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Abstract. We give a characterization of the separable Banach spaces with
the Daugavet property which is applied to study the Daugavet property in
the projective tensor product of an L-embedded space with another nonzero
Banach space. The former characterization also motivates the introduction and
short study of two indices related to the Daugavet property.

1. Introduction

A Banach spaceX is said to have the Daugavet property if every rank 1 operator
T : X −→ X satisfies the equality

‖T + I‖ = 1 + ‖T‖, (1.1)

where I denotes the identity operator. The previous equality is known as the
Daugavet equation because Daugavet proved in [10] that every compact operator
on C([0, 1]) satisfies (1.1). Since then, many examples of Banach spaces with the
Daugavet property have appeared, such as C(K) for a compact Hausdorff and
perfect topological space K, L1(µ) and L∞(µ) for a nonatomic measure µ, and
the space of Lipschitz functions Lip(M) over a metrically convex space M (see
[19], [22], [27], [28] and the references therein for details). Moreover, in [22] (resp.,
[27]) a characterization of the Daugavet property in terms of the geometry of the
slices (resp., nonempty weakly open subsets) of BX appeared (see Theorem 2.2
for a formal statement).
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In [28, Section 6] Werner posed as an open problem how the Daugavet prop-
erty is preserved by injective or projective tensor products. Kadets, Kalton,
and Werner [20, Corollary 4.3] give an example of a 2-dimensional complex
Banach space Y such that LC

∞([0, 1]) ⊗̂π Y fails the Daugavet property (see [23,
Remark 3.13] for real counterexamples failing to fulfill much weaker requirements
than the Daugavet property). Concerning positive results, we only know of those
in [7], where the authors, making strong use of the theory of centralizer and func-
tion module representation of Banach spaces, proved that the projective tensor
product of a Banach space without minimal L-summands and another nonzero
Banach space has the Daugavet property. However, to the best of our knowledge,
the problem of whether the Daugavet property is preserved by projective tensor
products from both factors is still open.

Motivated by this problem and by the recent techniques revealed in [23, Sec-
tion 4] for the analysis of octahedrality in projective tensor products, in Section 3
we will introduce a characterization of the Daugavet property in separable Banach
spaces in terms of coverings of weakly open subsets of the unit ball which will be
used to prove the two main results of the article. On the one hand, we prove in
Theorem 3.7 that, in the presence of the metric approximation property, the Dau-
gavet property is inherited by taking the projective tensor product of separable
L-embedded Banach spaces. On the other hand, we prove in Proposition 3.8 that
the hypothesis of separability can be eliminated whenever we are dealing with
preduals of JBW∗-triples with the Daugavet property. In Section 4, motivated by
Lemma 3.1 and the thickness index introduced by Whitley in [29], we introduce
two indices that quantitatively measure how far a Banach space is from having the
Daugavet property. We will also study the interrelation of these indices with the
Daugavet equation and some stability results concerning `p-sums and inheritance
to subspaces. We finish in Section 5 with some remarks and open questions.

2. Notation and preliminaries

We will consider only real Banach spaces. Given a Banach space X, we will
denote the unit ball and the unit sphere of X by BX and SX , respectively. More-
over, given x ∈ X and r > 0, we will denote B(x, r) = x + rBX = {y ∈ X :
‖x − y‖ ≤ r}. We will also denote by X∗ the topological dual of X. Given a
bounded subset C of X, we will mean by a slice of C a set of the following form

S(C, x∗, α) :=
{
x ∈ C : x∗(x) > supx∗(C)− α

}
,

where x∗ ∈ X∗ and α > 0. If X is a dual Banach space, the previous set will
be a w∗-slice if x∗ belongs to the predual of X. Note that finite intersections of
slices of C (resp., of w∗-slices of C) form a basis for the inherited weak (resp.,
weak-star) topology of C.

According to [16], a Banach space X is said to be an L-embedded Banach
space if there exists a subspace Z of X∗∗ such that X∗∗ = X ⊕1 Z. Examples of
L-embedded Banach spaces are L1(µ) spaces, preduals of von Neumann algebras,
duals of M -embedded spaces, or the dual of the disk algebra (see [16, Exam-
ple IV.1.1] for formal definitions and details).
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Given two Banach spaces X and Y , we will denote by L(X,Y ) the space of
all linear and bounded operators from X to Y , and we will denote by X ⊗̂π Y
the projective tensor product of X and Y . Moreover, we will say that X has
the metric approximation property if there exists a net of finite-rank and norm 1
operators Sα : X −→ X such that Sα(x) → x for all x ∈ X (see [26] for a detailed
treatment of the tensor product theory and approximation properties).

The theory of almost isometric ideals will be an essential tool for our results
related to the Daugavet property in tensor product spaces. Let Z be a subspace
of a Banach space X. We say that Z is an almost isometric ideal (ai-ideal) in
X if X is locally complemented in Z by almost isometries. This means that, for
each ε > 0 and for each finite-dimensional subspace E ⊆ X, there exists a linear
operator T : E → Z satisfying

(1) T (e) = e for each e ∈ E ∩ Z, and
(2) (1− ε)‖e‖ ≤ ‖T (e)‖ ≤ (1 + ε)‖e‖ for each e ∈ E;

that is, T is a (1 + ε)-isometry fixing the elements of E. If the T ’s satisfy only
(1) and the right-hand side of (2), we get the well-known concept of Z being an
ideal in X (see [14]). Note that the principle of local reflexivity means that X is
an ai-ideal in X∗∗ for every Banach space X. Moreover, the Daugavet property is
inherited by ai-ideals (see [3]). It is known that, given two Banach spaces X and
Y and given an ideal Z in X, then Z ⊗̂π Y is a closed subspace of X ⊗̂π Y (see,
e.g., [25, Theorem 1]). It is also known that whenever X∗∗ or Y has the metric
approximation property, then X∗∗ ⊗̂π Y is an isometric subspace of (X ⊗̂π Y )∗∗

(see [23, Proposition 2.3] and [25, Theorem 1]). We will freely use these two facts
throughout Sections 3 and 5. We will also use the following characterization of
ideals in Banach spaces (see [3, Theorem 1.1] and references therein for details).

Theorem 2.1. Let X be a Banach space and Y be a subspace of X. The following
assertions are equivalent.

(1) Y is an ideal in X.
(2) There exists a Hahn–Banach extension operator, that is, an operator ϕ :

Y ∗ −→ X∗ such that, for every y∗ ∈ Y ∗ and y ∈ Y , it follows that
‖ϕ(y∗)‖ = ‖y∗‖ and that ϕ(y∗)(y) = y∗(y).

Let X be a Banach space. Whitley [29] defined the following thickness index:

TW (X) := inf
{
r > 0 : ∃{x1, . . . , xn} ⊆ SX with SX ⊆

n⋃
i=1

B(xi, r)
}
.

In [9] it was proved that TW (X) is equal to

T (X) := inf
{
r > 0 : ∃{x1, . . . , xn} ⊆ SX with BX ⊆

n⋃
i=1

B(xi, r)
}

whenever X is infinite-dimensional. Moreover, it is known that 1 ≤ T (X) ≤ 2
whenever X is an infinite-dimensional Banach space (see [29, Lemma 2]). Fur-
thermore, if X is a separable Banach space, the condition T (X) = 2 can be
characterized in terms of the Daugavet equation. Indeed, it is proved in [21] that
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T (X) = 2 if and only if there exists a 1-norming subspace Y ⊆ X∗ such that the
equation ‖T + I‖ = 1 + ‖T‖ holds true for every rank 1 operator T : X → X of
the form T = y∗ ⊗ x such that x ∈ X and that y∗ ∈ Y .

Related to the thickness index in Banach spaces is the concept of octahedral
norms. According to [12], a Banach space X has an octahedral norm if, for every
finite-dimensional subspace Y ⊆ X and every ε > 0, there exists x ∈ SX such
that

‖y + λx‖ ≥ (1− ε)
(
‖y‖+ |λ|

)
holds for every λ ∈ R and every y ∈ Y . It is known (see [12]) that X has an
octahedral norm if and only if T (X) = 2. If, in addition, X is separable, it is
known (see [13, Lemma 9.1]) that X has an octahedral norm if and only if there
exists u ∈ SX∗∗ such that

‖x+ u‖ = 1 + ‖x‖
holds for every x ∈ X.

Finally, we will state the following characterization of the Daugavet property,
proved in [22, Lemma 2.1] and [27, Lemma 2.2], which will freely be used through-
out the text.

Theorem 2.2. Let X be a Banach space. The following assertions are equivalent.

(1) X has the Daugavet property.
(2) For every x ∈ SX , every ε > 0, and every slice S of BX there exists y ∈ S

such that ‖x+ y‖ > 2− ε.
(3) For every x ∈ SX , every ε > 0, and every nonempty weakly open subset

W of BX there exists y ∈ W such that ‖x+ y‖ > 2− ε.
(4) For every x∗ ∈ SX∗, every ε > 0, and every w∗-slice S of BX∗ there exists

y∗ ∈ S such that ‖x∗ + y∗‖ > 2− ε.
(5) For every x∗ ∈ SX∗, every ε > 0, and every nonempty weakly-star open

subset W of BX∗ there exists y∗ ∈ W such that ‖x∗ + y∗‖ > 2− ε.

Note that the preceding theorem implies that Banach spaces with the Daugavet
property have an octahedral norm (see [22, Lemma 2.8] for details).

3. The Daugavet property in separable Banach spaces
and applications

It is known (see [13, Lemma 9.1]) that a Banach space X has an octahedral
norm if and only if T (X) = 2, which is in turn equivalent to the fact that
whenever there exist x1, . . . , xn ∈ X such that BX ⊆

⋃n
i=1B(xi, ri), then there

exists i ∈ {1, . . . , n} such that BX ⊆ B(xi, ri). We wonder whether a similar
statement can be established for the Daugavet property. The following lemma
will characterize the above property in terms of a thickness condition. In order
to see that, we will introduce a bit of notation. According to [13], given a Banach
space X, the ball topology, denoted by bX , is defined as the coarsest topology on
X so that every closed ball is closed in bX . As a consequence, a basis for the
topology bX is formed by the sets of the form

X \
n⋃

i=1

B(xi, ri),
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where x1, . . . , xn are elements of X and r1, . . . , rn are positive numbers.

Lemma 3.1. Let X be a Banach space. The following assertions are equivalent.

(1) X has the Daugavet property.
(2) Given a nonempty relatively weakly open set W of BX , it follows that,

whenever there exist x1, . . . , xn ∈ X such that W ⊆
⋃n

i=1B(xi, ri), then
there exists i ∈ {1, . . . , n} such that ri ≥ 1 + ‖xi‖. In particular, W ⊆
BX ⊆ B(xi, ri).

(3) For every nonempty bX open subset O of BX and for every nonempty
relatively weakly open subset W of BX , it follows that W ∩O 6= ∅.

Proof. (1) ⇒ (2). Pick a nonempty relatively weakly open subset W of BX , and
assume that W ⊆

⋃n
i=1B(xi, ri) for certain x1, . . . , xn ∈ X and r1, . . . , rn ∈ R+.

Let us prove that there exists i ∈ {1, . . . , n} such that ri ≥ 1+ ‖xi‖. Since X has
the Daugavet property, we conclude, using a similar argument to the one given
in [22, Lemma 2.8] for weakly open sets, the existence of y ∈ W such that

‖xi − y‖ > 1 + ‖xi‖ − ε

holds for every i ∈ {1, . . . , n}. As y ∈ W , then there exists i ∈ {1, . . . , n} such
that y ∈ B(xi, r) and thus ri ≥ 1 + ‖xi‖ − ε. Since ε > 0 was arbitrary, it is not
difficult to get (2).

(2) ⇒ (3). Consider O to be a nonempty bX open subset of BX . Up to consid-
ering a smaller open set, we can assume that O has the form

O := BX \
n⋃

i=1

B(xi, ri)

for certain x1, . . . , xn ∈ X and r1, . . . , rn ∈ R+. Consider W to be a nonempty rel-
atively weakly open subset of BX , and assume by contradiction that O ∩W = ∅.
Then W ⊆

⋃n
i=1B(xi, ri). By (2) we get that BX ⊆

⋃n
i=1B(xi, ri) and, conse-

quently, O = ∅, which is a contradiction. So (3) follows.
(3)⇒ (1). Pick x ∈ SX , ε > 0, and a slice S of BX . Define O := BX\B(x, 2−ε),

which is clearly a nonempty bX open subset of BX . By (3) there exists y ∈ S∩O;
that is, there exists y ∈ S such that ‖y − x‖ > 2 − ε. Consequently, X has the
Daugavet property, so we are done. �

As with the octahedrality condition, the previous lemma allows us to strengthen
the Daugavet property under separability assumptions.

Theorem 3.2. Let X be a separable Banach space. The following assertions are
equivalent.

(1) X has the Daugavet property; that is, for every x ∈ SX , every nonempty
relatively weakly open subset of BX , and every ε > 0 there exists y ∈ W
such that ‖x+ y‖ > 2− ε.

(2) For every nonempty relatively weakly-star open subset W of BX∗∗ there
exists u ∈ SX∗∗ ∩W such that

‖x+ u‖ = 1 + ‖x‖
holds for every x ∈ X.
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Proof. (2) ⇒ (1). Pick x ∈ SX , ε > 0, and consider a nonempty relatively weakly
open subset W of BX . Define W ∗ to be the relatively weakly-star open subset
of BX∗∗ defined by W (i.e., satisfying that W ∗ ∩ BX = W ), and consider u ∈
W ∗ ∩ SX∗∗ as in (2). Pick a net {xs} in BX which is weakly-star convergent to u
in BX∗∗ . On the one hand, because of the weakly-star convergence condition, we
can find s0 such that s ≥ s0 implies xs ∈ W ∗, and hence xs ∈ W ∗ ∩BX = W . On
the other hand, by the weak-star lower semicontinuity of the norm of X∗∗, we get

2 = ‖x+ u‖ ≤ lim inf
s

‖xs + x‖,

so we can find s ≥ s0 such that ‖xs + x‖ > 2− ε, and (1) follows.
(1) ⇒ (2). Since X is separable, the bX topology has a countable basis (see,

e.g., [13, Introduction]). Consequently, consider {On : n ∈ N} to be a basis for the
topology bX of BX . SinceX has the Daugavet property,X has an octahedral norm
and, consequently, every pair of nonempty bX open subsets of BX has a nonempty
intersection (see [13, Lemma 9.1]). Thus,

⋂n
k=1 Ok is a nonempty bX open subset

of BX for every n ∈ N. Pick W to be a nonempty relatively weakly-star open
subset of BX∗∗ , and pick U to be another nonempty relatively weakly-star open

subset of BX∗∗ such that U
w∗

⊆ W . By Lemma 3.1(3), we conclude the existence
of xn ∈ (U ∩BX)∩

⋂n
k=1Ok for every n ∈ N. Since xn ∈

⋂n
k=1 Ok for every n ∈ N,

we deduce, following the proof of [13, Lemma 9.l] verbatim, the existence of a
w∗-cluster point u of the sequence {xn} in BX∗∗ such that

‖x− x∗∗‖ = 1 + ‖x‖

holds for every x ∈ X. Moreover, since {xn} is contained in U and u is a weak-star

cluster point of {xn}, we deduce that u ∈ U
w∗

⊆ W . Consequently, (2) follows
and the theorem is proved. �

Remark 3.3. (1) Let X be a separable Banach space. By [13, Lemma 9.1], it
follows that X has an octahedral norm if and only if there exists u ∈ SX∗∗ such
that ‖x+u‖ = 1+‖x‖ holds for every x ∈ X. Theorem 3.2 can be read as follows:
X has the Daugavet property if and only if the set of such u ∈ SX∗∗ is weak-star
dense in SX∗∗ .

(2) Given a separable Banach space X such that X∗ additionally has the
Daugavet property, Theorem 3.2 can be proved following the argument of [22,
Lemma 2.12] for weak-star open subsets instead of w∗-slices.

As an application, we will give some sufficient conditions for a projective tensor
product space to enjoy the Daugavet property. For this, we begin with a charac-
terization of the Daugavet property in separable L-embedded Banach spaces.

Theorem 3.4. Let X be a separable L-embedded Banach space. Assume that
X∗∗ = X ⊕1 Z. Then, the following are equivalent.

(1) X∗ has the Daugavet property.
(2) X has the Daugavet property.
(3) BZ is weak-star dense in BX∗∗.
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Proof. (1) ⇒ (2). This implication is obvious.
(2) ⇒ (3). Let W be a nonempty relatively weakly-star open subset of BX∗∗ ,

and let us prove that BZ ∩W 6= ∅. By Theorem 3.2, we can find u ∈ W ∩ SX∗∗

such that

‖x+ u‖ = 1 + ‖x‖
holds for every x ∈ X. Since u ∈ X∗∗, we can find x ∈ X and z ∈ Z such that
u = x+ z. Now

1 ≥ ‖z‖ =
∥∥−x+ (x+ z)

∥∥ = 1 + ‖x‖.
This implies that x = 0 and, consequently, u ∈ BZ . So W ∩BZ 6= ∅, as desired.

(3) ⇒ (1). This follows from [6, Theorem 2.2]. �

This result generalizes [6, Theorem 3.2] under separability assumptions, where
the authors proved that a real or complex JBW∗-triple X has the Daugavet
property if and only if its predual X∗ (which is an L-embedded Banach space)
has the Daugavet property.

Now we will apply Theorem 3.2 to study when the projective tensor product of
an L-embedded Banach space with the Daugavet property enjoys the Daugavet
property. For this we begin with the following abstract lemma. Let us fix a bit of
notation related to the tensor product theory before the statement. Recall (see
[26, p. 24]) that (X ⊗̂π Y )∗ can be identified with the space L(X,Y ∗), where an
operator T ∈ L(X,Y ∗) acts on a basic tensor x ⊗ y ∈ X ⊗̂π Y as 〈T, x ⊗ y〉 :=
T (x)(y). When we consider an element T ∈ L(X,Y ∗) as a linear and continuous
functional on X ⊗̂π Y , we will write its action on z ∈ X ⊗̂π Y as 〈T, z〉. When
the same T ∈ L(X,Y ∗) is considered as an operator, its action on x ∈ X will be
denoted as T (x).

Lemma 3.5. Let X be a separable Banach space with the Daugavet property, and
let Y be a nonzero Banach space. Then, for every slice S := S(BX ⊗̂π Y , G, α) of
BX ⊗̂π Y there exists u ∈ SX∗∗ and y ∈ SY such that (y ◦G)(u) > 1− α and

‖z + u⊗ y‖(X ⊕ Ru) ⊗̂π Y = 1 + ‖z‖

holds for every z ∈ X ⊗̂π Y . Moreover, if X ⊕ Ru is an ideal in X∗∗ and either
X∗∗ or Y has the metric approximation property, then X ⊗̂π Y has the Daugavet
property.

Proof. Pick z ∈ X ⊗̂π Y and a slice S := S(BX ⊗̂π Y , G, α). Consider x ⊗ y ∈
S ∩ SX ⊗̂π Y such that ‖x‖ = ‖y‖ = 1. Note that

x⊗ y ∈ S ⇔ G(x)(y) > 1− α.

By Theorem 3.2 there exists u ∈ SX∗∗ such that u(y ◦G) > 1− α and

‖w + λu‖ = ‖w‖+ |λ|
holds for every w ∈ X and every λ ∈ R. Denote by Xu := X ⊕Ru. Now consider
T ∈ SL(X,Y ∗) such that 〈T, z〉 = ‖z‖, y∗ ∈ SY ∗ such that y∗(y) = 1, and define
T̄ : Xu −→ Y ∗ by the equation

T̄ (w + λu) := T (w) + λy∗
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for all w ∈ X and all λ ∈ R. Since Xu is isometrically isomorphic to X ⊕1 R, it
is obvious that ‖T̄‖ ≤ 1. Consequently,

‖z + u⊗ y‖Xu ⊗̂π Y ≥ 〈T̄ , z + u⊗ y〉 = ‖z‖+ y∗(y) = ‖z‖+ 1.

IfXu is an ideal inX∗∗, thenXu ⊗̂π Y is an isometric subspace ofX∗∗ ⊗̂π Y . More-
over, if either X∗∗ or Y has the metric approximation property, then X∗∗ ⊗̂π Y
is an isometric subspace of (X ⊗̂π Y )∗∗ (see [23, Proposition 2.3] and [25, Theo-
rem 1]). Consequently,

‖z + u⊗ y‖(X ⊗̂π Y )∗∗ = 1 + ‖z‖X ⊗̂π Y .

Since u(y ◦G) = (u⊗ y)(G) > 1− α and z ∈ X ⊗̂π Y was arbitrary, we conclude
that X ⊗̂π Y satisfies (2) in Theorem 3.2. Thus, X ⊗̂π Y enjoys the Daugavet
property, which finishes the proof. �

Remark 3.6. The assumption of Lemma 3.5 of Xu being an ideal in X∗∗ does
not hold in general. Indeed, consider a projective tensor product L∞ ⊗̂π Y failing
the Daugavet property and where Y has the metric approximation property (see,
e.g., [23] for Y = `33). Then there exist z :=

∑n
i=1 fi ⊗ yi ∈ L∞ ⊗̂π Y , ε0 > 0, and

a slice S := S(BL∞ ⊗̂π Y , T, α) such that, for every v ∈ S, it follows that

‖z + v‖ ≤ ‖z‖+ ‖v‖ − ε0.

Now consider f ⊗ y ∈ S, and define E := span{f1, . . . , fn, f}, which is a finite-
dimensional subspace of L∞. By [1, Theorem 1.5], there exists a separable ai-ideal
W in X containing E. Since W is an ai-ideal in X, then W inherits the Daugavet
property (see [3, Proposition 3.8]). Moreover, note that R := S(BW ⊗̂π Y , T|W , α)
contains f ⊗ y. Furthermore, since W is an ai-ideal in X, then ‖z‖X ⊗̂π Y =
‖z‖W ⊗̂π Y . Consequently, by the conditions on z and S, we deduce that

‖z + v‖W ⊗̂π Y ≤ ‖v‖+ ‖z‖W ⊗̂π Y − ε0

holds for every v ∈ R. This implies that W is a separable Banach space with the
Daugavet property and that Y is a Banach space with the metric approximation
property such that W ⊗̂π Y fails the Daugavet property. Then the conclusion
follows.

In spite of the previous remark, we will show a class of Banach spaces for which
Theorem 3.5 applies.

Theorem 3.7. Let X be a separable L-embedded Banach space with the Daugavet
property, and let Y be a nonzero Banach space. If either X∗∗ or Y has the metric
approximation property, then X ⊗̂π Y has the Daugavet property.

Proof. In this case, X∗∗ = X ⊕1 Z for some subspace Z ⊆ X∗∗ for which BZ

is w∗-dense in BX∗∗ because of Theorem 3.4. This implies that the element u of
the proof of Lemma 3.5 can be taken in SZ . Pick u∗ ∈ SZ∗ such that u∗(u) = 1.
Observe that, if we define Xu := X ⊕Ru, then X∗

u = X∗ ⊕∞ Ru∗, so the natural
inclusion map ϕ : X∗

u −→ X∗∗∗ = X∗ ⊕∞ Z∗ satisfies that

ϕ(x∗ + λu∗)(x+ λu) = (x∗ + λu∗)(x+ λu)
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for every x+λu ∈ Xu, which proves that ϕ is a Hahn–Banach extension operator.
This implies thatXu is an ideal inX∗∗ by Theorem 2.1, so Lemma 3.5 applies. �

Note that the key to proving Theorem 3.7 is that BZ is w∗-dense in BX∗∗ . Let
us show a class of L-embedded Banach spaces for which the previous assumption
holds, and for which we will have to introduce a bit of notation. We recall that a
complex JB∗-triple is a complex Banach space X with a continuous triple product
{. . .} : X × X × X → X which is linear and symmetric in the outer variables,
conjugate-linear in the middle variable, and satisfies the following.

(1) For all x in X, the mapping y → {xxy} from X to X is a Hermitian
operator on X and has nonnegative spectrum.

(2) The main identity{
ab{xyz}

}
=

{
{abx}yz

}
−

{
x{bay}z

}
+
{
xy{abz}

}
holds for all a, b, x, y, z in X.

(3) ‖{xxx}‖ = ‖x‖3 for every x in X.

Concerning the condition (1) above, we also recall that a bounded linear oper-
ator T on a complex Banach space X is generally regarded to be Hermitian if
‖ exp(irT )‖ = 1 for every r in R. Examples of complex JB∗-triples are all C∗-
algebras under the triple product

{xyz} :=
1

2
(xy∗z + zy∗x).

Following [17], we define real JB∗-triples as norm-closed real subtriples of com-
plex JB∗-triples. Here, by a subtriple we mean a subspace which is closed under
triple products of its elements. Real JBW∗-triples were first introduced as those
real JB∗-triples which are dual Banach spaces in such a way that the triple
product becomes separately w∗-continuous (see [17, Definition 4.1 and Theo-
rem 4.4]). Later, Mart́ınez and Peralta [24] showed that the requirement of sep-
arate w∗-continuity of the triple product is superabundant. The bidual of every
real (resp., complex) JB∗-tripleX is a JBW∗-triple under a suitable triple product
which extends the one of X (see [17, Lemma 4.2]) (resp., [11]).

Now we can establish the announced result.

Proposition 3.8. Let X be a real or complex JBW∗-triple, let X∗ be its predual,
and consider a nonzero Banach space Y . If X∗ has the Daugavet property and
either Y or X∗ has the metric approximation property, then X∗ ⊗̂π Y has the
Daugavet property.

Proof. In this case, X∗ is an L-embedded Banach space with the Daugavet prop-
erty. Hence, it follows that X∗ = X∗ ⊕1 Z for some subspace Z of X∗. Since X∗
has the Daugavet property, then X∗ does not have any extreme point (see [6, The-
orem 3.2]). Consequently, BZ is w∗-dense in BX∗ , and the proof of Theorem 3.7
applies. �
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4. A Daugavet index of thickness

Lemma 3.1 together with the definition of the index T (X) motivates the defi-
nition of the index

T (X) := inf

{
r > 0 :

∃n ∈ N, x1, . . . , xn ∈ SX

∃∅ 6= W ⊆ BX weakly open W ⊆
⋃n

i=1B(xi, r)

}
. (4.1)

Moreover, in dual Banach spaces, it makes sense considering the index

Tw∗(X)
(4.2)

:= inf

{
r > 0 :

∃n ∈ N, x1, . . . , xn ∈ SX

∃∅ 6= W ⊆ BX weak-star open W ⊆
⋃n

i=1B(xi, r)

}
.

It is obvious from Lemma 3.1 that a Banach spaceX has the Daugavet property
if and only if T (X) = 2, which in turn is equivalent to the fact that Tw∗(X∗) = 2.
It is also clear, from the definition of T (X), that T (X) ≤ T (X), but the inequality
may be strict. Indeed, given a nonempty relatively weakly open subset W of BX

and x ∈ W , it is clear that W ⊆ B(x, diam(W )). Consequently, the following
proposition is clear.

Proposition 4.1. Let X be a Banach space whose unit ball contains nonempty
relatively weakly open subsets of BX whose diameter is smaller than ε. Then
T (X) ≤ ε. In particular, if X has a dentable unit ball (i.e., the unit ball contains
slices of arbitrarily small diameter), then T (X) = 0.

Now we will introduce the following lemma, which allows us to consider n = 1
in the definition of the indices T and Tw∗ . This fact will be used throughout the
section without any explicit reference.

Lemma 4.2. Let X be a Banach space, and let r > 0. Assume that for every
nonempty relatively weakly open subset W of BX and every x ∈ SX there exists
w ∈ W such that ‖x − w‖ > r. Then, for every n ∈ N, every x1, . . . , xn ∈ SX ,
and every nonempty relatively weakly open subset W of BX , there exists w ∈ W
such that ‖xi − w‖ > r holds for every i ∈ {1, . . . , n}.

Note that a similar statement can be established for weakly-star open sets.

Proof. We will use induction on n. The case n = 1 is just the hypothesis of the
lemma. So assume that the thesis holds for n, and let us prove it for n+1. Consider
a nonempty relatively weakly open subset W of BX and x1, . . . , xn+1 ∈ SX . By
assumption, there exists y ∈ W such that ‖xn+1 − y‖ > r. This means that
V := W \ (xn+1 + rBX) is nonempty. Moreover, V is a relatively weakly open
subset of BX since BX is weakly closed and W is relatively weakly open. If we
apply the induction hypothesis, we can find w ∈ V ⊆ W such that ‖xi − w‖ > r
holds for every i ∈ {1, . . . , n}. The condition ‖xn+1 − w‖ > r holds because of
the definition of V . This finishes the proof. �

Let us now analyze the index T (X) for some classical Banach spaces.
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Example 4.3.

(1) It is known that T (`1) = 2 but T (`1) = 0. This shows that the inequality
T (X) ≤ T (X) can be strict.

(2) T (c0) = 1. Indeed, the inequality T (c0) ≥ 1 follows immediately from the
known fact that every nonempty relatively weakly open subset of Bc0 has
diameter 2 (see, e.g., [2]). On the other hand, S(Bc0 , e

∗
1, α) ⊆ B(e1, 1), so

T (c0) = 1 as desired. This proves that the converse of Proposition 4.1
does not hold.

(3) Tw∗(`∞) = 1. Indeed, Tw∗(`∞) ≤ 1 as in the previous example. Moreover,
the inequality Tw∗(`∞) ≥ 1 follows from the fact that every nonempty
relatively weakly-star open subset of B`∞ has diameter 2 (see, e.g., [2]).

(4) T (C([0, 1])) = 2 since C([0, 1]) has the Daugavet property. However, the
unit ball of C([0, 1])∗ has denting points and, consequently, T (C([0, 1])∗) =
0. Thus Tw∗(C([0, 1])∗∗) < 2.

This index still has a relation with the Daugavet equation even when T (X) < 2.
The proof of the following result follows the ideas of [22, Theorem 2.3], but we
include the proof for the sake of completeness.

Proposition 4.4. Let X be a Banach space. Then, for every norm 1 and weakly
compact operator T : X −→ X, it follows that

‖T + I‖ ≥ T (X).

Similarly, it follows that

‖T + I‖ ≥ Tw∗(X∗).

Proof. Pick a weakly compact operator T : X −→ X such that ‖T‖ = 1 and

ε > 0. Then K = T (BX) is weakly compact and, consequently, we can find a
denting point y0 of K such that ‖y0‖ > 1 − ε. For 0 < δ < ε we can find a slice
S := {y ∈ K : y∗(y) > 1 − δ} containing y0 and having diameter smaller than ε
(see, e.g., [8, Theorem 3.6.1]). For x∗ = T ∗(y∗), we have ‖x∗‖ = 1 and

T
(
S(BX , x

∗, δ)
)
⊆ S.

Now we can find x ∈ S(BX , x
∗, δ) such that ‖x+ y0

‖y0‖‖ > T (X)−ε, so ‖x+y0‖ >

T (X)− 2ε. Moreover, T (x) ∈ S and thus ‖T (x)− y0‖ < ε. Consequently,

‖T + I‖ ≥
∥∥T (x) + x

∥∥ ≥ ‖x+ y0‖ −
∥∥T (x)− y0

∥∥ > T (X)− 3ε.

Since ε > 0 was arbitrary, we conclude the desired result.
The second part of the proof follows from the fact that T ∗ is also weakly

compact and then T ∗(BX∗) has the Radon–Nikodym property, so T (BX∗) is
w∗-dentable (see [8, Theorem 4.2.13(f)]). �

Now we turn to analyze the index T with respect to `p-sums for 1 ≤ p ≤ ∞.

Proposition 4.5. Let X and Y be Banach spaces. Then we have the following.

(1) T (X⊕∞ Y ) ≥ min{T (X), T (Y )}. Moreover, if T (X⊕∞ Y ) > 1, then the
equality holds.

(2) T (X ⊕1 Y ) ≤ min{T (X), T (Y )}.
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(3) T (X ⊕p Y ) ≤ ( (2
1
p+1)p+1

2
)
1
p for every 1 ≤ p ≤ ∞.

Proof. (1). Consider a nonempty relatively weakly open subset W of BX⊕∞Y ,
ε > 0, and (x, y) ∈ SX⊕∞Y . By [2, Theorem 4.5] we can find nonempty weakly
open sets U of BX and V of BY such that U × V ⊆ W . Because of the definition
of the norm of X ⊕∞ Y , we get that ‖x‖ = 1 or ‖y‖ = 1. We will assume
without loss of generality that ‖x‖ = 1. In that case, we can find u ∈ U such that
‖x − u‖ > T (X) − ε. Clearly, given v ∈ V , it follows that (u, v) ∈ U × V ⊆ W .
Moreover, it follows that∥∥(x, y)− (u, y)

∥∥ = max
{
‖x− u‖, ‖y − v‖

}
≥ T (X)− ε.

Consequently, we get T (X⊕∞Y ) ≥ min{T (X), T (Y )}. For the converse inequal-
ity, assume that min{T (X), T (Y )} = T (X) and that T (X ⊕∞ Y ) > 1, and pick
ε > 0 such that T (X ⊕∞ Y ) − ε > 1. Pick x ∈ SX , and consider a nonempty
relatively weakly open subset W of BX . Since W ×BY is weakly open in BX⊕∞Y ,
there exists (w, y) ∈ W ×BY such that

1 < T (X ⊕∞ Y )− ε ≤
∥∥(x, 0)− (w, y)

∥∥ = max
{
‖x− w‖, ‖y‖

}
.

Since ‖y‖ ≤ 1, it follows that ‖x − w‖ > T (X ⊕∞ Y ) − ε and, as x ∈ W , we
conclude that T (X) ≥ T (X ⊕∞ Y ) − ε. Since 0 < ε < T (X ⊕∞ Y ) − 1 was
arbitrary, we conclude that T (X ⊕∞ Y ) = min{T (X), T (Y )}, so (1) is proved.

(2). Consider Z := X ⊕1 Y , assume without loss of generality that
min{T (X), T (Y )} = T (X), and pick ε > 0. Then there exists a basic nonempty
relatively weakly open subset W =

⋂m
i=1 S(BX , x

∗
i , α) of BX , and there is x ∈ SX

such that

W ⊆ B
(
x, T (X) + ε

)
.

Now, by the proof of [4, Proposition 3.1], taking 0 < η < α we conclude that
S(BZ , (x

∗
i , 0), η) ⊆ S(BX , x

∗
i , α) + ηBY holds for every i ∈ {1, . . . ,m}. Conse-

quently,
m⋂
i=1

S
(
BZ , (x

∗
i , 0), η

)
⊆ B

(
x, T (X) + ε

)
× ηBY ⊆ B

(
(x, 0), T (X) + η + ε

)
.

Since α can be chosen to be arbitrarily small (see [18, Lemma 2.1]), we get that
T (Z) ≤ T (X).

(3) This follows because T (X ⊕p Y ) ≤ T (X ⊕p Y ) ≤ ( (2
1
p+1)p+1

2
)
1
p , where the

last inequality was proved in [15, Proposition 2.7]. �

Example 4.6. Let X := c0, Y := R, and Z := X ⊕∞ Y . Then Z is isometrically
isomorphic to c0 and thus T (Z) = 1 > min{T (X), T (Y )} = T (R) = 0. This
proves that the inequality in (1) may be strict if we remove the assumption on
T (X ⊕∞ Y ).

Let us now show some results related to the index T with respect to subspaces.

Proposition 4.7. Let X be a Banach space, and let Y be an almost isometric
ideal in X. Then T (X) ≤ T (Y ).
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Proof. Pick a positive ε > 0, a basic nonempty relatively weakly open subset
W =

⋂m
j=1 S(BY , y

∗
j , αj) of BY , and y ∈ SY such that

W ⊆ B
(
y, T (Y ) + ε

)
.

Consider by [3, Theorem 1.4] a Hahn–Banach extension operator ϕ : Y ∗ −→ X∗

such that, for all finite-dimensional subspaces E ⊆ X and F ⊆ X∗, there exists
a linear and bounded operator T : E −→ Y satisfying

(1) T (e) = e for all e ∈ E ∩ Y ,
(2) (1 + ε)−1‖e‖ ≤ ‖T (e)‖ ≤ (1 + ε)‖T (e)‖ holds for all e ∈ E,
(3) ϕ(y∗)(e) = y∗(T (e)) for all e ∈ E, y∗ ∈ F .

Let us prove that U :=
⋂m

j=1 S(BX , ϕ(y
∗
j ), αj) ⊆ B(y, (1 + ε)(T (Y ) + ε)) (note

that, since W is nonempty, so is U). To this aim pick x ∈ U , define E :=
span{y, x} ⊆ X and F := span{y∗1, . . . , y∗m} ⊆ Y ∗, and consider the associated
operator T : E −→ Y satisfying (1), (2), and (3). Now, given j ∈ {1, . . . ,m}, we
have

1− αj < ϕ(y∗j )(x) = y∗j
(
T (x)

)
,

so T (x) ∈ S. Consequently, ‖T (x)− y‖ ≤ T (Y ) + ε holds true. Hence

‖x− y‖ ≤ (1 + ε)‖T (x− y)‖ = (1 + ε)‖T (x)− y‖ ≤ (1 + ε)
(
T (Y ) + ε

)
,

which proves the desired inclusion and finishes the proof. �

Remark 4.8. Since every Banach space is an ai-ideal in its bidual, Example 4.3(4)
shows that the inequality in the previous proposition may be strict.

We will finish the section with another result related to the inheritance to
subspaces inspired by [5, Theorem 2.2].

Proposition 4.9. Let X be a Banach space, and let Y be a finite-codimensional
subspace of X. Then T (Y ) ≥ T (X).

Proof. Pick a weakly open set W := {y ∈ Y : |y∗i (y − y0)| < ε for all i ∈
{1, . . . , n}}, where n ∈ N, y∗1, . . . , y∗n ∈ SY ∗ , y0 ∈ SY and ε > 0 satisfies that

W ∩BY 6= ∅,

and pick y ∈ SY and 0 < δ < ε. Let us find z ∈ W ∩ BY such that ‖y − z‖ ≥
T (X)− δ holds. To this aim, assume, up to an application of the Hahn–Banach
theorem, that y∗i ∈ SX∗ holds for all i ∈ {1, . . . , n}. Define

U :=
{
x ∈ X :

∣∣y∗i (x− y0)
∣∣ < ε− δ

4
for all i ∈ {1, . . . , n}

}
.

Consider p : X −→ X/Y to be the quotient map. Now p(U) is a weakly open set
of X/Y which contains 0. Since X/Y is finite-dimensional, there exists a weakly
open neighborhood of 0 V such that V ⊆ p(U) and that

diam(V ) <
δ

16
.
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Consider B := p−1(V ) ∩ U ∩ BX , which is a nonempty relatively weakly open
subset of BX . Since y ∈ SY ⊆ SX , we can find x ∈ B such that

‖y − x‖ > T (X)− δ

16
.

As p(x) ∈ V and diam(V ) < δ
16
, we can find u ∈ Y such that ‖x − u‖ < δ

16
.

Define z := u
‖u‖ ∈ SY , and note that ‖x− z‖ < δ

4
. Moreover, given j ∈ {1, . . . , n},

we get ∣∣y∗j (z − y0)
∣∣ ≤ ∣∣y∗j (x− y0)

∣∣+ δ

4
< ε,

so z ∈ W . Finally, it follows that

‖y − z‖ ≥ ‖y − x‖ − ‖x− z‖ > T (X)− δ

2
> T (X)− δ.

Since δ > 0 was arbitrary, we conclude that T (Y ) ≥ T (X), so we are done. �

Remark 4.10. The inequality in the previous proposition may be strict. Indeed,
consider Y := L1([0, 1]) and X := Y ⊕1 R. From Proposition 4.5 we get that
T (X) ≤ T (R) = 0, while T (Y ) = 2.

5. Some remarks and open questions

In general, it is false that the property of being an L-embedded Banach space
is hereditary (see [16, Chapter IV]) and, to the best of our knowledge, it is not
known whether an ideal in an L-embedded Banach space is itself an L-embedded
Banach space (see [25, p. 608]). However, for the class of those L-embedded
Banach spaces for which every subspace which is an ideal is itself an L-embedded
Banach space (e.g., von Neumann algebras (see the proof of [25, Proposition 5])),
the conclusion of Theorem 3.7 holds removing the separability assumption.

Proposition 5.1. Let X be an L-embedded Banach space with the Daugavet prop-
erty, and let Y be a nonzero Banach space. Assume that every ideal in X is itself
an L-embedded Banach space. If either X∗∗ or Y has the metric approximation
property, then X ⊗̂π Y has the Daugavet property.

Proof. Pick z :=
∑n

i=1 xi ⊗ yi ∈ X ⊗̂π Y , and consider a slice S := S(BX ⊗̂π Y ,
G, α). Since ‖G‖ = 1, we can find x⊗ y ∈ S ∩ SX with ‖x‖ = ‖y‖ = 1. Define

E := span{x1, . . . , xn, x} ⊆ X.

Now E is a finite-dimensional subspace of X. By [1, Theorem 1.5] we can find an
ai-ideal in X, say, W , containing E. Now note that ‖G|W‖ ≥ ‖G(x)‖ > 1− α, so
we can consider

T :=
{
z ∈ BW ⊗̂π Y : G(z) > 1− α

}
,

which is a slice of BW ⊗̂π Y . Moreover, since W is an ai-ideal in X, we get that

z ∈ W ⊗̂π Y and that ‖z‖W ⊗̂π Y = ‖z‖X ⊗̂π Y . Furthermore, note that W ∗∗ has
the metric approximation property whenever X∗∗ has the metric approximation
property because W ◦◦ is 1-complemented in X∗∗. Since W is an L-embedded
Banach space by the assumptions, we conclude from Theorem 3.7 that W ⊗̂π Y
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has the Daugavet property and, consequently, there exists w ∈ T such that ‖z +
w‖W ⊗̂π Y > 1 + ‖z‖ − ε. Since W ⊗̂π Y is an isometric subspace of X ⊗̂π Y , we
conclude that

‖z + w‖X ⊗̂π Y > 1 + ‖z‖X ⊗̂π Y − ε.

Moreover, since w ∈ T , we get that w ∈ S. Hence, X ⊗̂π Y enjoys the Daugavet
property, as desired. �

In view of the previous proposition, it is natural to pose the following question.

Problem 5.2. Let X be an L-embedded space with the Daugavet property, and let
Y be a nonzero Banach space. If either X∗∗ or Y has the metric approximation
property, does X ⊗̂π Y have the Daugavet property?

It is known that X ⊗̂π Y has, at least, an octahedral norm under the assump-
tions of the previous question (see [23, Theorem 4.3]).

With respect to Section 4, in view of the characterizations given in Theorem 2.2
and Proposition 4.4, it is natural to wonder the following.

Problem 5.3. Does the equality

inf
{
‖T + I‖ : T ∈ SL(X,X) and T is weakly compact

}
= max

{
T (X), Tw∗(X∗)

}
hold for every Banach space X?
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