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ABSTRACT. The first aim of this article is to survey and revisit some uncer-
tainty principles for the Hankel transform by means of the Hankel multiplier.
Then we define the wavelet Hankel multiplier and study its boundedness and
Schatten-class properties. Finally, we prove that the wavelet Hankel multiplier
is unitary equivalent to a scalar multiple of the phase space restriction operator,
for which we deduce a trace formula.

1. INTRODUCTION

Let d > 1 be the dimension, and let us denote by (:,-) the scalar product
and by | - | the Euclidean norm on R?%. Then the Fourier transform is defined for
f e LY(RY) N L2(RY) by

e, dx
FHEO = | f@)e mrm

and it is extended from L'(R?) N L*(R?) to L*(R?) in the usual way. With this
normalization, if f(z) = f(|z|) is a radial function on R?, then

F(N)(E) = Happ1(H)(I€]),
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where for o > —1/2, H,, is the Hankel transform (also known as the Fourier—
Bessel transform) defined by

Ha(F)(€) = / " F@)alat) dpalx), € € R, = (0,00),

Here dpu,(z) = % dx and j, is the spherical Bessel function given by
. = (=) T\ 2"
o =T 1 (—) )
Jal®) (o + )gn!F(n+a+1) 2

For 1 < p < oo, we denote by L? (R, ) the Banach space consisting of measurable
functions f on R, equipped with the norms

o= ([ 1@ (o) ™"

Note that H_1  is the usual Fourier cosine transform defined on L2 (R..), which is
just the Fourier transform F restricted to even functions on L?*(R). Thus through-
out this article, & will be a real number such that & > —1/2. The Hankel inversion
formula gives us back the signal f via

f(x) = / M (1)) ala€) dpia(6), > 0.

This is the basis for pseudodifferential operators on R, . Indeed if o is a suitable
function on R, then we define the pseudodifferential operator F, by

Fof(z) = /O " (O Ha(£)(E)al) dprale).

Pseudodifferential operators F, are known as the Hankel multipliers. It is well
known that F is a bounded linear operator which has been used in quantization
and time-frequency analysis. In the case where o is identically equal to 1, F :
LA(Ry) — LA(Ry) is the identity in view of the Hankel inversion formula.

In this article, we survey and revisit some known results on the uncertainty
principles. The first result is the following well-known Heisenberg uncertainty
inequality for the Hankel transform.

Theorem 1.1. For every f € L2(R.), we have
£ |20l |€Ha ()], = (@ + DIFIE (1.1)

with equality if and only if f(x) = ce /2 for some ¢ € C and p > 0.

It is also well known that by using a dilation argument, the last inequality is
equivalent to the sharp inequality

|2 f 130+ [[EHa( D5, > Qo+ 21 £13, (1.2)

with equality if and only if f(z) = ce~*"/2 for some ¢ € C.
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Thus, time and frequency energy concentrations are restricted by the Heisen-
berg uncertainty principle (1.2). This principle has a particularly important inter-
pretation in quantum mechanics as an uncertainty regarding the position and
momentum of a free particle. The Heisenberg inequality (1.2) was first proved by
Bowie [3] and then by Résler and Voit [19]. Moreover, in [8], we proved a stronger
version that shows that Laguerre functions {£%}°° , are successive optimal on
Heisenberg’s uncertainty principle.

Theorem 1.2. For every f € L2(R,) such that f is orthogonal to the sequence
{e2}7=5, we have
2
2 f13.0 + Ha ()l = (4 + 20+ 2)[I ]34 (1.3)
with equality if and only if f = c, by for some ¢, € C.

The sequence of Laguerre functions {£2}>° , forms an orthonormal basis for
L2(R,), and each ¢% is an eigenfunction for the Hankel transform associated to
the eigenvalue (—1)". More generally (see [7], [11]), we recall the following result.
Theorem 1.3. Let s, 5 > 0.

(1) There exists a constant cs o 5 such that, for all f € L2(R,),

|2 A5 allE"Ha (][50 = cocpll FII5E (1.4)

(2) There exists a constant c(s, o, 8) such that, for all f € LL(R.)NL2(R,),
sl a+s+1 a+s o

l2* AP Ha (D527 = el BRI (1.5)

The proof of (1.5) can be obtained by combining a Nash-type inequality and a
Carlson-type inequality. The proof of (1.4) is based on the orthogonal projection
Iy = HoxsHa, which is a special case of the Hankel multiplier F,, = H,o0H,
defined on L2 (R, ), where xy is the characteristic function on the subset 3 C R,
In Section 3, we deal with the Hankel multiplier Fy and its applications on
the uncertainty principles, first on the subspace of €;-concentrated and es-band-
limited signals in L2 (R, ),

L(e1,62,9,%) = {f € L2(Ry) : |Ixse flloa < e1llfll2ias | Foe fll2a < €2l fll2a )

and then on the subspace of e;-time-limited and e5-band-limited signals in
LL(Ry) N LE(R,),

Ltll QLZ(€1,€2,S, Z)
={feLinNLiRy) : Ixseflla < etllfllzas | Fre fllza < €2l fll2a )

where €1,e5 € [0,1) and Q° = R\ is the complement of © in R,. In the case
where g1 = g9 = 0, we have that S and ¥ are the exact supports of f and H,(f),
respectively. However, in the case where 1,69 € (0,1), the subsets S and ¥ are
considered as essential supports of f and H,(f), respectively. It is well known
that if a nonzero function f has support of finite measure 0 < p,(supp f) < oo,
then its Hankel transform has support of infinite measure (see [9]). That is why
Donoho and Stark [5] replaced the exact support by the essential support. In
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this direction, we recall the following Donoho-Stark-type uncertainty inequality
in the Hankel setting (see [6], [23]).

(1) Let &1,e5 € (0,1) such that e; + &5 < 1. If f € L2(e1,69,5,%), then

Ha(S)ha(E) = (1 — &1 —e2)*.
(2) If f € LL N L2(e1, 62,5, %), then

Pa(S)pa(B) = (1 —e1)*(1 - &3).

The second inequality improves the first one since (1—&1)*(1—¢3) > (1—&; —&9)%.
On the other hand, on the second inequality, we can obtain lower bounds of i, (5)
and g, (X)) separately, which give more information than the lower band of the
product fiq(S)pa(X).

In Section 3, we use the local uncertainty principle (see [9], [17]) and the Nash
and Carlson inequalities (see [7]) in the Hankel setting to obtain new Heisenberg-
type inequalities for functions in L?(ey, 9,5, %) or L N L2 (g1, ¢e9,5,%) with con-
stants that depend on €1, €9, S, and . More precisely, we prove the following
theorem.

Theorem A. Let e1,e5 € (0,1).

(1) Let s, > o+ 1. Then there exists a constant c1(s, «, 3) such that for all
f € Li(gla €2, Sa E);

12 150 |67 Ha (D3, > cl(s,a,ﬁ)(“u;(f;;i(_2§2>) Uy @)

(2) Let s, > 0. Then there exists a constant ¢ = co(s, «, ) such that for all
f € L;l:t N Li(ghg% SJ Z);

s 1 o 2 1_ 2 (04+/3+1a)(04+5+1)
Ha:sf”a+ﬁ+1}|£ﬂ% || + +1 < 51) ( 62)) 2a+2
fa(S) pra(2)
< FISE Al (1.7)

Note that (1.6) holds also for s, 3 < o + 1, but not necessarily with the same
constant. Furthermore, from the last two inequalities one can easily deduce a
lower bound of the product pi,(S)pa (%), with constants depending on the signal
f, and this can be viewed as the e-concentration version of the Donoho—Stark
theorem (see [2]).

Now let ¢ and ¢ be two bounded functions in LZ(R,) such that ||¢]2. =
|%]|2,o- The aims of Section 4 are to make precise the definition of the pseudo-
differential operator ¥ F,¢ : L2(R,) — L2(R,), where o is a symbol in L2(R.),
1 < p < o0, and to prove that the resulting bounded linear operator is in the
Schatten—von Neumann class \S,. More precisely, we use the Riesz—Thorin theo-
rem to prove the following.

Theorem B. Let 0 € LE(R,), 1 < p < oco. Then the linear operator Y F,¢ :
L2(Ry) = LA(Ry) is in S, and

1WFs6ls, < lol&lllzlolp.a, (1.8)
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where p' is the conjugate index of p, and by convention S,, = B(L?(R,)) is the
space of bounded operators from L%(R,) into itself.

The bounded linear operator ¥F,¢ : L2(R,) — L2(R,) can be considered
as a variant of the localization operator corresponding to the symbol ¢ and the
admissible wavelets ¢ and 1 studied by Wong [25]. Thus, it is reasonable to call the
linear operator ¥ F,¢ : L2(R,) — L2 (R, ) a wavelet Hankel multiplier. Finally, for
an appropriate choice of ¢ and o, the wavelet Hankel multiplier ¢F,¢ : L2(R,) —
L2(R,) is unitary equivalent to a scalar multiple of the phase-space-limiting
operator on L2(R,) arising from the Landau-Pollak-Slepian theory in signal
analysis (see the fundamental papers [15], [16], [20], [21]).

2. PRELIMINARIES

2.1. Generalities. Let X be a separable and complex Hilbert space (of infinite
dimension) in which the inner product and the norm are denoted by (-,-) and
| - ||, respectively. Let A : X — X be a compact operator for which we denote
by A* : X — X its adjoint. Then the linear operator |A| = vV A*A: X — X is
positive and compact. The singular values {e,(A)}>°, of A are the eigenvalues of
the self-adjoint operator |A|. For 1 < p < oo, the Schatten-class S, is the space
of all compact operators whose singular values lie in £,. In particular, Sy is the
space of Hilbert—Schmidt operators, and Sy is the space of trace-class operators.
Moreover, from [18, Section VI.6] and [25, Proposition 2.6], we have the following
criterion for a bounded linear operator to be in the trace class.

Proposition 2.1. Let A : X — X be a bounded linear operator such that, for all
orthonormal bases {pn}22, for X,

D [(Agn, @n)| < 0. (2.1)

Then A : X — X is in the trace class S; with

Z Apn, n), (2.2)
n=1

where {pn }22, is any orthonormal basis for X.

If, in addition, A is positive, then (see [25, Proposition 2.7])

1 Alls, = en(A) = tr(A). (2.3)

n=1

Moreover, from [25, Proposition 2.8|, we have the following criterion for a bounded
linear operator A : X — X to be in the Hilbert—Schmidt class Ss.

Proposition 2.2. Let A: X — X be a bounded linear operator such that, for all
orthonormal bases {pn}22, for X,

D [l Apa|? < oo. (2.4)
n=1
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Then A : X — X is in the Hilbert—Schmidt class Sy with

IAIlS, = Z en(A)? = [ Apl?, (2.5)
n=1

where {pn }22, is any orthonormal basis for X.

Finally, if the compact operator A : X — X is Hilbert—Schmidt, then the
positive operator A*A is in the space of trace class S; and

Ml = [All5, = A" All5, = tr(A"A Z 1A, (2.6)

for any orthonormal basis {p,}22; for X.
For consistency, we define S, := B(X) to be the space of bounded operators
from X into X, equipped with norm

IAlls., = s IAf]- (2.7)

It is obvious that S, € 5, 1 <p < g < o0.

2.2. The Hankel transform. For a > —1/2, let us recall the Poisson represen-
tation formula:

- Ila+1) ' 2\ a—1/2
Jo(z) = —/ (1 —s7)* % cos(sx) dx.
D(a+3)I(3) Jo
Therefore, j, is bounded with |j,(2)] < jo(0) = 1. As a consequence, if f €
Ll (R,), then its Hankel transform is bounded and

[Ha(H)lo < 11100 (2.8)

where [|-|| is the usual essential supremum norm, and L*°(R.) will denote the
usual space of essentially bounded functions.

It is also well known that the Hankel transform extends from L} (R,)NL2(R,)
to an isometry on L2 (R, ) with H_ ' = H, and

[Ha(N)l, = 1 fll2a (2.9)
Moreover, H,, satisfies a Parseval-type relation
(Ha(f), Hal9)),. = {f: 9y (2.10)

where (-, ) is the inner product on the Hilbert space L7 (R, ) defined by

/ F(0)5() dptaz).

Furthermore, we will make use of a few formulas involving the functions j, (see,
e.g., [24, pp. 132-134)):

T

Jalz) = —mjaﬂ(x) (2.11)
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and
204+2

. 21204+1 g2 2 2
[ ntepenat = S (02 + TR0 0 0F), 1)

while for u # v, we have

20+1

5 (0 (0D)ja(ub) — i (ub)jaeh)).  (2.13)

b
/ Ja(ut)jo (vt) >t dt =
0
2.3. Wavelet Hankel multipliers. For 0 € L>*(R), we define the linear oper-
ator F, : L2(R,) — L2(R,) by
Fof ="Ha[oHo(f)]. (2.14)

This operator is known as the Hankel multiplier, and if o = 1, then F,, = I, where
I is the identity operator. Moreover, from Plancherel’s formula (2.9), it is clear
that F, is bounded with

1E5 5o < llorfloc,
and from Parseval’s formula (2.10), we obtain for all ¢,% € L>®(R,) N L2(R,),

(0f.09),., = (Ha(0f), Ha(¥g)), . [.9 € Lo(Ry).

Definition 2.3. Let ¢ € L:(Ry) U L>®(R,), and let ¢, € L>®(R,) N LA(R,)
such that ||@]l2.a = ||¢]|2,a = 1. We define the wavelet Hankel multiplier P, 4., :
Li(Ry) — L3(Ry) by

(Poowl:9),, = (oHa(0f), Haldg)), - (2.15)

Then P, 4, : L2(Ry) — Li(RJr) and Y F,¢ : L2(R,) — L2(R,) are unitary
equivalent.

Proposition 2.4. Let 0 € LL(R) U L®(R,), and let ¢,v» € L=(R,) N LA(R,)
such that ||¢||2.a = ||¥|l2.a = 1. Then

(Poouf.9),, = WF:0.9),.- (2.16)
Proof. From (2.14) and Parseval’s formula (2.10), we have

(Prguf:9),, = (oM (¢f) o(¥9)),.
= (Ha(Fo(01)), Ha(9)),.
= (F,(of), wg>
=((WF9)f.9),. -
The proof is complete. O

The linear operator P, ;. is a variant of a localization operator corresponding
to the symbol ¢ and the admissible wavelets ¢ and 1), which were studied first in
[4] and later more extensively in [25]. If ¢ =1 = 1, then P, ,, will be a Hankel
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multiplier. As discussed in [25], the function ¢ (and 1)) occasionally plays the role
of an admissible wavelet that satisfies the admissibility condition

C¢:A |<¢>joz ) ¢> | dﬂa o0,

which, by Plancherel’s formula, gives

¢ = / 1M (1612) ) dpale) = 6]

Hence, if ¢,¢ € L2(Ry) N LA(R,) N L>®(R,) are two admissible wavelets such
that ||@]l2.a = [|¥]|a.a = 1, then (2.15) can be written as

1
——(Pogul 9),,

CoCy

= %/ O'(f)<f, ¢ja<7€)> <9>¢Ja 7 > d,ua f) (217)
1012 allell5a Jo
This is why we can refer to the localization operator type P, 4, as the wavelet
Hankel multiplier. For the linear operators P, 4, studied in this article, we use
functions ¢ and ¢ in L?(R,) N L*(R,), which are not necessarily admissible
wavelets, but there is no problem in still calling P, 4, the wavelet Hankel multi-
plier.

Note that if ¢ = yq is the characteristic function on the subset 2 C R, , then
we write F, as Fp, and if in addition ¢ = 1, we also write P, 4, as Pq 4. The
Hankel multiplier Fy, is known as the frequency-limiting operator on L% (R, ) and
we will prove in the last section that Py, can be viewed as the phase space (or
time-frequency) limiting operator.

3. UNCERTAINTY PRINCIPLES FOR THE HANKEL MULTIPLIER

First, it is easy to see that Fy : L?(R,) — L%(R,) is a self-adjoint projection.
Now, let PW,(X) be its range; that is,

PW,(2) = Im(Fy) = {f € LZ(Ry) : supp Ho(f) C E},

which is the Paley-Wiener-type subspace of L2(R,) consisting of band-limited
functions in L2(R,). Then PW,(X) is a reproducing kernel Hilbert space with
kernel

(2, €) = Ho (xsja(, ) (€) = / jalat)jo(€1) dpa(t);
that is, for all f € PW, (%),
F(6) = Faf(€) = (f.kal / F(@) ka2, €) dpa ().

Clearly, ko(z,&) = ko(&, ), and if 3 = [0,b], then PW,(X) is a space of entire
functions of exponential type, and a straightforward computation using (2.11)
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and (2.13) shows that, for = # ¢,

b2a+2 xzja(bf)ja—l—l(bm) £ ]a(bx)]a+1(b£)
20420 (e + 2) — &

ka2, &) = (3.1)

Hence, given a measurable subset S C R, we can define FyxFEg, the so-called
concentration operator on S for functions of PW,(X), where Eg is the time-
limiting operator on L} (R,)U L2(R,) defined by

Esf=xs/.
Clearly, Es is a self-adjoint projection on L2 (R, ). Therefore, for all f € L?(R,),

FoEsf(€) = (fha(-E)xs),. / F(@) ka2, €) dta(2).

Thus, FxFEs is a Hilbert—Schmidt operator with norm

| FaEslits = / ) / T 5@k, O dpa(2) dpa(€).

Consequently,

[1FxEsllns < v ia(S)pa(E). (3.2)

In particular,

Esfl2.a
IBsFls. = |FsBsls. = swp 180e o\ gy, 7).
rePWa(x) |1 fll2a0
But, since Es and Fy, are two orthogonal projections, then ||EsFx|ls., < 1, where
Soo = B(L?(R,)). The condition

[EsFs|ls. <1 (3.3)

ensures that
Im(Eg) NIm(Fy) = {0},
or, equivalently, for all f € L2(R) (see [9]),

1£120 < (1= |EsFslls.) (1 Esef 2.).

This means that f and H,(f) cannot be simultaneously supported on the subsets
S and 3, respectively. In this case, the pair (S, 3) is called strongly annihilating.
It is of critical importance to be able to estimate as accurately as possible the
quantity ||EsFx|ls,. which controls both the invertibility of I — EsFy and the
annihilating constant C'(S, %) = (1 — ||EsFx]|s.. )2 Unfortunately, it is not easy
to find a pair of subsets that is strongly annihilating (see [13] for more discussion
and history) and to give a good estimation of || EsFx||s.. . For example, the author
and Joricke proved in [10] that any pair of sets of finite measure or (g, a)-thin are
strongly annihilating. Moreover, if € is relatively dense, then the pair (Q°, [0, b))
is strongly annihilating. More generally, it is very interesting to find orthogonal
projections P and Q that satisfy ||PQ||s., < 1; these can be useful when applied
to the problem of stable signal recovery (see, e.g., [5], [12]).

20+ 1 Foef
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3.1. Uncertainty principle on L?(R,). In [5], Donoho and Stark replaced the
exact support by the essential support, which can be measured as follows.

Definition 3.1. Let 0 < e < 1, and let f be a nonzero function in L?(R,). Then
we say that

(1) fis e-concentrated on S if ||Esef||2.0 < €| f]l2.a, and
(2) fis e-band-limited on ¥ if || Fxe fll2.0 < €| fll2,a-

It is clear that if f is e-band-limited on ¥, then, by Plancherel’s theorem (2.9),
its Hankel transform H,(f) is e-concentrated on . If ¢ = 0, then S and X are,
respectively, the exact supports of f and H,(f); moreover, when ¢ € (0,1), S
and ¥ may be considered as the essential supports of f and H,(f), respectively.
In this way, Donoho and Stark obtained a quantitative version of the uncertainty
principle about the essential supports (see also [2]). Its counterpart in the Hankel
setting was obtained in [23].

Theorem 3.2. Let 0 < e1,69 < 1 such that €1 + e9 < 1. Then if a nonzero
function f € L:(R,) is e1-concentrated on S and ey-band-limited on X, then we
have

fa(S)pta(E) > (1 — 21 — £2)°, (3.4)
This means that the essential support of f and H,(f) cannot be too small.
Moreover, we recall the following local uncertainty principle (see [9], [17]).
Theorem 3.3.

(1) If s > a+ 1, then there ezists a constant c¢1(s,a) such that for every
f € LE(R,) and every subset > C Ry of finite measure ji,(X) < 00,

2a+2

2 9 2a+2 B 2a+42
1Exf o0 < c1(s, pa(E)fllza = 27 fllas - (3.5)
Moreover, the constant
D(eEI(1 — etly(s —a — 1) !
a+1

206 (a4 1) T'(a+1)

is optimal, and equality in (3.5) is never attained.
(2) If 0 < s < a+ 1, there exists a constant cy(s, ) such that for every
f e LE(R,) and every subset > C Ry of finite measure i, (%) < 00,

IFSfI2, < ea(s ) [a(S)] T [|2° f12.0 (3.6)

c(s,a) =

where

(5, ) <a+1 )2< a+t+l-—s >a+1
(s, a) =
2 a+1—s/ \s220H(a+ 1)

and equality in (5.6) is never attained.
(3) If s = a+1, then there exists a constant c,, such that for every f € L2(R,)
and every subset 3 C Ry of finite measure j1,(X) < 00,

2 s 2_% @ %
1P fll50 < Catta(Z)372 || fllo0 ™ 2 flI55T (3.7)

where ¢ = 2(a 4+ 1)(2a + 1)2(“1“)_102(1/2, Q).
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As an immediate consequence, we obtain the following result, which compares
the measure of the support of H,(f) and the generalized dispersion of f.

Corollary 3.4. For all s > 0 and all f € PW,(X2),

oy 202 2a+2
pa (supp Ha(f)) 12 fllaa > e(s, )1 fllza (3.8)
where ¢(s,a) = min(ciiﬁ, Cl(;a), 62(8,01{) Czas ).

By interchanging the roles of f and H,(f), and by replacing ¥ by S and s by
g in (3.5) and (3.6), we obtain the following result.
Theorem 3.5.
(1) If B> a+1, then for all f € LA(Ry),

|EsfI2,, < er(B,a)ma(S) fllae © [[€°Hal()]], 0 - (3.9)

(2) If B < a+ 1, then for all f € L2(R,),

IEsfI2, < ea(B, @) [a(S)] = || Ha (D)2 (3.10)

(3) If B=a+1, then for all f € LA(Ry),

1 2— =111 o L
IEsfll5.q < Catta(S)772 || flla0" " ||€ (D55 (3.11)

(4) For all B3>0 and all f € Im(Es) = {f € L2(R,) : supp f C S},

pa(supp D||EHa (D7 > e(Bo0) | Fllnss - (3.12)

Clearly, from (3.3), the left-hand sides of (3.8) and (3.12) cannot be finite
together, except for f = 0, because a nonzero function f and its Hankel transform
Ho(f) cannot simultaneously have support of finite measure.

Let S, ¥ be two measurable subsets of R, such that 0 < 4 (5), e (%) < 00, and
let L2 (e1,e2,5,3) be the subspace of L2(R,) consisting of all nonzero functions
that are e1-concentrated on S and e9-band-limited on Y. Now we can formulate
our new version of the Heisenberg-type uncertainty principle for functions in
L2 (g1, &9,5,%) with constant depending on ¢y, &, and S, 3.

Theorem 3.6. Let e1,65 € (0,1), and let f € L2(g1,e2,5,%).
(1) If s, > o+ 1, then
1—¢&2

1 (Sv O‘):ua

2l = ( ) Ml (3.13)

and
1—¢&f
C1 (ﬁ> 04)2,uoz

le#Ha(Dl, 2 ( )" Ml (3.14)
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(2) If0 < s, <a+1, then

1_2
Y |/l (3.15)

12° 0 =
: C2(s, ) pa(E) 2072
and
a0 > —L—T | (3.16)
o 2,a0 — 02(/8’ Q)MQ<S)2(X‘% 2,«
(3) If s=p=a+1, then
1 - e2)ot!
orip, > 1) 3.17
||‘T f||2,a = Cg+1\/m||f||2,a ( )
and 2\a+1
1—ep)e
U, > A=) : 3.18
Hg (f)HQ,a - Cg+1\/m|’f||2,a ( )
Proof. From (3.5) and (3.9), we have
202 1Es 50
1P (D, 0 = =

(B, o) flza © HalS)

and ,
1 Fsfll2 0

2_2a+2 .
al(s, o) fllze © Ha(E)
Now, since f € L2(e1,¢e9,5,%), then

IFfl50 = 1150 = 1P 50 = (1= )l fIl5a

o oy 22
|2°flloe =

and

1Esfll5.0 = Ifll50 = 1EBse fll30 > (1 = D54
This proves the first result. Analogously, we obtain the second and third results.
O

The last theorem gives lower bounds for the measures of the two dispersions
llz* fll,,, and [|E°Ha(f)]],,, separately. This gives more information than a lower
bound of the product between them.

Corollary 3.7. Let 1,65 € (0,1). Then for all f € L2(g1,e2,5,%), we have the
following.
(1) If s, > a+1, then
2 2
spB 8 s (1 —¢ef)(1—e3)
T Ha >
I 15l He D> (e Bt
(2) If0 < s, <a+1, then

e
5) ML 39)

(1 — e2)>/2(1 — e2)8/2 s
A (3.20)
ea(s,0)P2cy(B, )2 (1 (S e (X)) 5072

12° 15 | €7 Ha () |50 >
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(3) Ifs=pB=a+1, then

a+1 a+1 (1 =) —eg))
L e NI )

11120 (3.21)

Remark 3.8. For simplicity, suppose that s = 3. First, we remark that
(1 — 8%)(1 — E%) =1- (61 — 52)2 + (5162)2 + 28162 > (1 — &1 — 52)2. (322)

Since the constant in Heisenberg’s inequality (1.1) is optimal for all functions in
L2(R,), then Corollary 3.7 is of interest if the constants in (3.19), (3.20), and
(3.21) exceed a + 1 in (1.1). This implies that

W=D s>a+t1,

(atl)?lCIng)erl
Ha(S)pa(E) < § (Hpacn) ™ s<a+1, (3.23)
(1—e3)(1—€3))?+2

(a41)2¢t2t

s=oa+ 1.

This can be possible for some s, «, €1, &5, and S, ¥ since from (3.4),

(1—e1—e2)" < pta(S) ().

From Theorems 3.3 and 3.5, we can also deduce lower bounds for the measures
of S and X separately.

Theorem 3.9. Let e1,&5 € (0,1), and let f € L2(e1,&2,5,%). Then we have the
following.
(1) If 5,8 > a+1, then

11150 21—l
192 (@ il) | ata) 8249
and
1fllon \252 1 — €3
fa(X) = (m aGa) (3.25)
(2) If0 < s, <a+1, then
11156 1—e? \ %
(92 (Jer | o) (8.26)
and
[fllon [ 1—e3\%2
1) 2 (e \ e (8.21)
(3) If s=0F=a+1, then
2 o
() > 1 £115,0 (1 —ef)2t? (3.28)

T HL ()5, ca
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and ,
1fll20 (1 —ed)2et?

3.29
lzott fllp  ca™* (329

fa(X) >

These lower bounds give more information than the lower bound of the follow-
ing e-concentration version of the Donoho—Stark-type uncertainty principle (3.4),
with a new constant depending on the signal f.

Corollary 3.10. Let e1,e5 € (0,1). If f € L%(e1,69,5,%), then

Ct(s,a,8

el (1 — (1 -¢)) s.B>a+1,
Cy(s,0,8) 1 a+1
,Ua(S)Ua(E)Z (@ (Ba)Bcg(sa)%)aH((l €1>ﬁ(1_5 ) ) 0<s,f<a+l,
Sl (1 - e3)(1 — e))2e+? s=f=a+l,
where

o = (o My

flo, & - 3

2= £ 115 o 1P Ha ()5,

3.2. Uncertainty principle on L!(R,) N L2(R,). In this section, a function
feLlRy)NLA(R,) is e-time-limited on S if
HESC.le,a < 5Hf”1,o¢
and is e-band-limited on X if
HFECf”Z,a < 5Hf”2,o¢-
From [6] and [7], we recall the following results.

Theorem 3.11. Let s,3 > 0. Then we have the following.

(1) A Carlson-type inequality: there exists a constant Ci(«, s) such that for
all f € LL(R,)NL2A(R,),

1A le™ < Cian )lI1I5S 127 f1]1 o (3.30)

(2) A Nash-type inequality: there exists a constant Cy(a, 3) such that for all
fe LayRy) NLE(RY),

1f 20" < Cala, B)|fII5 “Héﬁ’H 3l e (3.31)

In the last theorem, the constants Cj(a,s) and Cy(a, 3) can be computed
(see [7]), but they are not optimal, which is why we omit the computations. Com-
bining the Nash-type inequality (3.31) and the Carlson-type inequality (3.30), we
obtain a variation on the Heisenberg uncertainty inequality.

Corollary 3.12. Let s, > 0. Then there ezists a constant C' = C(«, 3, s) such
that for all f € LL(R,) N L2(R,),

s rla a+s+1 a+s «a
l=* £S5 [ Ha ()5 SNl Fonand 7 psans (3.32)

where

C = Ci(a, s) P10y (a, B) 71,
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In particular,

1z fllal|&Ha ()]0 = Clan )1l fllza- (3.33)

The advantage of Heisenberg-type inequality (3.32) compared to (1.4) is that in
(3.32), we can from (3.30) and (3.31) estimate separately the time and frequency
dispersions ||z° 1,4, |€°Ha(f)||2,o around zero.

Moreover, (3.31) and (3.30) imply the following variation on the local uncer-
tainty principle.

Theorem 3.13. Let s, > 0. Then

(1) there exists a constant Cy(a, s) such that for all f € LL(RL) N L2(Ry)
and all measurable subsets 2 of finite measure,

1Fs 15 < Ciler, s)Ha(S )Ilfllé”s“ IIJJSfII"““ (3.34)

where
2042

Ci(a, s) = Ci(a, 5) @+

(2) there exists a constant Cy(a, B) such that for all f € LL(R.) N L2(Ry)
and all measurable subsets S of finite measure,

B3} < Colar Ba(SIFIEL T € Ha(D]IF, (3.35)
where
~ 2042
02(057 ﬂ) = 02(a7 ﬁ) athEL,
Proof. By Plancherel’s formula (2.9) and (2.8),

1P 113 0 = [xsHa()].0 < #aE)|[Hal O] < taE)IFI

Then the first result follows from the Carlson-type inequality (3.30). Now by the
Cauchy—Schwarz inequality, we have

1B fI3 0 < alS)I 1500
and by the Nash-type inequality (3.31) we deduce the second result. O

Corollary 3.14. Let s, > 0. Then
(1) for all f € LL(R,) N LA(Ry) such that supp Ho(f) C X,

2a+2 2a+2

o (supp Ha (f ))||$Sf||"+s+1 > Cia, s) I fll58s (3.36)
(2) for all f € LL(Ry) N L2(Ry) such that supp f C S,
palsupp DI HLN577 = Cola ) AT (337

Now let LN L2 (g1, &2, S, X) be the set of all functions in L} (R, )NL2(R,) that
are £1-time-limited on S and ey-band-limited on X, where 0 < 114(.5), o (2) < 00.
Then from [6, Proposition 3.5], if f € L} N L2(e1,¢e9,5,%), then we have the
following Donoho—-Stark-type uncertainty inequality:

Na(S)Na(ED > (1 - 51)2(1 - 53) (3'38)
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Moreover, from Theorem 3.13 we obtain the following result.

Theorem 3.15. Let 5,3 > 0. Then for all f € L} N L2(g1,e5,5,%),

a+s+1
(1—c3) %
2 flli 0 = a1 20 3.39
[Eavalny Cr o () 11l (3.39)
and
at+p+1
(1 —gq) of1
I Ha(D],., > )l (3.40)

CQ(aa 5)#04(5) ot2
Proof. Let f € L1 N L2(ey,65,5,%). Then

1550 = 1150 = 1Fse fll50 = (1= €)1 fll5,
and
1Esfll1a 2 1flla = [1Ese fllia = (1 =)l flly 0
Then desired result follows from (3.34) and (3.35). O
Consequently, we obtain the following variation on Heisenberg’s inequality with
constant depending on s, 3, €1, €9, .9, 2.

Corollary 3.16. For all s, >0 and all f € L} N L2(g1,69,5, %),

(at+p+1)(ats+1)

o a8 ]' 2 1 at?
e FlI S e Ha (D 50 2 ( ujf%/ja(z; 2)>
S FiFrsam T odans (3.41)

Remark 3.17. From (3.34) and (3.35), we also obtain that if f € L] N L2(y, 3,
S, Y), then

1—¢3 HfHQa azfjfl
o(2) 2 =— : 3.42
po) Ci(a, s) <||Isf||1a) ( )
and
(1—e1)? 11l o i
o(5) 2 = : , 3.43
Ha'5) Cy(a, s) <”fﬁHa(f)“2a> ( )

which imply the following variation on the Donoho—Stark uncertainty inequality
with the constant depending on s, 8, &1, €2, and f:

IS A ™ it

«a S « by C (oF+B+1)(ats+1)
HalS)11a(®) = (Clar B, )uxs A e >Ha+s+1)

(1 —e)2(1—€2). (3.44)

4. THE WAVELET HANKEL MULTIPLIER

In this section, let ¢ and ¢ be two functions in L>*(R,) N Li(]R +) such that
[9ll2,0 = [¥]l2,0 = 1.
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4.1. Boundedness. The aim of this section is to prove that we can also define
P, 4 for the symbol o € LE(R;), 1 < p < oo. First, if 0 € L>®(R,), then we
have the following result.

Proposition 4.1. Let 0 € L®(R,). Then P, 4y is in Se and

16061500 < M@ llso ool oo (4.1)

Proof. By the Cauchy-Schwarz inequality,

[(Pogwts 0. | < o llool[Ha (6|, | Hal9)]),..

Then by Plancherel’s formula (2.9), we obtain

|<Pa,¢,wfa g>#a’ < lollccll@fll2allPgllo.a
< [loflsolllloc 14 lloo 1/ |2, lg1]2.ac

This completes the proof. O

Now, if we consider o € LL (R, ), then we obtain the following result.

Proposition 4.2. Let 0 € L. (Ry). Then P, 4, is in Ss and

1P ll50 < lloll1,a- (4.2)
Proof. Since Ho(of) (&) = (f, gzgja(-,g)}#a, then by the Cauchy—Schwarz inequal-
ity,
| Ha(@N)|l. < I fll2alldll2.a-
Therefore, since ||¢||2,a = ||¥]|2.o = 1, we obtain

[(Pogwrfs ), | < llollialHale )| [ Haltg)]|
< Mollvall fllzallgllza- (4.3)

This completes the proof. (]

Thus, by (4.1), (4.2), and the Riesz—Thorin interpolation argument in [22,
Theorem 2| (see also [25, Theorem 12.4]) we obtain the following theorem.

Theorem 4.3. Let 0 € LP(Ry), 1 < p < oco. Then the linear operator P, 4.,
L2(Ry) — LA(Ry) is bounded and

1Prsllse < ISl N01% N0 lIpa- (4.4)

Hence we can define the operator (YF,¢) : L}(R,) — L}(R,), where o €
LE(Ry), 1 <p<ooby

(Prsuds9),. = (DF-6)1.9), . (4.5)
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4.2. Schatten-class properties. Let us begin with the following theorem.

Theorem 4.4. Let o be symbol in LL(R,). Then the wavelet Hankel multiplier
P, 4. is Hilbert-Schmidt and

Prosly = | (€N Proso, 820-0),, dmal®) < ol (40

Proof. First, by (2.15) it follows immediately that the adjoint of P, 4 i Pp e :
L2(Ry) — L2(Ry). Now, let {¢,}22, be an orthonormal basis for L2 (R, ). Then
by (2.15) and Fubini’s theorem, we obtain

(o] oo
> N Prswenllsa =D (ProwPn Prouwbn),.
n=1 n=1

= Z <U7‘[a(¢80n)a Ha(iﬁpa,fﬁ,%p"»ua
n=1

= Z/Ooo U(§)<90n>éja(-,f)>ua<]30’¢7wgpm&ja(.7€)>ua dpta(€)

= [T O D (Prasainle O ) (s B €),, )

— [ AN PrssBin €0, 30a(-.9),,, o€

where we used Parseval’s identity in the last line. Therefore, from Proposition 4.2
and since j, < 1, we have

o
Y MPrpuenllia < 1Pspsllselllzallllzallolh,a

n=1

< [lo]fi o

Thus from Proposition 2.2, the operator P, 4, is in Se and || Py s.plls, < ||0]1.a-
The proof is complete. O

Consequently, the operator P, is also compact for symbols in L? (R).

Corollary 4.5. Let o be a symbol in LX(R,), 1 < p < oo. Then the wavelet
Hankel multiplier Py 4.5 is compact.

Proof. Let {0,}22, be a sequence of functions in L. (R,) N L*(R,) such that
o, — o in LP(Ry) as n — co. Then by Theorem 4.3,

1 1
1Po g0 = Fogpallse < OlSl¢llSllon = ollp.a- (4.7)

Therefore, P, 4y — Prgyp in Se as n — 00. Now, since by Theorem 4.4 the
operators P, 4., are in Sy and hence compact, and since the set of compact
operators is a closed subspace of S, then the operator P, 4, is also compact. [J

More precisely, we will prove that the operator P, 4, is in fact in the Schatten
class Sp, 1 < p < oo. Of particular interest is the Schatten-von Neumann class 5;.
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Theorem 4.6. Let 0 € LL(Ry). Then the wavelet Hankel multiplier Py 4. :
LA(Ry) — LA(Ry) is trace-class with

1Pogalls < llollia (4.8)
and we have the following trace formula:
tr(PU,¢ﬂl/) = /0 U(&)«Zja(% 6)7 &ja('a €)>Ma dﬂa(ﬁ) (49)
Proof. Let {©,}2%, be an orthonormal basis for L? (R, ). Then
Z <Pa¢> »Pns 9071 Z / ¢<Pn)(f)7{a(¢90n)(f) d,ua(f)
n=1

:Z/O U(§)<7I}j0c('v > <(70”’¢]0‘ ’ > dMa g)

Thus by Fubini’s theorem,

Z <Pa,¢,1j)gpn7 <Pn>ua
n=1

_ / OO (Bals6). o), (s Bial- ), ditalf). (4.10)

Therefore, by Parseval’s identity and the fact that j, is bounded by 1,

o 1 0o
S| (Buson o] <5 [ 1ot€)
<> ({858, n), |+ [(Bial-€),n), ) dual8)

1

=5 [T1o@1 63O+ [30C-O,) ol

<lloll1a-

By Proposition 2.1, the operator P, 4, is in S, and with (4.10) and Parseval’s
identity,

tr<PU7¢ﬂ/1) = Z <PU,¢71/1§0717 @n)ua = /0 U(§)<'(Zja('a €>’ Q_ﬁja(W §>>“a d:“/a(ﬁ)‘
n=1
This completes the proof. O

Moreover, by (4.1), (4.8), and the interpolation argument, we deduce the fol-
lowing result.

Corollary 4.7. Let 0 € LE(R,), 1 < p < oo. Then the linear operator Py 4.
LA(Ry) = LA(Ry) is in S, and

1 S
1Pooulls, < ll@llsllvlilolp.a- (4.11)
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4.3. An uncertainty inequality. In this section, we will assume that ¢ and
satisfy ||¢||lcol|?¥]|cc = 1. Now let 09 = x5 and o2 = Xy, and let L; = P,, 4 and
Ly =P 02,0,

From [1], we recall the following definition of e-localization, which has been
introduced and used to refine the degrees-of-freedom estimate of Landau and
Pollak [16].

Definition 4.8. Let € € (0,1). Then, a nonzero function f € L2(R,) is e-localized
with respect to an operator L : L2(R,) — L2(R,) if

L] = Fllaa < €l fll2a- (4.12)

Landau in [14] introduced the notion of e-approximated eigenvalues and eigen-
functions. That is, p is said to be an e-approximated eigenvalue of L if there exists
a unit L2-norm function f in L2 (R, ) such that

ILf = pflloe <e (4.13)

Then f is called an e-approximated eigenfunction corresponding to p. So a func-
tion f € L2(R,) that is e-localized with respect to L is an e-approximated
eigenfunction of L corresponding to 1.

Theorem 4.9. Let 1,69 € (0,1) such that &1 + &y < 1. If f € L3(Ry) is
e1-localized with respect to Py, 4 and e9-localized with respect to Py, 4, then for
every p > 1,

fa(S)pa(E) = (1 — &1 — &), (4.14)

Proof. From Proposition 4.1,

| f = LoLifll2a < |[f — Lafll2.a + | Lof — LaLy f||2,a
< | Laf = flloa + [ L2llsu | L1 f = fll2,a
< (e1+ &) fllza-

Therefore,

| LoLyfll2.a = | fllza — If — LoLyf|l2.a
> (1 —e1— &)l fll2a-

Thus, from Theorem 4.3 it follows that
1 — (61 +e2) <||LoLy]|s.
< ([ Ll s I L2l 5
1
< (10(S)pa()) "
This proves the desired result. O

Note that 1 —e; — ey > (1 — &1 — &3)%. Thus, for p = 1, (4.14) improves the
classical Donoho—Stark inequality (3.4).
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4.4. The phase-space restriction operator. We define the phase-space
restriction operator by

FoEsFs = (EsFy)*EgFs.

Then from (2.6), the phase-space restriction operator FyFEgFy is positive and
trace-class with

|FsEsFslls, = |EsFsll%, < 1a(S)ua(2). (4.15)

The linear operator FyFEgFy : L2(R,) — L2(R,) is bounded and self-adjoint,
and it can be called the generalized Landau—Pollak-Slepian operator (see the
fundamental papers by Landau and Pollak [15], [16], Slepian [20], and Slepian
and Pollak [21] for more detailed information). Moreover,

|EsFs |3, = [[FsEs||s, = |1FsEsFs||s. = Ao,

where Ay < 1 is the first eigenvalue corresponding to the first eigenfunction g of
the compact operator FyEg, when considered as an operator on PW,(X). This
eigenfunction is in PW,(X) and realizes the maximum of concentration on the
set S.

Following Wong’s point of view in [25], we will show that the phase-space
restriction operator FxFEgFy, : L2(R,) — L2(R,) can be viewed as a wavelet
Hankel operator.

Theorem 4.10. Let ¢ = 1 be the function on Ry defined by ¢ = \/ S and

let 0 = xs. Then

FEESFE = MQ(Z)%(}PS@HQ = MQ(Z)HQ(¢F3¢)HQ. (416)
Proof. Clearly, the function ¢ belongs to L2(R.) N L®(Ry), with [|¢]lsa = 1.
Since, for any function f € L2(R,),

FsHa(f) = Halfx2),

we have that

Ha(¢f) = mHa(fXZ)

1
= mFZ%a(f)

Thus, for all f,g € L2(R,),
(Psof.9),, = = (xsHa(0f), H (¢9)>M

_ m@(sFEHQ(f), FsHa(9))
1

Na(z

1

,ua(z

Mo

(EsFsHtalf), FsHa(9))

Ha

<FEESF2H (f): Hal9))

Mo
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Therefore, by Parseval’s equality (2.10), we obtain

(Psof,9),. = ﬁ<%“FEESFEHO‘(f)’g>ua‘

Hence, 114(X)Psy = HoFs EsFsH,. O

From Theorems 4.6 and 4.10, we deduce the following corollary.

Corollary 4.11. The phase-space operator PsFEsPs is trace-class with

A

tr(FoEsFy) = pa(S) tr(Ps) = / / J2(26) dpa(2) dpia(€). (417)
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