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Selective and Ramsey Ultrafilters on G -spaces

Oleksandr Petrenko and Igor Protasov

Abstract Let G be a group, and let X be an infinite transitive G-space. A free
ultrafilter U on X is called G-selective if, for any G-invariant partition & of X,
either one cell of # is a member of U, or there is a member of U which meets
each cell of # in at most one point. We show that in ZFC with no additional set-
theoretical assumptions there exists a G-selective ultrafilter on X. We describe
all G-spaces X such that each free ultrafilter on X is G-selective, and we prove
that a free ultrafilter U on w is selective if and only if U is G-selective with
respect to the action of any countable group G of permutations of w.

A free ultrafilter U on X is called G-Ramsey if, for any G-invariant coloring
X : [X]?> = {0,1}, there is U € U such that [U]? is y-monochromatic. We
show that each G-Ramsey ultrafilter on X is G-selective. Additional theorems
give a lot of examples of ultrafilters on Z that are Z-selective but not Z-Ramsey.

0 Introduction

A free ultrafilter U on an infinite set X is said to be selective if, for any partition
of X, either one cell of & is a member of U, or some member of U meets each cell
of & in at most one point. The selective ultrafilters on w = {0, 1, ...} are also known
under the name Ramsey ultrafilters (see, e.g., [1]), because U is selective if and only
if, for each coloring y : [@]?> — {0, 1} of 2-element subsets of w, there exists U € U
such that the restriction y|[[yj2 = const.

Let G be a group, and let X be a G-space with the action G x X — X,
(g,x) — gx. All G-spaces under consideration are supposed to be transitive: for
any x,y € X, there exists g € G such that gx = y. The nontransitive case needs
some extra investigation. If G = X and gx is the product of g and x in G, then X is
called a regular G-space. A partition & of a G-space X is G-invariant if gP € P
forallg € G, P € P.
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Now let X be an infinite G-space. We say that a free ultrafilter U on X is
G-selective if, for any G-invariant partition J of X, either some cell of & is a mem-
ber of U, or there exists U € U such that [P N U| < 1 for each P € &. Clearly,
each selective ultrafilter on X is G-selective.

Selective ultrafilters on w exist under some set-theoretical assumptions additional
to ZFC (say, the continuum hypothesis CH), but there are models of ZFC with no
selective ultrafilters (see [1]). In contrast to these facts, we show (Theorem 1.1)
that a G-selective ultrafilter exists on any infinite G-space X. Then we characterize
(Theorem 1.2) all G-spaces X such that each free ultrafilter on X is G-selective, and
we show (Theorem 1.3) that a free ultrafilter U on w is G-selective for any transitive
group G of permutations on w if and only if U is selective.

Fora G-space X andn > 2, acoloring y : [X]" — {0, 1} is said to be G-invariant
if, for any {x1,...,x,} € [X]" and g € G, y({x1,....x}) = x({gx1,...,8Xn}).
We say that a free ultrafilter U on X is (G, n)-Ramsey if, for every G-invariant
coloring y : [X]® — {0, 1}, there exists U € U such that y|[y}» = const. In the
case in which n = 2, we write “G-Ramsey” instead of “(G, 2)-Ramsey.”

We show (Theorem 2.1) that every G-Ramsey ultrafilter is G-selective, but the
converse statement is very far from the truth. Theorems 2.2 and 2.6 give us plenty of
ultrafilters on Z that are Z-selective but not Z-Ramsey. Moreover, we conjecture that
each Z-Ramsey ultrafilter on Z is selective. By Corollary 2.8, each (Z, 4)-Ramsey
ultrafilter is selective.

A B-Ramsey ultrafilter on the countable Boolean group B = P, Z, needs not be
selective, but a B-Ramsey ultrafilter cannot be constructed in ZFC without additional
assumptions.

1 Selective Ultrafilters

Let X be a G-space, and let xo € X. We put St(xo) = {g € G : gxo = X0} and
identify X with the left coset space G/St(xg) of G by St(x¢). If & is a G-invariant
partition of X = G/S, S = St(xg), we take Py € & such that S € Py, put
H = {g € G : g§ € Py}, and note that the subgroup H completely determines
that P: xS, yS € G/S are in the same cell of & if and only if y~!x € H. Thus,
P ={x(H/S) : x € L}, where L is a set of representatives of the left cosets of G
by H.

Theorem 1.1 For every infinite G-space X, there exists a G-selective ultrafilter
Uon X.

Proof We take xo € X, put S = St(xp), and identify X with G/S. We choose
a maximal filter ¥ on G/S having a base consisting of subsets of the form A/S,
where A is a subgroup of G such that S C A4 and |A : S| = oo. Then we take an
arbitrary ultrafilter U on G/S such that ¥ € U. To show that U is G-selective, we
take an arbitrary subgroup H of G such that S € H and consider a partition #g of
G/S determined by H.

If |[H N A: S| = oo for each subgroup A of G such that A/S € ¥, then by the
maximality of ¥ we have H/S € ¥ . Hence, H/S € U. Otherwise, there exists a
subgroup A of G suchthat A/S € ¥ and |HN A : S|isfinite, ([ HNA: S| =n. We
take an arbitrary ¢ € G and denote gH N A = Ty. If a € Ty, thena™'T, € A and
a T, € H. Hence,a 'Ty/S € AN H/S so |T,/S| < n. If x and y determine
the same coset by H, then they determine the same set 7. Then we choose U € U
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such that |U N x(H N A/S)| < 1 foreach x € G. Thus, [U N P| < 1 for each cell
P of the partition Ppg. O

Theorem 1.2 Let G be a group, let S be a subgroup of G such that |G : S| = oo,
and let X = G/S. Each free ultrafilter on X is G-selective if and only if, for each
subgroup T of G such that S C T C G, either |T : S| is finite or |G : T| is finite.

Proof = We suppose that there exists a subgroup 7" of G suchthat S C T C G and
|T : §| =o00,|G : T| = co. We pick a family {g,T : n € w} of distinct cosets of
G by T and, using the Zorn lemma, choose a maximal family U of subsets of G/S
such that, foreach U € U,

{n cw:UNguy(T/S)is inﬁnite}

is infinite. Clearly, U is an ultrafilter, and by the construction, each U € U meets
infinitely many members of the G-invariant partition & determined by 7 in infinitely
many points, so U is not G-selective.

On the other hand, if |T" : S| < oo, then the G-invariant partition & determined
by T consists of finite sets of cardinality |T : S|. If |G : T'| < oo, then & is a finite
partition. Therefore, each free ultrafilter of G/S is G-selective. O

Let G be an infinite abelian group such that, for each subgroup S of G, either § is
finite or G/ S is finite. If G has an element of infinite order, then G is isomorphic to
Z x F, where F is finite. If G is a torsion group, then G is isomorphic to Zpeo X F,
where Zp is the Priifer p-group (see [3, Section 3]) and F is finite. This is an
elementary exercise on abelian groups. Thus, the class of abelian groups G such that
each ultrafilter on G is G-selective is very narrow.

Theorem 1.3 If a free ultrafilter U on w is G-selective with respect to the action
of any transitive group G of permutations of o, then U is selective.

Proof Let & be a partition of w such that each member of & is not a member
of U.

Claim. The partition & can be partitioned = | J, ¢, P so that, foreachn € w,
|J P, is infinite and is not a member of U. If the set £’ of all finite blocks of &
is finite, then we take an arbitrary infinite block Py, put £y = {P’,{Po}}, and
enumerate all remaining infinite blocks of £ as Py, P,,.... If £’ is infinite, then
we partition P’ = £ U P| such that £ and P; are infinite. We take i € {0, 1} (say,
i = 0) such that | J £} ¢ U. Then we repeat this procedure for & and so on. After
w steps, we get a desired partition of $’. Such partition of &’ together with P \ P’
gives us the desired partition of 8.

For each n € w, we put Q, = |J&P,, take an arbitrary countable group
G = {g, : n € w}, and identify w with G x G, so that O, = {g,} X G, n € w. We
consider G x G as a regular (G x G)-space and note that the partition {Q, : n € w}
of G x G is (G x G)-invariant. Since U is (G x G)-selective, there exists U € U
such that |U N Q| < 1 for each n € w. By the construction of Q,, |U N P| <1 for
each P € #. Hence, U is selective. O

2 Ramsey Ultrafilters

Theorem 2.1 For a G-space X, each G-Ramsey ultrafilter on X is G-selective.
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Proof Let # be a G-invariant partition of X. We define a coloring y : [X]* —
{0, 1} by the following rule: y({x, y}) = 0if and only if x, y are in the same cell of
the partition &. Since & is G-invariant, y is also G-invariant. We take U € U such
that y|jyj2 = i for some i € {0,1}. If i = 0 and x € U, then U is contained in the
block P of & such that x € P. If i = 1, then U meets each block of & in at most
one point. Hence, U is G-selective. O

Let G be a group with the identity e. Each G-invariant 2-coloring of the regular
G-space can be described as follows. We say that a coloring y’ : G \ {e} — {0,1}
is symmetric if y'(x) = y'(x~!) for each x € G \ {e}. Then we put y({x,y}) =
¥ (x~1y) and note that y({gx,gy}) = x({x,y}) forall {x,y} € [G]? and g € G.
On the other hand, if a coloring y : [G]> — {0, 1} is G-invariant, then the coloring
x G\ {e} = {0,1}, ¥’ (x) = x({e, x}) is symmetric and uniquely determines .

We fix an arbitrary linear ordering < of G and, for each subset U of G, put
DWU) ={x"'y : x,y € U x < y)}. For an ultrafilter U on G, we define a family
D(U) of subsets of G by

VeDU) < 3IUeU: DU)CV.

We also use the product VU of ultrafilters on G defined as follows (see [4, Chap-
ter 4]). We take an arbitrary V' € 'V and, for each g € V, pick U; € U. Then
Uger gUg is a member of VU, and each member of the ultrafilter VU contains a
subset of this form. We denote U™! = {U~!: U e U}, U ' ={g7 ' : g € U}.

Theorem 2.2 Let < be the natural linear ordering of Z, let ZV = {z € Z.: z > 0},
and let U be a free ultrafilter on Z such that ZV € U. Then the following statements
hold:
(i) DU € (-U) +U;
(ii) U is Z-Ramsey if and only if D(U) = (—U) + U and if and only if D(U) is
an ultrafilter.

Proof (i) We take an arbitrary U € U such that U € Z%. For each z € U, put
Uiz)={xeU:x >z} Then D(U) = J,cy(—2z + U(2)). Since U(z) € U, by
the definitions of —U and (—U) + U, we have D(U) C (—U) + U.

(ii) We assume that U is Z-Ramsey and take U € U, U < 7% . Foreachz € U,
we pick an arbitrary U, € U such that z < x for each x € U. Then we put
W = U,ey(—z + Uz) and define a symmetric coloring x' : Z \ {0} — {0,1}.
If x € WU (=W), then we put y’(x) = 0; otherwise, y'(x) = 1. We take
a coloring y : [Z]> — {0,1} determined by y’. Since U is Z-Ramsey, there is
V e U,V C U, such that )(|[V]2 = { for some i € {0, 1}. By the definition of y’/,
i =0and D(V) C W. Hence, W € D(U) so (—U) + U € D(U). By part (i),
DU C (WU + Uso D(U) =(-U) + U.

On the other hand, let D(U) = (—U) + U. We consider an arbitrary symmetric
coloring y’ : Z \ {0} — {0, 1} and denote by y the corresponding coloring of [Z]?.
Since (—U) + U is an ultrafilter, there is W € (—=U) + U, W < Z™, such that
x'lw =1i,i €{0,1}. We take V' € U such that D(V)) € W. Then x|y =i so U
is Z-Ramsey. O

Let G be a discrete group. The Stone—-Cech compactification 8G of G can be identi-
fied with the set of all ultrafilters on G, and SG with the above-defined multiplication
is a semigroup which has the minimal ideal K(B8G) (see [4, Chapter 6]).
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Corollary 2.3 Each ultrafilter U from the closure cl K(BZ) is not Z-Ramsey.

Proof On the contrary, we suppose that some ultrafilter U € cl K(BZ) is
Z-Ramsey. Since U € cl K(BZ), by [2, Corollary 5.0.28], for every U € U,
there exists a finite subset K of Z such that Z = K + U — U. We note that
U—-U = D) U (—=D(U)) U {0}. Now we partition ZT = Zo U Z,

Zo= > 2", Zi=7%\ 2,
new
and applying Theorem 2.2(ii), choose U € U and i € {0, 1} such that D(U) < Z;.
Clearly, F + U — U # Z for each finite subset F' of Z. Hence, U ¢ K(BZ) and we
get a contradiction. O

We say that a free ultrafilter U on an abelian group G is a Schur ultrafilter if, for
any U € U, there are distinct x, y € U such that x + y € U. We note that each
idempotent of BZ \ Z is a Schur ultrafilter.

Corollary 2.4 Each Schur ultrafilter U on 7Z is not Z-Ramsey.

Proof  On the contrary, we suppose that U is Z-Ramsey and Z € U. Since U is a
Schur ultrafilter, by Theorem 2.2, D(U) = U = —U + U. By [4, Corollary 13.19],
(—U) + U # U for every free ultrafilter U on Z. O

A free ultrafilter U on Z is called prime if U cannot be represented as a sum of two
free ultrafilters.

Corollary 2.5 Every Z-Ramsey ultrafilter on Z is prime.

Proof  We need two auxiliary claims.

Claim 1. If U,V are free ultrafilters and U + 'V is Z-Ramsey, then D(U + V) =
D(U) = D('V); in particular (see Theorem 2.2), U and V are Z-Ramsey.

Let W=U+V,UeUVreV,xecU,and W = [J,cy X + Vx. To see
that D(V) = D(W),wefixx e Uandput Vy ={y e V:y > x} . If y1,y2 € Vx
and y» > yp, then y» — y1 = (x + y2) — (x + y1), so D(Vx) € D(W) and
D(W) = D(V), because D('W) is an ultrafilter.

To show that D(U) = D(W), we take x1, x2 € U, x1 < X3, and pick an arbitrary
y eV NVy,. Since x —x1 = (x2+y)—(x1+y)andx; +y,xo +y € W,
DWU) <€ D(W)so D(W) = D(U).

Claim 2. If ‘W is Z-Ramsey, then ‘W is a right cancellable element of the semi-
group BZ.

If not, by [4, Theorem 8.18], W = U + W for some idempotent U. By Claim 1,
U is Z-Ramsey, which contradicts Corollary 2.4.

Lastly, suppose that some Z-Ramsey ultrafilter W is represented as W = U + V.
Applying Theorem 2.2 and Claim 1, we get D(W) = D(U) = D(V) and

DW)=W+EEV)+U+YV,  DV)=EV)+V,
D(U) = (-U) + U.
By Claim 2, (=U) + (=V) + U = (=7V). It follows that Z* € U if and only if

Zt ¢ V. On the other hand, (—U) + U = (=V) + V. So, Z* € U if and only if
7+ € V. Hence, W is prime. O
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We do not know whether every Z-Ramsey ultrafilter U is strongly prime, that is, U
does not lie in the closure of the set Z* + Z*. A free ultrafilter U on a group G is
strongly prime if and only if some member of U is sparse. A subset S of an infinite
group G is called sparse (see [5]) if, for every infinite subset X of G, there exists a
finite subset ' C X such that (), g5 is finite.

Following [6], we say that a subset A of a group G is k-thin, k € N, if

|gAn A <k
for each g € G \ {e}. Clearly, each k-thin subset is sparse.

Theorem 2.6  Let U be a Z-Ramsey ultrafilter on Z, Z+ € U. If there exists a
1-thin subset A of G such that A € U, then U is selective.

Proof ~We fix an arbitrary coloring ¢ : [Z]> — {0,1} and define a symmetric
coloring y' : Z \ {0} — {0, 1} as follows. If g € Z \ {0} and there are a,b € A,
a < b, such that g = b — a, then we put '(g) = x'(—g) = ¢({a, b}). Otherwise,
x'(g) = x'(—g) = 1. There is at most one such pair, because A is 1-thin. Then we
consider the coloring y : [Z]?> — {0, 1} determined by y’. Since U is Z-Ramsey,
there exists U € U, U C A, such that )(|[U]2 = const. By the construction of y, we
have y|y2 = ¢ljy2- Thus, ¢|[y2 = const and U is selective. O

We recall that a free ultrafilter U on Z is a Q -point if, for every partition & of Z into
finite cells, there is a member of & which meets each cell in at most one point.

Corollary 2.7 If a free ultrafilter U on 7Z is Z-Ramsey and a Q-point, then U is
selective.

Proof  To apply Theorem 2.6, it suffices to show that every Q-point U has a 1-thin
set. We suppose that Z* € U, use the partition ZT = Z U Z; from Corollary 2.3,
and take i € {1,2} and U € U such that U meets each cell 2,27 ") of Z; in at
most one point. Clearly, U is 1-thin. O

We do not know if each P-point in Z* is Z-Ramsey. Recall that U is a P -point if,
for every partition & of Z, either some cell of & is a member of U, or there exists
U € U such that U N P is finite for each P € P.

In the proof of the next corollary, we use the following observation: if U is
(Z,n)-Ramsey and m < n, then U is (Z, m)-Ramsey. Indeed, every Z-invariant
coloring y : [Z]™ — {0, 1} defines a Z-invariant coloring y’ : [Z]" — {0, 1} by the
following rule: ' ({x1,...,xn}) = x({x1,...,xXm}).

Corollary 2.8 Each (7., 4)-Ramsey ultrafilter U on Z is selective.

Proof Since U is (Z, 2)-Ramsey, to apply Theorem 2.6, it suffices to find a 1-thin
member of U.

We define a coloring yx : [Z]* — {0, 1} by the following rule: y;(F) = 0 if and
only if there is a numeration F' = {x, y,z,¢} such that x + y = z + ¢. Since y; is
Z-invariant, there is Y € U such that y; |[Y]4 = {. Since A is infinite, i = 1.

Then we define a coloring y» : [Z]> — {0, 1} by the following rule: y,(F) = 0
if and only if F is an arithmetic progression. Since y, is Z-invariant and U is
(Z, 3)-Ramsey, there is Z € U such that Z C Y and y2|;z3 = i. Clearly,i = 1.

Lastly, x1|;z+ = 1 and y2[z;3 = 1 imply that Z is 1-thin. O
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A free ultrafilter U on an abelian group G is said to be a PS-ultrafilter if, for
any coloring y : G — {0, 1}, there exists U € U such that the set PS(U) is
x-monochromatic, where PS(U) = {a + b : a,b € U,a # b}. Clearly, each
selective ultrafilter on G is a PS-ultrafilter. We denote by PS(U) a filter with the
base {PS(U) : U € U}. The following statements were proven in [6] (see also [2,
Chapter 10]). If there exists a PS-ultrafilter on some countable abelian group, then
there is a P-point in w*. If G has no elements of order 2, then each P S-ultrafilter on
G is selective. A strongly summable ultrafilter on the countable Boolean group B is
a PS-ultrafilter but not selective. It is easy to see that an ultrafilter U on a countable
Boolean group B is a PS-ultrafilter if and only if U is B-Ramsey. Thus, a B-Ramsey
ultrafilter need not be selective, but these ultrafilters cannot be constructed in ZFC
without additional assumptions.
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