lead to the desired
result. They provide d1, d2 with (f + d1)(g + d2) = fg + h such that pointwise∣∣d1(ω)∣∣, ∣∣d2(ω)∣∣ ≤ √∣∣h(ω)∣∣.
Therefore, it suffices to put δ0 := ε20, and this completes the proof of Theorem 1.1.

�

It should be noted that one could treat other multiplication maps with the
same approach. Here are two examples.

Example 1. We consider the pointwise multiplication from l∞×c0 to c0. We claim
that this mapping is also uniformly open. Let ε0 > 0, (fn) ∈ l∞, and (gn) ∈ c0
be given. For (hn) ∈ c0 we find with the help of φε0;1 and φε0;2 sequences (dn)
and (d′n) with |dn| ≤ ε0 and |d′n| ≤ |hn|/ε0 that satisfy (f + d)(g + d′) = fg + h.
Then (dn) ∈ l∞ and (d′n) ∈ c0 hold, and ‖(dn)‖ ≤ ε0 and ‖(d′n)‖ ≤ ‖h‖/ε0. Thus,
δ0 := ε20 would be an admissible choice to prove the uniform openness of this
multiplication.

Example 2. Next we investigate pointwise multiplication from l1 × c0 to l1. This
map is also uniformly open.

To prove this claim, we consider any (xn) ∈ l1, (yn) ∈ c0, and a positive ε. Let
δ be any number with 0 < δ < ε2 and (dn) ∈ l1 such that ‖(dn)‖1 ≤ δ. We will
find (x′n) ∈ l1, (y′n) ∈ c0 with ‖(x′n)‖1, ‖(y′n)‖∞ ≤ ε such that(

(xn) + (x′n)
)(
(yn) + (y′n)

)
= (xn)(yn) + (dn);

that is,

xny
′
n + ynx

′
n + x′ny

′
n = dn (n = 1, 2, . . .),

and this would prove the assertion.
In a first step we choose positive c1, c2, . . . such that (cn) ∈ c0 and ‖(cn)‖∞ = 1

such that ‖(dn/
√
cn)‖1 ≤ ε2. (It is an easy exercise to show that such cn’s exist.)

Then we find, with the help of Proposition 3(ii), numbers x′′n, y
′′
n with

|x′′n| ≤ ε, |y′′n| ≤
dn
cn

· 1
ε

such that
xn√
cn
y′′n +

yn√
cn
x′′n + x′′ny

′′
n =

dn
cn
.

Then the numbers x′n := x′′n
√
cn, y

′
n := y′′n

√
cn will have the claimed properties.

Similarly, one can treat a much more general situation. Let K be σ-compact
topological space provided with a Borel measure µ. We denote by L∞

0 (K,µ) the
uniform closure of the collection of functions in L∞(K,µ) that are supported by
a compact subset of K. (This is the natural generalization of c0.) Then pointwise
multiplication from Lp(K,µ)×L∞

0 (K,µ) to Lp(K,µ) is uniformly open for every
p ∈ [1,∞[ (for p = 1 this result is proved in [10]). The crucial ingredient is
again part (ii) of Proposition 3. As a preparation one has to find, for given d ∈
Lp with ‖d‖p < ε2, a positive c ∈ L∞

0 with ‖c‖∞ ≤ 1 and ‖d/c‖p ≤ ε2. The
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proposition provides the desired functions as in the previous discrete example.
(The measurability can be guaranteed by σ-compactness. Due to this property,
it suffices to glue together measurable functions that are defined on a countable
partition of K.)

3. Multilinear maps

We start with a combinatorial result. Fix n ∈ N with n ≥ 2, and denote by
In the set of nonempty subsets α of {1, . . . , n}. As before, K denotes the field
R of real or the field C of complex numbers. For a given family a = (aα)α∈In of
elements of K, we consider the polynomial Pa : Kn → K that is defined by

Pa(z1, . . . , zn) :=
∑
α∈In

aα
∏
i∈α

zi.

For example, if n = 3, then Pa has the form

a1z1 + a2z2 + a3z3 + a12z1z2 + a13z1z3 + a23z2z3 + a123z1z2z3;

here and in the sequel we will use the notation a1 for a{1}, and so on. (Such poly-
nomials, where there are no powers larger than one, are called 0–1-polynomials.)

It will be convenient to write ~z for the elements of Kn, and we will abbreviate
the expression

∏
i∈α zi by ~z

α.
Our main result on the range of such polynomials reads as follows.

Proposition 3.1. Let a = (aα)α∈In be given such that a12···n = 1. Then the set{
Pa(~z)

∣∣ |z1|, . . . , |zn| ≤ 1
}

contains all w ∈ K with |w| ≤ 1.

Proof. First we consider the case K = R.
Let (aα)α∈In be a family of real numbers as in the proposition. Then the fol-

lowing combinatorial result holds.

Claim.

(i) There exists σ = (σ1, . . . , σn) ∈ {−1, 1}n with σ1 · · · σn = 1 such that∑
α∈In,α 6={1,...,n}

aα~σ
α ≥ 0.

(ii) Also, one can find σ = (σ1, . . . , σn) ∈ {−1, 1}n with σ1 · · ·σn = −1 such
that ∑

α∈In,α 6={1,...,n}

aα~σ
α ≤ 0.

As an illustration we consider an example in the case n = 3. We choose the six
real numbers

a1 = 2, a2 = −10, a3 = 0, a12 = 6, a13 = 3, a23 = −6,

and it is claimed that it is possible to find σ1, σ2, σ3 ∈ {−1,+1} with σ1σ2σ3 = 1
such that

σ1a1 + σ2a2 + σ3a3 + σ1σ2a12 + σ1σ2a12 + σ2σ3a23 ≥ 0.



490 M. BALCERZAK, E. BEHRENDS, and F. STROBIN

And really, σ1 = 1, σ2 = −1, and σ3 = −1 have this property. Similarly, one can
provide σ1, σ2, σ3 ∈ {−1,+1} with σ1σ2σ3 = −1 (e.g., σ1 = 1, σ2 = 1, σ3 = −1)
in this case such that

σ1a1 + σ2a2 + σ3a3 + σ1σ2a12 + σ1σ2a12 + σ2σ3a23 ≤ 0.

Proof of the Claim. Chooseaprobability space (Ω, E ,P) and identicallydistributed
independent random variables X1, . . . , Xn : Ω → {−1,+1} such that P(Xi =
±1) = 0.5 for all i.

For a proper subset α of {1, . . . , n} we put Xα :=
∏

i∈αXi, and the random
variable X is defined by

∏n
i=1Xi. Then

∫
{X=1}Xα dP = 0.

To prove this, let Y be the product of the spacesXi with i /∈ α. ThenX = XαY ,
and Xα, Y are independent and uniformly distributed on {−1, 1}. It follows that∫

{X=1}
Xα dP =

∫
{Xα=Y=1}

Xα dP+

∫
{Xα=Y=−1}

Xα dP = 1/4− 1/4 = 0.

Let Z be the random variable ∑
α∈In,α 6={1,...,n}

aα
∏
i∈α

Xi.

By our claim, the integral
∫
{X=1} Z dP vanishes so that there must be ω ∈ Ω with

X(ω) = 1 and Z(ω) ≥ 0. With σi := Xi(ω) we thus have found σ1, . . . , σn ∈
{−1, 1} with σ1 · · ·σn = 1 and

∑
α∈In,α 6={1,...,n} aα

∏
i∈α σi ≥ 0.

(ii) The proof is similar; this time one works with the integral over {X =
−1}. �

Now the proposition can easily be proved: by the claim there are numbers not
smaller than 1 and not larger than −1 in {Pa(~z) | |z1|, . . . , |zn| ≤ 1}, and, since
this set is obviously connected, it will also contain [−1, 1].

It remains to treat the case K = C. There, a much stronger variant of the
proposition holds: one can even consider tuples (z1, . . . , zn) so that z1 = · · · = zn
and |zi| ≤ 1.

This follows at once from the following observation.
Let b1, . . . , bn−1 be complex numbers and P the polynomial

z 7→ b1z + b2z
2 + · · ·+ bn−1z

n−1 + zn.

Then for every w0 with |w0| ≤ 1 there exists a z0 ∈ C such that |z0| ≤ 1 and
P (z0) := w0.

To prove this, fix an arbitrary w0 ∈ C. We consider the polynomial z 7→
−w0 +P (z). It can be written as (z− z1) · · · (z− zn) with suitable z1, . . . , zn. We
have P (zj) = w0 for every j and −w0 = (−1)nz1 · · · zn. Thus, there must be a j

with |zj| ≤ n
√

|w0| ≤ 1, and this implies our claim. �

After these preparations we are ready for the proof of Theorem 1.2.
Choose any (ŷ1, . . . , ŷn) ∈ X1 × · · · × Xn such that T (ŷ1, . . . , ŷn) = 1. Fix an

ε > 0 and find η > 0 so small that ‖ηŷi‖ ≤ ε for all i. (For simplicity the norm
will be denoted by the same symbol ‖·‖ for all spaces under consideration.) Then,
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for arbitrary (x1, . . . , xn) ∈ X1 × · · · × Xn and z1, . . . , zn with |z1|, . . . , |zn| ≤ 1,
the number

T (x1 + ηz1ŷ1, . . . , xn + ηznŷn)− T (x1, . . . , xn)

is of the form Pa(z1, . . . , zn) (with a12···n = ηn) for suitable aα as a consequence
of the fact that T is multilinear. Thus, by Proposition 3.1, all w ∈ B(0, ηn) can
be written in this form with suitable z ∈ Kn that satisfy |z1|, . . . , |zn| ≤ 1. This
means that δ := ηn has the claimed properties.

4. Quantitative results and invitations to further study

We will check whether our choice of δ, witnessing the uniform openness in
Theorems 1.1 and 1.2, is optimal. Let f : X → Y be a uniformly open map
between metric spaces X and Y . Then the function Mf : ]0,∞] → ]0,∞] given by

Mf (ε) := sup
{
δ > 0

∣∣ B(
f(x), δ

)
⊂ f

[
B(x, ε)

]
for all x ∈ X

}
is called the modulus of uniform openness of f .

First, consider pointwise multiplication Φ: Lp × Lq → Lr in Theorem 1.1.
From the final part of the proof of this theorem it follows that we could choose
δ := min{εp/r, εq/r} if p, q ∈ ]1,∞[, and δ = ε2 otherwise; hence, MΦ(ε) ≥
min{εp/r, εq/r} if p, q ∈ ]1,∞[, and MΦ(ε) ≥ ε2 otherwise.

On the other hand, if f ∈ Lp and g ∈ Lq are such that ‖fg‖r ≥ ε2, then, by
the Hölder inequality,

ε2 ≤ ‖fg‖r ≤ ‖f‖p · ‖g‖q,

and so ‖f‖p ≥ ε or ‖g‖q ≥ ε; hence, MΦ(ε) ≤ ε2 and thus we have min{εp/r,
εq/r} ≤ MΦ(ε) ≤ ε2. In particular, in each of the following cases, (i) p = q = 2
and r = 1; (ii) p = ∞; (iii) q = ∞, we get the equality.

It would be interesting to find the exact value ofMΦ(ε) for the remaining cases.
Now, consider n-linear functionals as in Theorem 1.2. If T : X1×· · ·×Xn → K

is n-linear, then we set ‖T‖ := sup{‖T (x1, . . . , xn)‖ : xi ∈ Xi, ‖xi‖ ≤ 1}. It is
well known that ‖T‖ <∞ if and only if T is continuous, and that ‖ · ‖ is a norm
on the space of all continuous n-linear functionals.

Proposition 4.1. Let X1, . . . , Xn be normed spaces over K ∈ {R,C}, and let T
be a nontrivial n-linear functional from X1×· · ·×Xn to K. Then MT (ε) = ‖T‖εn
for all ε > 0. In particular,MT (ε) = ∞ for every ε > 0 when T is not continuous.

Proof. Fix ε > 0 and σ > 0 with σ < ‖T‖. Pick any (y1, . . . , yn) ∈ X1 ×
· · · × Xn such that ‖yi‖ = 1 for all i = 1, . . . , n, and σ < T (y1, . . . , yn) ≤
‖T‖. Set λ := (T (y1, . . . , yn))

1/n, and set (ŷ1, . . . , ŷn) := (y1/λ, . . . , yn/λ). Then
T (ŷ1, . . . , ŷn) = 1. By the final part of the proof of Theorem 1.2, we obtain

MT (ε) ≥ (λε)n = T (y1, . . . , yn)ε
n ≥ σεn,

and, since σ < ‖T‖ is arbitrary, we have MT (ε) ≥ ‖T‖εn. In particular, if T is
not continuous, then we obtain MT (ε) = ∞.
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Now we show the opposite inequality in the case when T is continuous. Let
z := ‖T‖εn and assume that T (x1, . . . , xn) = z. Then

‖T‖εn = T (x1, . . . , xn)

= ‖x1‖ · · · ‖xn‖T
( x1
‖x1‖

, . . . ,
xn

‖xn‖

)
≤ ‖x1‖ · · · ‖xn‖‖T‖.

Hence, ‖x1‖ · · · ‖xn‖ ≥ εn, and so ‖xi‖ ≥ ε for some i = 1, . . . , n. Therefore,
z /∈ T [B(0, ε)] and MT (ε) ≤ ‖T‖εn. �

Now, let us calculate the modulus of openness for pointwise multiplication in
the finite-dimensional case.

Example. For every integer n ≥ 1, consider the multiplication Φn : Kn×Kn → Kn,
where K ∈ {R,C} and Kn is provided with the Euclidean norm. In this case,
MΦn(ε) = ε2/

√
n, and so it depends strongly on n; indeed, by Proposition 4.1

we obtain MΦ1(ε) = ε2. Now fix any n > 1, ε > 0 and any x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ Kn. Choose z = (z1, . . . , zn) ∈ Kn such that ‖z−xy‖ < ε2/

√
n.

Then there are δ1, . . . , δn > 0 such that |xiyi − zi| < δi for i = 1, . . . , n and√√√√ n∑
i=1

δ2i <
ε2√
n
.

Now, using MΦ1 , for every i = 1, . . . , n pick x′i, y
′
i such that |xi − x′i| <

√
δi,

|yi − y′i| <
√
δi, and zi = x′iy

′
i. Hence, by the Hölder inequality,

‖x− x′‖ <

√√√√ n∑
i=1

δi ≤

√√√√√√
n

√√√√ n∑
i=1

δ2i ≤

√
√
n
ε2√
n
= ε,

and, in the same way, ‖y− y′‖ < ε; hence, MΦn(ε) ≥ ε2/
√
n. Now let δ := ε2/

√
n

and take z := (δ/
√
n, . . . , δ/

√
n). Then ‖z‖ = δ, and if x = (x1, . . . , xn) and

y = (y1, . . . , yn) are such that z = xy, then, by the Hölder inequality, we have√√√√ n∑
i=1

x2i

√√√√ n∑
i=1

y2i ≥
n∑

i=1

|xiyi| =
n∑

i=1

zi =
√
nδ = ε2.

Thus, MΦn(ε) ≤ ε2/
√
n.

Finally, let us state some open problems concerning the openness of bilinear
maps.

1. It is interesting to establish whether the notion of uniform openness is es-
sentially stronger than the notion of openness for the class of continuous bilinear
surjective operators between Banach spaces.

2. Let BV [0, 1] stand for the Banach algebra of real-valued functions on [0, 1]
of bounded variation with the norm ‖f‖ := |f(0)|+V (f, [0, 1]), where V (f, [0, 1])
denotes the total variation of f on [0, 1]. We do not know whether pointwise
multiplication in BV [0, 1] is open.
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3. Consider the Cauchy product of series as a bilinear continuous map from
l1× l1 onto l1. We do not know whether it is open. Note that the Cauchy product
is a particular case of the operation of convolution. In general, consider the Banach
algebra L1(G) of µ-integrable functions with respect to the Haar measure where G
is a locally compact Hausdorff topological group. One can ask about the openness
of the operator of convolution between L1(G)× L1(G) and L1(G).

4. Let A(X) denote the Banach algebra of bounded linear operators from a
Banach space X (over K ∈ {R,C}) onto itself. In [3], an example of X is given
where the operator of composition ◦ in A(X) is not open and the same argument
works in both of the cases R and C. We would like to obtain sufficient and/or
necessary conditions on X for the openness of ◦, or to decide whether ◦ is open for
some concrete algebras A(X). For instance, consider the algebra of 2×2 matrices
with terms in K (they are associated with linear maps from K2 onto K2). Is the
map, which associates with two such matrices their product, an open map?
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