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Abstract. Let (Ω,F ,P) be a probability space, and let ϕ : Ω × [0,∞) →
[0,∞) be a Musielak–Orlicz function. In this article, we establish the atomic
characterizations of weak martingale Musielak–Orlicz Hardy spaces WH s

ϕ(Ω),

WHM
ϕ (Ω), WH S

ϕ(Ω), WPϕ(Ω), and WQϕ(Ω). We then use these atomic char-
acterizations to obtain the boundedness of σ-sublinear operators from weak
martingale Musielak–Orlicz Hardy spaces to weak Musielak–Orlicz spaces, as
well as some martingale inequalities which further clarify the relationships
among these weak martingale Musielak–Orlicz Hardy spaces. All these results
improve and generalize the corresponding results on weak martingale Orlicz–
Hardy spaces. Moreover, we improve all the known results on weak martin-
gale Musielak–Orlicz Hardy spaces. In particular, both the boundedness of
σ-sublinear operators and the martingale inequalities, for weak weighted mar-
tingale Hardy spaces as well as for weak weighted martingale Orlicz–Hardy
spaces, are new.

1. Introduction

The weak Hardy space WH 1(Rn) was originally introduced by Fefferman and
Soria [9] to find out the biggest space from which the Hilbert transform is bounded
to the weak Lebesgue space WL1(Rn). The ∞-atomic decomposition of WH 1(Rn)
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and the boundedness of some Calderón–Zygmund operators from WH 1(Rn) to
WL1(Rn) were also established in [9]. As is well known, for any p ∈ (0, 1], the
weak Hardy spaces WH p(Rn) naturally appear and prove a good substitute of
Hardy spaces Hp(Rn) when studying the boundedness of operators in the critical
case (see, e.g., [24], [3], [2]). It should also be pointed out that Fefferman, Rivière,
and Sagher [8] proved that the weak Hardy spaces are the intermediate spaces of
Hardy spaces in the real interpolation method.

Recently, various martingale Hardy spaces have been investigated (see, e.g.,
Weisz [33], [34], [36], Ho [13], [11], Nakai, Miyamoto, Sadasue, and Sawano in [29],
[30], and [31], Sadasue [32], Jiao [18], and Xie, Jiao, and Yang in [37] for several
different martingale Hardy spaces and their applications). Observe that weak
martingale Hardy spaces naturally appear when studying the interpolation spaces
between martingale Hardy spaces (see [34, Chapter 5] for more details). Moreover,
the theory of weak martingale Hardy spaces has also been developed rapidly.
Weak Hardy spaces consisting of Vilenkin martingales were originally studied by
Weisz in [35] and then later fully generalized by Hou and Ren in [14]. Inspired by
this earlier work, Jiao [16], Jiao, Wu, and Peng [17], and Liu, along with Zhou
and Peng in [26] and [25], investigated weak martingale Orlicz–Hardy spaces
associated with concave functions. In [41], Zhou, Wu, and Jiao introduced weak
martingale Orlicz–Karamata–Hardy spaces associated with concave functions and
established their atomic characterizations.

On the other hand, as a generalization of the Orlicz space and the weighted
Lebesgue space, the Musielak–Orlicz space has proved very useful in partial dif-
ferential equations and image filtering (see, e.g., [1], [19], and references therein).
As a suitable substitute of the Musielak–Orlicz space in dealing with some prob-
lems of analysis such as the boundedness of operators, Ky [21] introduced the
Musielak–Orlicz Hardy space, which plays a key role in establishing sharp end-
point estimates for the div-curl lemma and the boundedness of commutators
generated by Calderón–Zygmund operators and BMO(Rn) functions (see, e.g.,
[5], [20], [40]). Very recently, Ho [12] and Fu and Yang [10] established the intrinsic
atomic and molecular characterizations, as well as the wavelet characterizations
of Musielak–Orlicz Hardy spaces, respectively. Moreover, Liang, Yang, and Jiang
[23] introduced and studied the weak Musielak–Orlicz Hardy space, which has
proved useful in establishing the endpoint boundedness of Calderón–Zygmund
operators (see [23], [40]) and parametric Marcinkiewicz integrals with rough ker-
nels (see [22]). We also refer the reader to the monograph [40] for a complete
survey of recent progress made on the real-variable theory of the Musielak–Orlicz
Hardy space on Rn.

The martingale Musielak–Orlicz Hardy space was also investigated in [37] and
[38]. In [39], Yang introduced weak martingale Musielak–Orlicz Hardy spaces
which are a generalization of weak martingale Orlicz–Hardy spaces (see, e.g., [17]).
Moreover, Yang also established in [39] the atomic characterizations of weak mar-
tingale Musielak–Orlicz Hardy spaces and the boundedness of σ-sublinear opera-
tors from weak martingale Musielak–Orlicz Hardy spaces to weak Musielak–Orlicz
spaces.
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Let (Ω,F ,P) be a probability space. A function ϕ : Ω×[0,∞) → [0,∞) is called
a Musielak–Orlicz function if the function ϕ(·, t) is a measurable function for any
given t ∈ [0,∞), and the function ϕ(x, ·) : [0,∞) → [0,∞) is an Orlicz function
for almost every given x ∈ Ω; namely, ϕ(x, ·) is nondecreasing, ϕ(x, 0) = 0,
ϕ(x, t) > 0 for any t ∈ (0,∞), and limt→∞ ϕ(x, t) = ∞. For any p ∈ (0,∞), a
Musielak–Orlicz function ϕ is said to be of uniformly lower (resp., upper) type p
if there exists a positive constant C(p), depending on p, such that

ϕ(x, st) ≤ C(p)s
pϕ(x, t) (1.1)

for any x ∈ Ω and t ∈ [0,∞), s ∈ (0, 1) (resp., s ∈ [1,∞)) (see [40] for more
details).

Recall that the following assumption is needed through [39].

Assumption 1.A. Let ϕ be a Musielak–Orlicz function, and let ϕ be of uniformly
lower type p ∈ (0, 1] and of uniformly upper type 1.

Observe that Assumption 1.A is quite restrictive. Indeed, for any given p ∈
(1,∞), if ϕ(x, t) := tp for any x ∈ Ω and t ∈ (0,∞), then ϕ is of uniformly
lower type p and also of uniformly upper type p. However, in this case, ϕ is not
of uniformly upper type 1. Thus, under Assumption 1.A, all the results in [39]
cannot cover the corresponding results on weak Lebesgue spaces WLp(Ω) with
any given p ∈ (1,∞) in [35] and [14].

On the other hand, Jiao, Wu, and Peng [17] studied weak martingale Orlicz–
Hardy spaces under the following assumption. For any ` ∈ (0, 1], let G` be the set
of all Orlicz functions Φ satisfying that Φ is of lower type ` and of upper type
1 (see, e.g., [17], [29]). Let Φ be a concave function, and let Φ′ be its derivative
function. Its lower index and its upper index of Φ are defined, respectively, by
setting

pΦ := inf
t∈(0,∞)

tΦ′(t)

Φ(t)
and qΦ := sup

t∈(0,∞)

tΦ′(t)

Φ(t)
. (1.2)

All the results in [17] need the assumptions that Φ ∈ G` for some ` ∈ (0, 1] and
qΦ−1 ∈ (0,∞), where Φ−1 denotes the inverse function of Φ. Observe that, when
ϕ(x, t) := Φ(t) for any x ∈ Ω and t ∈ (0,∞), ϕ satisfies Assumption 1.A if and
only if Φ ∈ G` for some ` ∈ (0, 1].

The first goal of this article is to weaken Assumption 1.A of [39] and to remove
the unnecessary assumption qΦ−1 ∈ (0,∞) of [17]. Indeed, instead of Assumption
1.A, in this article, we always make the following assumption.

Assumption 1.1. Let ϕ be a Musielak–Orlicz function, and let ϕ be of uniformly
lower type p−ϕ for some p−ϕ ∈ (0,∞) and of uniformly upper type p+ϕ for some
p+ϕ ∈ (0,∞).

In this article, under Assumption 1.1, we first establish the atomic character-
izations of weak martingale Musielak–Orlicz Hardy spaces WH s

ϕ(Ω), WHM
ϕ (Ω),

WH S
ϕ(Ω), WPϕ(Ω), and WQϕ(Ω). Using these atomic characterizations, we then

obtain the boundedness of σ-sublinear operators from weak martingale Musielak–
Orlicz Hardy spaces to weak Musielak–Orlicz spaces, as well as some martingale
inequalities which further clarify the relationships among WH s

ϕ(Ω), WHM
ϕ (Ω),
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WH S
ϕ(Ω), WPϕ(Ω), and WQϕ(Ω). All these results improve and generalize the

corresponding results on weak martingale Orlicz–Hardy spaces (see [17]). More-
over, we also improve all the results on weak martingale Musielak–Orlicz Hardy
spaces in [39]. In particular, both the boundedness of σ-sublinear operators and
the martingale inequalities, for weak weighted martingale Hardy spaces as well
as for weak weighted martingale Orlicz–Hardy spaces, are new.

To be precise, this article is organized as follows. In Section 2, we first recall
some notation and notions on Musielak–Orlicz functions, weak Musielak–Orlicz
spaces, and weak martingale Musielak–Orlicz Hardy spaces. Then we introduce
various weak atomic martingale Musielak–Orlicz Hardy spaces.

Section 3 is devoted to establishing the atomic characterizations of spaces
WH s

ϕ(Ω), WHM
ϕ (Ω), WH S

ϕ(Ω), WPϕ(Ω), and WQϕ(Ω) (see Theorems 3.1, 3.2,
and 3.5 below). The above five weak martingale Musielak–Orlicz Hardy spaces
contain weak weighted martingale Hardy spaces, weak martingale Orlicz–Hardy
spaces as in [17], and weak variable martingale Hardy spaces as special cases
(see Remark 2.6 below for more details). Recall that, even for weak martin-
gale Hardy spaces in [35] and [14], only the ∞-atomic characterizations are
known. Nevertheless, in this article we establish the q-atomic characteriza-
tions for any q ∈ (max{p+ϕ , 1},∞], where p+ϕ denotes the uniformly upper type
index of ϕ. Moreover, in [17] for weak martingale Orlicz–Hardy spaces and
[39] for weak martingale Musielak–Orlicz Hardy spaces, the results of atomic
characterizations need the index p+ϕ = 1. Differently from [17] and [39], we
allow p+ϕ ∈ (0,∞) in Theorems 3.1, 3.2, and 3.5 below. So, the classical argu-
ment used in the proofs of [14, Theorem 1] and [17, Theorem 2.1] does not
work here anymore. We overcome this difficulty by using some ideas from the
proof of [23, Theorem 3.5] and constructing some appropriate atoms (see the
proofs of Theorems 3.1 and 3.5). Moreover, our atomic characterizations of
weak martingale Musielak–Orlicz Hardy spaces cover weak variable martingale
Hardy spaces, weak weighted martingale Hardy spaces, and weak weighted
martingale Orlicz–Hardy spaces, which are also new (see Remarks 3.3 and 3.6
below).

In Section 4, we study the boundedness of σ-sublinear operators on weak mar-
tingale Musielak–Orlicz Hardy spaces. Recall that, for a martingale space X and
a measurable function space Y , an operator T : X → Y is called a σ-sublinear
operator if, for any {fk}k∈N ⊂ X and λ ∈ C,∣∣∣T(∑

k∈N

fk

)∣∣∣ ≤ ∑
k∈N

∣∣T (fk)∣∣ and
∣∣T (λf)∣∣ ≤ |λ|

∣∣T (f)∣∣.
The boundedness of σ-sublinear operators from weak martingale Hardy spaces
to weak Lebesgue spaces was studied in [14] and [35], and from weak martingale
Orlicz–Hardy spaces to weak Orlicz spaces in [17]. All these results need the
assumption that σ-sublinear operators T are bounded on Lq(Ω) for some q ∈ [1, 2]
or some q ∈ [1,∞). In particular, Yang [39, Theorem 4.2] also gave some sufficient
conditions for a σ-sublinear operator T to be bounded from weak martingale
Musielak–Orlicz Hardy spaces to weak Musielak–Orlicz spaces. In what follows,
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for any measurable set E ⊆ Ω and t ∈ [0,∞), let

ϕ(E, t) :=

∫
E

ϕ(x, t) dP.

The following assumption on ϕ is needed in Yang [39, Theorems 4.2–4.5].

Assumption 1.B.

(i) Let T be a σ-sublinear operator bounded on L2(Ω).
(ii) Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.A, and sup-

pose that there exist two positive constants B and D such that, for any
measurable subset E ⊆ Ω, x ∈ Ω and t ∈ (0,∞),

Bϕ(x, t)P(E) ≤ ϕ(E, t) ≤ Dϕ(x, t)P(E). (1.3)

Observe that (1.3) is also quite restrictive. Indeed, using (1.3) with E = Ω, we
find that, for any x ∈ Ω and t ∈ (0,∞),

1

D
ϕ(Ω, t) ≤ ϕ(x, t) ≤ 1

B
ϕ(Ω, t).

Thus, Assumption 1.B(ii) requires ϕ to be essentially an Orlicz function. More-
over, [39, Theorems 4.2–4.5] do not cover the very important case, namely, the
weighted case.

Note that all these assumptions for the boundedness of σ-sublinear operators
used in [14], [17], [35], and [39] ensure that T is bounded from some martin-
gale Hardy spaces to some Lebesgue spaces, which, together with the fact that
Musielak–Orlicz functions unify Orlicz functions and weights, motivates us to
introduce the following assumption.

Assumption 1.2. Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.1.
Let T be a σ-sublinear operator satisfying one of the following:

(i) For some given q ∈ (p+ϕ ,∞), there exists a positive constant C such that,
for any (ϕ,∞)s-atom a and any t ∈ (0,∞),∥∥T (a)∥∥

Lq(Ω,ϕ(·,t) dP) ≤ C‖a‖Hs
q (Ω,ϕ(·,t) dP).

(ii) For some given q ∈ (p+ϕ ,∞), there exists a positive constant C such that,
for any (ϕ,∞)S-atom a and any t ∈ (0,∞),∥∥T (a)∥∥

Lq(Ω,ϕ(·,t) dP) ≤ C‖a‖HS
q (Ω,ϕ(·,t) dP).

(iii) For some given q ∈ (p+ϕ ,∞), there exists a positive constant C such that,
for any (ϕ,∞)M -atom a and any t ∈ (0,∞),∥∥T (a)∥∥

Lq(Ω,ϕ(·,t) dP) ≤ C‖a‖HM
q (Ω,ϕ(·,t) dP).

(See Section 2 for the definitions of these spaces and atoms.)

In Section 4 of this article, under Assumption 1.2, we obtain the boundedness
of σ-sublinear operators from WH s

ϕ(Ω) (resp., WHM
ϕ (Ω), WH S

ϕ(Ω), WPϕ(Ω), or
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WQϕ(Ω)) to WLϕ(Ω) (see Theorems 4.1, 4.2, and 4.3 below). In particular, we
obtain the same results as in [39] via replacing Assumption 1.B by Assump-
tion 1.2.

Observe that Assumption 1.2 is much weaker than Assumption 1.B. Indeed,
Assumption 1.1 is weaker than Assumption 1.A, and (1.3) in Assumption 1.B is
not needed in Assumption 1.2. Moreover, under Assumption 1.B, we find that
p+ϕ = 1 and the weighted Hardy space Hs

2(Ω, ϕ(·, t) dP) (resp., HS
q (Ω, ϕ(·, t) dP)

or HM
q (Ω, ϕ(·, t) dP)) becomes the martingale Hardy space Hs

2(Ω) (resp., H
S
2 (Ω)

or HM
2 (Ω)), which, together with the boundedness of T on L2(Ω) and the bound-

edness of the operator s (resp., S or M) on L2(Ω) (see, e.g., [34, Proposition
2.6, Theorems 2.11–2.12]), further implies that Assumption 1.2 holds true. Thus,
compared with Assumption 1.B, Assumption 1.2 is much weaker. In particular,
Theorems 4.1, 4.2, and 4.3 of this article indeed improve [14, Theorems 4–6], [17,
Theorem 3.1, Remark 3.2], and [39, Theorems 4.2–4.4], respectively (see Remark
4.4 below for more details).

Also, in this section, using Theorems 4.1 and 4.2, we obtain some martin-
gale inequalities among the spaces WH s

ϕ(Ω), WHM
ϕ (Ω), WH S

ϕ(Ω), WPϕ(Ω), and
WQϕ(Ω), which further clarify the relations among these spaces, in Theorem 4.6
below. Moreover, Theorem 4.6 generalizes and improves the corresponding results
on weak martingale Orlicz–Hardy spaces in [17, Theorem 3.3] (see Remark 4.7
below for details).

In Section 5, the last section of this article, we obtain some bounded conver-
gence theorems and dominated convergence theorems on weak Musielak–Orlicz
spaces WLϕ(Ω) (see Theorems 5.8 and 5.9 below), which are of independent inter-
est.

Finally, we describe some conventions on notation used throughout this article.
We always let N := {1, 2, . . .}, Z+ := N ∪ {0}, and we let C denote a positive
constant, which may vary from line to line. We use the symbol f . g to denote
that there exists a positive constant C such that f ≤ Cg. The symbol f ∼ g is
used as an abbreviation of f . g . f . We also use the following convention. If
f ≤ Cg and g = h or g ≤ h, we then write f . g ∼ h or f . g . h, rather than
f . g = h or f . g ≤ h. For any subset E of Ω, denote by 1E its characteristic
function. For any p ∈ [1,∞], let p′ denote the conjugate number of p, namely,
1/p+ 1/p′ = 1.

2. Preliminaries

In this section, we first recall some notation and notions on Musielak–Orlicz
functions, weak Musielak–Orlicz spaces, and weak martingale Musielak–Orlicz
Hardy spaces, and then we introduce various weak atomic martingale Musielak–
Orlicz Hardy spaces.

Let L0(Ω) denote the set of all measurable functions f on Ω. Now we introduce
the notion of the weak Musielak–Orlicz space.

Definition 2.1. Let ϕ be a Musielak–Orlicz function. The weak Musielak–Orlicz
space WLϕ(Ω) is defined to be the set of all f ∈ L0(Ω) such that
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‖f‖WLϕ(Ω) := inf
{
λ ∈ (0,∞) : sup

α∈(0,∞)

ϕ
({

x ∈ Ω :
∣∣f(x)∣∣ > α

}
,
α

λ

)
≤ 1

}
is finite.

Let p ∈ (0,∞), and let Φ be an Orlicz function. If ϕ(x, t) := tp or Φ(t) for
any x ∈ Ω and t ∈ (0,∞), then WLϕ(Ω) becomes the weak Lebesgue space
WLp(Ω) (see, e.g., [35]) or the weak Orlicz space WLΦ(Ω) (see, e.g., [17]). Here
and thereafter, WLp(Ω) denotes the set of all f ∈ L0(Ω) such that

‖f‖WLp(Ω) := sup
α∈(0,∞)

α
[
P
({

x ∈ Ω :
∣∣f(x)∣∣ > α

})] 1
p

is finite, and WLΦ(Ω) denotes the set of all f ∈ L0(Ω) such that

‖f‖WLΦ(Ω) := inf
{
λ ∈ (0,∞) : sup

α∈(0,∞)

Φ
(α
λ

)
P
({

x ∈ Ω :
∣∣f(x)∣∣ > α

})
≤ 1

}
is finite.

Remark 2.2.

(i) If a Musielak–Orlicz function ϕ is of uniformly upper type p+ϕ for some
p+ϕ ∈ (0,∞), then there exists a positive constant C such that, for any
measurable functions f and g,

‖f + g‖WLϕ(Ω) ≤ C
[
‖f‖WLϕ(Ω) + ‖g‖WLϕ(Ω)

]
.

Indeed, by the uniformly upper type p+ϕ property of ϕ, we find that, for
any λ ∈ (0,∞),

sup
α∈(0,∞)

ϕ
({

x ∈ Ω :
∣∣f(x) + g(x)

∣∣ > α
}
,
α

λ

)
. sup

α∈(0,∞)

ϕ
({

x ∈ Ω :
∣∣f(x)∣∣ > α

2

}
,
α

2λ

)
+ sup

α∈(0,∞)

ϕ
({

x ∈ Ω :
∣∣g(x)∣∣ > α

2

}
,
α

2λ

)
∼ sup

α∈(0,∞)

ϕ
({

x ∈ Ω :
∣∣f(x)∣∣ > α

}
,
α

λ

)
+ sup

α∈(0,∞)

ϕ
({

x ∈ Ω :
∣∣g(x)∣∣ > α

}
,
α

λ

)
.

Then the above claim follows immediately.
(ii) Obviously, if ϕ is both of uniformly lower type p1 and of uniformly upper

type p2, then p1 ≤ p2. Moreover, if ϕ is of uniformly lower (resp., upper)
type p, then it is also of uniformly lower (resp., upper) type p̃ for any
p̃ ∈ (0, p) (resp., p̃ ∈ (p,∞)).

(iii) Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.1. If there
exist an Orlicz function Φ and two positive constants B and D such that,
for any x ∈ Ω and t ∈ (0,∞),

BΦ(t) ≤ ϕ(x, t) ≤ DΦ(t),
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then, for any f ∈ WLϕ(Ω), ‖f‖WLϕ(Ω) ∼ ‖f‖WLΦ(Ω) with the positive
equivalence constants independent of f .

Let {Fn}n∈Z+ be an increasing sequence of sub-σ-algebras of F , and let
{En}n∈Z+ be the associated conditional expectations. Let w be a strictly positive
function satisfying

∫
Ω
w(x) dP < ∞. The weight we consider in this article is

a special weight {En(w)}n∈Z+ , the martingale generated by w, with respect to
(Ω,F ,P, {Fn}n∈Z+). In what follows, with an abuse of notation, we denote this
weight simply by w := {En(w)}n∈Z+ . In particular, if ϕ is a Musielak–Orlicz
function which is strictly positive and satisfies supt∈(0,∞)

∫
Ω
ϕ(x, t) dP < ∞, we

then write ϕ(·, t) := {ϕn(·, t)}n∈Z+ := {En(ϕ(·, t))}n∈Z+ for any t ∈ (0,∞).
The following weighted condition is due to Izumisawa and Kazamaki [15, p.

115].

Definition 2.3. Let q ∈ [1,∞). A positive Musielak–Orlicz function ϕ : Ω ×
[0,∞) → [0,∞) is said to satisfy the uniformly Aq(Ω) condition, denoted by
ϕ ∈ Aq(Ω), if there exists a positive constant K such that, when q ∈ (1,∞),

sup
n∈Z+

sup
t∈(0,∞)

En(ϕ)(·, t)
[
En(ϕ

− 1
q−1 )(·, t)

]q−1 ≤ K P-a.e.

and, when q = 1,

sup
n∈Z+

sup
t∈(0,∞)

En(ϕ)(·, t)
1

ϕ(·, t)
≤ K P-a.e.

A positive Musielak–Orlicz function ϕ is said to belong to A∞(Ω) if ϕ ∈ Aq(Ω)
for some q ∈ [1,∞).

The following S condition arises naturally when dealing with weighted mar-
tingale inequalities. We refer to Doléans-Dade and Meyer [7] and Bonami and
Lépingle [6] for more details.

Definition 2.4. Let t ∈ [0,∞). The martingale ϕ(·, t) := {ϕn(·, t)}n∈Z+ is said to
satisfy the uniformly S condition, denoted by ϕ ∈ S, if there exists a positive
constant K such that, for any n ∈ N, t ∈ (0,∞) and almost every x ∈ Ω,

1

K
ϕn−1(x, t) ≤ ϕn(x, t) ≤ Kϕn−1(x, t). (2.1)

The conditions S− and S+ denote two parts of S satisfying only the left-hand or
the right-hand sides of the preceding inequalities, respectively.

Let w be a special weight on Ω, and let ϕ(x, t) := w(x) for any x ∈ Ω and
t ∈ (0,∞). Then Definitions 2.3 and 2.4 go back to the original weighted definition
(see, e.g., [7], [15]).

Denote by M the set of all martingales f := (fn)n∈Z+ related to {Fn}n∈Z+

such that f0 = 0. For any f ∈ M, denote its martingale difference sequence by
{dnf}n∈N, where dnf := fn − fn−1 for any n ∈ N. Then the maximal functions
Mn(f) and M(f), the quadratic variations Sn(f) and S(f), and the conditional
quadratic variations sn(f) and s(f) of the martingale f are defined, respectively,
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by setting

Mn(f) := sup
0≤i≤n

|fi|, M(f) := sup
n∈Z+

|fn|,

Sn(f) :=
( n∑

i=1

|dif |2
) 1

2
, S(f) :=

( ∞∑
i=1

|dif |2
) 1

2
,

sn(f) :=
( n∑

i=1

Ei−1|dif |2
) 1

2
and s(f) :=

( ∞∑
i=1

Ei−1|dif |2
) 1

2
.

Definition 2.5. Let ϕ be a Musielak–Orlicz function. The weak martingale
Musielak–Orlicz Hardy spaces WHM

ϕ (Ω), WH S
ϕ(Ω), and WH s

ϕ(Ω) are defined,
respectively, as follows:

WHM
ϕ (Ω) :=

{
f ∈ M : ‖f‖WHM

ϕ (Ω) :=
∥∥M(f)

∥∥
WLϕ(Ω)

< ∞
}
,

WH S
ϕ(Ω) :=

{
f ∈ M : ‖f‖HS

ϕ
:=

∥∥S(f)∥∥
WLϕ(Ω)

< ∞
}
,

and

WH s
ϕ(Ω) :=

{
f ∈ M : ‖f‖Hs

ϕ
:=

∥∥s(f)∥∥
WLϕ(Ω)

< ∞
}
.

Let Λ be the collection of all sequences (λn)n∈Z+ of nondecreasing, nonnegative
and adapted functions (namely, for any n ∈ Z+, λn is Fn measurable). Let λ∞ :=
limn→∞ λn. For any f ∈ M, let

Λ[WPϕ](f) :=
{
(λn)n∈Z+ ∈ Λ : |fn| ≤ λn−1 (n ∈ N), λ∞ ∈ WLϕ(Ω)

}
and

Λ[WQϕ](f) :=
{
(λn)n∈Z+ ∈ Λ : Sn(f) ≤ λn−1 (n ∈ N), λ∞ ∈ WLϕ(Ω)

}
.

The weak martingale Musielak–Orlicz Hardy spaces WPϕ(Ω) and WQϕ(Ω) are
defined, respectively, as follows:

WPϕ(Ω) :=
{
f ∈ M : ‖f‖WPϕ(Ω) := inf

(λn)n∈Z+∈Λ[WPϕ(Ω)]
‖λ∞‖WLϕ(Ω) < ∞

}
and

WQϕ(Ω) :=
{
f ∈ M : ‖f‖WQϕ(Ω) := inf

(λn)n∈Z+∈Λ[WQϕ(Ω)]
‖λ∞‖WLϕ(Ω) < ∞

}
.

Remark 2.6. Several known weak martingale Hardy spaces can be regarded as
special cases of the above five weak martingale Musielak–Orlicz Hardy spaces. For
example, let p ∈ (0,∞), let Φ be an Orlicz function on (0,∞), let w be a weight,
and let p(·) : Ω → [1,∞] be a measurable function. If ϕ(x, t) := tp, Φ(t), tp(x) or
w(x)Φ(t) for any x ∈ Ω and t ∈ (0,∞), then the corresponding weak martingale
Musielak–Orlicz Hardy space becomes, respectively, the weak martingale Hardy
space (see [14], [35]), the weak martingale Orlicz–Hardy space (see [17]), the weak
variable martingale Hardy space, or the weak weighted martingale Orlicz–Hardy
space.
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In what follows, for any q ∈ [1,∞], any measurable set B ⊆ Ω, and any
measurable function f on Ω, let

‖f‖Lq
ϕ(B) :=

{
supt∈(0,∞)[

1
ϕ(B,t)

∫
Ω
|f(x)|qϕ(x, t) dP(x)]1/q when q ∈ [1,∞),

‖f‖L∞(Ω) when q = ∞.

Let T be the set of all stopping times related to {Fn}n∈Z+ . For any ν ∈ T ,
let

Bν :=
{
x ∈ Ω : ν(x) < ∞

}
.

Now we introduce the notion of atoms associated with a Musielak–Orlicz func-
tion.

Definition 2.7. Let q ∈ (1,∞], and let ϕ be a Musielak–Orlicz function. A mea-
surable function a is called a (ϕ, q)s-atom if there exists a stopping time ν relative
to {Fn}n∈Z+ (ν is called the stopping time associated with a) such that

(i) an := Ena = 0 a.e. on {x ∈ Ω : ν(x) ≥ n},
(ii) ‖s(a)‖Lq

ϕ(Bν) ≤ ‖1Bν‖−1
Lϕ(Ω).

Similarly, (ϕ, q)S-atom and (ϕ, q)M -atom are defined via replacing (ii) in the
above definition, respectively, by∥∥S(a)∥∥

Lq
ϕ(Bν)

≤ ‖1Bν‖−1
Lϕ(Ω)

and ∥∥M(a)
∥∥
Lq
ϕ(Bν)

≤ ‖1Bν‖−1
Lϕ(Ω).

Via (ϕ, q)s-atoms, (ϕ, q)S-atoms, and (ϕ, q)M -atoms, we now introduce three

weak atomic martingale Musielak–Orlicz Hardy spaces WH ϕ,q,s
at (Ω), WH ϕ,q,S

at (Ω),

and WH ϕ,q,M
at (Ω), respectively, as follows.

Definition 2.8. Let q ∈ (1,∞], and let ϕ be a Musielak–Orlicz function. The weak

atomic martingale Musielak–Orlicz Hardy space WH ϕ,q,s
at (Ω) (resp., WH ϕ,q,S

at (Ω)

or WH ϕ,q,M
at (Ω)) is defined to be the space of all f ∈ M satisfying that there

exist a sequence of (ϕ, q)s-atoms (resp., (ϕ, q)S-atoms or (ϕ, q)M -atoms) {ak}k∈Z,
related to stopping times {νk}k∈Z, and a positive constant C̃, independent of f ,
such that, for any n ∈ Z+, ∑

k∈Z

µkakn = fn P-a.e.,

where µk := C̃2k‖1B
νk
‖Lϕ(Ω) for any k ∈ Z, and

‖f‖WHϕ,q,s
at (Ω)

(
resp., ‖f‖WHϕ,q,S

at (Ω) or ‖f‖WHϕ,q,M
at (Ω)

)
:= inf

{
inf

[
λ ∈ (0,∞) : sup

k∈Z
ϕ
(
Bνk ,

2k

λ

)
≤ 1

]}
< ∞,

where the first infimum is taken over all decompositions of f as above.
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Let p ∈ (0,∞), and let w be a special weight. Recall that the weighted Lebesgue
space Lp(Ω, w dP) is defined to be the set of all measurable functions f on Ω such
that

‖f‖Lp(Ω,w dP) :=
[∫

Ω

∣∣f(x)∣∣pw(x) dP(x)] 1
p
< ∞.

Moreover, the weighted martingale Hardy spaces Hs
p(Ω, w dP), HS

p (Ω, w dP), and
HM

p (Ω, w dP) are defined, respectively, as follows:

Hs
p(Ω, w dP) :=

{
f ∈ M :

∥∥s(f)∥∥
Lp(Ω,w dP) < ∞

}
,

HS
p (Ω, w dP) :=

{
f ∈ M :

∥∥S(f)∥∥
Lp(Ω,w dP) < ∞

}
,

and

HM
p (Ω, w dP) :=

{
f ∈ M :

∥∥M(f)
∥∥
Lp(Ω,w dP) < ∞

}
.

If w ≡ 1, then the weighted Hardy space Hs
p(Ω, w dP) (resp., HS

p (Ω, w dP) or

HM
p (Ω, w dP)) becomes the classical martingale Hardy space Hs

p(Ω) (resp., H
S
p (Ω)

or HM
p (Ω)) (see, e.g., [34, p. 6]).

3. Atomic characterizations

In this section, we establish atomic characterizations of the weak martin-
gale Musielak–Orlicz Hardy spaces WH s

ϕ(Ω), WHM
ϕ (Ω), WH S

ϕ(Ω), WPϕ(Ω), and
WQϕ(Ω). We begin with the atomic characterization of WH s

ϕ(Ω).

Theorem 3.1. Let q ∈ (0,∞), and let ϕ be a Musielak–Orlicz function satisfy-
ing Assumption 1.1. If q ∈ (max{p+ϕ , 1},∞], then WH s

ϕ(Ω) = WH ϕ,q,s
at (Ω) with

equivalent quasinorms.

Proof. We prove this theorem in two steps.
Step 1 : Prove WH ϕ,q,s

at (Ω) ⊆ WH s
ϕ(Ω). To this end, let f ∈ WH ϕ,q,s

at (Ω). Then,

by Definition 2.8, we know that there exists a sequence of (ϕ, q)s-atoms, {ak}k∈Z,
related to stopping times {νk}k∈Z such that, for any n ∈ Z+,

fn =
∑
k∈Z

µkakn P-a.e.,

where µk := C̃2k‖1B
νk
‖Lϕ(Ω) for any k ∈ Z and C̃ is a positive constant inde-

pendent of f . To show the desired conclusion, by the definitions of WH s
ϕ(Ω) and

WH ϕ,q,s
at (Ω), it suffices to prove that, for any α, λ ∈ (0,∞),

ϕ
({

x ∈ Ω : s(f)(x) > α
}
,
α

λ

)
. sup

k∈Z
ϕ
(
Bνk ,

2k

λ

)
. (3.1)

To this end, for any fixed α ∈ (0,∞), let k0 ∈ Z be such that

2k0 ≤ α < 2k0+1.

Combining this and the subadditivity of the operator s, we conclude that, for any
λ ∈ (0,∞),
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ϕ
({

x ∈ Ω : s(f)(x) > α
}
,
α

λ

)
≤ ϕ

({
x ∈ Ω :

∑
k∈Z

µks(ak)(x) > α
}
,
α

λ

)
≤ ϕ

({
x ∈ Ω :

k0−1∑
k=−∞

µks(ak)(x) > 2k0−1
}
,
2k0+1

λ

)
+ ϕ

({
x ∈ Ω :

∞∑
k=k0

µks(ak)(x) > 2k0−1
}
,
2k0+1

λ

)
=: Iα,1 + Iα,2.

Thus, in order to show (3.1), we only need to estimate Iα,1 and Iα,2.

We first estimate Iα,1. For any r ∈ (max{p+ϕ , 1},∞) and ` ∈ (0, 1− max{p+ϕ ,1}
r

),
by the Hölder inequality, we know that, for any λ ∈ (0,∞),

Iα,1 ≤
1

2(k0−1)r

∫
Ω

[ k0−1∑
k=−∞

µks(ak)(x)
]r
ϕ
(
x,

2k0+1

λ

)
dP

≤ 1

2(k0−1)r

( k0−1∑
k=−∞

2k`r
′
) r

r′

×
∫
Ω

{ k0−1∑
k=−∞

2−k`r
[
µks(ak)(x)

]r}
ϕ
(
x,

2k0+1

λ

)
dP

≤ 2−r(k0−1)(1−`)(1− 2−`r′)−r/r′

×
k0−1∑
k=−∞

2−k`r(µk)r
∥∥s(ak)∥∥r

Lr
ϕ(Ω)

∫
B

νk

ϕ
(
x,

2k0+1

λ

)
dP, (3.2)

where, in the last inequality, we used the fact that

k0−1∑
k=−∞

2k`r
′
= 2(k0−1)`r′(1− 2−`r′)−1,

the monotone convergence theorem, and the definition of Lr
ϕ(Ω). For the case

q ∈ (max{p+ϕ , 1},∞), let r := q. From (3.2), the uniformly upper type p+ϕ property

of ϕ, and the fact that ak is a (ϕ, q)s-atom for any k ∈ Z, we deduce that, for any
λ ∈ (0,∞),

Iα,1 ≤ 2−q(k0−1)(1−`)(1− 2−`q′)−q/q′

×
k0−1∑
k=−∞

2−k`q(µk)q
∥∥s(ak)∥∥q

Lq
ϕ(Ω)

∫
B

νk

ϕ
(
x,

2k0+1

λ

)
dP
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≤ 2−q(k0−1)(1−`)(1− 2−`q′)−q/q′

×
k0−1∑
k=−∞

2−k`q(C̃2k)q2(k0+1−k)p+ϕ sup
k∈Z

ϕ
(
Bνk ,

2k

λ

)
,

which, together with (1− `)q > p+ϕ , implies that, for any λ ∈ (0,∞),

Iα,1 ≤ (C̃)q2−q(k0−1)(1−`)(1− 2−`q′)−q/q′2(k0+1)p+ϕ

×
k0−1∑
k=−∞

2k[(1−`)q−p+ϕ ] sup
k∈Z

ϕ
(
Bνk ,

2k

λ

)
≤ (C̃)q(1− 2−`q′)−q/q′ [1− 2p

+
ϕ−(1−`)q] sup

k∈Z
ϕ
(
Bνk ,

2k

λ

)
. (3.3)

Letting ` := 1
2
(1 − max{p+ϕ/q, 1/q}) in (3.3), we conclude that, for any given

q ∈ (max{p+ϕ , 1},∞) and any λ ∈ (0,∞),

Iα,1 . sup
k∈Z

ϕ
(
Bνk ,

2k

λ

)
. (3.4)

For the case q = ∞, notice that, for any k ∈ Z, ‖s(ak)‖Lr
ϕ(Ω) ≤ ‖s(ak)‖L∞(Ω).

Combining this and (3.2), similarly to the estimation of (3.3), we know that, for

any r ∈ (max{p+ϕ , 1},∞), ` ∈ (0, 1− max{p+ϕ ,1}
r

) and λ ∈ (0,∞),

Iα,1 . (1− 2−`r′)−r/r′ [1− 2p
+
ϕ−(1−`)r] sup

k∈Z
ϕ
(
Bνk ,

2k

λ

)
.

Letting r := p+ϕ + 1 and ` := 1
2
(1−max{ p+ϕ

p+ϕ+1
, 1
p+ϕ+1

}) in the above inequality, we

finally find that, for any λ ∈ (0,∞),

Iα,1 . sup
k∈Z

ϕ
(
Bνk ,

2k

λ

)
. (3.5)

Now we estimate Iα,2. For any k ∈ Z, by the definition of ak, we have{
x ∈ Ω : s(ak)(x) 6= 0

}
⊆ Bvk .

From this, it follows that

0 ≤ s(fα,2) ≤
∞∑

k=k0

µks(ak) =
∞∑

k=k0

µks(ak)1B
νk
,

which implies that {
x ∈ Ω : s(fα,2)(x) 6= 0

}
⊆

∞⋃
k=k0

Bvk .

Combining this and the fact that ϕ is of uniformly lower type p−ϕ and of uniformly
upper type p+ϕ , we obtain, for any λ ∈ (0,∞),
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Iα,2 ≤
∞∑

k=k0

ϕ
(
Bνk ,

2k0+1

λ

)
.

∞∑
k=k0

2p
+
ϕϕ

(
Bνk ,

2k0

λ

)
. 2p

+
ϕ

∞∑
k=k0

2(k0−k)p−ϕϕ
(
Bνk ,

2k

λ

)
. sup

k∈Z
ϕ
(
Bνk ,

2k

λ

)
. (3.6)

From (3.4), (3.5), and (3.6), it follows that, for any α, λ ∈ (0,∞), (3.1) holds
true, which further implies that ‖f‖WH s

ϕ(Ω) . ‖f‖WHϕ,q,s
at (Ω). Thus, we have

WH ϕ,q,s
at (Ω) ⊆ WH s

ϕ(Ω). This finishes the proof of step 1.
Step 2 : Prove WH s

ϕ(Ω) ⊆ WH ϕ,q,s
at (Ω). To this end, let f ∈ WH s

ϕ(Ω). For any
k ∈ Z and x ∈ Ω, let

νk(x) := inf
{
n ∈ N : sn+1(f)(x) > 2k

}
and µk := 2k+1‖1B

νk
‖Lϕ(Ω).

Then (νk)k∈Z is a sequence of nondecreasing stopping times. Moreover, for any
k ∈ Z and n ∈ Z+, let

akn :=
f νk+1

n − f νk

n

µk
if µk 6= 0;

otherwise, let akn := 0. Then we have

fn =
∑
k∈Z

µkakn P-a.e.

Now we claim that, for any k ∈ Z, ak := (akn)n∈Z+ is a (ϕ, q)s-atom. Indeed, for
any k ∈ Z, it is clear that ak is a martingale. When νk ≥ n, we can easily see that
akn = 0. Thus, ak satisfies Definition 2.7(i). Similarly to the proof of [37, Theorem
1.4], we know that, for any k ∈ Z.∥∥s(ak)∥∥

L∞(Ω)
≤ ‖1B

νk
‖−1
Lϕ(Ω).

This implies that ak is an L2(Ω)-bounded martingale and hence (akn)n∈Z+ con-
verges in L2(Ω) as n → ∞. Denoting this limit still by ak, we have that En(a

k) =
akn for any n ∈ Z+. Moreover, for any given q ∈ (0,∞] and any k ∈ Z,∥∥s(ak)∥∥

Lq
ϕ(Bνk

)
≤

∥∥s(ak)∥∥
L∞(Ω)

≤ ‖1B
νk
‖−1
Lϕ(Ω).

Thus, ak satisfies Definition 2.7(ii) and hence ak is a (ϕ, q)s-atom. This proves
the above claim. On the other hand, for any k ∈ Z, we have {x ∈ Ω : s(f)(x) >
2k} = Bνk . From this, it follows that, for any λ ∈ (0,∞),

sup
k∈Z

ϕ
(
Bνk ,

2k

λ

)
= sup

k∈Z
ϕ
({

x ∈ Ω : s(f)(x) > 2k
}
,
2k

λ

)
≤ sup

α∈(0,∞)

ϕ
({

x ∈ Ω : s(f)(x) > α
}
,
α

λ

)
,

which implies that f ∈ WH ϕ,q,s
at (Ω) and ‖f‖WHϕ,q,s

at (Ω) ≤ ‖f‖WH s
ϕ(Ω). This finishes

the proof of step 2 and hence of Theorem 3.1. �
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Theorem 3.2. Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.1.
Then WPϕ(Ω) = WH ϕ,∞,M

at (Ω) and WQϕ(Ω) = WH ϕ,∞,S
at (Ω) with equivalent

quasinorms.

Proof. This proof is just a slight modification of the one given for Theorem 3.1.
Details are provided for the reader’s convenience. We only give the proof for
WPϕ(Ω) because the proof for WQϕ(Ω) is similar.

We first prove WPϕ(Ω) ⊆ WH ϕ,∞,M
at (Ω). To this end, let f ∈ WPϕ(Ω). For any

k ∈ Z, n ∈ N and x ∈ Ω, let

νk(x) :=
{
n ∈ Z+ : λn(x) > 2k

}
, µk := 3 · 2k‖1B

νk
‖Lϕ(Ω),

and

akn :=
f νk+1

n − f νk

n

µk

if µk 6= 0; otherwise, let akn := 0, where (λn)n∈Z+ ∈ Λ[WPϕ](f). Then, using the
same method as that used in the proof of Theorem 3.1, we can prove that, for any
k ∈ Z, ‖M(ak)‖L∞(Ω) ≤ ‖1B

νk
‖−1
Lϕ(Ω), a

k is a (ϕ,∞)M -atom and ‖f‖WHϕ,∞,M
at (Ω) ≤

‖f‖WPϕ(Ω).

Conversely, let f ∈ WH ϕ,∞,M
at (Ω). Then there exist a sequence of (ϕ,∞)M -

atoms, {ak}k∈Z, related to stopping times {νk}k∈Z and a positive constant C̃,
independent of f , such that, for any n ∈ Z+,

fn =
∑
k∈Z

C̃2k‖1B
νk
‖Lϕ(Ω)a

k
n P-a.e.

For any n ∈ Z+, let λn :=
∑

k∈Z C̃2k1{x∈Ω:νk(x)≤n}. Then, by the definition of ak,
we know that (λn)n∈Z+ is a nonnegative adapted sequence and, for any n ∈ N
and almost every x ∈ Ω,∣∣fn(x)∣∣ ≤ ∑

k∈Z

C̃2k‖1B
νk
‖Lϕ(Ω)‖akn‖L∞(Ω)1{x∈Ω:νk(x)≤n−1}(x) ≤ λn−1(x).

Now we show that ‖λ∞‖WLϕ(Ω) . ‖f‖WHϕ,∞,M
at (Ω). For any fixed α ∈ (0,∞), let

k0 ∈ Z be such that 2k0 ≤ α < 2k0+1. Similarly to the estimations of (3.5) and

(3.6) via replacing µks(ak) by C̃2k1B
νk
, we conclude that, for any γ ∈ (0,∞),

ϕ
({

x ∈ Ω : λ∞(x) > α
}
,
α

γ

)
≤ ϕ

({
x ∈ Ω :

k0−1∑
k=−∞

C̃2k1B
νk
(x) > 2k0−1

}
,
2k0+1

γ

)
+ ϕ

({
x ∈ Ω :

∞∑
k=k0

C̃2k1B
νk
(x) > 2k0−1

}
,
2k0+1

γ

)
. sup

k∈Z
ϕ
(
Bνk ,

2k

γ

)
.
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This implies that f ∈ WPϕ(Ω) and ‖f‖WPϕ(Ω) ≤ ‖λ∞‖WLϕ(Ω) . ‖f‖WHϕ,∞,M
at (Ω),

which completes the proof of step 2 and hence of Theorem 3.2. �

Remark 3.3.

(i) For any given p ∈ (0,∞), when ϕ(x, t) := tp for any x ∈ Ω and t ∈
(0,∞), in this case, Theorem 3.1 with q = ∞ for Vilenkin martingales was
investigated by Weisz [35, Theorem 1], and then Theorem 3.1 with q = ∞
and Theorem 3.2 were obtained by Hou and Ren [14, Theorems 1, 2, and
3]. Observing that Theorem 3.1 includes the q-atomic characterization
of WH s

ϕ(Ω) for any q ∈ (max{p, 1},∞), Theorem 3.1 generalizes and
improves [35, Theorem 1] and [14, Theorem 1]. Moreover, since ϕ is of
wide generality, we know that Theorem 3.2 generalizes [14, Theorems 2
and 3].

(ii) Let Φ be an Orlicz function. Theorem 3.1 with q = ∞ and Theorem 3.2
when ϕ(x, t) := Φ(t) for any x ∈ Ω and t ∈ (0,∞) were obtained by Jiao,
Wu, and Peng [17, Theorems 2.1 and 2.4] under some slightly stronger
assumptions. Indeed, [17, Theorems 2.1 and 2.4] require that Φ ∈ G`

for some ` ∈ (0, 1] and the upper index qΦ−1 ∈ (0,∞) (see (1.2) for its
definition); however, Theorems 3.1 and 3.2 in this case only need Φ ∈ G` for
some ` ∈ (0,∞). Moreover, in Theorem 3.1, q ∈ (max{p+Φ, 1},∞] is much
more difficult and important than the endpoint case q = ∞. Therefore,
Theorems 3.1 and 3.2 generalize and improve [17, Theorems 2.1 and 2.4].

(iii) Theorem 3.1 with q = ∞ and Theorem 3.2 were first proved by Yang
[39, Theorems 3.1, 3.2, and 3.3] under Assumption 1.A. However, Theo-
rems 3.1 and 3.2 only need Assumption 1.1 which is much weaker than
Assumption 1.A. Thus, Theorems 3.1 and 3.2 indeed essentially improve
[39, Theorem 3.1] and [39, Theorems 3.2 and 3.3], respectively.

(iv) Let p(·) be a measurable function on Ω satisfying

0 < p− := inf
x∈Ω

p(x) ≤ p+ := sup
x∈Ω

p(x) < ∞.

Let ϕ(x, t) := tp(x) for any x ∈ Ω and t ∈ (0,∞). Observe that, in this
case, ϕ is of uniformly lower type p− and of uniformly upper type p+.
From this and Remark 2.6, it follows that Theorems 3.1 and 3.2 give the
atomic characterizations of weak variable martingale Hardy spaces, which
are also new.

Now we establish the atomic characterizations of WH S
ϕ(Ω) and WHM

ϕ (Ω). To
do this, we need an additional notion. The stochastic basis {Fn}n∈Z+ is said to
be regular if there exists a positive constant R such that, for any n ∈ N,

fn ≤ Rfn−1 (3.7)

holds true for any nonnegative martingale (fn)n∈Z+ . Clearly, if {Fn}n∈Z+ is regu-
lar, then any special weight automatically satisfies the condition S+. Moreover, it
was proved in [28, Proposition 6.3.7] that, if {Fn}n∈Z+ is regular, then any special
weight from A∞(Ω) satisfies the condition S.

The following technical lemma was proved in [38, Lemma 4.7].
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Lemma 3.4. Let w := (wn)n∈Z+ ∈ S− be a special weight. If the stochastic basis
{Fn}n∈Z+ is regular, then, for any nonnegative adapted process γ = (γn)n∈Z+ and
any λ ∈ (‖γ0‖L∞(Ω),∞), there exists a stopping time τλ such that, for any n ∈ Z+,

sup
n≤τλ(x)

γn(x) =: Mτλγ(x) ≤ λ, ∀x ∈ Ω,{
x ∈ Ω : Mγ(x) > λ

}
⊆

{
x ∈ Ω : τλ(x) < ∞

}
,

and

w
({

x ∈ Ω : τλ(x) < ∞
})

≤ KRw
({

x ∈ Ω : Mγ(x) > λ
})

,

where K and R are the same as in (2.1) and (3.7), respectively. Moreover, for
any λ1, λ2 ∈ (0,∞) with λ1 < λ2, τλ1 ≤ τλ2.

Theorem 3.5. Let q ∈ (0,∞), and let ϕ ∈ S− be a Musielak–Orlicz function sat-
isfying Assumption 1.1. If q ∈ (max{p+ϕ , 1},∞] and the stochastic basis {Fn}n∈Z+

is regular, then WH S
ϕ(Ω) = WH ϕ,q,S

at (Ω) and WHM
ϕ (Ω) = WH ϕ,q,M

at (Ω) with equiv-
alent quasinorms.

Proof. We only prove this theorem for WH S
ϕ(Ω), because the proof for WHM

ϕ (Ω)
only needs a slight modification. We proceed in two steps.

Step 1 : Prove WH S
ϕ(Ω) ⊆ WH ϕ,q,S

at (Ω). To this end, let f ∈ WH S
ϕ(Ω). For any

k ∈ Z and for the nonnegative adapted sequence {Sn(f)}n∈Z+ , by Lemma 3.4, we
know that there exists a stopping time νk ∈ T such that{

x ∈ Ω : S(f)(x) > 2k
}
⊆

{
x ∈ Ω : νk(x) < ∞

}
,

Sνk(f)(x) ≤ 2k, ∀x ∈ Ω, (3.8)

and, for any t ∈ (0,∞),

ϕ
({

x ∈ Ω : νk(x) < ∞
}
, t
)
≤ KRϕ

({
x ∈ Ω : S(f)(x) > 2k

}
, t
)
, (3.9)

where K and R are the same as in (2.1) and (3.7), respectively. Moreover, for any
k ∈ Z, νk ≤ νk+1 and νk → ∞ as k → ∞. For any k ∈ Z and n ∈ Z+, let

µk := 2k+1‖1B
νk
‖Lϕ(Ω) and akn :=

f νk+1

n − f νk

n

µk

if µk 6= 0; otherwise, let akn := 0. Then, for any n ∈ N, fn(x) =
∑

k∈Z µ
kakn(x) for

almost every x ∈ Ω. Now we claim that, for any fixed k ∈ Z, ak := (akn)n∈Z+ is a
(ϕ, q)S-atom. Indeed, it is clear that (akn)n∈Z+ is a martingale. Moreover, by (3.8),
we know that[

S(ak)
]2

=
∑
n∈N

|dnak|2 =
1

(µk)2

∑
n∈N

|dnf νk+1 − dnf
νk |2

=
1

(µk)2

∑
n∈N

|dnf1{x∈Ω:νk(x)<n≤νk+1(x)}|2

≤ 1

(µk)2
[
Sνk+1(f)

]2 ≤ (2k+1

µk

)2

. (3.10)
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From this, it follows that ak is an L2(Ω)-bounded martingale and hence (akn)n∈Z+

converges in L2(Ω) as n → ∞. Denoting its limit still by ak, then En(a
k) = akn.

For any n ∈ Z+ and x ∈ {x ∈ Ω : νk(x) ≥ n}, by the definition of f νk

n , we know
that akn(x) = 0. Thus, ak satisfies Definition 2.7(i). From (3.10), it follows that∥∥S(ak)∥∥

Lq
ϕ(Bνk

)
≤

∥∥S(ak)∥∥
L∞(Ω)

≤ ‖1B
νk
‖−1
Lϕ(Ω),

which implies that ak satisfies Definition 2.7(ii) and hence ak is a (ϕ, q)S-atom.
This proves the above claim.

Now we show that f ∈ WH ϕ,q,S
at (Ω). From (3.9), we deduce that, for any k ∈ Z

and λ ∈ (0,∞),

ϕ
(
Bνk ,

2k

λ

)
≤ RKϕ

({
x ∈ Ω : S(f)(x) > 2k

}
,
2k

λ

)
≤ RK sup

α∈(0,∞)

ϕ
({

x ∈ Ω : S(f)(x) > α
}
,
α

λ

)
.

This implies that

‖f‖WHϕ,q,S
at (Ω) . ‖f‖WHS

ϕ(Ω),

which completes the proof of step 1.
Step 2 : Prove WH ϕ,q,S

at (Ω) ⊆ WH S
ϕ(Ω). To prove this, let f ∈ WH ϕ,q,S

at (Ω).

Then there exists a sequence of triples, {µk, ak, νk}k∈Z, such that

f =
∑
k∈Z

µkak a.e.,

where {ak}k∈Z are (ϕ, q)S-atoms, {νk}k∈Z are the stopping times associated with

{ak}k∈Z, µk := C̃2k‖1B
νk
‖Lϕ(Ω) for any k ∈ Z, and C̃ is a positive constant

independent of f .
Now we prove that f ∈ WH S

ϕ(Ω). For any fixed α ∈ (0,∞), let k0 ∈ Z be such

that 2k0 ≤ α < 2k0+1. Then by arguments similar to those used in the estimations
of (3.4), (3.5), and (3.6), we find that, for any λ ∈ (0,∞),

ϕ
({

x ∈ Ω : S(f)(x) > α
}
,
α

λ

)
≤ ϕ

({
x ∈ Ω :

k0−1∑
k=−∞

µkS(ak)(x) > 2k0−1
}
,
2k0+1

λ

)
+ ϕ

({
x ∈ Ω :

∞∑
k=k0

µkS(ak)(x) > 2k0−1
}
,
2k0+1

λ

)
. sup

k∈Z
ϕ
(
Bνk ,

2k

λ

)
,

which implies that ‖f‖WHS
ϕ(Ω) . ‖f‖WHϕ,q,S

at (Ω) and hence f ∈ WH S
ϕ(Ω). This

finishes the proof of Theorem 3.5. �
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Remark 3.6.

(i) Let Φ be an Orlicz function. Theorem 3.5 with q = ∞, when ϕ(x, t) :=
Φ(t) for any x ∈ Ω and t ∈ (0,∞), was proved by Jiao, Wu, and Peng in
[17, Theorem 2.3] under the regularity assumption and the assumptions
that Φ ∈ G` for some ` ∈ (0, 1] and the upper index qΦ−1 ∈ (0,∞).
However, Theorem 3.5, in this case, only needs Φ ∈ G` for some ` ∈
(0,∞) and the regularity condition. Moreover, Theorem 3.5 includes the
q-atomic characterizations for any q ∈ (max{p+ϕ , 1},∞]. Thus, Theorem
3.5 generalizes and improves [17, Theorem 2.3].

(ii) Let p ∈ (0,∞), and let w be a special weight. If ϕ(x, t) := w(x)tp for any
x ∈ Ω and t ∈ (0,∞), then Theorems 3.1, 3.2, and 3.5 give the atomic
characterizations of weak weighted martingale Hardy spaces, which are
also new.

4. Boundedness of σ-sublinear operators

In this section, we first obtain the boundedness of σ-sublinear operators from
WH s

ϕ(Ω) (resp.,WHM
ϕ (Ω),WH S

ϕ(Ω),WPϕ(Ω), orWQϕ(Ω)) toWLϕ(Ω), and then
clarify relations among these weak martingale Musielak–Orlicz Hardy spaces.

Theorem 4.1. Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.1,
and let T : WH s

ϕ(Ω) → L0(Ω) be a σ-sublinear operator satisfying Assumption
1.2(i). If there exists a positive constant C such that, for any (ϕ,∞)s-atom a and
any t ∈ (0,∞),

ϕ
({

x ∈ Ω :
∣∣T (a)(x)∣∣ > 0

}
, t
)
≤ Cϕ(Bν , t), (4.1)

where ν is the stopping time associated with a, then there exists a positive constant
C such that, for any f ∈ WH s

ϕ(Ω),

‖Tf‖WLϕ(Ω) ≤ C‖f‖WH s
ϕ(Ω). (4.2)

Proof. Let f ∈ WH s
ϕ(Ω). By step 2 of the proof of Theorem 3.1, we know

that there exists a sequence of (ϕ,∞)s-atoms {ak}k∈Z, related to stopping times
{νk}k∈Z, such that, for any λ ∈ (0,∞),

f =
∑
k∈Z

µkak a.e.

and

sup
k∈Z

ϕ
(
Bνk ,

2k

λ

)
≤ sup

α∈(0,∞)

ϕ
({

x ∈ Ω : s(f)(x) > α
}
,
α

λ

)
,

where µk := C̃2k‖1B
νk
‖Lϕ(Ω) for any k ∈ Z and C̃ is a positive constant inde-

pendent of f . Thus, in order to prove (4.2), we only need to prove that, for any
α ∈ (0,∞) and λ ∈ (0,∞),

ϕ
({

x ∈ Ω :
∣∣T (f)(x)∣∣ > α

}
,
α

λ

)
. sup

k∈Z
ϕ
(
Bνk ,

2k

λ

)
. (4.3)
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For any fixed α ∈ (0,∞), let k0 ∈ Z be such that 2k0 ≤ α < 2k0+1. Then, from
the definition of T , it follows that, for any λ ∈ (0,∞),

ϕ
({

x ∈ Ω :
∣∣T (f)(x)∣∣ > α

}
,
α

λ

)
. ϕ

({
x ∈ Ω :

k0−1∑
k=−∞

µk
∣∣T (ak)(x)∣∣ > α

2

}
,
α

λ

)
+ ϕ

({
x ∈ Ω :

∞∑
k=k0

µk
∣∣T (ak)(x)∣∣ > α

2

}
,
α

λ

)

. ϕ
({

x ∈ Ω :

k0−1∑
k=−∞

µk
∣∣T (ak)(x)∣∣ > 2k0−1

}
,
2k0+1

λ

)
+ ϕ

({
x ∈ Ω :

∞∑
k=k0

µk
∣∣T (ak)(x)∣∣ > 2k0−1

}
,
2k0+1

λ

)
=: I1 + I2.

Thus, to show (4.3), we only need to estimate I1 and I2, respectively.
To estimate I1, we consider two cases.

Case 1 : q ∈ (1,∞) ∩ (p+ϕ ,∞). In this case, for any ` ∈ (0, 1 − p+ϕ
q
), by the

Hölder inequality, the fact that
∑k0−1

k=−∞ 2k`q
′
= 2(k0−1)`q′(1 − 2−`q′)−1, the mono-

tone convergence theorem, and the boundedness of T , we know that, for any
λ ∈ (0,∞),

I1 .
1

2(k0−1)q

∫
Ω

[ k0−1∑
k=−∞

µk
∣∣T (ak)(x)∣∣]qϕ(x, 2k0+1

λ

)
dP

.
1

2(k0−1)q

( k0−1∑
k=−∞

2k`q
′
) q

q′

×
∫
Ω

k0−1∑
k=−∞

2−k`q(µk)q
∣∣T (ak)(x)∣∣qϕ(x, 2k0+1

λ

)
dP

. 2−q(k0−1)(1−`)(1− 2−`q′)−q/q′
k0−1∑
k=−∞

2−k`q(µk)q

×
∫
Ω

∣∣s(ak)(x)∣∣qϕ(x, 2k0+1

λ

)
dP.

From this, q(1− `) > p+ϕ and the fact that, for any k ∈ Z, ak is a (ϕ,∞)s-atom,
we deduce that, for any λ ∈ (0,∞),

I1 . 2−q(k0−1)(1−`)(1− 2−`q′)−q/q′

×
k0−1∑
k=−∞

2−k`q(µk)q
∥∥s(ak)∥∥q

L∞(B
νk

)
ϕ
(
Bνk ,

2k0+1

λ

)
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. 2−q(k0−1)(1−`)(1− 2−`q′)−q/q′

×
k0−1∑
k=−∞

2−k`q2kq2(k0+1−k)p+ϕϕ
(
Bνk ,

2k

λ

)
. (1− 2−`q′)−q/q′ [1− 2p

+
ϕ−(1−`)q] sup

k∈Z
ϕ
(
Bνk ,

2k

λ

)
.

Letting ` := 1
2
(1 − p+ϕ

q
) in the above inequality, we conclude that, for any λ ∈

(0,∞),

I1 . sup
k∈Z

ϕ
(
Bνk ,

2k

λ

)
. (4.4)

Case 2 : q ∈ (0, 1] ∩ (p+ϕ ,∞). From the boundedness of T and the uniformly
upper type p+ϕ property of ϕ, it follows that, for any λ ∈ (0,∞),

I1 .
1

2(k0−1)q

∫
Ω

[ k0−1∑
k=−∞

µk
∣∣T (ak)(x)∣∣]qϕ(x, 2k0+1

λ

)
dP

.
1

2(k0−1)q

k0−1∑
k=−∞

(µk)q
∫
Ω

∣∣T (ak)(x)∣∣qϕ(x, 2k0+1

λ

)
dP

.
1

2(k0−1)q

k0−1∑
k=−∞

(µk)q
∥∥s(ak)∥∥q

L∞(Ω)
ϕ
(
Bνk ,

2k0+1

λ

)
.

1

2(k0−1)q

k0−1∑
k=−∞

2kq2(k0+1−k)p+ϕ sup
k∈Z

ϕ
(
Bνk ,

2k

λ

)
∼ sup

k∈Z
ϕ
(
Bνk ,

2k

λ

)
. (4.5)

Now we estimate I2. Clearly,{
x ∈ Ω :

∞∑
k=k0

µk
∣∣T (ak)(x)∣∣ > 2k0−1

}
⊆

∞⋃
k=k0

{
x ∈ Ω :

∣∣T (ak)(x)∣∣ > 0
}
.

Combining this, (4.1) and the fact that ϕ is of uniformly lower type p−ϕ and of
uniformly upper type p+ϕ , we find that, for any λ ∈ (0,∞),

I2 .
∞∑

k=k0

ϕ
({

x ∈ Ω :
∣∣T (ak)(x)∣∣ > 0

}
,
2k0+1

λ

)
. 2p

+
ϕ

∞∑
k=k0

ϕ
(
Bνk ,

2k0

λ

)
.

∞∑
k=k0

2(k0−k)p−ϕϕ
(
Bνk ,

2k

λ

)
. sup

k∈Z
ϕ
(
Bνk ,

2k

λ

)
,
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which, together with (4.4) and (4.5), further implies that (4.3) holds true. This
finishes the proof of Theorem 4.1. �

Using Theorems 3.2 and 3.5, we can also show that the σ-sublinear operator T
is bounded from WPϕ(Ω) (resp., WQϕ(Ω), WH S

ϕ(Ω), or WHM
ϕ (Ω)) to WLϕ(Ω).

The proofs are similar to that of Theorem 4.1. We omit the details.

Theorem 4.2. Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.1,
and let T : WQϕ(Ω) → L0(Ω) (resp., T : WPϕ(Ω) → L0(Ω)) be a σ-sublinear
operator satisfying Assumption 1.2(ii) (resp., Assumption 1.2(iii)). If there exists
a positive constant C such that, for any (ϕ,∞)S-atom (resp., (ϕ,∞)M -atom) a
and any t ∈ (0,∞),

ϕ
({

x ∈ Ω :
∣∣T (a)(x)∣∣ > 0

}
, t
)
≤ Cϕ(Bν , t), (4.6)

where ν is the stopping time associated with a, then there exists a positive constant
C such that, for any f ∈ WQϕ(Ω) (resp., f ∈ WPϕ(Ω)),

‖Tf‖WLϕ(Ω) ≤ C‖f‖WQϕ(Ω)

[
resp., ‖Tf‖WLϕ(Ω) ≤ C‖f‖WPϕ(Ω)

]
.

Theorem 4.3. Let ϕ ∈ S− be a Musielak–Orlicz function satisfying Assump-
tion 1.1, and let T : WHM

ϕ (Ω) → L0(Ω) (resp., T : WH S
ϕ(Ω) → L0(Ω)) be a

σ-sublinear operator satisfying Assumption 1.2(ii) (resp., Assumption 1.2(iii)).
If the stochastic basis {Fn}n∈Z+ is regular and there exists a positive constant C
such that, for any (ϕ,∞)S-atom (resp., (ϕ,∞)M -atom) a and any t ∈ (0,∞),

ϕ
({

x ∈ Ω :
∣∣T (a)(x)∣∣ > 0

}
, t
)
≤ Cϕ(Bν , t),

where ν is the stopping time associated with a, then there exists a positive constant
C such that, for any f ∈ WHM

ϕ (Ω) (resp., f ∈ WH S
ϕ(Ω)),

‖Tf‖WLϕ(Ω) ≤ C‖f‖WHM
ϕ (Ω)

[
resp., ‖Tf‖WLϕ(Ω) ≤ C‖f‖WHS

ϕ(Ω)

]
.

Remark 4.4.

(i) For any given p ∈ (0,∞), when ϕ(x, t) := tp for any x ∈ Ω and t ∈ (0,∞),
Theorem 4.1 for Vilenkin martingales was originally obtained by Weisz
[35, Theorem 2]. Then Theorems 4.1 and 4.2, in this case, were proved by
Hou and Ren [14, Theorems 4, 5, and 6]. Observe that the assumptions
of Theorem 4.1 in this case are weaker than those of [14, Theorem 4].
Indeed, the assumptions of [14, Theorem 4] require that T be bounded on
Lq(Ω) for some q ∈ [1, 2] ∩ (p,∞) and that (4.1) holds true in this case.
Therefore, to prove our claim, we only need to show that the boundedness
of T on Lq(Ω) for some q ∈ [1, 2] ∩ (p,∞) implies the boundedness of T
from Hs

q (Ω) to Lq(Ω). This follows immediately from the well-known fact
that, for any f ∈ Lq(Ω) with q ∈ (0, 2] (see [34, Theorem 2.11(i)]),

‖f‖Lq(Ω) ≤ C‖f‖Hs
q (Ω),

where C is a positive constant independent of f . Similarly, we can also
deduce that the assumptions of Theorem 4.2 in this case are weaker than
those of [14, Theorems 5 and 6]. Thus, Theorems 4.1 and 4.2 generalize
and improve [14, Theorem 4] and [14, Theorems 5 and 6], respectively.
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(ii) Let Φ be an Orlicz function. Theorems 4.1 and 4.2 when ϕ(x, t) := Φ(t)
for any x ∈ Ω and t ∈ (0,∞) were proved by Jiao, Wu, and Peng in [17,
Theorem 3.1 and Remark 3.2] under the assumptions that Φ ∈ G` for some
` ∈ (0, 1], pΦ−1 ∈ (1,∞) and qΦ−1 ∈ (0,∞) (see (1.2) for the definitions of
pΦ−1 and qΦ−1). However, on the assumption on Φ, Theorems 4.1 and 4.2
in this case only need that Φ ∈ G` for some ` ∈ (0,∞). Thus, in this sense,
Theorems 4.1 and 4.2 essentially improve and generalize [17, Theorem 3.1
and Remark 3.2], respectively.

(iii) Replacing Assumption 1.2 by Assumption 1.B, Yang [39, Theorems 4.2,
4.3, and 4.4] also proved Theorems 4.1 and 4.2. Clearly, Assumption 1.2 is
quite weaker than Assumption 1.B. Thus, Theorems 4.1 and 4.2 essentially
improve [39, Theorem 4.2] and [39, Theorems 4.3 and 4.4], respectively.
In particular, Theorem 4.3 is new.

(iv) Recall that, in [35, Theorem 2] and [14, Theorems 4, 5, and 6], it was
proved that the σ-sublinear operator T , originally defined on Lp(Ω) for
some p ∈ [1, 2], is bounded from WH s

p(Ω) (or WPp(Ω) or WQp(Ω)) to
WLp(Ω). These results might be problematic because Lp(Ω) is not dense
in WLp(Ω) (or WPp(Ω) or WQp(Ω)) and hence T cannot automatically
extend to the whole WLp(Ω) (or WPp(Ω) or WQp(Ω)). The same gap
appears in very recent articles [17, Theorem 3.1 and Remark 3.2], [39,
Theorems 4.2, 4.3, and 4.4], and [41, Theorems 4.1 and 4.3]. (We thank
the referee for reminding us of this gap.)

(v) Let p ∈ (0,∞), and let w be a special weight. If, for any x ∈ Ω and
t ∈ (0,∞),

ϕ(x, t) := w(x)tp,

then Theorems 4.1, 4.2, and 4.3 give the boundedness of σ-sublinear oper-
ators from weak weighted martingale Hardy spaces to weak weighted
Lebesgue spaces, which are also new.

The following weighted martingale inequalities come from Bonami and Lépingle
[6, Thèoréme 1] and Long [28, Remark 6.6.12, Theorems 6.6.11 and 6.6.12].

Theorem 4.5. Let w be a special weight.

(i) If w ∈ A∞(Ω)∩ S(Ω) and p ∈ [1,∞), then there exists a positive constant
C such that, for any f ∈ HM

p (Ω, w dP),

1

C
‖f‖HM

p (Ω,w dP) ≤ ‖f‖HS
p (Ω,w dP) ≤ C‖f‖HM

p (Ω,w dP). (4.7)

(ii) If w ∈ S−(Ω) and p ∈ [2,∞), then there exists a positive constant C such
that, for any f ∈ HS

p (Ω, w dP),

‖f‖Hs
p(Ω,w dP) ≤ C‖f‖HS

p (Ω,w dP). (4.8)

(iii) If w ∈ S+(Ω) and p ∈ (0, 2], then there exists a positive constant C such
that, for any f ∈ Hs

p(Ω, w dP),

‖f‖HS
p (Ω,w dP) ≤ C‖f‖Hs

p(Ω,w dP). (4.9)
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(iv) If w ∈ A∞(Ω) ∩ S(Ω) and p ∈ (0, 2], then there exists a positive constant
C such that, for any f ∈ Hs

p(Ω, w dP),

‖f‖HM
p (Ω,w dP) ≤ C‖f‖Hs

p(Ω,w dP). (4.10)

Theorem 4.6. Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.1.

(i) If ϕ ∈ S+(Ω) and p+ϕ ∈ (0, 2), then there exists a positive constant C such
that, for any f ∈ WH s

ϕ(Ω),

‖f‖WHS
ϕ(Ω) ≤ C‖f‖WH s

ϕ(Ω). (4.11)

(ii) If ϕ ∈ A∞(Ω)∩S(Ω) and p+ϕ ∈ (0, 2), then there exists a positive constant
C such that, for any f ∈ WH s

ϕ(Ω),

‖f‖WHM
ϕ (Ω) ≤ C‖f‖WH s

ϕ(Ω). (4.12)

(iii) There exists a positive constant C such that, for any f ∈ WPϕ(Ω) (resp.,
f ∈ WQϕ(Ω)),

‖f‖WHM
ϕ (Ω) ≤ C‖f‖WPϕ(Ω)

(
resp., ‖f‖WHS

ϕ(Ω) ≤ C‖f‖WQϕ(Ω)

)
. (4.13)

(iv) If ϕ ∈ A∞(Ω) ∩ S(Ω), then there exists a positive constant C such that,
for any f ∈ WPϕ(Ω) (resp., f ∈ WQϕ(Ω)),

‖f‖WHS
ϕ(Ω) ≤ C‖f‖WPϕ(Ω) and ‖f‖WH s

ϕ(Ω) ≤ C‖f‖WPϕ(Ω)(
resp., ‖f‖WHM

ϕ (Ω) ≤ C‖f‖WQϕ(Ω)

)
. (4.14)

(v) If ϕ ∈ S−(Ω), then there exists a positive constant C such that, for any
f ∈ WQϕ(Ω),

‖f‖WH s
ϕ(Ω) ≤ C‖f‖WQϕ(Ω). (4.15)

(vi) If ϕ ∈ A∞(Ω)∩S(Ω) and p+ϕ ∈ (0, 2), then there exists a positive constant
C such that, for any f ∈ WQϕ(Ω),

1

C
‖f‖WQϕ(Ω) ≤ ‖f‖WPϕ(Ω) ≤ C‖f‖WQϕ(Ω). (4.16)

Moreover, if {Fn}n∈Z+ is regular and ϕ ∈ A∞(Ω), then

WH s
ϕ(Ω) = WHM

ϕ (Ω) = WH S
ϕ(Ω) = WPϕ(Ω) = WQϕ(Ω).

Proof. In order to prove (4.11) and (4.12), we use Theorem 4.1 with the operator
T := S or M . From Definition 2.7(i), it follows that, for any (ϕ, q)s-atom a,

0 ≤ 1{x∈Ω:ν(x)=∞}
[
S(a)

]2
= 1{x∈Ω:ν(x)=∞}

∑
n∈N

|dna|2

≤
∑
n∈N

1{x∈Ω:ν(x)≥n}|dna|2 = 0,

which implies that {x ∈ Ω : S(f)(x) > 0} ⊆ Bν and hence the operator S satisfies
(4.1). Clearly, the Doob maximal operator M also satisfies (4.1). By this, (4.9),
(4.10), and Theorem 4.1, we obtain (4.11) and (4.12).
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Inequalities (4.13) follow immediately from the definitions of WPϕ(Ω) and
WQϕ(Ω). To prove inequalities (4.14) and (4.15), we apply Theorem 4.2, respec-
tively, to the operator T = S, M or s. Observe that operators M , S, and s all
satisfy the condition (4.6). From (4.7) and (4.8), it follows that, for any q ∈ [2,∞)
and t ∈ (0,∞),

s : HM
q

(
Ω, ϕ(·, t) dP

)
→ Lq

(
Ω, ϕ(·, t)

)
is bounded. Combining this, (4.7), (4.8), and Theorem 4.2, we obtain (4.14) and
(4.15).

To show inequalities (4.16), let f ∈ WQϕ(Ω). For any ε ∈ (0,∞), there exists

an adapted process {λ(1)
n }n∈Z+ ∈ Λ[WQϕ](f) such that, for any n ∈ N,

Sn(f) ≤ λ
(1)
n−1 and ‖λ(1)

∞ ‖WLϕ(Ω) ≤ ‖f‖WQϕ(Ω) + ε.

By this, we find that, for any n ∈ N,

|fn| ≤ Mn−1(f) + |dnf | ≤ Mn−1(f) + Sn(f) ≤ Mn−1(f) + λ
(1)
n−1.

Combining this and (4.14), we know that

‖f‖WPϕ(Ω) . ‖f‖WHM
ϕ (Ω) + ‖λ(1)

∞ ‖WLϕ(Ω) . ‖f‖WQϕ(Ω) + ε,

which, together with letting ε → 0, implies that ‖f‖WPϕ(Ω) . ‖f‖WQϕ(Ω) and
f ∈ WPϕ(Ω). Moreover, for any ε ∈ (0,∞), there exists an adapted process

{λ(2)
n }n∈Z+ ∈ Λ[WPϕ](f) such that, for any n ∈ N,

|fn| ≤ λ
(2)
n−1 and ‖λ(2)

∞ ‖WLϕ(Ω) . ‖f‖WPϕ(Ω) + ε,

which implies that, for any n ∈ N,

Sn(f) ≤ Sn−1(f) + |dnf | ≤ Sn−1(f) + 2λ
(2)
n−1.

From this and (4.14), it follows that

‖f‖WQϕ(Ω) . ‖f‖WHS
ϕ(Ω) + ‖λ(1)

∞ ‖WLϕ(Ω) . ‖f‖WPϕ(Ω) + ε

and hence, by letting ε → 0, ‖f‖WQϕ(Ω) . ‖f‖WPϕ(Ω). Thus, we conclude that
the inequalities (4.16) hold true.

Finally, assume that {Fn}n∈Z+ is regular. From this and ϕ ∈ A∞(Ω), it follows
that ϕ ∈ S (see [28, Proposition 6.3.7]). Then, by Theorems 3.2 and 3.5, we have

WQϕ(Ω) = WH S
ϕ(Ω) and WPϕ(Ω) = WHM

ϕ (Ω).

Combining this and (4.14), we know that

WQϕ(Ω) = WH S
ϕ(Ω) = WHM

ϕ (Ω) = WPϕ(Ω) ⊆ WH s
ϕ(Ω).

Thus, to complete the proof of this theorem, we only need to show WH s
ϕ(Ω) ⊆

WH S
ϕ(Ω). By the regularity and [34, Lemma 2.18], we have |dnf |2 . En−1(|dnf |2)

for any n ∈ N. From this, it follows that S(f) . s(f) and hence

‖f‖WHS
ϕ(Ω) . ‖f‖WH s

ϕ(Ω).

Thus, WH s
ϕ(Ω) ⊆ WH S

ϕ(Ω), which completes the proof of Theorem 4.6. �
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Remark 4.7.

(i) For any given p ∈ (0,∞), if ϕ(x, t) := tp for any x ∈ Ω and t ∈ (0,∞),
then Theorem 4.6 in this case coincides with [14, Theorem 7].

(ii) Let Φ be an Orlicz function. Theorem 4.6 when ϕ(x, t) := Φ(t) for any
x ∈ Ω and t ∈ (0,∞) was proved by Jiao, Wu, and Peng in [17, Theorem
3.3] under some slightly stronger assumptions. Indeed, [17, Theorem 3.3]
needs the condition that Φ be of lower type p−Φ for some p−Φ ∈ (0, 1] and of
upper type p+Φ := 1, and qΦ−1 ∈ (0,∞). However, the conclusions (4.11),
(4.12), and (4.16) of Theorem 4.6 only need p+Φ ∈ (0, 2). Thus, Theorem
4.6 essentially generalizes and improves [17, Theorem 3.3].

(iii) Under Assumption 1.B, Yang [39, Theorem 4.5] also proved the martingale
inequalities among spaces WHM

ϕ (Ω), WH S
ϕ(Ω), WH s

ϕ(Ω), WPϕ(Ω), and
WQϕ(Ω). By Assumption 1.B and Remark 2.2(iii), we know that Theorem
4.6 essentially improves [39, Theorem 4.5].

(iv) Similarly to the discussion of Remark 4.4(iv), Theorem 4.6 is also new on
weak weighted martingale (Orlicz) Hardy spaces.

5. Convergence theorems

In this section, we obtain bounded convergence theorems and dominated con-
vergence theorems on weak Musielak–Orlicz spaces WLϕ(Ω). We begin with the
following notion of the absolute continuity of the weak Musielak–Orlicz norm (see
also the monograph [4] of Bennett and Sharpley for more details on the absolute
continuity of Banach function norms).

Definition 5.1. Let ϕ be a Musielak–Orlicz function. A function f in WLϕ(Ω) is
said to have absolutely continuous quasinorm if

lim
n→∞

‖f1{x∈Ω:|f(x)|>n}‖WLϕ(Ω) = 0.

But, not every function in WLϕ(Ω) has absolutely continuous quasinorm even
when ϕ satisfies Assumption 1.1. For example, let Ω := (0, 1], and let P be
the Lebesgue measure. For any given p ∈ (0,∞) and any x ∈ (0, 1] and t ∈
(0,∞), let ϕ(x, t) := tp and f(x) := x− 1

p (see, e.g., [27, Example 2.5]). Via
a simple calculation, we know that ‖f‖WLϕ(Ω) = 1 and that ϕ is of uniformly
lower type p and of uniformly upper type p. However, for any n ∈ N, we have
‖f1{x∈Ω:|f(x)|>n}‖WLϕ(Ω) = 1. Thus, f has no absolutely continuous quasinorm.

Definition 5.2. Let ϕ be a Musielak–Orlicz function. The absolutely continuous
part of the weak Musielak–Orlicz space WLϕ(Ω) is defined as follows:

WLϕ(Ω) :=
{
f ∈ WLϕ(Ω) : lim

n→∞
‖f1{x∈Ω:|f(x)|>n}‖WLϕ(Ω) = 0

}
.

The proof of the following lemma is similar to that of [4, Theorem 3.8]. For the
convenience of the reader, we give some details here.

Lemma 5.3. Let ϕ be a Musielak–Orlicz function with uniformly upper type p+ϕ
for some p+ϕ ∈ (0,∞).
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(i) For any measurable functions g ∈ WLϕ(Ω) and h ∈ WLϕ(Ω), if |g| is
pointwise P-a.e. bounded by |h|, then g ∈ WLϕ(Ω).

(ii) If g, h ∈ WLϕ(Ω), then, for any complex numbers c1 and c2, c1g + c2h ∈
WLϕ(Ω).

(iii) If {gn}n∈N ⊂ WLϕ(Ω) and there exists a measurable function g such that
limn→∞ ‖gn − g‖WLϕ(Ω) = 0, then g ∈ WLϕ(Ω).

Proof. It is clear that (i) and (ii) hold true. Now we prove (iii). For any fixed
ε ∈ (0,∞), by the condition that limn→∞ ‖gn−g‖WLϕ(Ω) = 0, we know that there
exists a positive integer N0 such that, for any n ∈ N ∩ (N0,∞),

‖gn − g‖WLϕ(Ω) < ε. (5.1)

Moreover, for any fixed n0 ∈ N∩(N0,∞), since gn0 ∈ WLϕ(Ω), we find that there
exists a positive integer k0 such that

‖gn01{x∈Ω:|gn0 (x)|>k0}‖WLϕ(Ω) < ε. (5.2)

Combining this and the definition of WLϕ(Ω), we conclude that

sup
α∈(0,∞)

∫
{x∈Ω:|gn0 (x)|>α}∩{x∈Ω:|gn0 (x)|>k0}

ϕ
(
x,

α

ε

)
dP ≤ 1.

From this, it follows that

sup
α∈(k0,∞)

∫
{x∈Ω:|gn0 (x)|>α}

ϕ
(
x,

α

ε

)
dP ≤ 1. (5.3)

On the other hand, since n0 ∈ N ∩ (N0,∞), from (5.1), it follows that∫
{x∈Ω:|gn0 (x)−g(x)|>k0}

ϕ
(
x,

k0
ε

)
dP

≤ sup
α∈(0,∞)

∫
{x∈Ω:|gn0 (x)−g(x)|>α}

ϕ
(
x,

α

ε

)
dP ≤ 1,

which, together with (5.3), implies that, for any k ∈ N ∩ (2k0,∞),

sup
α∈(0,∞)

∫
{x∈Ω:|gn0 (x)|>α}∩{x∈Ω:|gn0 (x)−g(x)|>k/2}

ϕ
(
x,

α

ε

)
dP

≤ max
{

sup
α∈(0,k0]

∫
{x∈Ω:|gn0 (x)−g(x)|>k/2}

ϕ
(
x,

α

ε

)
dP,

sup
α∈(k0,∞)

∫
{x∈Ω:|gn0 (x)|>α}

ϕ
(
x,

α

ε

)
dP

}
≤ max

{∫
{x∈Ω:|gn0 (x)−g(x)|>k0}

ϕ
(
x,

k0
ε

)
dP, 1

}
≤ 1.

By this and the definition of WLϕ(Ω), we find that, for any k ∈ N ∩ (2k0,∞),

‖gn01{x∈Ω:|gn0 (x)−g(x)|>k/2}‖WLϕ(Ω) < ε.
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Combining this, Remark 2.2(i), (5.1), and (5.2), we conclude that, for any k ∈
N ∩ (2k0,∞),

‖g1{x∈Ω:|g(x)|>k}‖WLϕ(Ω) . ‖gn0 − g‖WLϕ(Ω) + ‖gn01{x∈Ω:|gn0 (x)|>k/2}‖WLϕ(Ω)

+ ‖gn01{x∈Ω:|gn0 (x)−g(x)|>k/2}‖WLϕ(Ω)

. ε.

Thus, we have limk→∞ ‖g1{x∈Ω:|g(x)|>k}‖WLϕ(Ω) = 0, which completes the proof of
(iii) and hence of Lemma 5.3. �

Remark 5.4. Let ϕ be a Musielak–Orlicz function with uniformly upper type p+ϕ
for some p+ϕ ∈ (0,∞). From Lemma 5.3, we deduce that WLϕ(Ω) is a closed
subspace of WLϕ(Ω).

The following lemma is just [23, Lemma 3.3(ii)].

Lemma 5.5. Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.1.
Then, for any f ∈ WLϕ(Ω) satisfying ‖f‖WLϕ(Ω) 6= 0,

sup
α∈(0,∞)

ϕ
({

x ∈ Ω :
∣∣f(x)∣∣ > α

}
,

α

‖f‖WLϕ(Ω)

)
= 1.

For any measurable function f , let

ρϕ(f) := sup
α∈(0,∞)

ϕ
({

x ∈ Ω :
∣∣f(x)∣∣ > α

}
, α

)
.

Lemma 5.6. Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.1.
Then, for any measurable functions {hn}n∈N, limn→∞ ‖hn‖WLϕ(Ω) = 0 if and only
if limn→∞ ρϕ(hn) = 0.

Proof. If limn→∞ ‖hn‖WLϕ(Ω) = 0, then, for any fixed ε ∈ (0, 1), there exists a
positive integer N0 ∈ N such that, for any n ∈ N ∩ (N0,∞), ‖hn‖WLϕ(Ω) < ε.
From this, Lemma 5.5 and the fact that ϕ is of uniformly lower type p−ϕ , we
deduce that, for any n ∈ N ∩ (N0,∞),

ρϕ(hn) .
[
‖hn‖WLϕ(Ω)

]p−ϕ sup
α∈(0,∞)

∫
{x∈Ω:|hn(x)|>α}

ϕ
(
x,

α

‖hn‖WLϕ(Ω)

)
dP . εp

−
ϕ .

This implies that limn→∞ ρϕ(hn) = 0.
Conversely, if limn→∞ ‖hn‖WLϕ(Ω) = 0 is not true, then there exist a constant

ε0 ∈ (0, 1) and a sequence {hnk
}k∈N of measurable functions such that, for any

k ∈ N, ‖hnk
‖WLϕ(Ω) ≥ ε0. Combining this, Lemma 5.5 and the uniformly upper

type p+ϕ property of ϕ, we find that, for any k ∈ N,

1 ≤ sup
α∈(0,∞)

ϕ
({

x ∈ Ω :
∣∣hnk

(x)
∣∣ > α

}
,
α

ε0

)
. ε

−p+ϕ
0 sup

α∈(0,∞)

ϕ
({

x ∈ Ω :
∣∣hnk

(x)
∣∣ > α

}
, α

)
,

which implies that, for any k ∈ N, ρϕ(hnk
) & ε

p+ϕ
0 . This contradicts

lim
n→∞

ρϕ(hn) = 0.
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Thus, we have

lim
n→∞

‖hn‖WLϕ(Ω) = 0,

which completes the proof of Lemma 5.6. �

Remark 5.7. Let ϕ be a Musielak–Orlicz function. Since supt∈(0,∞)

∫
Ω
ϕ(x, t) dP <

∞, it follows that, for any t ∈ (0,∞), dP̂t := ϕ(·, t) dP is a finite measure on
(Ω,F ,P). Now we claim that, for any F ∈ F and t ∈ (0,∞),

P̂t(F ) = 0 ⇐⇒ P(F ) = 0.

To show this, it suffices to prove that, for any t ∈ (0,∞), P̂t(F ) = 0 for some F ∈
F implies that P(F ) = 0. Indeed, for any t ∈ (0,∞), 0 = P̂t(F ) =

∫
F
ϕ(·, t) dP.

From this and the fact that ϕ(·, t) is strictly positive, we deduce that P(F ) = 0.
This proves the above claim.

We now state the following bounded convergence theorem.

Theorem 5.8. Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.1.
Let h be a measurable function on Ω, and let {hn}n∈N ⊂ WLϕ(Ω) be a sequence
of measurable functions such that hn converges to h almost everywhere on Ω
as n → ∞. If there exists a positive constant M such that, for any n ∈ N,
|hn(x)| ≤ M for almost every x ∈ Ω, then

lim
n→∞

‖hn − h‖WLϕ(Ω) = 0.

Proof. For any fixed ε ∈ (0,∞), let

δ := min
{[ ε

2C(p−ϕ )‖ϕ(·, 1)‖L1(Ω)

]1/p−ϕ
,
1

2

}
;

here and thereafter, C(p−ϕ ) is the positive constant same as in (1.1). For any n ∈ N,
we have

ρϕ(hn − h) = sup
α∈(0,∞)

∫
{x∈Ω:|hn(x)−h(x)|>α}

ϕ(x, α) dP

= max
{

sup
α∈(0,δ]

∫
{x∈Ω:|hn(x)−h(x)|>α}

ϕ(x, α) dP,

sup
α∈(δ,∞)

∫
{x∈Ω:|hn(x)−h(x)|>α}

ϕ(x, α) dP
}

=: max{Jn,1, Jn,2}.

We first estimate Jn,1. By the uniformly lower type p−ϕ property of ϕ, we know
that, for any n ∈ N,

Jn,1 ≤
∫
Ω

ϕ(x, δ) dP ≤ C(p−ϕ )δ
p−ϕ

∫
Ω

ϕ(x, 1) dP < ε. (5.4)

Now we estimate Jn,2. Since, for any n ∈ N, |hn| is pointwise P-a.e. bounded by
M and hn converges P-a.e. to h as n → ∞, we know that |h| is pointwise P-a.e.
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bounded by M . From this, we deduce that, for any n ∈ N,

Jn,2 ≤ sup
α∈(δ,∞)

∫
{x∈Ω:|hn(x)−h(x)|>α}

ϕ
(
x,
∣∣hn(x)− h(x)

∣∣) dP
≤ ϕ

({
x ∈ Ω :

∣∣hn(x)− h(x)
∣∣ > δ

}
, 2M

)
. (5.5)

Moreover, there exists a measurable set E ∈ F such that P(E) = 0 and hn → h

on E as n → ∞. From this and Remark 5.7, it follows that P̂2M(E) = 0 and

P̂2M(Ω) < ∞. Then we have that hn converges to h in measure P̂2M ; that is, for
every σ ∈ (0,∞),

lim
n→∞

ϕ
({

x ∈ Ω :
∣∣hn(x)− h(x)

∣∣ > σ
}
, 2M

)
= 0.

Combining this and (5.5), we find that there exists a positive integer N0 such
that, for any n ∈ N ∩ (N0,∞), Jn,2 < ε, which, together with (5.4), implies that,
for any n ∈ N ∩ (N0,∞), ρϕ(hn − h) < ε. By this and the arbitrariness of ε, we
find that

lim
n→∞

ρϕ(hn − h) = 0.

From this and Lemma 5.6, it follows that limn→∞ ‖hn − h‖WLϕ(Ω) = 0, which
completes the proof of Theorem 5.8. �

Finally, we establish the following dominated convergence theorem.

Theorem 5.9. Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.1.
Let {hn}n∈N be a sequence of measurable functions that converges P-a.e. to a mea-
surable function h. Suppose that there exists a measurable function g ∈ WLϕ(Ω)
such that |hn| is pointwise P-a.e. bounded by g for any n ∈ N. Then

lim
n→∞

‖hn − h‖WLϕ(Ω) = 0.

Proof. For any ε ∈ (0,∞), since g ∈ WLϕ(Ω), we deduce that there exists a
positive integer N0 such that

‖g1{x∈Ω:|g(x)|>N0}‖WLϕ(Ω) < ε.

Combining this, Remark 2.2(i) and the fact that {hn}n∈N converges P-a.e. to h
as n → ∞, we obtain∥∥(hn − h)1{x∈Ω:|g(x)|>N0}

∥∥
WLϕ(Ω)

≤ ‖2g1{x∈Ω:|g(x)|>N0}‖WLϕ(Ω) . ε. (5.6)

On the other hand, notice that |hn(x)| ≤ N0 for P-almost every x ∈ {x ∈
Ω : |g(x)| ≤ N0}. Then, by Remark 2.2(i) and Theorem 5.8, we know that there
exists a positive integer N such that, for any n ∈ N ∩ (N,∞),∥∥(hn − h)1{x∈Ω:|g(x)|≤N0}

∥∥
WLϕ(Ω)

< ε.
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From this, (5.6) and Remark 2.2(i), it follows that, for any n ∈ N ∩ (N,∞),

‖hn − h‖WLϕ(Ω) .
∥∥(hn − h)1{x∈Ω:|g(x)|>N0}

∥∥
WLϕ(Ω)

+
∥∥(hn − h)1{x∈Ω:|g(x)|≤N0}

∥∥
WLϕ(Ω)

. ε.

By this and the arbitrariness of ε, we have limn→∞ ‖hn − h‖WLϕ(Ω) = 0. This
finishes the proof of Theorem 5.9. �

Remark 5.10.

(i) Let ϕ be a Musielak–Orlicz function satisfying Assumption 1.1. We then
let

WHs
ϕ(Ω) :=

{
f = (fn)n∈Z+ ∈ M : s(f) ∈ WLϕ(Ω)

}
,

WHS
ϕ(Ω) :=

{
f = (fn)n∈Z+ ∈ M : S(f) ∈ WLϕ(Ω)

}
,

and

WHM
ϕ (Ω) :=

{
f = (fn)n∈Z+ ∈ M : M(f) ∈ WLϕ(Ω)

}
.

From Remark 5.4 and the sublinearity of the operator s, we deduce
that WHs

ϕ(Ω) is a closed subspace of WH s
ϕ(Ω). Similarly, WHS

ϕ(Ω) and

WHM
ϕ (Ω) are the closed subspaces of WH S

ϕ(Ω) and WHM
ϕ (Ω), respec-

tively.
If f ∈ WHs

ϕ(Ω) ⊂ WH s
ϕ(Ω), then, by Theorem 3.1, we have f ∈

WH ϕ,q,s
at (Ω). Thus, there exists a sequence of triples, {µk, ak, νk}k∈Z, such

that f =
∑

k∈Z µ
kak P-a.e. Now we claim that the sum

∑`
k=m µkak con-

verges to f in WH s
ϕ(Ω) as m → −∞ and ` → ∞. Indeed, for any m, ` ∈ Z

with m < `, we have

f −
∑̀
k=m

µkak = (f − f ν`+1

) + f νm

and [
s(f − f ν`+1

)
]2

=
[
s(f)

]2 − [
s(f ν`+1

)
]2
. (5.7)

Thus, we obtain s(f − f ν`+1
) ≤ s(f) and s(f νm) ≤ s(f). From this, (5.7),

the fact that, for P-almost every x ∈ Ω,

lim
`→∞

s(f − f ν`+1

)(x) = 0, lim
m→−∞

s(f νm)(x) = 0

and Theorem 5.9, we deduce that

lim
`→∞

∥∥s(f − f ν`+1

)
∥∥
WLϕ(Ω)

= 0 and lim
m→−∞

∥∥s(f νm)
∥∥
WLϕ(Ω)

= 0.

Combining this, Remark 2.2(i) and the sublinearity of the operator s, we
complete the proof of the claim.
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(ii) Let ϕ be as in Theorem 3.5, and let f ∈ WHS
ϕ(Ω) (resp., WHM

ϕ (Ω)).
Analogously to (i) of this remark, from Theorem 5.9, we deduce that, in

step 1 of the proof of Theorem 3.5, the sum
∑`

k=m µkak converges to f in
WHM

ϕ (Ω) (resp., WH S
ϕ(Ω)) as m → −∞ and ` → ∞, which may be of

independent interest.
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3. J. Álvarez and M. Milman, Hp continuity properties of Calderón–Zygmund-type operators,
J. Math. Anal. Appl. 118 (1986), no. 1, 63–79. Zbl 0596.42006. MR0849442. DOI 10.1016/
0022-247X(86)90290-8. 885

4. C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic
Press, Boston, 1988. Zbl 0647.46057. MR0928802. 909

5. A. Bonami, S. Grellier, and L. D. Ky, Paraproducts and products of functions in BMO(Rn)
and H1(Rn) through wavelets, J. Math. Pures Appl. (9) 97 (2012), no. 3, 230–241.
Zbl 1241.47028. MR2887623. DOI 10.1016/j.matpur.2011.06.002. 885
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