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Abstract. Let A be a Banach algebra, and let X be a left Banach A-module.
In this paper, using the notation of point multipliers on left Banach modules,
we introduce a certain type of spectrum for the elements of X and we also
introduce a certain subset of X which behaves as the set of invertible elements
of a commutative unital Banach algebra. Among other things, we use these sets
to give some Gleason–Kahane–Żelazko theorems for left Banach A-modules.

1. Introduction

By the classical Gleason–Kahane–Żelazko theorem, a linear functional Λ on
a complex unital Banach algebra A, with unit element 1A satisfying Λ(1A) = 1
and Λ(x) 6= 0 for all invertible elements x ∈ A, is a character on A. There
are several generalizations of this theorem, the most popular of which concerns
the problem of characterizing spectrum-preserving maps. This problem has been
studied by many authors; for surveys of many of these results and for some other
generalizations, see, for example, [8], [14], [16], [23], [6], and [13]. Introducing
different types of spectra, some authors study related problems for newly defined
spectrums (see, e.g., example, [18] and the references therein).

For a compact Hausdorff space K and a Banach space E, let C(K,E) be
the space of E-valued continuous functions on K, which is obviously a Banach
C(K)-module under the supremum norm ‖ · ‖K . The problem of nonvanishing-
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preserving maps on C(K,E) (maps preserving nonvanishing functions in both
directions), which was studied in [21], is related. Such maps were also considered
on the topological algebra C(X) for a completely regular Hausdorff space X,
rather than on Banach algebras (see [20]).

Common zero-preserving maps between spaces of functions send (in both direc-
tions) every pair of functions having common zeros to the functions with the same
property. Since common zero-preserving maps between subspaces of continuous
vector-valued functions may be compared with maps preserving joint spectrums
in a commutative unital Banach algebra case, then the results concerning such
maps can also be considered as generalizations of the Gleason–Kakane–Żelazko
theorem. For some recent results on this topic, see [9], [12], and [19].

The recent work of Mashreghi and Ransford [22] is the only known reference
in which the authors consider a similar problem in a module case. In [22], a gen-
eralization of the Gleason–Kahane–Żelazko theorem on modules with application
to linear functionals on Hardy spaces has been obtained.

In this paper, we consider Banach (left) modules rather than Banach algebras,
and we introduce zero sets and spectrum-like sets for the element of Banach mod-
ules. We also introduce a subset which behaves as the set of invertible elements
of commutative unital Banach algebras, and we give some Gleason–Kahane–
Żelazko-type theorems for Banach left modules. Our approach is based on the
notion of point multipliers on Banach modules and their properties, which is
given in [7].

2. Preliminaries

Let A be a Banach algebra with nonempty character space σ(A), and let X be
a left Banach A-module. For each ϕ ∈ σ(A) ∪ {0}, a linear functional ξ ∈ X ∗ is
called a point multiplier at ϕ if 〈ξ, a · x〉 = ϕ(a)〈ξ, x〉 for all a ∈ A, x ∈ X . The
notation for right Banach A-modules is defined similarly. We denote the set of
all nontrivial point multipliers on X in the unit ball of X ∗ by σA(X ). For some
properties of point multipliers and other related notions which are used in this
paper, we refer the reader to [7].

A submodule of X of codimension 1 is called a hyper maximal submodule of X .
Clearly the kernel of each nontrivial point multiplier on X is a hyper maximal
submodule of X , and it is easy to see that each closed hyper maximal submodule
of X is the kernel of some point multiplier on X (see [7, p. 312]). The natural
defined map νXA : σA(X ) −→ σ(A) ∪ {0} associates to each point multiplier ξ on
X , with the unique point ϕ ∈ σ(A) ∪ {0} satisfying 〈ξ, a · x〉 = ϕ(a)〈ξ, x〉 for all
a ∈ A and x ∈ X . For a closed hyper maximal submodule P of X we may use
the notation νXA (P ) for νXA (ξ), where ξ ∈ σA(X ) such that ker(ξ) = P . For the
sake of simplicity we may also use νA instead of νXA .

Clearly if ξ ∈ σA(X ), then νXA (ξ) = νXA (λξ) for all complex scalars λ with
|λ| ≤ 1; that is, νXA is not injective. It should also be noted that the map νXA is not
necessarily surjective (see [7, Proposition 3.6]). Consider the following equivalence
relation on σA(X ):

ξ ∼ η iff νXA (ξ) = νXA (η).
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Hence if ξ ∈ σA(X ), then ξ ∼ λξ, where |λ| ≤ 1. In general, however, there exist
point multipliers in the same class with different kernels (see [7]).

We denote the set of all closed hyper maximal submodules of X by ∆A(X ),
and we denote the set of elements in ∆A(X ) corresponding to ϕ ∈ σ(A)∪ {0} by
∆ϕ(X ) which is clearly nonempty whenever ϕ is in the range of νXA .

The Gelfand radical of X is defined by RadA(X ) =
⋂
P∈∆A(X) P , and X is

called hyper semisimple if RadA(X ) = {0}.
Assume that A is unital. Then each nontrivial point multiplier on A, as a

Banach module over itself, is of the form λϕ for some nonzero scalar λ ∈ C, and
ϕ ∈ σ(A). On the other hand, for each ϕ ∈ σ(A), it holds that X = ker(ϕ) is a
Banach A-module such that each point multiplier at a point ψ distinct from ϕ is
of the form λψ|X , λ ∈ C, and a linear functional ξ ∈ X ∗ is a point multiplier at

ϕ if and only if ξ ∈ X 2
⊥
(see [7, Example 2.2]).

Commutative semisimple Banach algebras A, as well as their maximal ideals,
are hyper semisimple Banach A-modules.

Consider the following subset of ΠP∈∆A(X )X/P :

X =
{
x = (xP + P )P∈∆A(X ) : sup

P∈∆A(X )

‖xP + P‖ <∞
}
.

Thus X is a Banach space under the norm defined by ‖x‖ = supP∈∆A(X ) ‖xP+P‖,
x = (xP +P )P∈∆A(X ) ∈ X , which is actually a left Banach A-module in a natural
way (see [7] for the case that A is unital). Furthermore, the map GX : X −→ X ,
defined by GX (x) = x̂, is a norm-decreasing map which is injective if X is hyper
semisimple. We should note that for each x ∈ X , we may use the same notation
x̂ for the continuous function on the compact space σA(X ) ∪ {0} defined by
x̂(ξ) = 〈ξ, x〉, ξ ∈ σA(X ) ∪ {0}. Here σA(X ) ∪ {0} is endowed with the relative
weak-star topology.

The kernel of a nonempty subset S of ∆A(X ) is defined by kX (S) =
⋂
P∈S P ,

and the hull of a submodule M of X is defined by hX (M) = {P ∈ ∆A(X ) : (M :
X ) ⊆ (P : X)}, where for a submodule N of X , (N : X ) = {a ∈ A : a · X ⊆
N}. The family {∆A(X )\hX (M) : M is a submodule of X} is a topology called
hull-kernel topology on ∆A(X ).

We should note that when A is unital and 1A · x = x for all x ∈ X (that
is, X is unital), there is no nontrivial point multiplier at zero. By [7, Proposi-
tion 3.5], the natural map νA : ∆A(X ) −→ σ(A)∪ {0} is continuous with respect
to the hull-kernel topologies on both sides. Moreover, if S ⊆ ∆A(X) is hull-kernel
closed (open), then νA(S) is closed (open) in the relative hull-kernel topology on
νA(∆A(X )) ∪ {0}. We should note that in [7], by replacing A by its unitization
A1, since X is clearly a unital A1-module, this proposition has been proved for
the unital case (with the map νA whose values are in σ(A)); however the same is
true for the nonunital case.

The notion of a function algebra on a compact Hausdorff spaceK is used for the
closed subalgebras of C(K) containing the constants and separating the points
of K. The notion of a left function module was introduced in [4] and [3] as a left
Banach A-module X such that there is a compact Hausdorff space K, a linear
isometry i : X → C(K), and a contractive unital homomorphism Θ : A→ C(K)
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such that i(a ·x) = Θ(a)i(x) for any a ∈ A, x ∈ X . Indeed, a function A-module is
a closed linear subspace of C(K), for some compact Hausdorff space K, which is
closed under multiplication by π(A), for some contractive unital homomorphism
π : A −→ C(K).

For a Banach space X , let EX be the set of extreme points of the unit ball of
X ∗ endowed with the relative weak-star topology, and let jX : X −→ Cb(EX ) be
defined by jX (x)(l) = l(x) for x ∈ X and l ∈ EX , where Cb(EX ) is the space
of all bounded continuous complex-valued functions on EX . By [4, Theorem 2.2],
a left Banach A-module X is a left function A-module if and only if there exists
a contractive unital homomorphism Θ : A→ Cb(EX ) such that

jX (a · x) = Θ(a)jX (x) (a ∈ A, x ∈ X ).

For a Banach space X , the multiplier algebra Mult(X ) of X is defined by

Mult(X ) =
{
f ∈ Cb(EX ) : fjX (X ) ⊆ jX (X )

}
,

which is a function algebra. By [4, Example 2.6], X is a Mult(X )-function module
and by [4, Theorem 2.2], for any unital Banach algebra A, there is a one-to-one
correspondence between function A-module actions on X and contractive unital
homomorphisms from A into Mult(X ). If Mult(X ) = C, then, by [4, Example 2.6],
any function module action on X arises from some ϕ ∈ σ(A); that is, a·x = ϕ(a)x
for all a ∈ A and x ∈ X . This holds, for instance, if X is strictly convex (see [15,
Corollary 3]).

If X does not contain any isometric copy of c0, then Mult(X ) is finite-
dimensional (see [15]). This holds, for instance, if X is reflexive. If n is the
dimension of Mult(X ), then there exist subspaces X1, . . . ,Xn of X such that
dim(Mult(Xj)) = 1 for each 1 ≤ j ≤ n, and X is equal to the l∞ direct sum
X = X1⊕· · ·⊕Xn (see [2, Proposition 5.1]); furthermore, any function A-module
action on X arises from n characters ϕ1, . . . , ϕn on A; that is, a · (x1+ · · ·+xn) =
ϕ1(a)x1 + · · ·+ ϕn(a)xn for any a ∈ A, and xi ∈ Xi, i = 1, . . . , n (see [4]).

3. Main results

In this section, we give some characterizations of point multipliers, we intro-
duce the notion of zero sets for the elements of a left Banach A-module X , and
then we define an appropriate subset X−1

h of X which behaves as the set of
invertible elements of commutative unital Banach algebras. We also introduce
some spectrum-like sets for elements of Banach modules. Then we give some
Gleason–Kahane–Żelazko-type theorems for the Banach module case. Through-
out this section, unless otherwise specified, A is a Banach algebra with nonempty
character space, and X is a left Banach A-module with σA(X ) 6= ∅.

Theorem 3.1. Assume that A is unital and that X is a unital left Banach A-
module. Then we have the following.

(i) For a linear functional ξ on X (not assumed to be continuous), ker(ξ) is
a submodule of X if and only if there exists ϕ ∈ σ(A) such that

〈ξ, a · x〉 = ϕ(a)〈ξ, x〉 (a ∈ A, x ∈ X ).



868 R. S. GHODRAT and F. SADY

(ii) A nonzero functional ξ ∈ X ∗ is a point multiplier on X if and only if

〈ξ, a · x〉 6= 0
(
a ∈ A−1, x /∈ ker(ξ)

)
.

Proof. (i) In the case where ξ = 0 is trivial, since the “if” part is clear, we prove the
“only if” part. Assume that ξ is a nonzero linear functional on X such that ker(ξ)
is a submodule of X . Let s ∈ X \ker(ξ). Then using the Gleason–Kahan–Żelazko

theorem, the hypothesis easily implies that the functional ϕs(a) =
〈ξ,a·s〉
〈ξ,s〉 on A is

an element of σ(A). We can show that, for each s1, s2 ∈ X \ ker(ξ), ϕs1 = ϕs2 .
Given s1, s2 ∈ X \ ker(ξ), let α ∈ C such that 〈ξ, s1〉 = α〈ξ, s2〉. Since ker(ξ)
is a submodule of X , then we have a · (s1 − αs2) ∈ ker(ξ) for each a ∈ A, and
consequently

ϕs1(a) =
〈ξ, a · s1〉
〈ξ, s1〉

=
〈ξ, a · s2〉
〈ξ, s2〉

= ϕs2(a).

Hence for arbitrary s0 ∈ X\ ker(ξ), the functional ϕ = ϕs0 ∈ σ(A) satisfies
〈ξ, a ·s〉 = ϕ(a)〈ξ, s〉 for all a ∈ A and s ∈ X\ ker(ξ). The proof is complete, since
clearly 〈ξ, a · s〉 = 0 for each a ∈ A, and s ∈ ker(ξ).

(ii) If ξ ∈ X ∗ is a nonzero point multiplier, and since the corresponding complex
homomorphism on A is obviously nonzero, then we see that 〈ξ, a ·x〉 6= 0 holds for
all a ∈ A−1 and x ∈ X\ ker(ξ)). Assume now that ξ ∈ X ∗ satisfies this property,
and fix an element x0 ∈ X with 〈ξ, x0〉 6= 0. Then, using the Gleason–Kahane–

Żelazko theorem, the hypothesis again implies that the functional ϕx0(a) =
〈ξ,a·x0〉
〈ξ,x0〉

on A is an element of σ(A). Thus

〈ξ, ab · x0〉〈ξ, x0〉 = 〈ξ, a · x0〉〈ξ, b · x0〉
for all a, b ∈ A. Now for a point x ∈ ker(ξ) and n ∈ N, set xn = x− x0

n
, then {xn}

is a sequence in X\ ker(ξ) converging to x. By the above argument

〈ξ, ab · xn〉〈ξ, xn〉 = 〈ξ, a · xn〉〈ξ, b · xn〉
for all n ∈ N, a, b ∈ A. Thus

0 = 〈ξ, ab · x〉〈ξ, x〉 = 〈ξ, a · x〉〈ξ, b · x〉
for all a, b ∈ A which, in particular, implies that 〈ξ, a · x〉 = 0 for all x ∈ ker(ξ)
and a ∈ A. Therefore, ker(ξ) is an A-submodule of X , and so, by (i), ξ is a point
multiplier on X . �

Corollary 3.2. Under the assumption of the above theorem, if X is generated as
a Banach A-module by an element x0, then a nonzero linear functional ξ ∈ X ∗ is
a point multiplier on X if and only if 〈ξ, a · x0〉 6= 0 for all a ∈ A−1.

Proof. Assume that ξ ∈ X ∗ satisfies the stated property. Then, as in the proof of
the above theorem,

〈ξ, ab · x0〉〈ξ, x0〉 = 〈ξ, a · x0〉〈ξ, b · x0〉 (a, b ∈ A).

Since by hypothesis {b · x0 : b ∈ A} is dense in X , it follows that 〈ξ, a · x〉 =
ϕ(a)〈ξ, x〉 for all a ∈ A and x ∈ X , where ϕ ∈ σ(A) is defined by ϕ(a) =
〈ξ,a·x0〉
〈ξ,x0〉 . �
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Definition 3.3. For an element x ∈ X , we set

Z(x) =
{
ϕ ∈ νA

(
σA(X )

)
\{0} : 〈ξ, x〉 = 0 for all ξ ∈ νA

−1(ϕ)
}
,

and we call it the zero set of x. We also define

X−1
h =

{
x ∈ X : Z(x) = ∅

}
,

X−2
h =

{
(x, y) ∈ X × X : Z(x) ∩ Z(y) = ∅

}
.

The above notation is defined similarly for right Banach A-modules.
We should note that, in general, the range of νXA is contained in σ(A) ∪ {0}.

If, however, A · X = X (e.g., if 1 · x = x, for all x ∈ X , when A is unital) then
0 /∈ νXA (σA(X )).

The definition of Z(x) shows that x ∈ P for all P ∈ ν−1
A (Z(x)). It is easy to

see that, if A is commutative and unital, and if X = A, then the zero set Z(a)
of each a ∈ A is the usual zero set Z(â) of its Gelfand transformation, and X−1

h

is the same as the set A−1 of invertible elements of A. It is also easy to see that
Z(a · x) = Z(a) ∪ Z(x) for all a ∈ A and x ∈ X and that, in the unital case,
a · x ∈ X−1

h for all a ∈ A−1 and x ∈ X−1
h .

We recall that for a commutative unital Banach algebra A and for n ∈ N, the
joint spectrum σA(x1, . . . , xn) of x1, . . . , xn ∈ A is the set {ϕ(x1), . . . , ϕ(xn) : ϕ ∈
σ(A)}. Hence, considering A as a Banach module over itself, for λ1, λ2 ∈ C and
x1, x2 ∈ A we have (λ1, λ2) /∈ σA(x1, x2) if and only if Z(λ1−x1)∩Z(λ2−x2) = ∅;
that is, (λ1 − x1, λ2 − x2) ∈ A−2

h .
Here are some other simple examples.

Example 3.4. (i) For a Banach space E and for ϕ ∈ σ(A), let Eϕ be the Banach
A-module E with the module action induced by ϕ. Then each element in E∗ is
a point multiplier on Eϕ at ϕ. Hence in this case σA(Eϕ) is indeed the set of

nonzero functionals in the unit ball of E∗, and the range of ν
Eϕ

A is the singleton
{ϕ}. Hence (Eϕ)

−1
h = E\{0}.

(ii) For X = Af0, where A is a function algebra on a compact Hausdorff space
K, and f0 is an invertible function in C(K), since an element ξ ∈ X ∗ is a point
multiplier on X if and only if there exists a character ϕ ∈ σ(A) and scalar λ such
that 〈ξ, ff0〉 = λϕ(f) for all f ∈ A, we have X−1

h = {ff0 : f ∈ A−1}.
(iii) Let A be a commutative unital Banach algebra, and let I be a dense

proper ideal of A which is a Banach algebra under some norm ‖ · ‖′ satisfying
‖ax‖′ ≤ ‖a‖‖x‖′ for all a ∈ A and x ∈ I. Since each point multiplier on I is of
the form αϕ|I for some ϕ ∈ σ(A) and α ∈ C (see [7]), it follows that Z(x) = Z(x̂)
for x ∈ I and that I−1

h = A−1 ∩ I = ∅.
(iv) Assume that X = A∗, where A is amenable. Then, by [5, Proposition 4 in

Section 43], for each ϕ ∈ σ(A) there exists a point multiplier F on X ∗ at ϕ such
that F (ϕ) = 1; hence σ(A) ⊆ X−1

h .

Example 3.5. Let B be a commutative regular unital Banach algebra, let F be a
closed subset of σ(B), and set A = {b ∈ B : b̂ = 0 on F}. Then σ(A) = σ(B)\F .
Considering B as a Banach A-module, since B is unital, for each point multiplier
ξ on B there exists scalar α ∈ C and ϕ ∈ σ(A) such that ξ = αϕ on A. Clearly,
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νBA maps σA(B) onto (σ(B)\F ) ∪ {0}, and it is easy to see that, for each b ∈ B,
we have Z(b) ⊆ Z(b)\F . Moreover, for each a ∈ A, we have Z(a) = Z(a)\F .
Hence each element a ∈ A with Z(a) = F is in B−1

h .

We do not know whether the defined zero set is a closed subset of νA(σA(X ))\
{0} or not; however, this holds in Banach multiplication A-modules whenever A is
regular, as the next proposition shows. We recall that a left Banach A-module X
over a commutative Banach algebra A is called a Banach multiplication module if
for any closed submodule N of X there exists an ideal I of A such that N = I · X ,
where I · X is the linear span of {a · x : a ∈ A, x ∈ X}.

Clearly, every commutative Banach algebra with approximate identity is a
Banach multiplication module over itself. Since each Segal algebra S(G) on a
locally compact abelian group G is dense in L1(G) and since for each f ∈ S(G)
and ε > 0 there exists g ∈ L1(G) satisfying ‖g ∗ f − f‖ ≤ ε (see [10]), then it
follows that, for each closed L1(G)-submodule M of S(G), which is indeed an
ideal of L1(G), S(G) ∗M is dense in M ; that is, every Segal algebra is a Banach
multiplication L1(G)-module.

Proposition 3.6. Let A be commutative and unital, and let X be a Banach
multiplication A-module. Then the zero set of each element of X is hull-kernel
closed in νA(σA(X ))\{0}. In particular, if A is regular, then the zero sets are
closed in νA(σA(X ))\{0}.

Proof. Consider the natural map νA : ∆A(X ) −→ σ(A) ∪ {0}. As we mentioned
before, νA sends hull-kernel closed (open) subsets of ∆A(X ) to hull-kernel closed
(open) subsets of νA(∆A(X )). We first note that, for each x ∈ X , the complement
of Z(x) in νA(σA(X ))\{0} is just νA({P ∈ ∆A(X ) : x /∈ P})\{0}. Hence it suffices
to show that the subset {P ∈ ∆A(X ) : x /∈ P} of ∆A(X ) is hull-kernel open in
∆A(X ) or equivalently that E = {P ∈ ∆A(X ) : x ∈ P} is hull-kernel closed;
that is, hXkX (E) = E. For this, assume that P ∈ hXkX (E). Then (kX (E) :
X ) ⊆ (P : X ), and, since kX (E) is a closed submodule of X , it follows from the
assumption that there exists an ideal I in A such that kX (E) = I · X . Hence
I ⊆ (kX (E) : X ) ⊆ (P : X ), and consequently I ·X ⊆ P ; that is, x ∈ kX (E) ⊆ P .
Thus P ∈ E, as desired. �

Using the next proposition, we characterize the form of point multipliers on
the Banach C(K)-module C(K,E), where K is a compact Hausdorff space and
E is a Banach space, and then we conclude that C(K,E)−1

h = {F ∈ C(K,E) :
F (x) 6= 0 for all x ∈ K}.

For a Banach space E, let A⊗E be the algebraic tensor product of A and E,
and, for a module norm ‖ · ‖γ on it, let A⊗γ E be its completion. Then A⊗γ E
has a natural A-module structure making it a left Banach A-module.

Proposition 3.7. Let A be unital with unit element 1A, let E be a Banach space,
and let ‖ · ‖γ be a cross module norm on A ⊗ E (that is, ‖a ⊗ e‖γ = ‖a‖‖e‖ for
all a ∈ A and e ∈ E) such that ‖ · ‖γ ≥ ‖ · ‖ε, for the injective tensor norm ‖ · ‖ε.
Then σA(A⊗γ E) is homeomorphic to σ(A)× (E∗

1\{0}), where E∗
1 is the unit ball

of E∗ endowed with the relative weak-star topology.
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Proof. Given ϕ ∈ σ(A) and Λ ∈ E∗
1\{0}, by the universal property of tensor

product, there exists a unique linear map ω : A ⊗ E → C such that ω(a ⊗ e) =
ϕ(a)Λ(e) for each a ∈ A and e ∈ E. By the definition of injective tensor norm,
since ‖ · ‖γ ≥ ‖ · ‖ε, it follows that for any a1, . . . , an ∈ A and e1, . . . , en ∈ E, we
have ∣∣∣ω( n∑

j=1

aj ⊗ ej

)∣∣∣ = ∣∣∣ n∑
j=1

ϕ(aj)Λ(ej)
∣∣∣ ≤ ∥∥∥ n∑

j=1

aj ⊗ ej

∥∥∥
ε
≤

∥∥∥ n∑
j=1

aj ⊗ ej

∥∥∥
γ
,

which shows that ω is continuous with respect to ‖ · ‖γ. Clearly, ω(b · (a⊗ e)) =
ϕ(b)ω(a⊗ e) holds for all a, b ∈ A and e ∈ E. Hence, using the above inequality,
we can extend ω to an element of σA(A ⊗γ E) denoted by ϕ ⊗γ Λ. Now let the
map Γ : σ(A) × (E∗

1\{0}) −→ σA(A ⊗γ E) be defined by Γ(ϕ,Λ) = ϕ ⊗γ Λ.
Then Γ is injective. Indeed, if ϕ1, ϕ2 ∈ σ(A), and Λ1,Λ2 ∈ E∗

1\{0} such that
ϕ1 ⊗γ Λ1 = ϕ2 ⊗γ Λ2, then fixing e ∈ E with Λ1(e) = 1 we have

ϕ1(x) = ϕ1(x)Λ1(e) = (ϕ1 ⊗γ Λ1)(x⊗ e) = (ϕ2 ⊗γ Λ2)(x⊗ e) = ϕ2(x)Λ2(e)

for all x ∈ A. Thus ker(ϕ2) ⊆ ker(ϕ1), that is, ϕ1 = ϕ2, and consequently Λ1 = Λ2.
To prove that Γ is surjective, assume that ρ ∈ σA(A⊗γE) is a point multiplier on
A⊗γE at some ϕ ∈ σ(A). Then considering Λ ∈ E∗ defined by Λ(y) = ρ(1A⊗y),
y ∈ E, it is easy to see that Λ ∈ E∗

1\{0} and that ρ(x ⊗ y) = ϕ(x)Λ(y) for all
x ∈ A and y ∈ E; that is, ρ = Γ(ϕ,Λ).

The continuity of Γ (and its inverse) is easily verified. �

For a compact Hausdorff space K and a Banach space E, by [11, Lemma 1] the
Banach space C(K,E) of all continuous E-valued functions on K, which is clearly
a Banach C(K)-module, is indeed the closed linear span of {fe : f ∈ C(K), e ∈
E}. We should note that in [11, Lemma 1] this result has been proven for the case
in which E is a Banach algebra, while the algebraic structure of E has no role in
the proof. Hence, by using either the same argument as in the above proposition
or the same proof of [17, Proposition 1.5.6] to show that the supremum norm
on C(K,E) is the same as the injective tensor norm, we conclude the following
corollary.

Corollary 3.8. Let K be a compact Hausdorff space, and let E be a Banach
space. Then each point multiplier on C(K,E) is of the form Λ ◦ ϕx for some
Λ ∈ E∗ and x ∈ K, where ϕx : C(K,E) −→ E is defined by ϕx(F ) = F (x).

The above proposition also shows that, when E 6= {0}, the natural defined map
νC(K) for X = C(K,E) is onto σ(C(K)) = K; thus we get the next corollary.

Corollary 3.9. Under the above assumptions, C(K,E)−1
h = {F ∈ C(K,E) :

F (x) 6= 0 for all x ∈ K}.

Clearly, if E is a commutative unital Banach algebra and if C(K,E) is consid-
ered a Banach module over itself, then C(K,E)−1

h is the same as the set of invert-
ible elements of C(K,E), that is, the set {F ∈ C(K,E) : F (x) ∈ E−1 for all x ∈
K}.
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Remark. We should note that, in spite of the Banach algebra case, in general a
point multiplier ξ on X need not satisfy 〈ξ, x〉 6= 0 for all x ∈ X−1

h . For example,
in the Banach A-module Eϕ, as we mentioned before, (Eϕ)

−1
h = E\{0}, and there

exists no point multiplier on Eϕ satisfying this condition unless dim(E) = 1. The
same is true for the Banach C(K)-module C(K,E).

It is however clear that, for each point multiplier ξ on X and x ∈ X−1
h , there

exists a ξ′ ∈ [ξ] satisfying 〈ξ′, x〉 6= 0. Hence, if X has this additional property
that for each ϕ ∈ σ(A), ∆ϕ(X ) is either empty or a singleton (that is, [ξ] =
{λξ : |λ| ≤ 1}), then clearly each point multiplier satisfies the above-mentioned
property. For an example of such Banach modules, we can refer to right Banach
C(K)-module X = C(K)∗ for a compact Hausdorff space K (see [7, p. 317]).

Now we introduce appropriate spectrum sets for Banach module elements, and
we give a result concerning linear maps preserving such spectrums.

Definition 3.10. Given a subset F of σA(X ), for each x ∈ X , we set σF
h (x) =

{ξ(x) : ξ ∈ F}. We also use σh(x) for σF
h (x) whenever F = σA(X ), that is

σh(x) = {ξ(x) : ξ ∈ σA(X )}.

Clearly, in the commutative and unital case, considering A as a Banach module
over itself for F = σ(A), the set σF

h (x) is the usual spectrum of an element x ∈ A.
In particular, for a compact Hausdorff space K and a commutative unital Banach
algebra E, considering C(K,E) as a module over itself, for each F ∈ C(K,E),
setting F = {ϕ ◦ ϕx : ϕ ∈ σ(E), x ∈ K}, σF

h (F ) is the same as the spectrum of
F in the Banach algebra C(K,E). Meanwhile, the same conclusion holds if we
consider C(K,E) as a C(K)-module, for the same family F .

By the definition of X−1
h , it is easy to see that, for an element x ∈ X , we have

x ∈ X−1
h if and only if there exists a subset F of σA(X ) containing at least one

point of each equivalence class such that 0 /∈ σF
h (x).

Given a subset F of σA(X ), set

SF(X ) =
{
ξ ∈ X ∗ : ξ(x) ∈ co

(
σF
h (x)

)
for all x ∈ X

}
.

Then, since SF(X ) contains the weak-star closure of F , one can apply a similar
argument as in [1, Lemma 4.1.16] to get the next lemma.

Lemma 3.11. If F is compact (with respect to the relative weak-star topology),
then each extreme point of SF(X ) is an element of F . In particular, each extreme
point of SF(X ) is a point multiplier on X .

If T : X −→ Y is a bijective continuous multiplier between left Banach
A-modules X and Y , and if T1 = T

‖T‖ , since for each point multiplier ξ ∈ σA(Y)

clearly ξ ◦T1 ∈ σA(X ), then it follows that σh(x) = σh(T1(x)) holds for all x ∈ X .
Meanwhile, σF

h (x) = σF ′

h (T1(x)) also holds for all x ∈ X and subsets F of σA(X ),
where F ′ = {ξ ◦ T−1

1 : ξ ∈ F}.
A similar conclusion holds whenever T : X −→ Y is a continuous bijective

linear map satisfying T (a · x) = Θ(a)T (x), a ∈ A, x ∈ X , where Θ is an algebra
isomorphism on A. In particular, assume that K is a compact Hausdorff space,
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that E is a strictly convex Banach space, and that T : C(K,E) −→ C(K,E) is
a surjective isometry. Then it is well known that T is of the form

T (F )(t) = Vt
(
f
(
φ(t)

)) (
t ∈ K,F ∈ C(K,E)

)
,

where φ is a homeomorphism on K and that, for each t ∈ K, Vt is a surjective
isometry on E. Thus T (fF ) = Θ(f)T (F ) holds for all f ∈ C(K) and F ∈
C(K,E), where Θ is the algebra isomorphism on C(K) defined by Θ(f) = f ◦ φ,
f ∈ C(K). Hence, by the above argument, T preserves σh(·).

Motivated by the fact that each bijective spectrum-preserving map T : A −→ B
between commutative semisimple unital Banach algebras A and B is an algebra
isomorphism and consequently that it can be stated as a weighted composition
operator on the Gelfand transformation of A and B, we state the next theorem.

Theorem 3.12. Let A be unital, let X and Y be unital left Banach A-modules
and let F and F ′ be compact subsets of σA(X ) and σA(Y), respectively, such
that

⋂
η∈F ker(η) = {0} and

⋂
ξ∈F ′ ker(ξ) = {0}. Suppose that T : X −→ Y

is a surjective bounded linear map satisfying σF ′

h (Tx) = σF
h (x) for all x ∈ A.

Then there are subsets E0 and F0 of ∆A(X ) and ∆A(Y), respectively, such that
σA(X ) ⊆ co{η : ker(η) ∈ E0} and σA(Y) ⊆ co{ξ : ker(ξ) ∈ F0}, and T is a local
weighted composition operator of the form

T̂ (x)(P ) = JP
(
x̂
(
h(P )

))
(x ∈ X , P ∈ F0),

where h : F0 −→ E0 is a bijective map and JP : X/h(p) −→ Y/P is a bijective
linear map.

Proof. We first note that T is injective. Indeed, if x ∈ X such that Tx = 0, then
by hypothesis σF

h (x) = {0}, and since
⋂
η∈F ker(η) = {0}, it follows that x = 0.

We now show that T ∗(ext(SF ′(Y))) = ext(SF(X )), where ext(·) denotes the set
of extreme points. Let ξ ∈ Y∗ be an extreme point of SF ′(Y), and set η = ξ ◦ T .
Next, by the above lemma, ξ ∈ F ′, and we have η(x) = ξ ◦ T (x) ∈ σF ′

h (Tx) =
σF
h (x) for all x ∈ X . In particular, η ∈ SF(X ), and it is easy to see that η is

an extreme point of SF(X ). Hence T ∗(ext(SF ′(Y))) ⊆ ext(SF(X )). The other
inclusion is similar.

We note that, by the above lemma, for each ξ ∈ ext(SF ′(Y)), the functional
η = ξ ◦ T is indeed a point multiplier on X . Consider the following subsets of
∆A(X ) and ∆A(Y),

E0 =
{
ker(η) : η ∈ ext

(
SF(X )

)}
, F0 =

{
ker(ξ) : ξ ∈ ext

(
SF ′(Y)

)}
.

The above argument shows that we can define a bijective map h from F0 onto
E0. Since for each ξ ∈ ext(SF ′(Y)), η = ξ ◦ T is a point multiplier on X , we have

〈η, a · x〉 = ψ(a)〈η, x〉 = ψ(a)〈ξ, Tx〉 (a ∈ A, x ∈ X )

for some ψ ∈ σ(A). In particular, 〈η, a · x〉 = 0 = 〈ξ, a · Tx〉 for all a ∈ A, and
x ∈ X with Tx ∈ ker(ξ). Assuming that P = ker(ξ) and that Q = ker(η), it
follows that, for each x ∈ X , Tx ∈ P implies that a · x ∈ Q for all a ∈ A. Hence
the map KP : Y/P −→ X /h(P ) defined by KP (Tx + P ) = x + h(P ), for y ∈ Y
and Tx = y, is a well-defined map which is clearly linear. Since T−1 has the same
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properties as T , it is easy to see that KP is bijective. Let JP be the inverse of
KP . Then clearly,

T̂ x(P ) = Tx+ P = JP
(
x+ h(P )

)
= JP

(
x̂
(
h(P )

))
(P ∈ E0, x ∈ X ). �

Remark. (i) Since each JP is indeed a linear map on C, it can be considered a
multiplication map by some nonzero scalar λP ∈ C.

(ii) Clearly if, in the above theorem, X and Y are hyper semisimples and if
equivalence relations on σA(X ) and σA(Y) are trivial (that is [ξ] = {λξ : |λ| ≤ 1},
then all subsets F and F ′ of σA(X ) and σA(Y) containing at least one element
of each equivalence class satisfy

⋂
η∈F ker(η) = {0} and

⋂
ξ∈F ′ ker(ξ) = {0}.

The next proposition gives a natural characterization of a function module.

Proposition 3.13. Let A be unital, and let X be a unital left Banach A-module.
Then

(i) X is a (left) function A-module if and only if the map x→ x̂ from X into
C(σA(X ) ∪ {0}) is a linear isometry,

(ii) if X is a left function A-module, then each extreme point of the unit ball
of X ∗ is a point multiplier on X .

Proof. (i) Assume first that x 7→ x̂ is an isometry. For each a ∈ A, let π(a) :
σA(X ) −→ C be defined by π(a)(ξ) = νA(ξ)(a), ξ ∈ σA(X ). Then it is easy to see
that π(a) is continuous with respect to the relative weak-star topology on σA(X ).
Indeed, assume that {ξα} is a net in σA(X ) converging to ξ ∈ σA(X ), and put
ϕα = νA(ξα) for each α and ϕ = νA(ξ). Then, as it passes through a subnet, since
σ(A) is compact, we can assume that ϕα → ϕ0 for some ϕ0 ∈ σ(A). Thus, since
for each α,

〈ξα, a · x〉 = ϕα(a)〈ξα, x〉 (x ∈ X ),

it follows that 〈ξ, a · x〉 = ϕ0(a)〈ξ, x〉 for all x ∈ X , which shows that ϕ0 = νA(ξ).
This argument easily implies that ϕα → ϕ, that is, that π(a) is continuous. Now
it is clear that the map π : A → Cb(σA(X )), a 7→ π(a), is a contractive unital
homomorphism. Moreover, for each a ∈ A, x ∈ X and ξ ∈ σA(X ), we have

â · x(ξ) = 〈ξ, a · x〉 = νA(ξ)(a)〈ξ, x〉 = π(a)(ξ)〈ξ, x〉 = π(a)(ξ)x̂(ξ) =
(
π(a)x̂

)
(ξ),

which shows that â · x = π(a)x̂.
We should note that σA(X ) is locally compact (since its union with {0} is

compact); hence it is a completely regular space. If we consider K the Stone–Čech
compactification of σA(X ), then the above argument shows that there exists a
linear isometry i : X −→ C(K) and a contractive unital homomorphism π :
A −→ C(K) such that i(a · x) = π(a)i(x) holds for all a ∈ A and x ∈ X ; that is,
X is a left function A-module.

Now suppose that X is a closed linear subspace of C(K) (for some compact
Hausdorff space K) which is closed under the multiplication induced by some
contractive unital homomorphism π : A → C(K). We note that for each t ∈ K,
ϕt is indeed a point multiplier on X at the character a→ π(a)(t) on A, since

ϕt(a · g) =
(
π(a)g

)
(t) = π(a)(t)g(t) (a ∈ A, g ∈ X ).
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Hence for each g ∈ X
‖g‖K ≥ ‖ĝ‖σA(X )∪{0} = sup

ξ∈σA(X )∪{0}

∣∣〈ξ, g〉∣∣ ≥ sup
t∈K

∣∣ĝ(ϕt)∣∣ = ‖g‖K ;

that is, ‖ĝ‖σA(X )∪{0} = ‖g‖K for all g ∈ X , which shows that the linear map
x 7→ x̂ is an isometry.

(ii) This follows from (i) since, for each subspaceM of C(K), for some compact
Hausdorff K, each extreme point of the unit ball of M∗ is of the form αϕt for
some α ∈ T and t ∈ K. �

Remark. It should be noted that, in the above theorem, if (i) holds, then the
corresponding map x 7→ x̂ from X into ΠP∈∆A(X )X/P is also an isometry with
respect to the defined norm on X . To see this, note that for each P ∈ ∆A(X )
and ξ ∈ σA(X ) with ker(ξ) = P , we have |〈ξ, x〉| = |〈ξ, x− y〉| for all y ∈ P , and
consequently |〈ξ, x〉| ≤ infy∈P ‖x+ y‖ = ‖x+ P‖.

For a character ϕ ∈ σ(A), set Chϕ(X ) = {x ∈ X : a · x = ϕ(a)x for all a ∈ A}.
Then clearly Chϕ(X ) is a closed submodule of X , and, for distinct ϕ, ψ ∈ σ(A),
we have Chϕ(X ) ∩ Chψ(X ) = {0}.

Theorem 3.14. Let X be a left Banach A-module such that X =
∑n

i=1 Xi,
where, for each i = 1, . . . , n, Xi = Chϕi

(X ) for some distinct ϕ1, . . . , ϕn ∈ σ(A).
Then the set of point multipliers on X can be identified with the disjoint union
X ∗

1 ∪ · · · ∪ X ∗
n .

Proof. Since, ϕ1, ϕ2, . . . , ϕn are distinct, the hypothesis implies that X is indeed
the direct sum

⊕n
i=1 Xi of its closed submodules Xi, i = 1, . . . , n, and that, for

each x ∈ X ,

a · x = ϕ1(a)x1 + · · ·+ ϕn(a)xn (a ∈ A),

where for i = 1, . . . , n, xi ∈ Xi with x = x1 + · · · + xn. Let πi : X −→ Xi,
i = 1, . . . , n, be the projection maps. Clearly for each i = 1, . . . , n and η ∈ X ∗

i ,
the continuous linear functional ξ on X defined by ξ = η ◦πi is a point multiplier
on X at ϕi. Assume now that ξ is a nontrivial point multiplier on X at a point
ϕ ∈ σ(A) ∪ {0}, and set ξi = ξ ◦ πi, i = 1, . . . , n. Then since ξ = ξ1 + · · · + ξn,
functionals ξ1, . . . , ξn are not zero at the same time. We now show that, if ξ1 6= 0,
then ξi = 0 for i 6= 1. Clearly we can choose x ∈ X1 such that 〈ξ1, x〉 = 1. Then
〈ξ, x〉 = 〈ξ1, x〉 = 1, 〈ξi, x〉 = 0 for i = 2, . . . , n, and for any a ∈ A,

ϕ(a) = ϕ(a)〈ξ, x〉 = 〈ξ, a · x〉 =
〈
ξ, ϕ1(a)x

〉
= ϕ1(a);

that is, ϕ = ϕ1. Thus, for each a ∈ A and y ∈ X , we have

〈ξ, a · y〉 = ϕ(a)〈ξ, y〉 = ϕ1(a)〈ξ1, y〉+ · · ·+ ϕ1(a)〈ξn, y〉.
On the other hand,

〈ξ, a · y〉 =
〈
ξ, ϕ1(a)y1 + · · ·+ ϕn(a)yn

〉
= ϕ1(a)〈ξ, y1〉+ · · ·+ ϕn(a)〈ξ, yn〉

= ϕ1(a)〈ξ1, y〉+ · · ·+ ϕn(a)〈ξn, y〉.
These equalities imply that, for all a ∈ A and y ∈ X ,

ϕ1(a)〈ξ2, y〉+ · · ·+ ϕ1(a)〈ξn, y〉 = ϕ2(a)〈ξ2, y〉+ · · ·+ ϕn(a)〈ξn, y〉.
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Since distinct homomorphisms on A are linearly independent, the above equality
implies that 〈ξi, y〉 = 0 for each i = 2, . . . , n, as desired. �

Corollary 3.15. If A is unital and X is a unital left function A-module which
does not contain an isometric copy of c0, then the set of point multipliers on X
is a disjoint union X ∗

1 ∪ · · · ∪ X ∗
n for some closed subspaces X1, . . . ,Xn of X .

The next theorem gives a module version of a known result concerning common
zero-preserving maps for certain subspaces of vector-valued continuous functions
(see [9], [12], and [19]). Before stating the theorem we introduce the notion of
Z-regularity of Banach modules.

Definition 3.16. For a left (right) Banach A-module X , we call a nonzero point
ϕ ∈ νA(σA(X )) a Z-regular point if for each neighborhood U of ϕ in σ(A) there
exists x ∈ X such that ϕ ∈ Z(x) ⊆ U . We denote the set of Z-regular points
of X by Θ(X ), and we say that X is Z-regular if Θ(X ) = νA(σA(X ))\{0}. We
also say that a nonzero point ϕ ∈ νA(σA(X )) is a zero point for X if there exists
x ∈ X with Z(x) = {ϕ}.

Clearly, all zero points are Z-regular points.

Example 3.17. (i) Clearly, any regular commutative unital Banach algebra A is
a Z-regular Banach module over itself; and all zero sets are closed in σ(A). The
disk algebra A(D), however, is a nonregular Banach algebra such that all points
in the closed unit ball D are zero points of A(D) as a module over itself; that
is, A(D) is Z-regular. On the other hand, since, in a function algebra A on a
compact Hausdorff space K, for each point t in the Choquet boundary of A and
neighborhood U of t, there exists f ∈ A with f(t) = 1 = ‖f‖K and |f | < 1 on
K\U , then it follows that all points in the Choquet boundary of A are Z-regular
points for A as a module over itself.

(ii) For a compact Hausdorff space K and a Banach space E, C(K,E) is a
Z-regular Banach C(K)-module with closed zero sets.

(iii) Let K be a compact Hausdorff space, and let F be a closed subset of K
whose complement is finite. Then clearly F is a clopen subset of K. Considering
the Banach A-module X = C(K) over the Banach algebra A = {f ∈ C(K) :
f |F = 0}, it follows from Example 3.5 that the range of νXA is the same as
K\F ∪ {0} and that, for each a ∈ A, Z(a) = Z(a)\F . Now, for each t ∈ K\F
and neighborhood U of t, assume without loss of generality that U ∩ F = ∅.
Then there exists a ∈ C(K) with a = 0 on F ∪ {t} and a = 1 on K\(U ∪ F ). In
particular, a ∈ A, and consequently Z(a) = Z(a)\F ⊆ U ; that is, X is Z-regular.
Clearly, the zero sets of all elements are closed in K\F .

Now we state the theorem. For simplicity’s sake, for each x ∈ X and Q0 ∈
∆A(X ), we denote (x + Q)Q∈[Q0] as the element (xQ + Q)Q∈∆A(X ) of X , where
xQ = x for all Q ∈ [Q0], and xQ = 0 for the other points Q ∈ ∆A(X ).

Theorem 3.18. Let A and B be Banach algebras, and let X ,Y be left Banach
modules over A and B, respectively, with Θ(X ) 6= ∅ and Θ(Y) 6= ∅ such that,
for each x ∈ X and y ∈ Y, Z(x) and Z(y) are closed in νA(σA(X ))\{0}, and
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νB(σB(Y))\{0}. Then for each surjective linear map T : X → Y satisfying

(x, y) ∈ X−2
h if and only if (Tx, Ty) ∈ Y−2

h

there exist subsets E0 and F0 of ∆A(X ) and ∆B(Y), respectively (whose images

under the natural maps νA and νB contain zero points), and a bijection h̃ :
F0/ ∼−→ E0/ ∼, and, for each P ∈ F0 submodules MP ,NP of X and Y,
respectively, and also linear bijections JP : MP −→ NP , such that

(Tx+ P
′
)P ′∈[P ] = JP

(
(x+Q)Q∈h̃([P ])

)
(x ∈ X , P ∈ F0).

Proof. The proof is a modification of Theorem 4.5 in [12]. For each ϕ ∈ Θ(X ), we
set Iϕ :=

⋂
ϕ∈Z(x) Z(Tx)∩Θ(Y). We first show that Iϕ has at most one element.

Assume on the contrary that ψ1, ψ2 are distinct points in Iϕ. Next we choose
disjoint neighborhoods V1, V2 of ψ1, and ψ2 in σ(B). Since ψ1, ψ2 are Z-regular
points, we can find elements y1, y2 ∈ Y such that ψ1 ∈ Z(y1) ⊆ V1, and ψ2 ∈
Z(y2) ⊆ V2. In particular, Z(y1) ∩ Z(y2) = ∅; that is, (y1, y2) ∈ Y−2

h . Hence
(x1, x2) ∈ X−2

h , where Tx1 = y1, and Tx2 = y2. Given a neighborhood U of ϕ in
σ(A), let x ∈ X be such that ϕ ∈ Z(x) ⊆ U . Then, since ψ2 ∈ Z(y2) ∩Z(Tx), it
follows that Z(x2) ∩ Z(x) 6= ∅. Thus

Z(x2) ∩ U ∩
(
νA

(
σA(X )

)
\{0}

)
= Z(x2) ∩ U 6= ∅,

and, since U is arbitrary, the closedness of Z(x2) in νA(σA(X ))\{0} implies that
ϕ ∈ Z(x2). A similar discussion shows that ϕ ∈ Z(x1), which is a contradiction.

Now we consider the subset σ0(A) := {ϕ ∈ Θ(X ) : Iϕ 6= ∅} of σ(A). By the
above argument, for each ϕ ∈ σ0(A) there exists a unique point ψ ∈ Θ(Y) such
that Iϕ = {ψ}. This allows us to define a function k : σ0(A) → σ(B) such that for
each ϕ ∈ σ0(A), k(ϕ) is the unique point in Iϕ; that is, Iϕ = {k(ϕ)}. Similarly,
for each ψ ∈ Θ(Y), setting Jψ :=

⋂
ψ∈Z(Tx) Z(x) ∩ Θ(X ), we can consider the

subset σ0(B) := {ψ ∈ Θ(Y) : Jψ 6= ∅} of σ(B), and we can define a function
h : σ0(B) → σ(A) such that for each ψ ∈ σ0(B), Jψ = {h(ψ)}.

We note that σ0(A) and σ0(B) contain all zero points of X and Y , respectively.
Indeed if ϕ0 ∈ νA(σA(X ))\{0} is a zero point, then Z(x0) = {ϕ0} for some
x0 ∈ X , and, by hypothesis, Z(Tx0) 6= ∅. A similar argument shows that Z(Tx0)
has at most one element, and consequently that Z(Tx0) = {ψ0} for some zero
point ψ0. Since for each x ∈ X with ϕ0 ∈ Z(x), we have Z(x) ∩ Z(x0) 6= ∅,
it follows that Z(Tx) ∩ Z(Tx0) 6= ∅; that is, ψ0 ∈ Z(Tx). This implies that
ψ0 ∈ Iϕ0 , and so ϕ0 ∈ σ0(A), as desired. Similar reasoning may be applied to
σ0(B).

Now we show that k is a bijective map from σ0(A) onto σ0(B) and that h =
k−1. For ϕ ∈ σ0(A), it suffices to show that Jk(ϕ) = {ϕ}, which clearly implies
that k(ϕ) ∈ σ0(B) and that h(k(ϕ)) = ϕ. For this, suppose that x ∈ X and
that k(ϕ) ∈ Z(Tx). Let U be an arbitrary neighborhood of ϕ in σ(A), and
choose, by the Z-regularity property, x0 ∈ X such that ϕ ∈ Z(x0) ⊆ U . Since
k(ϕ) ∈ Z(Tx) ∩ Z(Tx0), it follows that Z(x) ∩ Z(x0) 6= ∅, and so Z(x) ∩ U ∩
(νA(σA(X ))\{0}) = Z(x) ∩ U 6= ∅. Hence ϕ ∈ Z(x), by the closedness of Z(x).
Thus Jk(ϕ) = {ϕ}, and consequently k(ϕ) ∈ σ0(B), and h(k(ϕ)) = ϕ.
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We now set E0 := {ker(ξ) : ξ ∈ νA
−1(σ0(A))}, and we similarly set F0 =

{ker(η) : η ∈ νB
−1(σ0(B))}. Clearly, E0 contains all hyper maximal submodules

of X whose images under νA are zero points, and a similar assertion holds for F0.
Consider the map h̃ : F0/ ∼−→ E0/ ∼ defined by h̃([P ]) = [Q], where for each

P ∈ F0, Q ∈ E0 is an arbitrary element in νA
−1(h(νB(P ))). Clearly, h̃ is well

defined and bijective. Also for each P ∈ F0 consider the following subsets of X
and Y , respectively:

MP =
{
(x+Q)Q∈h̃([P ]), x ∈ X

}
, NP =

{
(y + P ′)P ′∈[P ], y ∈ Y

}
.

Then clearly MP and NP are submodules of X and Y , respectively.
For each P ∈ F0, let JP : MP −→ NP be defined by JP ((x+Q)Q∈h̃([P ])) = (Tx+

P
′
)P ′∈[P ]. We note that JP is well defined, indeed, if x− x′ ∈ Q for all Q ∈ h̃[P ],

then by letting ϕ = νA(Q), the definition of h shows that ϕ = h(νB(P )), and so
k(ϕ) = νB(P ). Since ϕ ∈ Z(x−x′), it follows that νB(P ) = k(ϕ) ∈ Z(Tx−Tx′);
thus Tx − Tx′ ∈ P ′ for all P ′ ∈ [P ], as desired. Clearly, for each P ∈ F0, JP is
linear, and JP is also a bijection. If we assume that JP ((x+Q)Q∈h̃[P ]) = 0 for

some P ∈ F0, then Tx ∈ P ′ for all P ′ ∈ [P ]. Hence νB(P ) ∈ Z(Tx), and so

h(νB(P )) ∈ Z(x). Hence x ∈ Q for all Q ∈ h̃[P ]; that is, (x+Q)Q∈h̃[P ] = 0 (i.e.,

JP is injective). It is clear that JP is surjective. �
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11. A. Hausner, Ideals in a certain Banach algebra, Proc. Amer. Math. Soc. 8 (1957), 246–249.
Zbl 0079.13101. MR0084117. DOI 10.2307/2033720. 871

12. M. Hosseini and F. Sady, Common zeros preserving maps on vector-valued function spaces
and Banach modules, Publ. Mat. 60 (2016), no. 2, 565–582. Zbl 1358.46048. MR3521501.
DOI 10.5565/PUBLMAT 60216 10. 865, 876, 877

13. A.A. Jafarian, A survey of invertibility and spectrum preserving linear maps, Bull. Iranian
Math. Soc. 35 (2009), no. 2, 1–10. Zbl 1202.47039. MR2642921. 864

14. A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66
(1986), no. 2, 255–261. Zbl 0589.47003. MR0832991. DOI 10.1016/0022-1236(86)90073-X.
864

15. K. Jarosz, Multipliers in complex Banach spaces and structure of the unit balls, Studia
Math. 87 (1987), no. 3, 197–213. Zbl 0671.46011. MR0927504. 867

16. K. Jarosz, Generalizations of the Gleason-Kahane-Zelazko theorem, Rocky Mountain J.
Math. 21 (1991), no. 3, 915–921. Zbl 0781.46035. MR1138144. DOI 10.1216/rmjm/
1181072922. 864

17. E. Kaniuth, A course in commutative Banach algebras, Springer, New York, 2009.
Zbl 1190.46001. MR2458901. DOI 10.1007/978-0-387-72476-8. 871

18. G. Krishna Kumar and S. H. Kulkarni, Linear Maps preserving pseudospectrum and condi-
tion spectrum, Banach J. Math. Anal. 6 (2012), no. 1, 45–60. Zbl 1258.47055. MR2862542.
DOI 10.15352/bjma/1337014664. 864

19. D. H. Leung and W. K. Tang, Banach–Stone theorems for maps preserving common
zeros, Positivity 14 (2010), no. 1, 17–42. Zbl 1198.46031. MR2596461. DOI 10.1007/
s11117-008-0002-3. 865, 876

20. L. Li and N. C. Wong, Kaplansky theorem for completely regular spaces, Proc. Amer.
Math. Soc. 142 (2014), no. 4, 1381–1389. Zbl 1292.46010. MR3162258. DOI 10.1090/
S0002-9939-2014-11889-2. 865

21. L. Li and N. C. Wong, Banach-Stone theorems for vector valued functions on completely reg-
ular spaces, J. Math. Anal. Appl. 395 (2012), no. 1, 265–274. Zbl 1253.46036. MR2943621.
DOI 10.1016/j.jmaa.2012.05.033. 865

22. J. Mashreghi and T. Ransford, A Gleason–Kahane–Żelazko theorem for modules and appli-
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