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Abstract. This article is devoted to the investigation of self-adjoint (and,
more generally, proper) extensions of Phillips symmetric operators (PSO).
A closed densely defined symmetric operator with equal defect numbers is con-
sidered a Phillips symmetric operator if its characteristic function is a constant
on C+. We present equivalent definitions of PSO and prove that proper exten-
sions with real spectra of a given PSO are similar to each other. Our results
imply that one-point interaction of the momentum operator i d

dx + αδ(x − y)
leads to unitarily equivalent self-adjoint operators with Lebesgue spectra. Self-
adjoint operators with nontrivial spectral properties can be obtained as a result
of more complicated perturbations of the momentum operator. In this way, we
study special classes of perturbations which can be characterized as one-point
interactions defined by the nonlocal potential γ ∈ L2(R).

1. Introduction

Let S be a symmetric operator with equal defect numbers, and let U be a family
of unitary operators in a Hilbert space H such that the inclusion U ∈ U implies
U∗ ∈ U. The operator S is called U-invariant if S commutes with all U ∈ U.
Does there exist at least one U-invariant self-adjoint extension of S? The answer
is definitely affirmative if S is assumed to be semibounded and the Friedrichs
extension of S gives the required example.
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In the general case of nonsemibounded operators, Phillips [23, p. 382] con-
structed a symmetric operator S and a family U of unitary operators commuting
with S such that the U-invariant S has no U-invariant self-adjoint extensions. It
was discovered (see [16]) that the characteristic function of the symmetric oper-
ator constructed in the Phillips work is a constant in the upper half-plane C+.
This fact can be used for the general definition of the PSO. Namely, we say that
a closed densely defined symmetric operator S with equal defect numbers is a
Phillips symmetric operator (PSO) if its characteristic function is an operator-
constant on C+.

The concept of characteristic function of a symmetric operator was first intro-
duced by Shtraus [25] and later substantially developed by Kochubei [17] on the
basis of the boundary triplet technique (see [12]). Section 2 contains all the nec-
essary results about characteristic functions which are used in this article.

The present article is devoted to the investigation of PSOs as well as their
self-adjoint and, more generally, proper extensions (see Section 2 for the rele-
vant definition). Such self-adjoint extensions differ from those that are commonly
studied in the literature (see [2]) and they have a lot of curious properties.

Our original definition of PSO deals with the concept of characteristic function.
In many cases, an explicit calculation of a characteristic function is technically
complicated. For this reason, in Section 3, we establish equivalent descriptions
of PSO (see Theorems 3.1, 3.4, 3.5) which can be employed as independent def-
initions of PSO. These results lead to the conclusion that each simple1 PSO
coincides with the orthogonal sum of simple maximal symmetric operators hav-
ing the same nonzero defect numbers in the upper C+ and lower C− half-planes.
This kind of decomposition means that every simple PSO S is unitarily equivalent
to the momentum operator with one-point interaction

S = i
d

dx
, D(S) =

{
u ∈ W 1

2 (R, N) : u(0) = 0
}

acting in the Hilbert space L2(R, N), where the dimension of the auxiliary Hilbert
space N coincides with defect numbers of S.

Section 4 is devoted to proper extensions of PSO. The main result (Theo-
rem 4.2) states that all proper extensions of a PSO S with real spectra are similar
to each other. In fact, we can say more: each proper extension with real spectrum
can be interpreted as a self-adjoint extension of S for a special choice of inner
product equivalent to the initial one. Some properties of PSOs with defect num-
bers 〈1, 1〉 were established in [5]. In particular, analogues of Theorems 3.4, 4.2,
and Corollary 4.3 were proved.

In Section 5, PSOs are determined as the restrictions of a given self-adjoint
operator A. According to Theorem 5.2, those PSO which can be obtained in this
way are in one-to-one correspondence with the wandering subspaces L of the
Cayley transform U of A. This means that the set of restrictions of A contains
a PSO only in the case where A has a reducing subspace H0 such that A0 =
A �D(A)∩H0 is a self-adjoint operator in H0 with Lebesgue spectrum. The existence

1See the definition of a simple symmetric operator in Section 2.
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of a simple PSO is equivalent to the fact that A has a Lebesgue spectrum (see
Corollary 5.4).

In Section 6, we consider examples of PSOs. We establish a useful (in our
opinion) characterization of wavelets as functions from the defect subspace N−i

of a simple PSO (see Proposition 6.1).
The results of Sections 4–6 show that a one-point interaction of the momen-

tum operator i d
dx
+αδ(x−y) leads to self-adjoint operators with Lebesgue spectra

which are unitarily equivalent to each other. This means that one should consider
more complicated perturbations of the momentum operator for the construction
of self-adjoint operators with nontrivial spectral properties. In this way, self-
adjoint momentum operators acting in two intervals were studied in [15] and [22].
The momentum operators defined on oriented metric graphs were investigated in
[10]. General nonlocal point interactions for first-order differential operators were
introduced and studied in [4] and [21].

In Section 7, we continue investigations of [4] by focusing on special classes of
perturbations which can be characterized as one-point interactions defined by the
nonlocal potential γ ∈ L2(R).

2. Characteristic functions of symmetric operators

Let H be a separable Hilbert space with inner product (·, ·) linear in the first
argument, and let A be a linear operator acting in H. The domain of A is denoted
D(A), while A �D stands for the restriction of A onto a set D. An operator A is
called dissipative if Im(Af, f) ≥ 0 for all f ∈ D(A) and maximal dissipative if
there are no dissipative extensions of A.

Let S be a closed densely defined symmetric operator in H, and let S∗ be the
adjoint of S. We denote by

Nλ = ker(S∗ − λI), λ ∈ C \ R

the defect subspaces of S, and we define the defect numbers n±(S) as

n±(S) = dimNλ, λ ∈ C±,

where C+ (C−) are the open upper (resp., lower) half-planes. In what follows, we
assume that the defect numbers of S coincide, that is, n+(S) = n−(S).

An extension A of a symmetric operator S is called proper if S ⊂ A ⊂ S∗.
Self-adjoint extensions of S is a subset of proper extensions. According to the
von Neumann formulas (see, e.g., [18], [24]) each proper extension A of S is
uniquely determined by the choice of a subspace M ⊂ Mλ:

A = S∗ �D(A), D(A) = D(S) +̇M, (2.1)

where

Mλ = Nλ +̇ Nλ, λ ∈ C \ R.

Let us set M = Nλ in (2.1) and denote by

Aλ = S∗ �D(Aλ), D(Aλ) = D(S) +̇ Nλ, λ ∈ C \ R (2.2)
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the corresponding proper extensions of S. The operators sign(Imλ)Aλ are max-
imal dissipative, and A∗

λ = Aλ. The resolvent set of every maximal dissipative
operator contains C−. For this reason, the operator-function

Sh(λ) = (Aλ − iI)(Aλ + iI)−1 �Ni
: Ni → N−i, λ ∈ C+ (2.3)

is well defined; it is also a particular case of the characteristic function of a sym-
metric operator S defined by Shtraus [25] (in the Shtraus paper, (2.3) involves an
arbitrary λ0 ∈ C+ instead of i). The characteristic function Sh(·) is a holomorphic
operator-valued function whose values are strict contractions defined on Ni and
mapping into N−i (see [25]). Another (equivalent) definition of Sh(·) in [25] is
based on the relation

D(Aλ) = D(S) +̇ Nλ = D(S) +̇
(
I − Sh(λ)

)
Ni, λ ∈ C+, (2.4)

which allows one to determine uniquely Sh(·).
The explicit construction of Sh(·) deals with the calculation of Nλ that can at

times be technically complicated. This inconvenience was overcome in [17] with
the use of the boundary triplet technique. We recall (see [9], [18]) that a triplet
(H,Γ−,Γ+), where H is an auxiliary Hilbert space and Γ± are linear mappings
of D(S∗) into H, is called a boundary triplet of S∗ if

(S∗f, g)− (f, S∗g) = i
[
(Γ+f,Γ+g)H − (Γ−f,Γ−g)H

]
, f, g ∈ D(S∗) (2.5)

holds and the map (Γ−,Γ+) : D(S∗) → H ⊕ H is surjective. Let a boundary
triplet (H,Γ−,Γ+) be given. Then the domains of definition of operators Aλ in
(2.2) admit the presentation

D(Aλ) =

{
f ∈ D(S∗) :

Θ(λ)Γ+f = Γ−f, λ ∈ C+

Γ+f = Θ(λ)Γ−f, λ ∈ C−

}
, (2.6)

where Θ(·) is an operator in H.
The operator-valued function Θ(·) defined on C \R is called the characteristic

function of S associated with the boundary triplet (H,Γ−,Γ+). It follows from the
relation A∗

λ = Aλ and (2.5) that Θ∗(λ) = Θ(λ). The explicit form of characteristic
function depends on the choice of a boundary triplet. However, in every case, Θ(·)
is a holomorphic operator-valued function and ‖Θ(λ)‖ < 1 (see [17]). We recall
that a symmetric operator S is called simple if there does not exist a subspace of
H invariant under S such that the restriction of S to this subspace is self-adjoint
(see [1]). The characteristic function determines a simple symmetric operator up
to unitary equivalence.

Theorem 2.1 ([17, Theorem 2]). Simple symmetric operators S1 and S2 are
unitarily equivalent if and only if some of their characteristic functions coincide.

The Shtraus characteristic function Sh(·) defined in (2.3) coincides (up to the
multiplication by unitary operator) with Θ(·) for special choice of boundary
triplet. Precisely, the simplest (inspired by the von Neumann formulas) boundary
triplets (Nµ,Γ−,Γ+) of S

∗ can be constructed as

Γ−f =
√
2ImµV fµ, Γ+f =

√
2Imµfµ, f = u+ fµ + fµ ∈ D(S∗), (2.7)
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where µ ∈ C+ and where V : Nµ → Nµ is a unitary mapping. Assume that
µ = i. Then the characteristic function Θ(·) associated with the boundary triplet
(Ni,Γ−,Γ+) coincides with the function −V Sh(·) on C+.

Remark 2.2. There are various approaches to the definition of boundary triplets.
For instance, in [12] and [24], a triplet (H,Γ0,Γ1), where Γ0, Γ1 are linear map-
pings of D(S∗) into H, is called a boundary triplet of S∗ if the Green identity

(S∗f, g)− (f, S∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ D(S∗)

holds and the map (Γ0,Γ1) : D(S∗) → H⊕H is surjective.
The operators Γ± in (2.5) and Γi are related as follows: Γ± = 1√

2
(Γ1±iΓ0)

and, obviously, the definitions of boundary triplets (H,Γ−,Γ+) and (H,Γ0,Γ1)
are equivalent.

The characteristic function Θ(·) admits a natural interpretation in the Krein
space setting (see [3], [6] for the basic theory of Krein spaces and terminology).
To explain this point, we fix a boundary triplet (H,Γ−,Γ+) and we rewrite (2.5)
as

(S∗f, g)− (f, S∗g) = i[Ψf,Ψg], (2.8)

where

Ψ =

[
Γ+

Γ−

]
: D(S∗) → H =

[
H
H

]
(2.9)

maps D(S∗) into the Krein space (H, [·, ·]) with the indefinite inner product

[x, y] = (x0, y0)− (x1, y1), x =

[
x0
x1

]
, y =

[
y0
y1

]
∈ H. (2.10)

It follows from the definition of boundary triplets that the mapping Ψ : D(S∗) →
H is surjective and kerΨ = D(S). Because of (2.9) and (2.10), the decomposition

H = H+ ⊕ H−, H+ = Ψker Γ− =

[
H
0

]
,H− = Ψker Γ+ =

[
0
H

]
(2.11)

is a fundamental decomposition of the Krein space (H, [·, ·]). Here, H± are maximal
uniformly positive/negative subspaces with respect to the indefinite inner product
[·, ·].

By virtue of (2.1), each proper extension A of S is completely determined by
a subspace L = ΨD(A) = Ψ(D(S) +̇ M) = ΨM of H. In other words, there is a
one-to-one correspondence between subspaces of H and proper extensions of S.
In particular, proper extensions Aλ in (2.2) are determined by the subspaces
Lλ = ΨD(Aλ), which are maximal uniformly positive (λ ∈ C+) and maximal
uniformly negative (λ ∈ C−) in (H, [·, ·]) (see [13]).

Taking (2.6) and (2.9) into account, we arrive at the conclusion that the maxi-
mal uniformly positive subspace Lλ is decomposed with respect to the fundamen-
tal decomposition (2.11) as

Lλ = ΨD(Aλ) =

{[
Γ+f
ΘΓ+f

]
: f ∈ D(Aλ)

}
=

{
h+ + Θ̃(λ)h+ : h+ ∈ H+

}
,
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where Θ̃(·) : H+ → H− acts as follows:

Θ̃(λ)h+ = Θ̃(λ)

[
h
0

]
=

[
0

Θ(λ)h

]
, λ ∈ C+. (2.12)

This means that Θ̃(λ) is the angular operator of the maximal uniformly positive
subspace Lλ with respect to the maximal uniformly positive subspace H+ of the
fundamental decomposition (2.11) (see [6] for the concept of angular operators).

Self-adjoint extensions A of S correspond to hypermaximal neutral subspaces
L = ΨD(A) of the Krein space (H, [·, ·]). Each hypermaximal neutral subspace is
determined uniquely by a unitary mapping between subspaces H+ and H− of the
fundamental decomposition (2.11). This fact leads to the conclusion that each
self-adjoint extension A of S can be described as

A = S∗ �D(A), D(A) =
{
f ∈ D(S∗) : TΓ+f = Γ−f

}
,

where T is a unitary operator in H.
The explicit form of characteristic function depends on the choice of boundary

triplet. Let Θi(·) (i = 1, 2) be characteristic functions associated with boundary
triplets (Hi,Γ

i
−,Γ

i
+) constructed for the same S∗. Since the dimensions of the

auxiliary Hilbert spaces Hi coincide with the defect number of S, we may assume
without loss of generality that H1 = H2 = H.

It is easy to see that the operator K : H → H defined by the formula

K

[
Γ1
+f

Γ1
−f

]
=

[
Γ2
+f

Γ2
−f

]
, f ∈ D(S∗),

is surjective in H and, moreover, that K is a unitary operator in the Krein space
(H, [·, ·]), that is, [Kx, Ky] = [x, y], x, y ∈ H (the latter relation follows from
(2.8)–(2.10)). Each unitary operator K in (H, [·, ·]) determines the so-called inter-
spherical linear fractional transformation (see [6, Chapter III, Section 3])

ΦK(Z) = (K21 +K22Z)(K11 +K12Z)
−1, K =

[
K11 K12

K21 K22

]
,

where Kij are operator components of decomposition of K with respect to (2.11),
and a bounded linear operator Z maps H+ into H−. The interspherical trans-
formation ΦK(Z) is well defined for all Z : H+ → H− with ‖Z‖ ≤ 1 (i.e.,
0 ∈ ρ(K11 +K12Z)) and ‖ΦK(Z)‖ ≤ 1. It is known (see [17], [18]) that

Θ̃2(λ) = ΦK

(
Θ̃1(λ)

)
, λ ∈ C+, (2.13)

where Θ̃i(·) : H+ → H− are defined similarly to (2.12).

3. Phillips symmetric operator

We say that a closed densely defined symmetric operator with equal nonzero
defect numbers is a PSO if its characteristic function Θ(·) is an operator-constant
on C+. By virtue of (2.13), this definition does not depend on the choice of
boundary triplet. However, in many cases, it is not easy to use (because one
would have to calculate the characteristic function). For this reason a series of
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statements which can be used as (equivalent) definitions of PSO are presented
below.

Theorem 3.1. A symmetric operator S with equal defect numbers is a PSO if
and only if

Nλ ⊂ D(S) +̇ Nµ, for all λ, µ ∈ C+. (3.1)

Proof. If S is a PSO, then its characteristic function Θ(·) associated with the
boundary triplet (Ni,Γ−,Γ+) determined by (2.7) has to be a constant. Therefore,
the Shtraus characteristic function Sh(λ) coincides with an operator U : Ni →
N−i for all λ ∈ C+. In particular, Sh(i) = U . By virtue of (2.4) with λ = i,
D(S) +̇ Ni = D(S)+̇(I−U)Ni, which is possible only for the case U = 0. Hence,
Sh(λ) ≡ 0 and (2.4) implies that

Nλ ⊂ D(S) +̇ Ni, ∀λ ∈ C+. (3.2)

Let us assume that there exist fi ∈ Ni and µ ∈ C+ such that fi = v + fµ +
fµ, where v ∈ D(S) and where fµ ∈ Nµ is nonzero. The last equality can be

transformed to f̃i = ṽ + fµ with the use of (3.2). However, the obtained relation

is impossible since Im(S∗f̃i, f̃i) = ‖f̃i‖2 > 0 and, simultaneously,

Im(S∗f̃i, f̃i) = Im
(
S∗(ṽ + fµ), ṽ + fµ

)
= Im(S∗fµ, fµ) = −(Imµ)‖fµ‖2 < 0.

Therefore, fi = v + fµ and Ni ⊂ D(S) +̇ Nµ for all µ ∈ C. The obtained
inclusion and (3.2) justify (3.1). Conversely, if (3.1) holds, then, due to (2.4),
D(S) +̇ (I − Sh(λ))Ni ⊂ D(S) +̇ Ni, which is possible only for Sh(λ) ≡ 0. �

Remark 3.2. The inclusion (3.1) and its dual counterpart in C−,

Nν ⊂ D(S) +̇ Nξ, for all ν, ξ ∈ C−, (3.3)

are equivalent. Indeed, (3.1) means that the maximal dissipative operators Aλ

in (2.2) do not depend on the choice of λ ∈ C+, that is, Aλ ≡ A+. Therefore,
their adjoints A∗

λ = A∗
µ = Aν = Aξ = A∗

+ (ν = λ, ξ = µ) also do not depend on
ν, ξ ∈ C−. This fact justifies the equivalence of (3.1) and (3.3).

Corollary 3.3. Simple PSO with the same defect numbers are unitarily equiva-
lent.

Proof. Let S be a PSO with the same defect numbers n = n+(S) = n−(S). It
follows from the proof of Theorem 3.1 that the Shtraus characteristic function
Sh(·) of S coincides with the zero operator. Therefore, the characteristic function
of S calculated in terms of the boundary triplet (Ni,Γ−,Γ+) (see (2.7)) is also
a zero operator acting in the auxiliary space with the dimension n. By apply-
ing Theorem 2.1 for the case of simple PSO with the same defect numbers, we
complete the proof. �

Theorem 3.4. For a closed densely defined symmetric operator S with equal
defect numbers, the following are equivalent:
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(i) S is a PSO,
(ii) Nλ ⊥ Nν for all λ ∈ C+ and ν ∈ C−,
(iii) Nλ ⊥ Nν for all λ ∈ C+ and some ν ∈ C−.

Proof. (i)⇒(ii). Let S be a PSO, and let λ, µ ∈ C+, λ 6= µ. By virtue of (3.1),
fλ = u+ fµ, where fz ∈ Nz and u ∈ D(S). Therefore,

0 = (S∗ − λI)fλ = (S − λI)u+ (µ− λ)fµ. (3.4)

The obtained relation means that Nµ ⊂ R(S − λI), and hence Nµ ⊥ Nν , where

ν = λ. To prove the orthogonality of Nµ and Nµ, we use (3.4) again in order to
rewrite fλ = u + fµ as follows: fλ = (λ − µ)(S − λI)−1fµ + fµ. Let fµ be fixed,
and let λ→ µ. Then fλ → fµ due to the last formula for fλ. Then

(fµ, fµ) = lim
λ→µ

(fλ, fµ) = 0, ∀fµ ∈ Nµ, fµ ∈ Nµ.

The implication (i)⇒(ii) is proved.
(iii)⇒(i). Let Nλ ⊥ Nν for all λ ∈ C+ and some ν ∈ C−. Each fλ ∈ Nλ has

the decomposition fλ = u+ fν + fν and

(λ− ν)fλ = (S∗ − νI)fλ = (S − νI)u+ (ν − ν)fν .

Therefore, for every γν ∈ Nν ,

0 = (λ− ν)(fλ, γν) =
(
u, (S∗ − νI)γν

)
+ (ν − ν)(fν , γν) = (ν − ν)(fν , γν),

which is possible only for fν = 0. Therefore,

Nλ ⊂ D(S) +̇ Nν , ∀λ ∈ C+.

This inclusion coincides with (3.2) for ν = i and it implies (3.1) (it suffices to
repeat the proof of implication (3.2) ⇒ (3.1) in Theorem 3.1 with ν = i). Then,
according to Theorem 3.1, S is a PSO. By taking the trivial implication (ii)⇒(iii)
into account, we complete the proof. �

Theorem 3.5. For a closed densely defined symmetric operator S with equal
defect numbers n = n+(S) = n−(S), the following are equivalent:

(i) S is a PSO;
(ii) the Hilbert space H is decomposed into the orthogonal sum H = H1⊕H2⊕H3

of Hilbert spaces Hj leaving S invariant and such that

S = S1 ⊕ S2 ⊕ S3, Sj = S �Hj
, (3.5)

where S1 and S2 are simple maximal symmetric operators in H1 and H2

with defect numbers n+(S1) = n, n−(S1) = 0 and n+(S2) = 0, n−(S2) = n,
respectively, and S3 is a self-adjoint operator in H3.

Proof. (ii)⇒(i). If S has the decomposition (3.5), then its adjoint has the form

S∗ = S∗
1 ⊕ S∗

2 ⊕ S3.

This means that

Nλ = ker(S∗ − λI) = ker(S∗
1 − λI)⊕ ker(S∗

2 − λI) = ker(S∗
1 − λI) ⊂ H1
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for every λ ∈ C+. Similarly, Nν ⊂ H2 for each ν ∈ C−. Therefore, Nλ ⊥ Nν and
S is a PSO due to Theorem 3.4.

(i)⇒(ii). Each symmetric operator S with equal defect numbers n = n+(S) =
n−(S) is reduced by the decomposition

H = Hα ⊕ H3, H3 =
⋂

µ∈C−∪C+

R(S − µI), (3.6)

where H3 is the maximal invariant subspace for S on which the operator S3 =
S �H3 is self-adjoint, while the subspace Hα coincides with the closed linear span
of all ker(S∗−µI) and the restriction Sα = S �Hα gives rise to a simple symmetric
operator in Hα with the same defect numbers n±(Sα) = n (see [11, p. 9]).

By the construction, Nµ = ker(S∗ − µI) = ker(S∗
α − µI) = Nµ(Sα) for all

µ ∈ C−∪C+. Assume now that S is a PSO. According to Theorem 3.4, Nλ(Sα) ⊥
Nν(Sα) (λ ∈ C+, ν ∈ C−). Therefore, Sα is a simple PSO and we can decompose
Hα = H1 ⊕ H2, where H1 and H2 coincide with the closed linear spans of defect
subspaces {Nµ}µ∈C+ and defect subspaces {Nν}ν∈C− , respectively.

To complete the proof we should verify that Sα = S1 ⊕ S2, where Sj = Sα �Hj

(j = 1, 2) are maximal symmetric operators in Hj with defect numbers n+(S1) =
n, n−(S1) = 0 and n+(S2) = 0, n−(S2) = n. To that end, we consider a simple
symmetric operator2

S = i
d

dx
, D(S) =

{
u ∈ W 1

2 (R, N) : u(0) = 0
}

(3.7)

acting in the Hilbert space L2(R, N), where N is an auxiliary Hilbert space with
the dimension n. The adjoint of S has the form

S∗f = i
df

dx
, D(S∗) = W 1

2

(
R \ {0}, N

)
. (3.8)

By virtue of (3.8), the defect subspaces Nµ, Nν (µ ∈ C+, ν ∈ C−) are formed,
respectively, by the functions

χR−(x)e
−iµxm, χR+(x)e

−iνxm, (3.9)

where m runs the Hilbert space N , and χI(x) is the characteristic function of the
interval I. Therefore, S has the equal defect numbers n = n±(S) and is a PSO
(since Nµ and Nν are mutually orthogonal).

By Corollary 3.3, the symmetric operator Sα in Hα is unitarily equivalent to
the symmetric operator S acting in L2(R, N). For this reason, it sufficient to
establish the decomposition Sα = S1 ⊕ S2 for the case where Sα = S and Hα =
L2(R, N). Taking (3.9) into account, we conclude that H1 = L2(R−, N) and H2 =
L2(R+, N). Moreover, S = S1 ⊕ S2, where S1 = i d

dx
, D(S1) = {u ∈ W 1

2 (R−, N) :
u(0) = 0} is a maximal symmetric operator in L2(R−, N) with defect numbers
n+(S1) = n, n−(S1) = 0, while S2 = i d

dx
, D(S2) = {u ∈ W 1

2 (R+, N) : u(0) = 0} is
maximal symmetric in L2(R+, N) with defect numbers n+(S2) = 0, n−(S2) = n.

�

2The simplicity of S is established in [1].



1004 S. KUZHEL and L. NIZHNIK

Remark 3.6. It follows from the proof of Theorem 3.5 that each simple PSO S
with defect numbers n = n±(S) is unitarily equivalent to the symmetric operator
S defined by (3.7).

4. Proper extensions of a Phillips symmetric operator

Let S be a simple PSO. It follows from Remark 3.6 that ker(S∗ − λI) = {0}
for λ ∈ R and that the continuous spectrum of S coincides with R. Therefore,
each proper extension of a simple PSO has a continuous spectrum on R. Proper
extensions of a nonsimple PSO have R contained in their spectra, but the real
point spectrum may be present due to a self-adjoint part S3 in (3.5).

Proposition 4.1. The spectrum σ(A) of a proper extension A of a PSO S coin-
cides with one of the following sets:

(i) σ(A) = R,
(ii) σ(A) = C− ∪ R or σ(A) = R ∪ C+,
(iii) σ(A) = C.

Proof. Let us suppose that a proper extension A has a nonreal point λ0 ∈ ρ(A).
Without loss of generality, we may assume that λ0 ∈ C−. Then the domain of A
admits the presentation

D(A) =
{
f = u+ uλ0

+ Φuλ0
: u ∈ D(S), uλ0

∈ Nλ0

}
,

where Φ : Nλ0
→ Nλ0 is a bounded operator defined on Nλ0

. The domain D(A)

can be rewritten in terms of the boundary triplet (2.7) with µ = λ0 as

D(A) =
{
f ∈ D(S∗) : TΓ+f = Γ−f

}
, (4.1)

where T = V Φ is a bounded operator in the auxiliary Hilbert space Nµ.
By virtue of [18, Theorem 4.2] (see also [17, Theorem 3]),

λ ∈ σ(A) ⇐⇒ 0 ∈ σ
(
Θ(λ)−T

)
, λ ∈ C+,

λ ∈ σ(A) ⇐⇒ 0 ∈ σ
(
I −Θ∗(λ)T

)
, λ ∈ C−,

where Θ(·) is the characteristic function of S associated with the boundary triplet
(Nµ,Γ−,Γ+). Since S is a PSO, the characteristic function Θ(·) is an operator-
constant on C+, that is, Θ(λ) = Θ for λ ∈ C+. Therefore, λ ∈ σ(A) ⇐⇒ 0 ∈
σ(Θ − T). The obtained relation means that either C+ is contained in σ(A) or
C+ ⊂ ρ(A). Furthermore, due to the assumption above, there is a resolvent point
λ0 ∈ C− of A. Therefore, 0 ∈ ρ(I − Θ∗T) and C− ⊂ ρ(A). Summing up, the
spectrum σ(A) is described by the cases (i) or (ii) depending on if 0 ∈ ρ(Θ−T)
or 0 ∈ σ(Θ−T). The case λ0 ∈ C+∩ ρ(A) is considered in the same manner. �

Linear operators A1, A2 acting in H are called similar if there exists a bounded
operator Z with bounded inverse such that ZD(A1) = D(A2) and A1 = Z−1A2Z.

Theorem 4.2. Let S be a PSO. Proper extensions with real spectra of S are
similar to each other.
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Proof. By virtue of Corollary 3.3 and Theorem 3.5, it is sufficient to consider
proper extensions of the simple PSO S determined by (3.7). In this case, the
adjoint S∗ is defined by (3.8) and the defect subspaces Nµ, Nµ (µ ∈ C+) are
formed, respectively, by the functions χR−(x)e

−iµxm and χR+(x)e
−iµxm, where m

runs the auxiliary Hilbert space N .
Let us choose the unitary mapping V : Nµ → Nµ in the definition of bound-

ary triplet (2.7) as V χR+(x)e
−iµxm = χR−(x)e

−iµxm, and consider the unitary
mapping W between Nµ and N as

WχR−(x)e
−iµxm =

m√
2(Imµ)

.

Then the modified boundary triplet (WNµ,WΓ−,WΓ+) of the boundary triplet
(2.7) takes the form (N,Γ1

−,Γ
1
+), where

Γ1
−f = f(0+), Γ1

+f = f(0−), f ∈ D(S∗).

If a proper extension A of S has real spectrum, then its domain of definition
is determined by the formula (4.1), where T is a bounded operator in Nµ with
bounded inverse. This means that

AT = S∗ �D(AT ), D(AT ) =
{
f ∈ D(S∗) : Tf(0−) = f(0+)

}
, (4.2)

where T = WTW−1 is a bounded operator in N with bounded inverse.
Let F be a bounded operator with bounded inverse in N . Then the operator

UFf =

{
Ff(x), x > 0,

f(x), x < 0,
f ∈ L2(R, N) (4.3)

is a bounded operator in L2(R, N) with bounded inverse such that U−1
F = UF−1 .

Furthermore, UF : D(S∗) → D(S∗) and UFS
∗ = S∗UF . These relations and (4.2)

lead to the conclusion that

UFATf = UFS
∗f = S∗UFf = AFTUFf, f ∈ D(AT ). (4.4)

Let operators A1, A2 with real spectra be proper extensions of S. Then they are
described in (4.2) by bounded operators Tj with 0 ∈ ρ(Tj) (Aj ≡ ATj

). Due to

(4.4), D(AT2) = UFD(AT1), where F = T2T
−1
1 and

AT1 = U−1
F AT2UF . (4.5)

Therefore, the Aj’s are similar to each other. �

Self-adjoint extensions of a symmetric operator are examples of its proper
extensions. For this important particular case, the statement of Theorem 4.2
can be strengthened.

Corollary 4.3. Self-adjoint extensions of a PSO S are unitarily equivalent to
each other. Precisely, there exists a collection of unitary operators U = {Uξ}ξ∈I
(I is the set of indices) with the properties

Uξ ∈ U ⇐⇒ U∗
ξ ∈ U, UξS = SUξ,∀ξ ∈ I,
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and such that every pair of self-adjoint extensions A1, A2 of S satisfy the relation

UξA1 = A2Uξ (4.6)

for some ξ ∈ I.

Proof. Self-adjoint extensions of the symmetric operator S are uniquely distin-
guished in (4.2) by the set of unitary operators T acting in N (see Section 2).
Therefore, the operators UT defined by (4.3) with F = T are unitary operators
in L2(R, N) and (4.5) can be rewritten as (4.6), where Ai = ATi

are self-adjoint
extensions of S and ξ = T2T

−1
1 is a unitary operator in N .

It follows from the definition of UT that the set U = {Uξ}, where ξ runs the set I
of unitary operators in N , satisfies the conditions in the statement. Therefore, the
proof is complete for the simple PSO S defined by (3.7). This result is extended
to an arbitrary simple PSO S with the use of Corollary 3.3. The required set
U = {Uξ}ξ∈I for the general case of a PSO is obtained on the base of a previously
constructed set (for simple PSO) by the addition of the identity operator I3 acting
in the subspace H3 (see (3.5)) corresponding to the self-adjoint part of S. �

Remark 4.4. It follows from the construction of U = {Uξ}ξ∈I in Corollary 4.3
that the symmetric operator S is U-invariant. However, there are no U-invariant
self-adjoint extensions of S. First, an example of this kind was constructed by
Phillips [23].

We say that a self-adjoint operator A has a Lebesgue spectrum of multiplicity
n if A is unitarily equivalent to the operator of multiplication by independent
variable in L2(R, N), where dimN = n.

Corollary 4.5. Each self-adjoint extension of a simple PSO S with defect num-
bers n = n±(S) has a Lebesgue spectrum of multiplicity n.

Proof. In view of Corollary 3.3, a simple PSO S is unitarily equivalent to the
symmetric operator S in (3.7), where dimN = n. The momentum operator

A = i
d

dx
, D(A) = W 1

2 (R, N) (4.7)

is a self-adjoint extension of S in L2(R, N) and it has a Lebesgue spectrum of
multiplicity n (since A is unitarily equivalent to the operator of multiplication by
independent variable). We now apply Corollary 4.3 to complete the proof. �

The concept of Lebesgue spectrum for a self-adjoint operator A can be defined
in various (equivalent) ways (see [14], [26]) which guarantee that the spectral type
of A is equivalent to the Lebesgue one and the multiplicity of σ(A) does not change
for any real point. The last condition is obviously satisfied when A is unitarily
equivalent to its shifts A − tI for any t ∈ R. Development of this translation-
invariance idea leads to the prominent Weyl commutation relation which ensures
the Lebesgue spectrum property of A. Namely, due to the von Neumann theorem
(see [20, p. 35]), a self-adjoint operator A has a Lebesgue spectrum if and only if
there exists a strongly continuous group of unitary operators Vt such that

VtAV−t = A− tI, ∀t ∈ R. (4.8)
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It should be mentioned that each simple PSO is also a solution of the Weyl
commutation relation (4.8). Indeed, an operator A which is the solution of (4.8)
is determined up to unitary equivalence. Therefore, it is sufficient to consider the
simple PSO S defined by (3.7) in L2(R, N) and to verify that A = S is a solution
of (4.8) with Vt acting as the multiplication by e−itx.

5. Phillips symmetric operators as the restriction of self-adjoint ones

Lemma 5.1. Let A be a self-adjoint operator in a Hilbert space H. A closed
densely defined operator S is a restriction of A if and only if there is a linear
subspace L such that L ∩ D(A) = {0} and S = SL, where

SL = A �D(SL), D(SL) =
{
u ∈ D(A) : ∀γ ∈ L,

(
(A− iI)u, γ

)
= 0

}
. (5.1)

The operator SL is symmetric and its defect numbers n±(SL) coincide with dimL.

Proof. Let SL be defined by (5.1). Obviously, SL is a closed restriction of A and,
for all u ∈ D(SL) and p ∈ H,

(u, p) =
(
(SL − iI)u, (A+ iI)−1p

)
=

(
(A− iI)u, (A+ iI)−1p

)
.

This implies that SL is nondensely defined if and only if there exists a nonzero
p such that (A + iI)−1p ∈ L ∩ D(A). Therefore, the condition L ∩ D(A) = {0}
guarantees that SL is densely defined. Conversely, if S is a closed densely defined
restriction of A, then S = SL, where L = H	R(S− iI). The relation L∩D(A) =
{0} holds since S = SL is densely defined. By the construction, SL is a symmetric
operator with equal defect numbers. The relation n±(SL) = dimL follows from
(5.1). �

The symmetric operator SL in (5.1) turns out to be a PSO for a certain choice
of L. To specify the required conditions, we consider the unitary operator

U = (A+ iI)(A− iI)−1,
(
A = i(U + I)(U − I)−1

)
, (5.2)

which is the Cayley transform of A, and we recall that a subspace L is called a
wandering subspace of U if UnL ⊥ L for all n ∈ N.

Theorem 5.2. The following statements are equivalent.

(i) The operator SL defined by (5.1) is a PSO.
(ii) The subspace L is a wandering subspace of the unitary operator U .

Proof. (ii)⇒(i). Let L be wandering for U . First of all we check that L∩D(A) =

{0}. Indeed, for all f ∈ L, (Unf, f) = 0 and, hence,
∫ 2π

0
einλd(Eλf, f) = 0,

where {Eλ} (0 ≤ λ ≤ 2π) is a spectral family of the unitary operator U . By the
uniqueness theorem for the Fourier–Stieltjes series, the last equality means that
(Eλf, f) =

λ
2π
‖f‖2 (see [27, p. 88]).

It follows from (5.2) that

A = i

∫ 2π

0

eiλ + 1

eiλ − 1
dEλ =

∫ 2π

0

cot(λ/2) dEλ
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with the domain D(A) = {f ∈ H :
∫ 2π

0
cot2(λ/2) d(Eλf, f) < ∞}. In the case of

f ∈ L (f 6= 0),∫ 2π

0

cot2(λ/2) d(Eλf, f) =
‖f‖2

2π

∫ 2π

0

cot2(λ/2) dλ = ∞.

Therefore, L∩D(A) = {0} and the operator SL is densely defined and closed by
Lemma 5.1.

It follows from (5.1) that the defect subspace N−i of SL coincides with L. In
order to describe other defect subspaces Nα of SL, we consider the operator

Tα = (A+ iI)(A− αI)−1, α ∈ C− ∪ C+.

The formula Nα = TαL is verified directly. Again using (5.2), we get Tα = 2U [(1+
iα)U + (1 − iα)I]−1. In particular, if α = λ ∈ C+, then the obtained expression
for Tα can be rewritten as

Tλ =
2U

1− iλ
[I − tU ]−1 =

2U

1− iλ

∞∑
n=0

tnUn, t =
iλ+ 1

iλ− 1
(5.3)

since ‖tU‖ = |t| < 1. Since UnL ⊥ L for all n ∈ N, the relation (5.3) yields that
TλL ⊥ L for λ ∈ C+. Therefore, Nλ ⊥ N−i. Due to Theorem 3.4, the operator
SL is PSO. The implication (ii)⇒(i) is proved.

(i)⇒(ii). The operator SL in (5.1) is completely determined by the pair {A,L}
of the given self-adjoint operator A and the subspace L ⊂ H. If SL is a PSO,
then the decomposition (3.5) implies that L is a subspace of H1 ⊕H2. Therefore,
it is sufficient to assume that SL is a simple PSO. Another important fact is that
the operator SL can be determined by a pair {A1,L1}, where A1 is an arbitrary
self-adjoint extension of SL. Indeed, due to Corollary 4.3, there exists a unitary
operator Uξ such that UξSL = SLUξ and UξA = A1Uξ. Hence, the operator SL
can be described as

SL = A1 �D(SL), D(SL) =
{
v ∈ D(A1) : ∀g ∈ L1,

(
(A1 − iI)v, g

)
= 0

}
, (5.4)

where L1 = UξL.
Since the Cayley transformations U and U1 of the operators A and A1 are

related as UξU = U1Uξ, the existence of a wandering subspace L for U implies
that L1 = UξL is a wandering subspace for U1. Therefore, it suffices to prove the
implication (i)⇒(ii) assuming that SL is determined by a pair {A1,L1}, where
A1 is an arbitrary self-adjoint extension of SL. Such a flexibility of the choice of
A1 allows one to simplify the argumentation below.

Simple Phillips symmetric operators with the same defect numbers are unitarily
equivalent (see Corollary 3.3). For this reason, we can consider a concrete PSO
in (5.1). It is useful to work with an operator SL defined in H = l2(Z, N) (N is
an auxiliary Hilbert space) as

SLu = i(. . . , x−3 + x−2, x−2 + x−1, x−1, x1, x1 + x2, . . .), xj ∈ N, (5.5)

where the element at the zero position is underlined and

u ∈ D(SL) ⇐⇒ u = (. . . , x−3 − x−2, x−2 − x−1, x−1,−x1, x1 − x2, . . .),
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where
∑

i∈Z ‖xi‖2N < ∞. The operator SL defined by (5.5) is a simple PSO in
l2(Z, N), and the operator

A1u = i(. . . , x−3 + x−2, x−2 + x−1, x−1 + x0, x0 + x1, x1 + x2, . . .) (5.6)

with the domain of definition u ∈ D(A1) ⇐⇒

u = (. . . , x−3 − x−2, x−2 − x−1, x−1 − x0, x0 − x1, x1 − x2, . . .),
∑
i∈Z

‖xi‖2N <∞

is a self-adjoint extension of SL (see [18], [19]).
It follows from (5.5) and (5.6) that D(SL) consists of those u ∈ D(A1) for

which x0 = 0. Direct calculation with use of (5.6) shows that (A1 − iI)u =
2i(. . . , x−2, x−1, x0, x1, x2, . . .). Therefore, (5.4) gives SL with the choice

L1 =
{
(. . . , 0, 0, x0, 0, 0, . . .) : x0 ∈ N

}
⊂ l2(Z, N).

It is easy to see that the Cayley transform U1 of A1 coincides with the unitary
operator

U1(. . . , x−2, x−1, x0, x1, x2, . . .) = (. . . , x−3, x−2, x−1, x0, x1, . . .)

in l2(Z, N). The subspace L1 is a wandering subspace for U1. The proof is com-
plete. �

A unitary operator U in a Hilbert space H is called a bilateral shift if there exists
a wandering subspace L of U such that H =

⊕
n∈Z U

nL. Every such subspace L
is called a generating subspace, and the dimension of L is called the multiplicity
of the bilateral shift U . A bilateral shift is determined by its multiplicity up to
unitary equivalence (see [27, p. 5]).

The next auxiliary result is folklore in operator theory.

Lemma 5.3. A self-adjoint operator A has a Lebesgue spectrum of multiplicity
n if and only if its Cayley transform U is a bilateral shift of multiplicity n.

Proof. A self-adjoint operator with Lebesgue spectrum of multiplicity n is, by
definition, unitarily equivalent to the operator of multiplication by independent
variable: Af(δ) = δf(δ) in L2(R, N), where dimN = n. The Cayley transform of
A coincides with the multiplication operator Uf(δ) = δ+iI

δ−iI
f(δ). It follows from

[20, p. 49] that U is a bilateral shift in L2(R, N) with the generating wandering
subspace L = 1

δ+i
N . The multiplicity of U is dimL = dimN = n.

The inverse statement is obvious because each bilateral shift of multiplicity
n is unitarily equivalent to the bilateral shift Uf(δ) = δ+iI

δ−iI
f(δ) in L2(R, N) (it

follows from the fact that bilateral shifts of the same multiplicity are unitarily
equivalent; see [27, p. 5]). �

Corollary 5.4. If the set of closed densely defined restrictions of a given self-
adjoint operator A contains a PSO, then there exists a reducing subspace H0 of A
such that the operator A0 = A �D(A)∩H0 is self-adjoint in H0 and A0 has a Lebesgue
spectrum. The existence of a simple PSO S with defect numbers n = n±(S) among
restrictions of A is equivalent to the fact that A has a Lebesgue spectrum of mul-
tiplicity n.
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Proof. Due to Theorem 5.2, a PSO can appear only in the case where there exists
a wandering subspace L of U . Denote H0 =

⊕
n∈Z U

nL. The operator U0 = U �H0

is a bilateral shift in H0, its Cayley transform A0 coincides with A �D(A)∩H0 ,
and it is a self-adjoint operator with Lebesgue spectrum in the Hilbert space H0

(Lemma 5.3).
If A is a self-adjoint extension of a simple PSO S with defect numbers n =

n±(S), then A has a Lebesgue spectrum of multiplicity n (see Corollary 4.5).
Conversely, the Lebesgue spectrum of multiplicity n of Ameans that A is unitarily
equivalent to the momentum operator A in (4.7). The simple PSO S defined in
(3.7) has defect numbers n = n±(S) and it is the restriction of A. �

Corollary 5.5. For a self-adjoint operator A the following are equivalent.

(i) The Cayley transform U of A is a bilateral shift and a subspace L of H is
a generating wandering subspace for U .

(ii) The operator SL defined by (5.1) is a simple PSO.

Proof. (i)⇒(ii). Since L is a wandering subspace for U , the operator SL defined
by (5.1) is a PSO (see Theorem 5.2). The PSO SL is also defined by (3.5) with
respect to the decomposition H = H1⊕H2⊕H3 (see Theorem 3.5). The subspaces
H1⊕H2 and H3 are invariant for the Cayley transform U ofA and L is a subspace of
H1⊕H2 (the latter follows from (5.1)). Taking into account that L is a generating
subspace for U , we obtain H =

⊕
n∈Z U

nL = H1⊕H2. Therefore, H3 = {0} in the
decomposition (3.5) and SL is a simple PSO.

(ii)⇒(i). Corollary 5.4 implies that A has a Lebesgue spectrum. Hence, U
is a bilateral shift in H (see Lemma 5.3). By Theorem 5.2, L is a wandering
subspace for U . Denote H0 =

⊕
n∈Z U

nL and H′ = H	 H0. The orthogonal sum
H = H0⊕H′ reduces U . Therefore, the operator A is decomposed as an orthogonal
sum of self-adjoint operators A = A �H0 ⊕A �H′ acting in the Hilbert spaces H0

and H′, respectively. By the construction, L is a subspace of H0. Therefore, the
operator SL defined by (5.1) contains the self-adjoint part A �H′ . The simplicity
of SL yields that H′ = {0}. Therefore, L is a generating subspace for U . �

Corollary 5.6. Assume that a self-adjoint operator A has a Lebesgue spectrum
of multiplicity n = dimL <∞, where L is a subspace of H such that the operator
SL defined by (5.1) is a PSO. Then SL is a simple PSO.

Proof. The Cayley transform U of A is a bilateral shift of multiplicity n (see
Lemma 5.3). The subspace L is wandering for U (see Theorem 5.2). Moreover,
H =

⊕
n∈Z U

nL since the dimension of L is finite and it coincides with multiplicity
n of U . Therefore, L is a generating wandering subspace for U . By Corollary 5.5,
SL is a simple PSO. �

6. Examples of PSOs

(I) Let SL be a PSO that is determined by (5.1) as the restriction of a self-
adjoint operator A. Consider a unitary operator W that commutes with A. It
is easy to see that S ′ = WSLW

−1 is also a PSO and that S ′ is determined by
(5.1) with the new wandering subspace L′ = WL, that is, S ′ = SWL. This sim-
ple observation gives rise to infinitely many unitarily equivalent PSOs which are
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restrictions of a given self-adjoint operator A. If the operator A has a Lebesgue
spectrum and L is a generating wandering subspace for the Cayley transform U
of A, then the constructed PSOs SWL are simple (see Corollary 5.5).

Let us consider the simplest example of self-adjoint operators with Lebesgue
spectra assuming that A is the operator of multiplication by independent variable:
Af(δ) = δf(δ) in L2(R, N). The Cayley transform of A is a bilateral shift Uf(δ) =
δ+iI
δ−iI

f(δ) in L2(R, N) with generating wandering subspace L = 1
δ+i
N (see the proof

of Lemma 5.3).
If W is a unitary operator in L2(R, N) that commutes with A, then W can

be realized as a multiplicative operator-valued function w(δ) : N → N which is
unitary for almost all δ (see, e.g., [20, Corollary 4.2, p. 53]) :

Wf = w(δ)f(δ), f ∈ L2(R, N).

This means that the subspaces

Lw = WL = W
1

δ + i
N =

w(δ)

δ + i
N

are generating wandering subspaces for the bilateral shift U in L2(R, N) and
that they determine infinitely many unitarily equivalent simple PSOs Sw ≡ SWL,
which, due to (5.1), are restrictions of A onto linear manifolds

D(Sw) =
{
u ∈ D(A) : ∀v ∈ N,

∫
R

(
u(δ), w(δ)v

)
N
dδ = 0

}
.

This result can be reformulated for the restrictions of self-adjoint momentum
operator A (see (4.7)) with the use of Fourier transformation

(Ff)(x) =
1√
2π

∫
R
e−iδxf(δ) dδ

that relates Af(δ) = δf(δ) andAf = i df
dx
. Taking into account thatAF = FA, we

conclude that FLw are generating wandering subspaces for the Cayley transform
of A in L2(R, N). Simple PSOs Sw = FSwF

−1 are the restrictions of A onto
those functions f ∈ W 1

2 (R, N) that satisfy the relation

Sw = A �D(Sw),D(Sw) =
{
f ∈ W 1

2 (R, N) : ∀γ ∈ FLw,
(
(A−iI)f, γ

)
= 0

}
. (6.1)

Let us set w(δ) ≡ 1. Then FLw coincides with the subspace χR+(x)e
−xN and

(6.1) gives the simple PSO S defined by (3.7). The operator S deals with one-point
interaction at x = 0 of the momentum operator A (see [2]). The simple PSO

Sw = i
d

dx
, D(Sw) =

{
u ∈ W 1

2 (R, N) : u(y) = 0
}

(6.2)

corresponding to one-point interaction at real point x = y is obtained from (6.1)
with w(δ) = eiδy.

Assume now that w(δ) = δ+iI
δ−iI

. Then FLw = F ( 1
δ−iI

N) = χR−(x)e
xN and the

formula (6.1) gives rise to the simple PSO
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Sw = i
d

dx
, D(Sw) =

{
u ∈ W 1

2 (R, N) : u(0) = 2

∫ 0

−∞
u(x)ex dx

}
, (6.3)

which is an example of nonlocal point interaction of the momentum operator A.
(II) Let Df =

√
2f(2x) be the dilation operator in L2(R), and let {Vj}j∈Z be

a multiresolution analysis for L2(R) (see [8, Definition 8.2.1]). The operator D is
a bilateral shift in L2(R) with generating wandering subspace W0 = V1	V0 (this
follows from [8, Lemma 9.2.3]). Denote AD = i(D + I)(D − I)−1. The operator
AD is self-adjoint in L2(R).

Proposition 6.1. Let S be a simple PSO that is a restriction of the self-adjoint
operator AD, and let ψ ∈ N−i = ker(S∗ + iI) be a function in L2(R) such that
{ψ(x− k)}k∈Z is an orthonormal basis of N−i. Then ψ is a wavelet.

Proof. If S is a restriction of A, then S is determined by (5.1), that is, S = SL,
with L = N−i. According to Corollary 5.5, L is a generating wandering subspace
for the bilateral shift D (since S is a simple PSO). Therefore, L2(R) =

⊕
j∈ZD

jL
and {Djψ(x − k)}j,k∈Z is an orthonormal basis of L2(R). The latter means that
ψ is a wavelet (see [8, Definition 8.1.1]). �

7. Nonlocal point interactions

The preceding results show that one-point interaction of the momentum opera-
tor A+αδ(x− y) leads to self-adjoint operators which are unitarily equivalent to
each other and have Lebesgue spectra. This means that nontrivial spectral prop-
erties of self-adjoint operators associated with the momentum operator should
be obtained with the help of more complicated perturbations. In the present sec-
tion, we consider special classes of general nonlocal one-point interactions (see
[4]) which can be characterized as one-point interactions defined by the nonlocal
potential γ(x) ∈ L2(R).

(I) Let us consider the maximal operator Smax which is determined on W 1
2 (R \

{0}) by the differential expression

Smaxf = i
df

dx
+ γ(x)fr (x 6= 0), fr =

1

2

(
f(0+) + f(0−)

)
,

where the nonlocal potential γ(x) belongs to L2(R). Direct calculation shows
that, for all f, g ∈ D(Smax) = W 1

2 (R \ {0}),

(Smaxf, g)− (f, Smaxg) = i[Γ+fΓ+g − Γ−fΓ−g],

where Γ± are determined by

Γ+f = f(0−) +
i

2
(f, γ), Γ−f = f(0+)− i

2
(f, γ). (7.1)

Lemma 7.1. The operator

Smin = Smax �D(Smin), D(Smin) = ker Γ− ∩ ker Γ+

is a closed densely defined symmetric operator in L2(R) and such that S∗
min =

Smax. A triplet (C,Γ−,Γ+), where the linear mappings Γ± : W 1
2 (R\{0}) → C are

determined by (7.1), is a boundary triplet of Smax.
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Proof. To complete the proof, by virtue of [7, Corollary 2.5] and Remark 2.2, it
is sufficient to verify that (i) there is a unimodular c such that the operator A =
Smax �ker(cΓ+−Γ−) is self-adjoint in L2(R), and (ii) the map (Γ−,Γ+) : D(Smax) →
C2 is surjective.

The condition (i) is satisfied if we choose c = −1. In this case,

A = i
d

dx
, D(A) =

{
f∈W 1

2

(
R \ {0}

)
: f(0−) = −f(0+)

}
(7.2)

is a self-adjoint operator.
The surjectivity of the map (Γ−,Γ+) : D(Smax) → C2 is obvious for γ = 0.

Assume that γ 6= 0, and consider an arbitrary element < h1, h2 > of C2. There
exists f ∈ W 1

2 (R \ {0}) such that f(0+) = h1 and f(0−) = h2. Let us fix u ∈
W 1

2 (R \ {0}) such that u(0−) = u(0+) = 0 and (u, γ) 6= 0. Using now (7.1) we

conclude that the vector f̃ = f − (f,γ)
(u,γ)

u solves the equation (Γ−,Γ+)f̃ = 〈h1, h2〉,
which justifies (ii). �

The boundary triplet (C,Γ−,Γ+) constructed in Lemma 7.1 allows us to deter-
mine self-adjoint operators

Aθf = i
df

dx
+ γ(x)fr, f ∈ D(Aθ) ⊂ W 1

2

(
R \ {0}

)
, θ ∈ [0, 2π) (7.3)

whose domains D(Aθ) consist of all functions f ∈ W 1
2 (R \ {0}) that satisfy the

nonlocal boundary-value condition

eiθ
[
f(0−) +

i

2
(f, γ)

]
= f(0+)− i

2
(f, γ).

These operators are mathematical models of one-point interaction defined by
the nonlocal potential γ(x). Each operator Aθ is a self-adjoint extension of the
symmetric operator Smin = S∗

max = i d
dx

with domain of definition

D(Smin) =

{
f ∈ W 1

2

(
R \ {0}

)
:
f(0−) + i

2
(f, γ) = 0

f(0+)− i
2
(f, γ) = 0

}
. (7.4)

The symmetric operator Smin has equal defect numbers n±(Smin) = 1, and its
defect subspaces Nλ, Nν (λ ∈ C+, ν ∈ C−) coincide with the linear span of the
functions

fλ(x) = gλ(x)−2
[
1+gλ(0)

]
G+

λ (x) and fν(x) = gν(x)−2
[
1+gν(0)

]
G−

ν (x),

respectively. Here

gz = (A− zI)−1γ =

{
ie−izx

∫∞
x
eizτγ(τ) dτ z ∈ C+,

−ie−izx
∫ x

−∞ eizτγ(τ) dτ z ∈ C−,
(7.5)

and G+
λ (x) = χR−(x)e

−iλx, G−
ν (x) = χR+(x)e

−iνx.
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By virtue of (2.6) and (7.1), the characteristic function Θ(·) has the form

Θ(λ) =
Γ−fλ
Γ+fλ

=
fλ(0+)− i

2
(fλ, γ)

fλ(0−) + i
2
(fλ, γ)

= −I + 2

2 + gλ(0)− i
2
(fλ, γ)

, λ ∈ C+. (7.6)

Let us consider a particular case assuming that γ = αχR+(x)e
−x, α ∈ C. Then

gλ(x) =
iα

1− iλ

{
e−x x > 0,

e−iλx x < 0

and

gλ(0)− i

2
(fλ, γ) =

iα

1− iλ
(1− iα/4).

Therefore, the characteristic function (7.6) turns out to be a constant on C+

when α = 4i. In this case, the symmetric operator Smin in (7.4) is a PSO. Its
simplicity can be established with the use of Corollary 5.5. Indeed, the operator
A in (7.2) is a self-adjoint extension of the simple PSO S in (3.7) (with N = C).
By Corollary 4.5, A has a Lebesgue spectrum of multiplicity 1. Our PSO Smin has
defect numbers n±(Smin) = 1, and Smin is a restriction of A. By Corollary 5.6,
Smin is a simple PSO and its self-adjoint extensions (7.3) have Lebesgue spectra
of multiplicity 1 (see Corollary 4.5).

(II) Let the maximal operator Smax be determined by the differential expression

Smaxf = i
df

dx
+ γ(x)fs (x 6= 0), fs = f(0+)− f(0−),

where the nonlocal potential γ(x) belongs to L2(R). Similarly to the previous
case, the Green’s formula can be established as

(Smaxf, g)− (f, Smaxg) = i[Γ+fΓ+g−Γ−fΓ−g], f, g ∈ D(Smax) = W 1
2

(
R \{0}

)
,

where Γ+f = f(0−)− i(f, γ) and Γ−f = f(0+)− i(f, γ). The same arguments as
in the proof of Lemma 7.1 lead to the conclusion that (C,Γ−,Γ+) is a boundary
triplet of Smax and the corresponding symmetric operator Smin = Smax �D(Smin),
D(Smin) = ker Γ− ∩ ker Γ+ has the form

Smin = i
d

dx
, D(Smin) =

{
f ∈ W 1

2 (R) : f(0) = i(f, γ)
}
. (7.7)

Each self-adjoint extension Aθ of Smin is determined by the formula

Aθf = i
df

dx
+ γ(x)fs,

where D(Aθ) = {f ∈ D(Smax) : eiθ[f(0−) − i(f, γ)] = f(0+) − i(f, γ)}. The
defect subspaces Nλ, Nν (λ ∈ C+, ν ∈ C−) of Smin coincide with the linear span
of vectors

fλ(x) = gλ(x) +G+
λ (x) and fν(x) = gν(x)−G−

ν (x),

respectively.
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Let us fix γ = αχR−(x)e
x and find α ∈ C for which the symmetric operator

Smin in (7.7) is a PSO. It follows from (7.5) that

gλ(x) =
iαχR−(x)

1 + iλ
(e−iλx − ex), gν(x) = − iα

1 + iν

{
e−iνx x > 0,

ex x < 0.

The obtained expressions allow one to calculate

(fλ, fν) =
α

2(1− iλ)(1− iν)
(2i− α), λ ∈ C+, ν ∈ C−.

The obtained expression and Theorem 3.4 mean that the symmetric operator
Smin defined in (7.7) is a PSO if and only if α = 2i. In this case, the PSO Smin

coincides with the operator Sw determined by (6.3).
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