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ABSTRACT. Every analytic self-map of the unit ball of a Hilbert space induces
a bounded composition operator on the space of Bloch functions. Necessary
and sufficient conditions for compactness of such composition operators are
provided, as well as some examples that clarify the connections among such
conditions.

1. INTRODUCTION

Let E be a complex Hilbert space of arbitrary dimension, and denote Bp its
open unit ball. The space B(Bg) of Bloch functions was introduced in [1]. There
it was shown that it can be endowed with a (modulo the constant functions)
norm that is invariant under the automorphisms of Bg (see Section 3 below for
the basics). This article studies composition operators acting on B(Bg), that is,
self-maps of B(Bp) defined according to Cy,(f) = f o ¢ for a given analytic map
¢ : Bp — Bg. As in the finite-dimensional case, every composition operator is
bounded actually of norm not greater than 1 for the invariant norm if the symbol
vanishes at 0, and also the hyperbolic metric on B measures the distance between
evaluations in the dual space. We also study the compactness of composition
operators providing necessary and sufficient conditions. There are two common
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requirements for both the necessity and the sufficiency:

A= zDIR AN _

im and
lio(z)[—1 1— o)
. 2
lim (1= 1[2l*){e(2), Reo(2))] _o
l(2)]|—1 1 —|lo(2)]?

where R¢(z) denotes the radial derivative at z. The fact that, for all 0 < § < 1,
©(6Bg) and {(1 — ||z]|*)Rp(2) : 2 € Bg} are relatively compact completes a
necessary condition, while the additional assumption of (Bg) NdBg and {(1 —
122 )R (2) : |le(2)]| < &} being relatively compact provides a sufficient one.
Such compactness requirements are trivially satisfied in the finite-dimensional
case, and thus the two limits above yield an apparently new characterization.

Some of our techniques are inspired by Dai’s paper [4]. However, there are
some obstacles to avoid when allowing an infinite number of variables, such as
the lack of relative compactness of the ball, the number of components of the
symbol, or the use of the invariant Laplacian, and still a major one: uniform
convergence on compact sets does not imply uniform convergence on compact
sets of the derivatives; this only happens in the finite-dimensional setting (see
[3]). Such an obstacle causes the lengthy proof of our main result Theorem 4.13.
In the final section we present several examples that discuss the relations among
the conditions we have found.

2. BACKGROUND

Let (e)ger be an orthonormal basis of E that we fix at once. Then every z € E
can be written as z = ), 1 zpey, and we write Z = ), . Zrey.

Given an analytic function ¢ : Bp — Bg, we write p(x) = >, .1 ¢r(2)er,
¢'(z) : E — FE its derivative at z, and Rep(x) = ¢'(z)(z) its radial derivative
at x.

We denote by ¢, the Mobius transforms for Hilbert spaces. For each a € B,
Yo : Bg — Bg is defined by

0a(7) = (54Qa + Pu) (ma(x))a
where s, = /1 — ||al|?, m, : Bg — Bg is the analytic function
_a—=x
- 1—{(z,a)
and P, = Wa@a, where u®v(x) = (z,u)v and Q, = Id — P, are the orthogonal

projection on the 1-dimensional subspace generated by a and on its orthogonal
complement, respectively. Since ¢, 0@, (z) = z, one has (p,) ™! = ¢, and ¢/ (a) =

mq(x)

(,(0)) 1.
Actually,
¢ (0) = —82P, — 8,Qa, (2.1)
and
(@) = ——= P, — —Q (2:2)
a)=——P,— —Q, )
¥a 52 s

a a
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(see, for instance, [1, Lemma 3.2]). The pseudohyperbolic and hyperbolic metrics
on Bpg are respectively defined by

= ||ps d ,Y) = = log ————==.
pE(17,y) H(p (y)H an ﬂE(:E y) 92 0g 1 pE($,y)
It is known (see [6, p. 99]) that

(1= fll*)( = Nlyl*)

—1-
1= (z,y)?

(2.3)

o2 (®)]|”

Also,
pe(,y) =sup{p(f(2), f(y)) : f € H*(Bg), || flle < 1}, (24)

where p is the pseudohyperbolic metric on the open unit disk D in the com-
plex plane given by p(z,w) = [7==| and H*(Bg) denotes the Banach space of
bounded analytic functions on Bg endowed with the sup-norm.

Since (s +t)/(1 + st) is an increasing function of s and ¢t for 0 < s, t < 1,
the sharpened form of the triangle inequality for p(z,w) easily yields the same
inequality for pg(z,y):

pe(®,u) + pp(u, y)
x? S Y
PR S 1 ) pelu.y)
The following estimate holds (see [1, Lemma 4.1]):

z,u,y € Bg. (2.5)

Iz —y
pplr,y) < ———, 2,y € Bg. 2.6
B S 1 ) ’ 29

The open unit ball of H*(Bpg) is invariant under postcomposition with conformal
self-maps of D. By composing f with a conformal self-map of D that maps f(y)
to 0, one obtains

pe(@,y) =sup{|f(2)] : f € H*(Bp), |/« < 1, f(y) = 0}. (2.7)

Recall that if f : B — C is analytic, then we have f'(z)(y) = (y, Vf(z)) and

(f 0 02)(0)(y) = {y, Vf(x)), where Vf(z) denotes the invariant gradient of f at
x € B given by

V(x) = V(f o ©.)(0).

The following result gives an explicit formula to compute the invariant gradient.
It is a modification of Lemma 3.5 in [1] in a form that fits our purposes.

Lemma 2.1. Let f: B — C be an analytic function, and let x € Bg. Then

)|| = sup (Vf(z),@)|(1— ||z|]*) |
w0 \/(1 —z2D[w]? + [(w, z) ]2

(2.8)

IVf(

Proof. For the linear functional w € E — (¢.(0)(w), V f(z)), we have

(e 0)(w) TFE)] _ (V). O @)

[[]] w0 []]

IV£(@)]| = sup
w#0
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Now we can replace w by ¢/ (0)~!(w) in the above formula, and so

(V /() w)]
= o 12 (0) " (w) [

In the proof of Lemma 3.5 in [1], it is shown that

IVF(

VA= [z [w]? + [(w, z)]?
1= [||[? ’

¢ (0) " (w)|| =

and so the statement follows. O

Throughout this article, ¢ : By — Bpg denotes an analytic map, and, given
y € E\ {0} and w € F with [Jw| <1, we write

yw(A) = <¢<Aﬁ>,m>, I\ < 1. (2.9)

The following version of the Schwarz—Pick lemma will be needed later. The ana-
logue of these results in several variables was proved in [2].

Lemma 2.2. Let ¢ : B — Bg be an analytic map, and let y € Bg. Then

(Rely). o)) < ||y||\\so<y>\\%, (2.10)
C LB ) + ot PRl EDLN <1, 2y
[Re ()| < it _1Hf(|fy)||||2 )1/2’ (2.12)
Furthermore, if ¢(0) = 0, then ng(y)“ <yl (2.13)

Proof. Let us fix y € Bg \ {0}, ¢(y) # 0, and w € E with ||w|] < 1. We apply
the classical Schwarz lemma to ¢, ,,, and we get for any |A| < 1 that
1 — |pyuw(N)]?
AN)| < &
=0
Now if A # 0, then we have ¢} ,(\) = %(Rgp(/\”z—”),
follows that

|0

w). Hence, for A\ = ||y||, it

|<s0(y),@>\2
|<R<p w>‘ < ly H —vl?
This shows (2.10) and (2.11) by choosing w = ”%” and w = |Iz£8||’ respectively.
To get (2.12), we use the estimate
|<90(y),@>|
‘<R90 >| < 2|y H vl
In particular, for any 6 € [—m,7) and ||w| = 1, we see that

(L~ e v | < Ll )
‘<W'R¢(y) +e @(y),w>’ < WKRQ&@),U}H + }<¢(y)’w>| <1.
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Hence

H 1 — [jy||?
2|yl

Now, integrating over #, we obtain

(1= llyll*)?
4|yl

Re(y) + ewgp(y)H <1 forfe|—mmn).

IRe@)[I” + [lew)]|” < 1.

In the case ¢(0) = 0 using ¢, ,,(0) = 0 and the scalar Schwarz lemma, we
obtain

|25 (N)] < A
for all y € Bp \ {0}, p(y) # 0, and w € E. This implies (2.13) choosing again
A=y and w = H:Z%H. This completes the proof. O

For background on analytic (or holomorphic) mappings on infinite-dimensional
complex spaces, we refer to [3].

3. THE BLOCH SPACE

The classical Bloch space B is the space of analytic functions on the open unit
disk f : D — C such that the seminorm || f||s = sup,cp(1—12[*)|f(2)| is bounded:;
it becomes a Banach space when endowed with the norm || f||giocn = |f(0)|+1|f]l5
(see [10] for general background on the classical Bloch space). The Bloch space
of functions defined on the finite-dimensional Euclidean ball was introduced by
Timoney in [8] (see [9] for further information).

A function f: By — C is a Bloch function if

£ 55z = sup (1= [l=[I*) || f'(x)]| < oo
r€BE

The space of Bloch functions is denoted by B(Bg), and it has been studied in [1].
As in the finite-dimensional case, the space H*(Bg) is strictly contained in B(Bg)
(see [1, Corollary 4.3]), and the following inequality holds for any f € H*(Bg):

13y < 1 ll- (3.1)
An equivalent seminorm for the space of Bloch functions is given by

[ linw = Sup H%f(x)” < 0.

This seminorm satisfies || f © ¢||iny = || f]linv for any f € B(Bg) and any automor-
phism ¢ of Bg. The space B(Bg) is usually endowed with the norm || f||Biocn(8,) =
|£(0)] + || flinv, and then it becomes a Banach space.
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Another equivalent seminorm is given by
1 fllraa = sup (1 — [|l=[|*) |Rf ()],
r€BE

where Rf(x) = f'(z)(x) is the radial derivative of f at x.
We refer to [1, Theorem 3.8] for all the equivalences of these seminorms. In
particular, we have the following inequalities:

31
ey < 170 < (14 20 e 52)

The following result extends Theorem 5.5 in [10] to an infinite-dimensional Hilbert
space F.

Theorem 3.1. Let f: Bg — C be an analytic function. Then
f@) — fy
Hmevzzsup{L_ﬁ_l___le;

rye B iy}
BE(JZ, y)
Proof. First, we prove that

()~ Fw)]
Be(z,y)
If || f|liny = 00, then we are done, and so take f € B(Bg) and z,y € Bg. Then

£(@) = £(0)] = / fat) dt < HxHH/ Fat)(1 — ||at]|? )dtH

IIxtH2

[l > M = sup{ 2.y € Bp.u £y},

[ L jog Ll
< e dt = —lo :
< o / T ||f”B<BE>2 5T o]

Consider f o ¢, € B(Bg). By the inequality above, (3.2), and bearing in mind

that || f o ¢llinv = || f]linv for any automorphism ¢, we have
L)og L 121 og L1121
foey(z) = Fopy(0)] <|If opyllng Hmev :
foy (O PR B 12
Selecting z = ¢, (x), we have
L1 ey (o)l
f@) = fW)] < IIf o pyllinvs log —— =1
| <170l 108y 2 )
1. 1+pe(y)
= vy log ——————= = inv r,Yy).
|l Y& T2 — i 1)
Hence || f|liny > M.
Now we prove that || f||inv < M. Notice that
M 1+ |z
0) = £0)] < Mi(o.0) = 5 log 1

and so

@)~ fO) _ M 1+
1
ol S 2] 81 e
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for all z € Bg\{0}. For a unit vector u € E, we consider the directional derivative
D, f(0) given by

If # = tu, and by taking limits when ||z| — 0, we have

1 1+ ||z
v < M lim
[VF(0)(w)] lzl—o0 2||z| 71— ||z

D, f(0) = lim

=M

since lim, o + log 7= = 2, and so ||V f(0)|| < M. Notice that, for any automor-
phism ¢ on B B, 1t 1s Clear that

_ d [ o9)) — (fop)(y)]
M= p{ ﬂE(fL‘,y>

since Bg(p(x), (y)) = B(z,y). Hence, for any x € Bg, we have
£ linw = sup ||V (f 0 02)(0)|| < M,
rEBE

e Beat )

and we are done. O

Corollary 3.2. If §,.(f) = f(z), then we have that 6, € B(Bg)* and |0, < L.,

where
1 1
Lx:max{—log +H:I:H,1}.
2 71—l

Proof. From Theorem 3.1, we have for any x € Bg

1 1+ ||x||
Also,
1
3:(D)] < 1£1@) = FO)] + | 7O < 31 flacen log 1= 21 +170)
1 1
< max{ilog 1 i— HxH }(Hf”B (Bp) T |f D = L:Jch”Bloch(BE). 0

Remark 3.3. For x,y € Bg, we have

1
slle =yl < pe(z,y) <10z =0yl < Be(z,y). (3.4)

In particular, we observe that the norm topology of B(Bg) is finer than the
compact open topology co.

As consequence of Theorem 3.1, we have the following.

Corollary 3.4. An analytic function f : By — C belongs to B(Bg) if and only
if there exists a constant C' > 0 such that

|f(x) = f(y)] < CBr(x,y).

Notice that the metric Sg(z,y) can be also recovered from the Bloch seminorm

1 liny-
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Corollary 3.5. For any x,y € Bg, we have

Be(z,y) = SUP{‘f(ﬂf) - f(y)| S e < 1}-

Proof. By Theorem 3.1 we have |f(x) — f(y)| < || flliwBe(z,y) for all f € B(Bg)

and z,y € Bg. Hence sup{|f(z) = f(y)| : [|fllimv < 1} < BE(2,y).
To check the other inequality, follow the same pattern as in Theorem 3.9 in [9],

and recall [1, Lemma 3.3]. O

4. COMPOSITION OPERATORS

4.1. Boundedness. As it occurs in the finite-dimensional case, every composi-
tion operator on B(Bg) is bounded.

Theorem 4.1. Every analytic map ¢ : Bp — Bg induces a bounded composition
operator C,, : B(Bg) — B(Bg).

Proof. Let ¢ : Bp — Bpg be analytic, and consider for any f € B(Bg) the
seminorm || f © ¢||iny- By Theorem 3.1, we have

[(f op)(x) = (fop)(y)]
Be(z,y)
|(f(p(z)) = (f ()]
Bep(x), o(y))

where the last inequality holds because pg(x,y) is contractive for analytic maps
¢ : Bg = Bg and h(t) = 1log 1 is nondecreasing. Since ¢(Bg) C B, we get
the estimate

1 o Pllme = sup{ 2.y € Bp,x# y)

< sup{ 12,y € Bp,p(r) # go(y)},

|f (@) = f(y)|
BE(«T,ZJ>

Further, using Corollary 3.2,
1Co (NI procn() = I1f © @lliny + £ (L(O) | < 1 Flline + Lo |1/ Brocu(ss)
<[ fllinv + [ £(0)] + Loyl f IB10en(8z) = (1 + L)) L.f [|Blocn(55)
and we conclude that C, is bounded. O

1 o llns < sup{ 2,y € Bpw 7y} = | fln

We provide another proof that relies on magnitudes that will appear further
on.

Proof. Let || fllinv < 1. Since R(fop)(z) = (Vf(¢(2)), Re(z)), we use Lemma 2.1,
and obtain

o (A2 < 18 o) [[2EIPEIDIRA) + (Re(2), (2))
By combining this with Lemma 2.2, we conclude that

IR(f op)(2)|(1—|lz]*) < V5.

Thus the boundedness of C,, is immediate if we assume that ¢(0) = 0.
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If (0) = = # 0, then we consider the mapping ¥ = @, o ¢, for which ¢(0) =
and the bounded operator Cy,. Since || fow,[liny = || f||inv, it follows using Corollary
3.2 as well that Uy, is continuous. Hence C, = Cy o C,,, is continuous. O]

Remark 4.2. Tt is clear that if p(0) = 0, then ||C,|| < 1.

4.2. Compactness. Now we proceed to discuss necessary and sufficient condi-
tions for a composition operator on B(Bg) to be compact. We begin with some
necessary ones.

Recall that H (D) denotes the space of analytic functions f : D — C and H(Bg)
denotes the space of analytic functions f : By — C.

4.2.1. Necessary conditions. The following result is a little improvement of a
result due to Dai [4, proof of Theorem 3.2| for finitely many variables. From now
on, ¢ : B — Bpg is a fixed analytic map.

Lemma 4.3. For each z € Bg with p(z) # 0, there isn(z) € E, ||n(2)|| = 1 with
(p(2),n(2)) = 0 such that, for & = ¢(2) + /1 — [l¢(2)[|>n(2), one has

(Ro(:1. )] 2 V1= e FIRot| - (1 + LS (R, )

Proof. We use the projection theorem for Hilbert spaces, and so for each z € Bg
with ¢(z) # 0 there is n(z) € E, ||n(z)] = 1 with (¢(2),n(z)) = 0 such that

o(2)
Ro(z) = o + Bn(z),

where o = R£CeE) and § = (Rp(2),n(2)). Clearly, ¢ = 1, (p(2),€) =

(2),n(z
lo(2)]|?, and (Rep(2),&) = (Re(2),¢(2)) + Wﬁ Moreover laf? +
|ﬁ|2 | Rep(z )HQ, and so

(R (2), )| = /1 [|e)|[*18] = [{Re(2), 9(2))]

> /1 [e@)|(IRe(z)] - lal) - [(Re(2), 0(2)))]
= /1= [le)I[[Re2)|
- (1+ 1”:0|<|Z(|f)||2)}<R¢(2),¢(Z)>|- 0

Lemma 4.4. The composition operator C, : B(Bg) — B(Bg) is compact if and
only if for each bounded net (f,) in B(Bg) such that f, — 0 in (B(Bg), co) it
follows that ||Co(fa)llB(Br) — O.

Proof. Suppose that C,, : B(Bg) — B(Bg) is compact, and let (f,) be a bounded
net in B(Bg) such that f, — 0 in (B(Bg), co). Then also C,(f,) — 0 in
(B(Bg), co), and the norm closure of the set {C,(f,),0} is compact in B(Bg).
Therefore, ||Cy(fa)|lBBs) — 0.
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If C, is noncompact, then there are ¢ > 0 and a sequence (f,,) in B(Bg) such
that || f, |5, = 1 and

1Co(fn) — Cw(fm)HB(BE) > ¢ for each n # m.

Now, by Montel’s theorem (see [3, Theorem 17.21]), there is a subnet (fy(q)) of
(fn) that converges uniformly on compact subsets of By in H(Bg). For each n(«),
choose n(B3) > n(a) such that f,) # fus), and let gn@w) = fu@) — fo@)- Then
In(a) = 0 in (B<BE>7 CO)? but Hcs@(gn(a))HB(BE) >¢e>0. O

Theorem 4.5. Assume that C, : B(Bg) — B(Bg) is a compact operator. Then

©(0BE) is relatively compact for each 0 < § < 1, (4.1)
1 — Il2]12
o L= EPIReE _  and (4.2)
le@l=1 /1 —[lp(2)]|2
1—z))? R
(1= 121 [{(2), i el _ (4.3)
le(2)l-1 1= le(2)ll

Proof. First we prove (4.1). Indeed, since the set {0, : ||z|| < 0} C (B(Bg))* is
bounded and C} is compact, {C7;(4.) : [|z]| < &} is relatively compact in B(Bg)*.
The fact that C7(d,) = d,() allows us to conclude that ¢(dBg) is relatively
compact by appealing to (3.4).

Let (ng) be an increasing sequence in N, and let (§) be a sequence in E with
1€kl < 1. According to [1, Corollary 4.3], the family {(z,&)™ : ||&]| = 1} is
bounded in B(Bg). Furthermore, the resulting sequence {(z, &)™} converges to
zero in (B(Bg), co), and therefore the compactness of C, : B(Bg) — B(Bg)
implies (according to Lemma 4.4) that

lim(| (2, €)™ ||, = 0 when k — oo, (4.4)

rad

We have
6060 g = 50 (1 = 1l ol 60" | (Rl2), 60

Let us first show (4.3). We suppose that there exist ¢ > 0 and a sequence
(zx) € Bp such that ||¢(z;)|| — 1 and, for each k,

S A VNN
1— H(P<2k)||2|<90< k), Re(zr))| > €. (4.5)
o(zk)

Let n; be the integer part of m, and choose &, = ToG” Since limy (1 —
l¢(z1)|)ne = 1 and limy ||¢(z)]|™ =2 = 2, it follows from (4.4) that

T e

| o
0= Jlim 7 Spllell™ (R o))
L L Y-S

e koo 1 — [lp(z¢)]|?
which gives a contradiction if (4.5) holds. Thus (4.3) holds.
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Let us now show (4.2). As above, we suppose that there exist € > 0 and a
sequence (2;) € Bp such that
1 — ||z1? H
1 — Jlo(zr) |12

Let ng be the integer part of m and & = ¢(zk) + /1 — [Jo(zx)[|?>n(2x) with
In(zi)|l = 1 and (p(z), n(zk)) = 0; we obtain from (4.4)

Re(zr)|| > . (4.6)

_ — llzll? np—1y2
0= kh—{go 1—||¢(z ||2 H H ) |<R¢(2k)afk>‘
1
- o Jim T R, 0

This together with condition (4.3) and Lemma 4.3 yields a contradiction to (4.6),
and so (4.2) holds. O

Remark 4.6. Realize that conditions (4.2) and (4.3) hold trivially true in the case
¢(Bg) C rBg for some 0 < r < 1.

Remark 4.7. Note that ¢(z) = z satisfies (4.2) and fails (4.3). Also observe that

(L= 2P (Re(2), 0(2)) _ (1= IDIRe() R #(2)

1= [le(2)]? VI=Te@GRP  V1-Te@)IP

Hence (4.3) implies (4.2) if there exists 0 > 0 such that
R
i (racg # ()
le@I=8 /T — p(2)]|]

Proposition 4.8. Let ¢ : By — Bg be analytic such that C, : B(Bg) — B(Bg)
is a compact operator. Then {Rp(z) : ||z|| < 0} is relatively compact for all 6 < 1
as well as {(1 —||z]|*)Rp(z2) : 2 € Bg}.

Proof. For z € Bg and w € E, we consider the linear functional A, ,, acting on
[ € B(Bg) according to A, (f) = f'(2)(w) = (w, Vf(2)). It is continuous since

Ao (F)] < L8 £lli(5,)- Realize that

CoMew)(f) = Aew(f 0 9) = (¢ (2)w, V£ (0(2))),

and thus that C’;()\w) = Ap(2) Rep(2)
Notice that Re(0Bg) is a bounded subset of E by (2.12) in Lemma 2.2. Since
C; is compact and sup{[|\. .|| : ||z]| < d} < oo, then

{Co(:) N2l < 0} = {Avomece) ¢ 2] < 0}

is relatively compact in B(Bg)*. Now we conclude that Re(0Bg) is relatively com-
pact because for the function e,(z) = (2, u) we have RC,(e,)(2) = (Rp(z),u) =
Ao () Re(2) (€u), and hence

|Re(2) — Re(2)|| = llSlﬂlglKRsO( — Reo(2),u)| < M) me() = Aotz meo(@ |-



322 BLASCO ET AL.

Moreover, {(1 — ||2]|*) Xz : 2,w € Bg} is also a bounded set in B(Bg)*, and
thus

{Co(( =121 Axz) M2l < 1 = { (1 = [121P) Ao o) < N2l < 1}

is a relatively compact set. Then the compactness of {(1—||z]|*)R¢(z) : z € Bg}
follows as above. O

There are also necessary conditions in terms of the components of the symbol ¢.
Recall that (ej)rer is an orthonormal basis of E and that ¢ = )", | pr(x)e. Here,
Pr = (¥, ).

Proposition 4.9. Assume that C, : B(Bg) — B(Bg) is a compact operator.
Then
Copy » B— B is compact (4.7)

for all k,1 € T, where oi () := @r(Xer), A € D. Also,
(1= [I2[1")[Rex(2)]

lim su =0. 4.8
kel e, 1 low(2)P 48)
In particular, limger |0kl BBy) = 0. And further,
1—|I2]1») | Ren

im
a1 1= Jon(2)?
Proof. Let y € E\ {0}, and let ||¢|| < 1. We write Fé(z) = F((x,€)), € Bg for
each F' € H(D), and we write f,(\) = f()\” H) A € D for each f € H(Bg).
Consider F € B. Since VF¢(z) = F'({x,£))¢, then F¢ € B(Bg) and

L
“Twgp = 1l

Hence the operator E; : F € B— F¢ € B(BE) is continuous.

If f € B(Bg) and ||y|| < 1, then it is an easy calculation that f, € B and
| fyllz < || fllB(Bs)- Hence the operator R, : f € B(Bg) — f, € B is continuous.
For each y,& € Br and F € B, we can write

(ColF9), 0 = F<(p(A2)) = F((e (A 2).€)) = Co(FYN,

(L= lelP)[VES @)} < 1€l F s

1yl [yl
and so C, ., = Ry o C, o E¢ is compact. Then (4.7) follows because ¢ = e, c;-
Let us now show (4.8). leen a weakly null net ({g)rex € E with ||& | < 1,
we consider fk( ) = log(—=5 ) According to [1, Corollary 4.4], fi € B(Bg)

and || fi||5( BE) | log(+ ,\)HB Thus the net {f; : k € x} is bounded on com-
pact subsets in Bp, and hence a coh-relatively compact set by Montel’s the-
orem. Since limge, fr(z) = 0, it follows that {fx : k € k} converges to zero
uniformly on compact sets of Bp. Hence limye, ||Co(fi)||B(Bs) = 0. Now notice

that R(C(fi))(2) = {RALEL. Therefore,

—{p(2),¢k

(1= [I2])(Re(2), &)]
lim

ben e 11— (9(2), &0)]

= 0. (4.10)
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Assume now that (4.8) does not hold. Then there exist ¢ > 0 and a subnet
(ng) such that, for every ny, there is zj with

(L = 2kl Repn, (2)
1 —[eon, (20) 7

(4.11)

Selecting now & = e, ¢n, (2), we get a weakly null net for which thus (4.10)
holds. Then

1 - 2
sup (1= 1121*)|R@n, (2)|on, (21)] L0, koo
I2]l<1 11— @n, (2)Pn, (22)]

which contradicts (4.11).
Finally, we prove (4.9). Let n € T, and assume that (4.9) does not hold; that
is, there are € > 0 and a sequence (z;) with lim;_, [¢,(2)] = 1 and

(1 = zl*) IRepn(20)]
L=TJen(2)]*>
_ 1 _ _ 1
Let Fi(\) = log vt and let g;(z) = Fi((z,e,)) = log FIvp— et
We may assume that ¢, (2;) converges to some wy, |wy| = 1. This means that

(g1) co-converges to go(x) = Fo({x,e,)) = log m, where Fy(\) = log 1_}\%.
Next, notice that Cy(g;)(z) = Fi({¢(x), e,)) = Fj o pn(x).
The compactness of C,, yields that lim; ||Cy(g:) — Cy(90)||raa = 0. However,
HCW(gl) o C‘p(go)Hrad
= ||E ©¥n — FO © SOnHrad
(1= ll2[1*) [R(F 0 ¢n) (x) = R(Fy 0 ¢n) ()]

sup
= sup (L= [|zlI*) | F/ (en(2)) Repn(x) — Fy (on(x)) Repn ()|
sup

(4.12)

(1= ll2[1*) [Ren(@)| | F (¢n(x)) = Fy(en(@))|

— su — 22 - ©n(21) _ Wo
B :ceBpE(l Il ”RS@H( )M 1 —on(z)pn(x) 1-— Won () ‘
Al ; on(z) o
> (1= [lalP) [Reu(z)] | = ] _w_o%(zl)]
(A=Al B on(21) — Wo
e ol — pu(a)m =
a contradiction. O

4.2.2. Compactness criteria.

Lemma 4.10. Let f : B — C be analytic, and let x € Bg. Then

(1 - )R (@) = /{: y Floalen) G- (4.13)
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Proof. Observe that since ¢, is self-inverse, f = (f o p,) o ¢,. Hence, for y € B,

(0. V@) = F(@)w) = (7 00 (0) o (22 (1))
—(foe)O)(- 5P - Q) )]

xT

= (fop  O[Py)] - i<f ° ¢2) (0)[Q: ()]
512 <Px > - _<Qx ( )>
:—S%<Px >—5<y—Px (), V),

and, using the fact that P, is self-adjoint,

(0 FF@) = = P (F1@) = (0. 91@) + (0. Po(T1 @)

— (_é + i) <y’ %x> - g<ya%>
- (—Si + i) <x’Hiﬁ§x)> (y,x) — i@,%f@»-

xT

Therefore,

2y VT = (50 - DOVIE oy Tr@). @)

]2

By the Cauchy formula, we have

(, 6f(l")> = (fop.) (0)(z) = L fo gogc(ﬁsc)d5 and

210 Jje)=1 £
S (2 — OV () = —— 0 <
051 = (FoeOW = 55 [ Forleng
Thus equality (4.14) becomes
L.V = (50~ e [ Fopulen) G5 07)
o 210 Jje)=1 & ||=|?
1 d¢
- Sx% l=1 f © Spm(gy)?v (415)
and we conclude by taking y = x. 0

Remark 4.11. From (4.14) we deduce the following identity that might be of
independent interest:

SV () + 5,V f(x) = (s, — 1) V@), j>9§ (4.16)

12
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Lemma 4.12. For every 0 < § < 1, there exists Cs > 0 such that

(o TT@) ~ (. TF@D] < Goll sl =l + 52y —vl) (417
whenever x,z" € 6Bg and |ly|| <1, ||| <1, and f € B(Bg).

Proof. Let e = T‘S Since max{|lz+e&y||, |/ +e&y|| : |¢] = 1} < 2, we conclude
by taking u = 0 in (2.5) that

4(149) -
T4+ (146)?

Since %log% < ;= forall 0 <r <1, we have

pe(T +ely, o' +e&y')
5E($ + €€y7 ! + 553/) < 1_ 4(119) )

4+ (1490)2

pe(r +ely, o’ +e&y) <

and so it follows that, for some constant C§ depending only on 4,

Be(r + ey, o’ + ey’) < Cipp(r + ey, 2’ + ey).
Next, using the Cauchy formula, we have for z,2’ € §Bg, ||y|| < 1, ||| < 1,

(v, VI(@) = (. VI >— f(x+6§y)—f(w’+€£y’)%

g 271'2 €|=1 52 ’

From this, Theorem 3.1, and the equivalence of the seminorms, we get that,
for some constant C' > 0,

2w
0. @) ~ (o TFN| < 7 [ |fa+ce's) = 10+ 26 5

21
Applying (2.6), we find a constant Cs > 0 depending only on ¢ such that

(5, V[ (@) = (¢, V()]

27
dt
< —C-(]g||f||3(BE)/ pE(x+5e Y, T —|—5ezty,)
€ 0 2m

27
; dt
< ECHfHB(BE)/ Be(x + ey, o' + ee'y’) —
0

2
% % dt
< Callflamny [l +ey) - @+ 5
0

< Csll fllse (I =2l +<lly = ¥/ll)

1—96
= Csll fllscaey (Il = o/l + ——lly = /). 0
Theorem 4.13. Let ¢ : Bg — Bg be analytic. Assume that
1) {e(2):[le@)] <0} and {(1—]2*)Re(2) : [Jo(2)]| < 0}

are relatively compact for all 0 < § < 1,

(1= [z IRe(2)]

(ii) lim =0, and
le(2)ll—1 1 —|e(2)|?
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i L= IzPHeG), RG] _
lp(z) |1 1—[le(z)]? ‘

Then C, : B(Bg) — B(Bg) is a compact operator.

(iii)

Proof. We are going to apply Lemma 4.4. Let (f,) be a bounded net in B(Bg)
converging to zero uniformly on compact sets. Recall that

R(fao@)(z) = (VLu(p(2), Re(2)).

Let € > 0. By (ii) and (iii) there exists 6 < 1 such that, for ||p(2)| > J, we
have

(1 — ) YO IREIPIRECIP + TeC) Re P

<,
1= Jle(2)]?
and hence, using Lemma 2.1, we have
(1= 11217 |R(fa 0 9)(2)] < sup||V fu((2)) [l < sup || fallinve. (4.18)

Denote As = {z € Bg : ||¢(2)|| < é}. For z € Ay, we use formula (4.15) obtained
in the proof of Lemma 4.10 to have

Rip(2) STIEN
ot ¥ )

1 1N & (Re(2), ¢(2))
R G b= /£| Hee (€9 & R o)
1 1 Reo(z) g
woam o o (Gon)) @

Hence, for each z € As,

(L= [12IP) (V fal9(2)), Re(2))]|

(L= 1 (1 2 e
: [ (2)]] Sw(z)<3¢(z) 1>HR90(2)H/0 |f0<<‘P<p(Z)(e o ))) o7

# 2D o) [ (o () e

2[R (2)l
Bearing in mind (2.12) in Lemma 2.2 and the fact that lim._ Z(ﬁ -1)=0,
there is C' > 0 such that, for ||p(z)| <, we have

(=) 1 1 : L
e s e~ IR < o (o ) <€

In particular, for each § < 1, there exists Cs > 0 such that

(1= 121P) (V£ (0()), TR
i (“ sa))ze)

ol [ttt [

)[Rtz
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when [|¢(2)|| < 0. Therefore, since

Rep(z)
oz (Ep(2)) 1€ €T U{soz< ):ge’]r}
{ o( )( ) } v(2) QHR (Z)H
is compact in Bg, we have for each z € As that

(1 — ||z||2)|<Vfa(cp(z)),7'\’,g0(z)>’ — 0. (4.19)

Now bearing in mind (2.11) to observe that s7|Re(y)|| < 1, we may use
Lemma 4.12 to have, for each z, 2 € As,

[(V1a(0(2)), 2R — (Va(0), 2R
< Gl als (o) — | + T (1572 — 2R ))-

To finish the proof, we use the fact that both ¢(As) and {(1 — [|z||*)Re(2) :
z € As} are relatively compact, and thus also the set {(¢(2), (1 — ||z||)Re(2)) :
z € As} C E x FE is relatively compact. Then, given € > 0, there exists a finite
family of points {2 : 1 < k < N} C As such that, for each z € As, there exists

2, for which [[¢(2) — (2l + 152 (Is2Rew(2) — 2, Rep(2x)ll) < e. Hence

sup|(V fa(2(2)), sZR(2))| < €22 + max [(V fu(i2(21)) 52, Rep(24) )|

z€EAs

The proof is then complete using (4.19). O

Corollary 4.14. Assume that {¢(z) : ||e(z)|]] < 0} and {(1 — [|z]|>)Rp(2) :
lo(2)]| <0} are relatively compact for all § < 1. Then C, : B(Bg) — B(Bg) is
a compact operator if and only if

1 — 2
O LRGN
le@l=1 /T — [[o(z)]]2

i L EPe(), Re()) _
lp(=) -1 1—[le(2)]]? '

Corollary 4.15. Assume that ||¢|| < 1. The composition operator Cy, is com-
pact if p(Bg) is relatively compact.

(i)

Proof. Tt is enough to check that the set {(1—[|z]|*)R¢(2) : 2 € Bg} is relatively
compact. Lemma 4.10 applied to o ¢ for all p € E* yields (1 — ||z]|*)Re(2) =
=L el=1 (p((pw(gx))g. Hence (1 — ||z]|?)R¢p(z) belongs to the weak closure of the

27

balanced convex hull of the compact set {@%ﬂgp(BE) €] =1} C E that is also a
compact set. O

Ezample 4.16. Let {e, } be a sequence in the given basis {e; }. If {,, } is a sequence
in H>(Bg) such that Y > |losl|2, < 1, then the mapping p(z) := Y @n(2)e,
yields a compact composition operator C, on B(Bg).

In particular, for ¢, (z) = H?Zn@', e;), C, is compact on B(Bg).
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Proof. Note that supy, -1 [l¢(2)|I> < (3002; supj,<1 lea(2)?) < 1. Moreover,
©(Bg) is relatively compact since it lies inside the Hilbert cube given by the
sequence (||¢n|lo0). Now apply Corollary 4.15.

To verify the particular case, we use the inequality between geometric and
arithmetic means, namely,

ena)| = [Tl el < (g Llte])™ < s 172 el

n+1

which produces the estimate >0 [@nll2 < Y00 (n+ 1)) < 1. O

Next, we introduce a class of symbols ¢ that allows a characterization of the
compactness of C,. We say that the analytic mapping ¢ : By — Bg belongs to
By(Bg, Bg) if

lim (1= |z]]*)||Re(2)]| = 0. (4.20)

l=l—1

In particular, any map with bounded radial derivative satisfies (4.20). It is easy
to produce examples of maps in By(Bg, Bg).

Proposition 4.17. Let {e,} be a sequence in the given basis {ex}. If {¢on}n C
B(Bg) is such that

lim (1 — H2H2)|Rg0n(z)| =0 foralln €N and Z H(anfg(BE) < o0,

l=l—1

then p(z) = >0 pn(2)e, € Bo(Bg, Bg).
Proof. Given € > 0, there exist N € Nand 0 < 9; < 1for j =1,..., N such that

n=1

(U= 121P) [Re(IF < (1= 121%) [Ren(2)] + /2

and
(1= 2l1?)|Rep;(2)| < e/V2N, |zl >6;, j=1,...,N.
Hence, if ||z > maxi<j<n{d;}, then (1 — [|z]*)||R¢(2)| < e. O

Proposition 4.18. Let ¢ € By(Bg, Bg) with ¢(0) = 0. Then
— 2 _ 2
(- EPIReON _ (= [PIRe)]

W hurfuiulp 1—le(2)I1 le@l=1 V/I=Tle)?
o (1= 2P Ke(2). RN _ (L= (2P [(e(2), Re(2)]
R i e A A S T 5]

Proof. In the case ||¢]lc < 1, both right-hand-side limits are null, and both
left-hand-side limits vanish according to the assumption.
Since ||¢(2)]| < ||z|| by Lemma 2.2, the limits on the right-hand side are not

greater than those on the left-hand side. Now, in the case ||¢]|cc = 1, there is
A-llzI)IReI

a sequence (z,) C Bp such that |z, — 1 and limsup,_; V=
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A=z l®)IRe(zn)l

lim,, N = ST From the bounded sequence (||¢(z,)||) we get a conver-

gent subsequence that we denote the same. If lim, ||¢(z,)| = 1, then we have

; A-[lzI®)IRe(2) |l i A=llznl®IRe(n)l ;

im sup )1 W > lim, \/1_W(Zn“)’”2 that leads to the equality
2

(i), while if lim,, [|¢(2,)[ < 1, then limsup,_; W = 0, and so (i)

holds as well, the analogous argument for (ii). O

In the following result we replace condition (i) in Theorem 4.13 by the weaker
one given by (4.1), and we replace conditions (4.2) and (4.3) by the stronger ones
given by taking lim, ()1 instead of limy,_. Since the proof follows the same
arguments as in Theorem 4.13, it will only be sketched.

Proposition 4.19. Let ¢ : B — Bpg be analytic with ¢(0) = 0. If ¢ satisfies
(4.1),

o A IEPIReEN _ a21)
ll=l—1 1— [Jo(2)]?
(L= [l21*)p(2), Rop(2))|
Jzll=1 1— |lo(2)]2 =0, (4.22)

then Cy, is compact on B(Bg).

Proof. By Lemma 2.2, we have ||¢(z)] < ||z]|. The analogous estimate to (4.18)
holds for ||z|| > §.

In the remaining case ||z|| < ¢, and also ||¢(2)|| < d so that the estimates in
the proof of Theorem 4.13 hold; that is, if ||z|| < J, then

(1 — Hz||2)|<Vfa ((p(z)),Rgo(z)H — 0. (4.23)

Now the final argument in the proof of Theorem 4.13 relies on the relative
compactness of ¢({[|z]] < d}) that holds by assumption and that of {Rep(2) :
|z|l < 6}, which follows from the Cauchy formula. Indeed, Rp(2) = ¢'(2)(2) =

ﬁ flx\|=r w dX for 0 < r < 1 such that §+r < 1. Therefore, Rp(z) belongs to

the weak closure of the balanced convex hull of the compact set
{pp((0 +r)Bg) : |u| = r=2} C E that is also a compact set. O

Let us mention that (4.21) implies that ¢ € By(Bg, Bg) and that, combining
the necessary condition obtained in Theorem 4.5 and Proposition 4.18, we get
the following corollary.

Corollary 4.20. Let ¢ € By(Bg, Bg) with ¢(0) = 0. Then C, is compact in
B(Bg) if and only if v satisfies (4.1), (4.21), and (4.22).

5. EXAMPLES

In this section we provide a number of examples to discuss the relations among
the various conditions we have found above.
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FEzample 5.1. Consider (§,) C Bg such that

sup Z‘ z, §n <1. (5.1)

ll=l<1

Define ¢, (2) = (2,&,), and define ¢(2) = > ¢n(2)en, where {e,} is an orthonor-
mal sequence in E. Then ¢ satisfies (4.21). In particular, ¢ € By(Bg, Bg).
Moreover, if (&,) is an orthogonal system, then we have that

(i) o satisfies (4.3) whenever sup,, ||| < 1,

(i)  fails (4.3) whenever there exists ng Wlth 1€noll = 1,
(iii) p(Bg) is relatively compact whenever > ||&,]|* < oo, and
(iv) ¢ fails (4.1) whenever limsup,, ., [|€.]] > 0.

Proof. Assumption (5.1) guarantees that ¢ is analytic and maps Bg to Bg. Since
©(0) = 0, by Lemma 2.2, we have [|¢(2)|| < ||z|| for any z € Bg. Notice that
Re(z) = 32, Rea(2)en = ¢(2), and using the fact that o — 2= is increasing
for 0 < a < 1, we have

(L= PRl _ A= [Pel o s 2P

1 —le(=)I1? 1—[le(2)I?

In particular, ¢ satisfies (4.21).

Since {p(2),Rp(2)) = [l¢(2)|*, we get that ¢ satisfies (4.3) if and only if
. _ 2
o)1 0 ||gﬂ<H)||z =0.

Assume now that (§,) is an orthogonal system. Hence

ot = Yol 6 < sl | | < sup e el

Assuming sup,, [|€.]|> < 1, we have p(Bg) C 6Bg for some § < 1, and (4.3)
trivially holds, which shows (i).
Assume now that ||&,,|| = 1. Selecting z = A&, we have ¢(z) = Ae,, and

1 —|z]]? oz
le(z)li—1 1 — |l(2)]]?

This gives (ii).

Now (iii) follows using that |¢, ()| < ||| for each n. Hence ¢(Bg) is contained
in the Hilbert cube given by the sequence (||&,]|)-

Finally, to show (iv), assume limsup,,_, ||.]| > 0. Hence there exist ¢ > 0 and
indices m,, such that ||&,,, || > €. For each 0 < § < 1, we have gp(éug"”) 3|&nllen.
Hence {4|&m,, ||€m, : n € N} C p(dBg), which gives that ¢(dBg) is not relatively
compact in Bg. 0

In [5] it was shown that p(z) = > 7
choice in the following example.

~, Zie,, satisfies (4.1). Such ¢ is a particular
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Ezxample 5.2. Let {e;} be an orthonormal sequence in E. Let Fj, : D — D be a
sequence of analytic functions such that F(0) = 0. Define

= Z Fk(<Z, 6k>)6k

(i) If [|Fx|lo < 1 for all k € N, then ¢ satisfies (4.7).
(ii) If Fy € By, the little Bloch space, and || Fi|l« < 1 for all £ € N, then ¢
satisfies (4.9).
(iii) If there exists ng € N such that CF, is noncompact on B, then ¢ fails

(4.3).

(iv) If supy, || Frlloo < 1, then ¢ satisfies ¢(Bg) C 0Bg for some 0 < § < 1. In
particular, ¢ satisfies (4.2) and (4.3).

(v) IE Y2, | Fill%, < oo, then ¢(Bg) is relatively compact in Bg.

(vi) If >, || Fll% < oo, then ¢ satisfies (4.1).

Proof. Notice that, since |Fj(\)| < |\|, we have that ¢ maps By into Bg. Actually,
one has

ng(z)Hz = Z‘Fk z,ex)) ?< Z||Fk|| (2, ex } < ||z||* and, further,

k=1

le()]| < (sngFkHoo)HzH. (5.2)
Since ¢'(2)(u) = > oo Fi({z, ex))(u, ex)ey, then

z) = ZF,;((z,eQ)(z,ewek, and so

[e.e]

(p(2), Rep(2)) = ) Fi((z ) Fi((2,ex)) (2, en).

k=1

Statement (i) follows since @i (A) = Fg(A\)ox; and [[Fillooc < 1 implies com-
pactness of Cf,.
To verify (ii), notice that

Reen(2)] - [Fn((2 en))[[ {2, €n)]
L—|pn(2)? 1= |F.({z,en)*
from which we conclude that
(1= [|2]1*)|Repn(2)] < A= en) )| Fy ({2, en))]
L—|en(2))*? — L —[[Fll% ’

which shows (4.9).
Concerning (iii), since Cp,  is noncompact, then by Theorem 2 in [7] there
exists (\,) C D for which |F,,(A\,)| = 1 (in particular, |A,| — 1) and

i (L= PP )
ST 1R (P

20,
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Selecting the sequence &, = \,e,,, we have

le@ll = [E0ls [Re(&)] = |,

and (Ro(&n), ©(&n)) = Fuo(An)F), (An) An. Therefore, ¢ fails (4.3).

To check (iv), choose 5 = supy ||Fk||oo, and use (5.2).

Since ¢(Bg) is contained in the Hilbert cube given by the sequence (||Fk||),
it is relatively compact. Thus (v) holds.

Finally, to show (vi), we use the estimate for analytic functions £ : D — D
with F'(0) = 0 given by |F(A)| < ||F||s5(0, A) to obtain that ¢(dBg) is contained
in the Hilbert cube given by the sequence (|| Fg||55(0,6)). This gives (4.1). O

2

Ezample 5.3. Let {e;} be an orthonormal sequence in E. Let us consider ¢(z) =
> vr(2)er, where

or(2) = (2, ex)". (5.3)
Then ¢ satisfies (4.1) and fails (4.8). In particular, C, is noncompact on B(Bp).

Proof. Notice that ¢(z) € Bg for each z € Bg because

0o 0o
Y lee@) <Y [z e < 2l
k=1 k=1

It is clear that Ry (2) = kyr(z).
To show (4.1), just observe that supy<; [¢r(2)| < 0*. Denote

. 2
Ay = sup (IR
B 1=l

Let z = Aeg, and estimate

2\7.\k k
Ezxample 5.4. Let {ex} be an orthonormal sequence in E. Let (ng)ren be
an increasing sequence of natural numbers with ny = 0, and define p(z) =
Yo er(2)er and ¥ (z) = >, Yr(2)ex, where
ng ng k
o) = 3 2 and d(z) :( S ZJ?) . (5.4)
Jj=ng—1+1 Jj=ng—1+1

Then ¢ and 1 satisfy (4.1) but fail (4.7). Hence C,, and C, are noncompact on
B(Bg).

Proof. Notice that ¢(2),9(z) € Bg for each z € By because

Nk ng

Pleelr< (X =P < X P

Jj=ng—1+1 j=ng_1+1

max{ |k (2

Condition (4.1) follows from the estimate max{|px(2)|?, |vr(2)[*} < ||2[/?*.
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It is immediate to see that Ry (z) = 2kpi(z) and R (z) = 2k (2), and for

each k,m € N, we have

Vem(A) = Grm(N) = A%, g <m < myyy

and ¥y, = @rm = 0 otherwise.

We see that C, = is noncompact on B because

(1 — [AP)2E A

li 0
LTI
due to the estimate 1 — [A|** < 2k(1 — |AJ%), || < 1. O
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