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Selective and Ramsey Ultrafilters on G -spaces

Oleksandr Petrenko and Igor Protasov

Abstract Let G be a group, and let X be an infinite transitive G-space. A free
ultrafilter U on X is called G-selective if, for any G-invariant partition P of X ,
either one cell of P is a member of U, or there is a member of U which meets
each cell of P in at most one point. We show that in ZFC with no additional set-
theoretical assumptions there exists a G-selective ultrafilter on X . We describe
all G-spaces X such that each free ultrafilter on X is G-selective, and we prove
that a free ultrafilter U on ! is selective if and only if U is G-selective with
respect to the action of any countable group G of permutations of !.

A free ultrafilter U on X is called G-Ramsey if, for any G-invariant coloring
� W ŒX�2 ! ¹0; 1º, there is U 2 U such that ŒU �2 is �-monochromatic. We
show that each G-Ramsey ultrafilter on X is G-selective. Additional theorems
give a lot of examples of ultrafilters on Z that are Z-selective but not Z-Ramsey.

0 Introduction

A free ultrafilter U on an infinite set X is said to be selective if, for any partition P

of X , either one cell of P is a member of U, or some member of U meets each cell
of P in at most one point. The selective ultrafilters on ! D ¹0; 1; : : :º are also known
under the name Ramsey ultrafilters (see, e.g., [1]), because U is selective if and only
if, for each coloring � W Œ!�2 ! ¹0; 1º of 2-element subsets of !, there exists U 2 U

such that the restriction �jŒU �2 � const.
Let G be a group, and let X be a G-space with the action G � X ! X ,

.g; x/ 7! gx. All G-spaces under consideration are supposed to be transitive: for
any x; y 2 X , there exists g 2 G such that gx D y. The nontransitive case needs
some extra investigation. If G D X and gx is the product of g and x in G, then X is
called a regular G-space. A partition P of a G-space X is G-invariant if gP 2 P

for all g 2 G, P 2 P .
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Now let X be an infinite G-space. We say that a free ultrafilter U on X is
G-selective if, for any G-invariant partition P of X , either some cell of P is a mem-
ber of U, or there exists U 2 U such that jP \ U j � 1 for each P 2 P . Clearly,
each selective ultrafilter on X is G-selective.

Selective ultrafilters on ! exist under some set-theoretical assumptions additional
to ZFC (say, the continuum hypothesis CH), but there are models of ZFC with no
selective ultrafilters (see [1]). In contrast to these facts, we show (Theorem 1.1)
that a G-selective ultrafilter exists on any infinite G-space X . Then we characterize
(Theorem 1.2) all G-spaces X such that each free ultrafilter on X is G-selective, and
we show (Theorem 1.3) that a free ultrafilter U on ! is G-selective for any transitive
group G of permutations on ! if and only if U is selective.

For a G-space X and n � 2, a coloring � W ŒX�n ! ¹0; 1º is said to be G-invariant
if, for any ¹x1; : : : ; xnº 2 ŒX�n and g 2 G, �.¹x1; : : : ; xnº/ D �.¹gx1; : : : ; gxnº/.
We say that a free ultrafilter U on X is .G; n/-Ramsey if, for every G-invariant
coloring � W ŒX�n ! ¹0; 1º, there exists U 2 U such that �jŒU �n � const. In the
case in which n D 2, we write “G-Ramsey” instead of “.G; 2/-Ramsey.”

We show (Theorem 2.1) that every G-Ramsey ultrafilter is G-selective, but the
converse statement is very far from the truth. Theorems 2.2 and 2.6 give us plenty of
ultrafilters on Z that are Z-selective but not Z-Ramsey. Moreover, we conjecture that
each Z-Ramsey ultrafilter on Z is selective. By Corollary 2.8, each .Z; 4/-Ramsey
ultrafilter is selective.

A B-Ramsey ultrafilter on the countable Boolean group B D
L

! Z2 needs not be
selective, but a B-Ramsey ultrafilter cannot be constructed in ZFC without additional
assumptions.

1 Selective Ultrafilters

Let X be a G-space, and let x0 2 X . We put St.x0/ D ¹g 2 G W gx0 D x0º and
identify X with the left coset space G=St.x0/ of G by St.x0/. If P is a G-invariant
partition of X D G=S , S D St.x0/, we take P0 2 P such that S 2 P0, put
H D ¹g 2 G W gS 2 P0º, and note that the subgroup H completely determines
that P : xS; yS 2 G=S are in the same cell of P if and only if y�1x 2 H . Thus,
P D ¹x.H=S/ W x 2 Lº, where L is a set of representatives of the left cosets of G

by H .

Theorem 1.1 For every infinite G-space X , there exists a G-selective ultrafilter
U on X .

Proof We take x0 2 X , put S D St.x0/, and identify X with G=S . We choose
a maximal filter F on G=S having a base consisting of subsets of the form A=S ,
where A is a subgroup of G such that S � A and jA W S j D 1. Then we take an
arbitrary ultrafilter U on G=S such that F � U. To show that U is G-selective, we
take an arbitrary subgroup H of G such that S � H and consider a partition PH of
G=S determined by H .

If jH \ A W S j D 1 for each subgroup A of G such that A=S 2 F , then by the
maximality of F we have H=S 2 F . Hence, H=S 2 U. Otherwise, there exists a
subgroup A of G such that A=S 2 F and jH \A W S j is finite, jH \A W S j D n. We
take an arbitrary g 2 G and denote gH \ A D Tg . If a 2 Tg , then a�1Tg � A and
a�1Tg � H . Hence, a�1Tg=S � A \ H=S so jTg=S j � n. If x and y determine
the same coset by H , then they determine the same set T . Then we choose U 2 U
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such that jU \ x.H \ A=S/j � 1 for each x 2 G. Thus, jU \ P j � 1 for each cell
P of the partition PH .

Theorem 1.2 Let G be a group, let S be a subgroup of G such that jG W S j D 1,
and let X D G=S . Each free ultrafilter on X is G-selective if and only if, for each
subgroup T of G such that S � T � G, either jT W S j is finite or jG W T j is finite.

Proof We suppose that there exists a subgroup T of G such that S � T � G and
jT W S j D 1, jG W T j D 1. We pick a family ¹gnT W n 2 !º of distinct cosets of
G by T and, using the Zorn lemma, choose a maximal family U of subsets of G=S

such that, for each U 2 U,®
n 2 ! W U \ gn.T=S/ is infinite

¯
is infinite. Clearly, U is an ultrafilter, and by the construction, each U 2 U meets
infinitely many members of the G-invariant partition P determined by T in infinitely
many points, so U is not G-selective.

On the other hand, if jT W S j < 1, then the G-invariant partition P determined
by T consists of finite sets of cardinality jT W S j. If jG W T j < 1, then P is a finite
partition. Therefore, each free ultrafilter of G=S is G-selective.

Let G be an infinite abelian group such that, for each subgroup S of G, either S is
finite or G=S is finite. If G has an element of infinite order, then G is isomorphic to
Z� F , where F is finite. If G is a torsion group, then G is isomorphic to Zp1 � F ,
where Zp1 is the Prüfer p-group (see [3, Section 3]) and F is finite. This is an
elementary exercise on abelian groups. Thus, the class of abelian groups G such that
each ultrafilter on G is G-selective is very narrow.

Theorem 1.3 If a free ultrafilter U on ! is G-selective with respect to the action
of any transitive group G of permutations of !, then U is selective.

Proof Let P be a partition of ! such that each member of P is not a member
of U.

Claim. The partition P can be partitioned P D
S

n2! Pn so that, for each n 2 !,S
Pn is infinite and is not a member of U. If the set P 0 of all finite blocks of P

is finite, then we take an arbitrary infinite block P0, put P0 D ¹P 0; ¹P0ºº, and
enumerate all remaining infinite blocks of P as P1; P2; : : : . If P 0 is infinite, then
we partition P 0 D P 0

0 [P 0
1 such that P 0

0 and P 0
1 are infinite. We take i 2 ¹0; 1º (say,

i D 0) such that
S

P 0
0 … U. Then we repeat this procedure for P 0

1 and so on. After
! steps, we get a desired partition of P 0. Such partition of P 0 together with P n P 0

gives us the desired partition of P .
For each n 2 !, we put Qn D

S
Pn, take an arbitrary countable group

G D ¹gn W n 2 !º, and identify ! with G � G, so that Qn D ¹gnº � G, n 2 !. We
consider G � G as a regular .G � G/-space and note that the partition ¹Qn W n 2 !º

of G � G is (G � G)-invariant. Since U is (G � G)-selective, there exists U 2 U

such that jU \ Qnj � 1 for each n 2 !. By the construction of Qn, jU \ P j � 1 for
each P 2 P . Hence, U is selective.

2 Ramsey Ultrafilters

Theorem 2.1 For a G-space X , each G-Ramsey ultrafilter on X is G-selective.
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Proof Let P be a G-invariant partition of X . We define a coloring � W ŒX�2 !

¹0; 1º by the following rule: �.¹x; yº/ D 0 if and only if x; y are in the same cell of
the partition P . Since P is G-invariant, � is also G-invariant. We take U 2 U such
that �jŒU �2 � i for some i 2 ¹0; 1º. If i D 0 and x 2 U , then U is contained in the
block P of P such that x 2 P . If i D 1, then U meets each block of P in at most
one point. Hence, U is G-selective.

Let G be a group with the identity e. Each G-invariant 2-coloring of the regular
G-space can be described as follows. We say that a coloring �0 W G n ¹eº ! ¹0; 1º

is symmetric if �0.x/ D �0.x�1/ for each x 2 G n ¹eº. Then we put �.¹x; yº/ D

�0.x�1y/ and note that �.¹gx; gyº/ D �.¹x; yº/ for all ¹x; yº 2 ŒG�2 and g 2 G.
On the other hand, if a coloring � W ŒG�2 ! ¹0; 1º is G-invariant, then the coloring
�0 W G n ¹eº ! ¹0; 1º, �0.x/ D �.¹e; xº/ is symmetric and uniquely determines �.

We fix an arbitrary linear ordering � of G and, for each subset U of G, put
D.U / D ¹x�1y W x; y 2 U; x < yº. For an ultrafilter U on G, we define a family
D.U/ of subsets of G by

V 2 D.U/ , 9U 2 U W D.U / � V:

We also use the product VU of ultrafilters on G defined as follows (see [4, Chap-
ter 4]). We take an arbitrary V 2 V and, for each g 2 V , pick Ug 2 U. ThenS

g2V gUg is a member of VU, and each member of the ultrafilter VU contains a
subset of this form. We denote U�1 D ¹U �1 W U 2 Uº, U �1 D ¹g�1 W g 2 U º.

Theorem 2.2 Let � be the natural linear ordering ofZ, letZC D ¹z 2 Z W z > 0º,
and let U be a free ultrafilter on Z such that ZC 2 U. Then the following statements
hold:

(i) D.U/ � .�U/ C U;
(ii) U is Z-Ramsey if and only if D.U/ D .�U/ C U and if and only if D.U/ is

an ultrafilter.

Proof (i) We take an arbitrary U 2 U such that U � ZC. For each z 2 U , put
U.z/ D ¹x 2 U W x > zº. Then D.U / D

S
z2U .�z C U.z//. Since U.z/ 2 U, by

the definitions of �U and .�U/ C U, we have D.U/ � .�U/ C U.
(ii) We assume that U is Z-Ramsey and take U 2 U, U � ZC. For each z 2 U ,

we pick an arbitrary Uz 2 U such that z < x for each x 2 U . Then we put
W D

S
z2U .�z C Uz/ and define a symmetric coloring �0 W Z n ¹0º ! ¹0; 1º.

If x 2 W [ .�W /, then we put �0.x/ D 0; otherwise, �0.x/ D 1. We take
a coloring � W ŒZ�2 ! ¹0; 1º determined by �0. Since U is Z-Ramsey, there is
V 2 U, V � U , such that �jŒV �2 � i for some i 2 ¹0; 1º. By the definition of �0,
i D 0 and D.V / � W . Hence, W 2 D.U/ so .�U/ C U � D.U/. By part (i),
D.U/ � .�U/ C U so D.U/ D .�U/ C U.

On the other hand, let D.U/ D .�U/ C U. We consider an arbitrary symmetric
coloring �0 W Z n ¹0º ! ¹0; 1º and denote by � the corresponding coloring of ŒZ�2.
Since .�U/ C U is an ultrafilter, there is W 2 .�U/ C U, W � ZC, such that
�0jW � i , i 2 ¹0; 1º. We take V 2 U such that D.V / � W . Then �jŒV �2 � i so U

is Z-Ramsey.

Let G be a discrete group. The Stone–Čech compactification ˇG of G can be identi-
fied with the set of all ultrafilters on G, and ˇG with the above-defined multiplication
is a semigroup which has the minimal ideal K.ˇG/ (see [4, Chapter 6]).
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Corollary 2.3 Each ultrafilter U from the closure cl K.ˇZ/ is not Z-Ramsey.

Proof On the contrary, we suppose that some ultrafilter U 2 cl K.ˇZ/ is
Z-Ramsey. Since U 2 cl K.ˇZ/, by [2, Corollary 5.0.28], for every U 2 U,
there exists a finite subset K of Z such that Z D K C U � U . We note that
U � U D D.U / [ .�D.U // [ ¹0º. Now we partition ZC D Z0 [ Z1,

Z0 D

[
n2!

Œ22n; 22nC1/; Z1 D ZC
n Z0;

and applying Theorem 2.2(ii), choose U 2 U and i 2 ¹0; 1º such that D.U / � Zi .
Clearly, F C U � U ¤ Z for each finite subset F of Z. Hence, U … K.ˇZ/ and we
get a contradiction.

We say that a free ultrafilter U on an abelian group G is a Schur ultrafilter if, for
any U 2 U, there are distinct x; y 2 U such that x C y 2 U . We note that each
idempotent of ˇZ n Z is a Schur ultrafilter.

Corollary 2.4 Each Schur ultrafilter U on Z is not Z-Ramsey.

Proof On the contrary, we suppose that U is Z-Ramsey and ZC 2 U. Since U is a
Schur ultrafilter, by Theorem 2.2, D.U/ D U D �U C U. By [4, Corollary 13.19],
.�U/ C U ¤ U for every free ultrafilter U on Z.

A free ultrafilter U on Z is called prime if U cannot be represented as a sum of two
free ultrafilters.

Corollary 2.5 Every Z-Ramsey ultrafilter on Z is prime.

Proof We need two auxiliary claims.
Claim 1. If U; V are free ultrafilters and U C V is Z-Ramsey, then D.U C V/ D

D.U/ D D.V/; in particular (see Theorem 2.2), U and V are Z-Ramsey.
Let W D U C V , U 2 U, Vx 2 V , x 2 U , and W D

S
x2U x C Vx . To see

that D.V/ D D.W/, we fix x 2 U and put V 0
x D ¹y 2 V W y > xº. If y1; y2 2 Vx

and y2 > y1, then y2 � y1 D .x C y2/ � .x C y1/, so D.Vx/ � D.W / and
D.W/ D D.V/, because D.W/ is an ultrafilter.

To show that D.U/ D D.W/, we take x1; x2 2 U , x1 < x2, and pick an arbitrary
y 2 Vx1

\ Vx2
. Since x2 � x1 D .x2 C y/ � .x1 C y/ and x1 C y; x2 C y 2 W ,

D.U / � D.W / so D.W/ D D.U/.
Claim 2. If W is Z-Ramsey, then W is a right cancellable element of the semi-

group ˇZ.
If not, by [4, Theorem 8.18], W D U C W for some idempotent U. By Claim 1,

U is Z-Ramsey, which contradicts Corollary 2.4.
Lastly, suppose that some Z-Ramsey ultrafilter W is represented as W D U C V .

Applying Theorem 2.2 and Claim 1, we get D.W/ D D.U/ D D.V/ and

D.W/ D .�U/ C .�V/ C U C V ; D.V/ D .�V/ C V ;

D.U/ D .�U/ C U:

By Claim 2, .�U/ C .�V/ C U D .�V/. It follows that ZC 2 U if and only if
ZC … V . On the other hand, .�U/ C U D .�V/ C V . So, ZC 2 U if and only if
ZC 2 V . Hence, W is prime.
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We do not know whether every Z-Ramsey ultrafilter U is strongly prime, that is, U

does not lie in the closure of the set Z� C Z�. A free ultrafilter U on a group G is
strongly prime if and only if some member of U is sparse. A subset S of an infinite
group G is called sparse (see [5]) if, for every infinite subset X of G, there exists a
finite subset F � X such that

T
g2F gS is finite.

Following [6], we say that a subset A of a group G is k-thin, k 2 N, if

jgA \ Aj � k

for each g 2 G n ¹eº. Clearly, each k-thin subset is sparse.

Theorem 2.6 Let U be a Z-Ramsey ultrafilter on Z, ZC 2 U. If there exists a
1-thin subset A of G such that A 2 U, then U is selective.

Proof We fix an arbitrary coloring ' W ŒZ�2 ! ¹0; 1º and define a symmetric
coloring �0 W Z n ¹0º ! ¹0; 1º as follows. If g 2 Z n ¹0º and there are a; b 2 A,
a < b, such that g D b � a, then we put �0.g/ D �0.�g/ D '.¹a; bº/. Otherwise,
�0.g/ D �0.�g/ D 1. There is at most one such pair, because A is 1-thin. Then we
consider the coloring � W ŒZ�2 ! ¹0; 1º determined by �0. Since U is Z-Ramsey,
there exists U 2 U, U � A, such that �jŒU �2 � const. By the construction of �, we
have �jŒU �2 � 'jŒU �2 . Thus, 'jŒU �2 � const and U is selective.

We recall that a free ultrafilter U on Z is a Q-point if, for every partition P of Z into
finite cells, there is a member of P which meets each cell in at most one point.

Corollary 2.7 If a free ultrafilter U on Z is Z-Ramsey and a Q-point, then U is
selective.

Proof To apply Theorem 2.6, it suffices to show that every Q-point U has a 1-thin
set. We suppose that ZC 2 U, use the partition ZC D Z0 [ Z1 from Corollary 2.3,
and take i 2 ¹1; 2º and U 2 U such that U meets each cell Œ2m; 2mC1/ of Zi in at
most one point. Clearly, U is 1-thin.

We do not know if each P -point in Z� is Z-Ramsey. Recall that U is a P -point if,
for every partition P of Z, either some cell of P is a member of U, or there exists
U 2 U such that U \ P is finite for each P 2 P .

In the proof of the next corollary, we use the following observation: if U is
.Z; n/-Ramsey and m < n, then U is .Z; m/-Ramsey. Indeed, every Z-invariant
coloring � W ŒZ�m ! ¹0; 1º defines a Z-invariant coloring �0 W ŒZ�n ! ¹0; 1º by the
following rule: �0.¹x1; : : : ; xnº/ D �.¹x1; : : : ; xmº/.

Corollary 2.8 Each .Z; 4/-Ramsey ultrafilter U on Z is selective.

Proof Since U is .Z; 2/-Ramsey, to apply Theorem 2.6, it suffices to find a 1-thin
member of U.

We define a coloring �1 W ŒZ�4 ! ¹0; 1º by the following rule: �1.F / D 0 if and
only if there is a numeration F D ¹x; y; z; tº such that x C y D z C t . Since �1 is
Z-invariant, there is Y 2 U such that �1jŒY �4 � i . Since A is infinite, i D 1.

Then we define a coloring �2 W ŒZ�3 ! ¹0; 1º by the following rule: �2.F / D 0

if and only if F is an arithmetic progression. Since �2 is Z-invariant and U is
.Z; 3/-Ramsey, there is Z 2 U such that Z � Y and �2jŒZ�3 � i . Clearly, i D 1.

Lastly, �1jŒZ�4 � 1 and �2jŒZ�3 � 1 imply that Z is 1-thin.
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A free ultrafilter U on an abelian group G is said to be a PS -ultrafilter if, for
any coloring � W G ! ¹0; 1º, there exists U 2 U such that the set PS.U / is
�-monochromatic, where PS.U / D ¹a C b W a; b 2 U; a ¤ bº. Clearly, each
selective ultrafilter on G is a PS -ultrafilter. We denote by PS.U/ a filter with the
base ¹PS.U / W U 2 Uº. The following statements were proven in [6] (see also [2,
Chapter 10]). If there exists a PS -ultrafilter on some countable abelian group, then
there is a P -point in !�. If G has no elements of order 2, then each PS -ultrafilter on
G is selective. A strongly summable ultrafilter on the countable Boolean group B is
a PS -ultrafilter but not selective. It is easy to see that an ultrafilter U on a countable
Boolean group B is a PS -ultrafilter if and only if U is B-Ramsey. Thus, a B-Ramsey
ultrafilter need not be selective, but these ultrafilters cannot be constructed in ZFC
without additional assumptions.
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