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Combinatorial Unprovability Proofs and Their
Model-Theoretic Counterparts
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Abstract For a function f with domain ŒX�n, where X � N, we say that
H � X is canonical for f if there is a � � n such that for any x0; : : : ; xn�1
and y0; : : : ; yn�1 in H , f .x0; : : : ; xn�1/ D f .y0; : : : ; yn�1/ iff xi D yi for
all i 2 � . The canonical Ramsey theorem is the statement that for any n 2 N,
if f W ŒN�n ! N, then there is an infinite H � N canonical for f . This paper
is concerned with a model-theoretic study of a finite version of the canonical
Ramsey theorem with a largeness condition and also a version of the Kanamori–
McAloon principle. As a consequence, we produce new indicators for cuts satis-
fying PA.

1 Introduction

We begin by recalling some notions and definitions. If X is a set and n is a natural
number, then ŒX�n denotes the collection of subsets of X of cardinality n. We will
identify a natural number n with the set ¹0; : : : ; n � 1º. Also we shall use N to
denote the set of natural numbers as well as its cardinality, in the arrow notation
below. If n, k, and c are either N or elements of N, X ! .k/nc means that whenever
f W ŒX�n ! c there isH � X with jX j � k such that f is constant on ŒH �n. In this
case we say that H is homogeneous for f . Using these definitions we can state the
infinite Ramsey theorem and its finite version as follows (see [15]).

Theorem 1.1 For any n; c 2 N, N! .N/nc .

Theorem 1.2 For any n; c; k 2 N, there is an m 2 N such that m! .k/nc .

Note that the infinite Ramsey theorem is a statement in the second-order language
of arithmetic while the finite Ramsey theorem can be formulated in the first-order
language of arithmetic and is provable in Peano arithmetic (for more information see
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Kaye [9]). Let us recall a variant of Theorem 1.2, the Paris–Harrington principle.
A set H � N is called relatively large if jH j � min.H/. The notation X !� .k/nc
means that in addition the homogeneous set is relatively large. The Paris–Harrington
principle (denoted PH) is the following statement:

For any n; c; k 2 N, there is an m 2 N such that m!� .k/nc .

Paris and Harrington [14] showed the following.

Theorem 1.3 PH is not provable in PA.

Another important PA-unprovable statement was introduced by Kanamori and
McAloon [8]. Let X ! .k/nreg mean that whenever f W ŒX�n ! N is regressive,
that is, f .x1; : : : ; xn/ � x1 for all x1 < � � � < xn from X , then there is H � X

with cardinality k such that for all x1 < � � � < xn from H , f .x1; : : : ; xn/ only
depends on x1. SuchH is called min-homogeneous for f . The Kanamori–McAloon
principle (denoted KM) is the following statement:

For any n; k 2 N, there is an m 2 N such that m! .k/nreg.

Kanamori and McAloon [8] showed the following.

Theorem 1.4 KM is not provable in PA.

It is worth mentioning that PH and KM are indeed equivalent and that the equivalence
can be proved purely combinatorially. There are many other well-known examples of
unprovable statements in the literature. For more information and a discussion and
some recent results in the subject we refer the reader to Bovykin [1], [2].

Let us now recall a more general phenomenon, Weiermann’s phase-transition pro-
gram. It is interested in the transition from provability to unprovability of a given as-
sertion by varying a threshold parameter. For the functionF.x/, let PHF be the state-
ment similar to PH when we replace the largeness condition by jH j � F.min.H//.
Hence the Paris–Harrington theorem implies that PHid is not provable in PA. Weier-
mann [17] extended this theorem by considering some more functions. The binary
length ji j of a natural number i is defined by ji j D dlog.i C 1/e. The d -times iter-
ated length function j � jd is defined recursively as jxj0 D x and jxjdC1 D jjxjd j.
Furthermore, let H�1˛ be the inverse function of the ˛th member H˛ of the Hardy
hierarchy. Weiermann classified those functions F for which the statement PHF is
not provable in PA as follows (see [17]).

Theorem 1.5 Let f˛.i/ D ji jH�1
˛ .i/. Then for ˛ � "0, PHf˛ is not provable in

PA iff ˛ D "0.

Related results for a fixed dimension can be found in [19].
We now mention the phase transition threshold for the Kanamori–McAloon prin-

ciple. Let KMF be the statement similar to KM when we replace the condition
f .x1; : : : ; xn/ � x1 by f .x1; : : : ; xn/ � F.x1/. Hence the Kanamori–McAloon
theorem implies that KMid is not provable in PA. Moreover, we let KMn

F be the re-
striction of KMF to the fixed exponent n. Lee found the following results (see [10]).

Theorem 1.6 Let f˛.i/ D ji jH�1
˛ .i/ and gd .i/ D ji jd .

(1) For ˛ � "0, KMf˛ is not provable in PA iff ˛ D "0.
(2) KMdC1

f˛
is provable in I†d for any ˛ < !dC1.
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(3) KMdC1
gd

is provable in I†1.
(4) KMdC1

gd�2
is not provable in I†d .

Let F �1˛ be the inverse function of the ˛th member F˛ of the fast-growing hierarchy.
In [5] the gap between .3/ and .4/ of Theorem 1.6 was closed.

Theorem 1.7 Let f d˛ .i/ D b
F�1
˛ .i/
p
ji jd c. Then KMdC1

f d�1
˛

is provable in I†d iff
˛ < !d .
Note that [4] contains some progress concerning regressive functions. It may be
worth mentioning that the phase-transition results are not limited to the PH and KM.
For a discussion in general we refer the reader to two classical papers [16] and [18]
by Weiermann.

The canonical Ramsey theorem [7] is a generalization of Theorem 1.1 and the
Kanamori–McAloon principle with no restrictions on the number of colors or re-
gressiveness of coloring. If the function f has domain ŒX�n, where X � N, we say
thatH � X is canonical for f if there is a � � n satisfying the following condition:
for any x0; : : : ; xn�1 and y0; : : : ; yn�1 in H , f .x0; : : : ; xn�1/ D f .y0; : : : ; yn�1/

iff xi D yi for all i 2 � . We shall write � D �.H/ when � makes H canonical.
The canonical Ramsey theorem of Erdös and Rado [7] is the following statement.
Theorem 1.8 For any n 2 N, if f W ŒN�n ! N, there is an infinite H � N
canonical for f .
Using the tools of computability theory and reverse mathematics, Mileti [12] studied
the effective content of the canonical Ramsey theorem of Erdös and Rado and its re-
lation to the effective content of König’s lemma and Ramsey’s theorem. He analyzes
the complexity of the solutions to computable instances of this problem in terms of
the Turing degrees and the arithmetical hierarchy and gives a sharp characterization
for the canonical Ramsey theorem for exponent 2.

In [3] Bovykin and Weiermann conduct a model-theoretic investigation of the
canonical Ramsey theorem for exponent 2. Their results approximate the logical
strength of this principle by the strength of its finite iterations known as density
principles. Moreover, they give a characterization of strong cuts in terms of the
canonical Ramsey theorem. Finally they notice that over RCA0, the set of first-order
consequences of the canonical Ramsey theorem for exponent 2 coincides with PA.

The finite version of the canonical Ramsey theorem with a largeness condition
was first considered by Carlucci and Weiermann [6]. The notation X

can
!� .k/

n

means that whenever f has domain ŒX�n, there is a subset H � X with cardinality
jH j � max¹min.H/; kº such that H is canonical for f . The canonical Ramsey
theorem with a largeness condition (denoted ERL) is the following statement:

For any n; k 2 N, there is an m 2 N such that m
can
!� .k/

n.
The Carlucci–Weiermann combinatorial proof which is an adaptation of a proof in
[11] shows that the ERL implies the Paris–Harrington principle PH. Let ERLn.k/ be
the Erdös–Rado numbers by considering a largeness condition, where n is the expo-
nent and k is the size of the canonical set. Similarly, PHnc .k/ will denote the Paris–
Harrington numbers, where n is the exponent, c is the number of colors, and k is the
size of the large homogeneous set. Here is the combinatorial proof of ERL ! PH
copied from the manuscript by Carlucci and Weiermann [6]. It is done by showing
that PHnk�n.k/ � N D ERLn.k/, for any k > n. Let f W ŒN �n ! k � n be
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given. By definition, there exists H � N of size max¹k;min.H/º which is canon-
ical for f with the index set � . We shall prove � D ;. If i 2 � , then writing H as
¹x1; : : : ; xk ; : : :º, the values

f .x1; : : : ; xi�1; xi ; : : : ; xn/;

f .x1; : : : ; xi�1; xiC1; : : : ; xnC1/;

:::

f .x1; : : : ; xi�1; xiC.k�n/; : : : ; xk/;

should all be distinct, which is not the case. Hence � D ;, and soH is homogeneous
for f . The above argument shows that ERL is not provable in PA. Indeed, Carlucci
and Weiermann studied the parameterized version of ERL. Let ERLF be the state-
ment similar to ERL when we replace the largeness condition by jH j � F.min.H//.
The following result was obtained in [6].

Theorem 1.9 Let f˛.i/ D ji jH�1
˛ .i/.

(1) For ˛ � "0, ERLf˛ is not provable in PA iff ˛ D "0.
(2) ERL2

Ack�1.i/
p
iC2

is not provable in I†1.

In this paper, we first provide a model-theoretic framework for thinking about the
canonical Ramsey theorem and produce a new indicator for models of PA. As a
corollary, we get the Carlucci–Weiermann unprovability result. Then in Section 3,
we study the model-theoretic treatment of a version of the Kanamori–McAloon prin-
ciple. Again, as a consequence we have new indicators for models of PA and I†n
for each n 2 N.

2 On the Canonical Ramsey Theorem with a Largeness Condition

In this section, we study the finite version of ERL from a model-theoretic point of
view. To produce an indicator for models of PA, we use the following simple lemma.
As usual Œa; b� denotes the set ¹a; aC 1; : : : ; b � 1; bº.

Lemma 2.1 Let ŒaCm; b�
can
!� .k/

n, and let g be a function with domain ŒŒa; b��n.
Then there existsH which is canonical for g and jH j � max¹k;min.H/Cmº.

Proof Define the function f with domain ŒŒaCm; b��n by
f .x1; : : : ; xn/ D g.x1 �m; : : : ; xn �m/:

LetH0 be canonical for f with jH0j � max¹k;min.H0/º. Then the setH D H0 �
m D ¹h �m W h 2 H0º is canonical for g and we have jH j D jH0j � min.H0/ D
min.H/Cm.

We now turn to the set C which constitutes a set of diagonal indiscernibles for
all �0-formulas in the language of arithmetic. Below r.e/ is the Ramsey number
R.2e C 1; e C 2; 3e C 1/.

Lemma 2.2 Let M ˆ I†1 be nonstandard. Suppose that for nonstandard ele-
ments e1 � a1 inM there exists b 2M such that Œa1; b�

can
!� .2e1/

e1 . Then there is a
cut I < M such that e1; a1 < I < b and I ˆ PA C:8n; x; z9y.Œx; y�

can
!� .z/

n/.

Proof By overspill, let e be nonstandard with r.e/ C 2e � 2e1. Hence
e1 � 5e C 1 > 4e C 1, and if we let a D a1 � .4e C 1/, then a � e and so
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a is nonstandard. Then clearly ŒaC 4e C 1; b�
can
!� .r.e/C 2e/

4eC1. Let

'1.z; x1; x2; : : : ; xe/; : : : ; 'e.z; x1; x2; : : : ; xe/

be the first e �0-formulas in at most the free variables shown. By Lemma 2.1
and the assumption, let b 2 M be minimal such that for every function g

with domain ŒŒa; b��4eC1, there exists a g-canonical set H � Œa; b� such that
jH j � max¹r.e/C 2e;min.H/C 4eC 1º. We shall build a model of PA between a
and b.

First define a function i W ŒŒa; b��2eC1 ! e C 2 as follows. For c < d1 < d2 in
Œa; b�, put

i.c; d1; d2/ D min i � e9p < c
�
'i .p; d1/ ½ 'i .p; d2/

�
;

if such i exists, and put e C 1 otherwise. Informally, i.c; d1; d2/ is the first formula
with a parameter smaller than c that distinguishes the tuples d1 and d2.

Define another function p W ŒŒa; b��2eC1 ! b as follows:

p.c; d1; d2/ D minp < c
�
'i.c;d1;d2/.p; d1/ ½ 'i.c;d1;d2/.p; d2/

�
;

if i.c; d1; d2/ ¤ eC 1 and c otherwise. The value p.c; d1; d2/ is the first parameter
p with which 'i.c;d1;d2/ distinguishes d1 and d2.

Now let us introduce our coloring g W ŒŒa; b��4eC1 ! b as follows:

g.c; d1; d2; d3; d4/ D

´
0 if p.c; d1; d2/ D p.c; d3; d4/;
j C 1 if j D p.c; d1; d2/ ¤ p.c; d3; d4/:

Note that g.c; d1; d2; d3; d4/ � c. Let H0 � Œa; b� be a canonical set for g with
� D �.H0/ such that jH0j � r.e/C 2e and jH0j � min.H0/C 4e C 1. We now
show that either � D ; or � D ¹0º. Suppose to the contrary that � contains some
i ¤ 0. WritingH0 as ¹x0; x1; : : : ; xx0C4eC1; : : :º, we have that

g.x0; : : : ; xi�1; xi ; : : : ; x4e/;

g.x0; : : : ; xi�1; xiC1; : : : ; x4eC1/;

:::

g.x0; : : : ; xi�1; xiCx0C1; : : : ; x4eCx0C1/

are as many as x0C2 distinct values for g, contradicting g.x0; : : : ; x4e/ � x0. Hence
either � D ; or � D ¹0º. Notice that if � D ;, thenH0 is homogeneous for g. Also,
¹0º-canonicity is stronger than min-homogeneity since it has “if and only if” in the
definition, while min-homogeneity has “only if.” Let z1; z2; : : : ; z2e be the last 2e
elements ofH0, and setH D H0 � ¹z1; z2; : : : ; z2eº. Then

jH j � max
®
r.e/;min.H0/C 2e C 1

¯
D max

®
r.e/;min.H/C 2e C 1

¯
:

Let j D g.c; d1; d2; z1; : : : ; z2e/, for c < d1 < d2 arbitrary elements ofH . Then
p.c; d1; d2/ D p.c; z1; : : : ; z2e/ if j D 0 and p.c; d1; d2/ D j � 1, if j ¤ 0. Thus
p.c; d1; d2/ is independent of d1 and d2 because j is constant or j only depends on
c in the cases whereH0 is homogeneous or min-homogeneous for g, respectively.

Since jH j � r.e/, there is a set C � H of 3e C 1 points c0 < c1 < � � � < c3e in
H such that for any two .2e C 1/-tuples c < d1 < d2 and c0 < d 01 < d 02 in C , we
have i.c; d1; d2/ D i.c0; d 01; d

0
2/. If the value of i on ŒC �2eC1 is i ¤ e C 1 taking
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p D p.c0; c1; : : : ; ce/ D p.c0; ceC1; : : : ; c2e/ D p.c0; c2eC1; : : : ; c3e/, we see that
the three formulas

'i .p; c1; : : : ; ce/;

'i .p; ceC1; : : : ; c2e/;

'i .p; c2eC1; : : : ; c3e/

are inequivalent in pairs, which is impossible since we have only two truth values.
Hence i has constant value e C 1 on ŒC �2eC1. So we can conclude that the set
C 0 D ¹c0; : : : ; c2eº is our desired set of diagonal indiscernibles; that is, for any stan-
dard�0-formula '.z; x1; : : : ; xn/, any c 2 C 0, any d1 < � � � < dn and e1 < � � � < en
above c, and any p < c, we have

'.p; d1; : : : ; dn/$ '.p; e1; : : : ; en/:

Now we can repeat the usual argument that the cut I D supk2N ck is a model of PA.
Note that since e < c0 2 I , then e 2 I , and so 4e C 1, a C 4e C 1, and r.e/C 2e
are in I , and hence e1; a1 2 I . Moreover, sinceM 6ˆ 9y < b.Œa1; y�

can
!� .2e1/

e1/

by �0-absoluteness, I 6ˆ 9y < b.Œa1; y�
can
!� .2e1/

e1/, and so

I ˆ PA C:8n; x; z9y
�
Œx; y�

can
!� .z/

n
�
:

Using Lemma 2.2, we model-theoretically reproved the Carlucci–Weiermann un-
provability result.

Corollary 2.3 We have PA ° 8n; x; z9y.Œx; y�
can
!� .z/

n/.

We then recall a lemma from [9].

Lemma 2.4 (see [9]) Suppose that e 2 M ˆ PA, n ¤ 0, A � M is a cofinal
definable subset of M , and F W ŒA�n ! e is a definable function. Then there is a
definable subset B � A, cofinal inM , such that F is constant on ŒB�n.

We shall prove a similar result for the canonical Ramsey theorem by modifying the
original proof of Erdös and Rado [7]. Let Ai and Bi be finite sets. Recall that
A1 W A2 W � � � W Am D B1 W B2 W � � � W Bm means that there exists a function f .x/
defined for x 2 A1 [ � � � [ Am, which has the following properties. If x < y, then
f .x/ < f .y/, and for each i , 1 � i � m, Bi D ¹f .x/ W x 2 Aiº.

Lemma 2.5 Suppose that M ˆ PA, 0 ¤ n 2 N, X � M is a cofinal de-
finable subset of M , and F is a definable function with domain ŒX�n. Then there
is a definable subset H � X , cofinal in M and canonical for F . In particular,
PA ` 8x; z9y.Œx; y�

can
!� .z/

n/.

Proof The proof is by induction on n. Let n D 1. If F W X ! e for some
e 2 M , then by Lemma 2.4 there is H � X cofinal in M and homogeneous
for F . Then H is canonical for F with � D ;. If F.X/ is cofinal in M , let
H D ¹x 2 X W 8y < x.F.x/ ¤ F.y//º. Then H � M is cofinal and F is
one-to-one on H . So H is canonical for F with � D ¹1º. Now let n > 1. Fix
D0 D ¹1; : : : ; 2nº, and define the new function G W ŒX�2n ! P .ŒD0�

n � ŒD0�
n/

as follows. For A � X with jAj D 2n, let G.A/ D ¹.D0;D00/ W 9A0; A00 2 ŒA�n;
F .A0/ D F.A00/; A0 W A00 W A D D0 W D00 W D0º. Then by Lemma 2.4, there is
a definable subset H � X , cofinal in M , such that G is constant on ŒH �2n. We
first claim that for A;B;C;D 2 ŒH �n if F.A/ D F.B/ and A W B D C W D,
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then F.C/ D F.D/. Let E1 and E2 be elements of ŒH �2n with A [ B � E1,
C [ D � E2, and A W B W E1 D C W D W E2. Note that E1 and E2 always
exists and G.E1/ D G.E2/. Let A W B W E1 D D0 W D00 W D0. Then since
F.A/ D F.B/, .D0;D00/ 2 G.E1/ and so .D0;D00/ 2 G.E2/. Hence there exist
subsets B 0; B 00 � E2 such that B 0 W B 00 W E2 D D0 W D00 W D0 D C W D W E2
and F.B 0/ D F.B 00/. Then clearly F.C/ D F.D/ since B 0 D C and B 00 D D,
completing the proof of our claim. We now consider two cases as follows.

Case 1. Suppose that F.A/ D F.B/ only holds if A D B . Then H is canonical
for F with � D ¹1; : : : ; nº since F.x1; : : : ; xn/ D F.y1; : : : ; yn/ iff xi D yi for all
i 2 � .

Case 2. Let there exist A0 and B0 in ŒH �n such that A0 ¤ B0 and
F.A0/ D F.B0/. Writing H as ¹h0; h1; : : :º, let A1 D ¹h2i W hi 2 A0º and
B1 D ¹h2i W hi 2 B0º. Now choose hi0 2 B0 � A0, and set B2 D B1 � ¹h2i0º [

¹h2i0C1º. Then F.A1/ D F.B1/ D F.B2/ since A0 W B0 D A1 W B1 D A1 W B2
and F.A0/ D F.B0/. Let H 0 D ¹h2i W hi 2 H º. Then define the function K
with domain ŒH 0�n�1 as follows. For A 2 ŒH 0�n�1 let K.A/ D F.A [ ¹xº/, where
A W A [ ¹xº D B0 � ¹hi0º W B0. Note that K is well defined, since if x; y 2 H and
A W A [ ¹xº D A W A [ ¹yº D B0 � ¹hi0º W B0, then A [ ¹xº W A [ ¹yº D B1 W B2
and so F.A [ ¹xº/ D F.A [ ¹yº/. In other words,

F.x1; : : : ; xn/ D K.x1; : : : ; xj�1; xj ; : : : ; xn/;

where ¹x1; : : : ; xj�1; xjC1; : : : ; xnº W ¹x1; : : : ; xnº D B0 � ¹hi0º W B0. By the
induction hypothesis, there is a subset H 00 � H 0, cofinal in H 0 and canonical for K
with � D �.H 00/. Then for x1; : : : ; xn and y1; : : : ; yn inH 00,

F.x1; : : : ; xn/ D F.y1; : : : ; yn/

” K.x1; : : : ; xj�1; xjC1; : : : ; xn/ D K.y1; : : : ; yj�1; yjC1; : : : ; yn/

” xi D yi ; for each i such that .i 2 � ^ i < j / _ .i > j ^ i � 1 2 �/:

So H 00 is canonical for F with � 0 D ¹i W i < j; i 2 �º [ ¹i C 1 W i > j; i 2 �º.
For the proof of second part, it is enough to follow the proof of [9, Lemma 14.15].
Indeed by the first part, we can find the canonical setH for F with � D �.H/. Then

fh0.x1; : : : ; xnC1/ D fh0.y1; : : : ; ynC1/

” F.x1; : : : ; xn; h0/ D F.y1; : : : ; yn; h0/

” xi D yi ; for each i in � � ¹nC 1º:

ThenH is canonical for fh0 with � 0 D � � ¹nC 1º and jH j � min.H/.

Note that Lemma 2.5 follows from known facts: either from equivalence with the
Ramsey theorem that translates homogeneity and canonicity or by Mileti’s analysis.
Above, we wrote the model-theoretic version. Also note that in a model of PA the
canonical sets are definable when you fix dimension and the reader may prove the
main statement of Lemma 2.5 via the Ramsey theorem.

Let a; b 2 M ˆ PA, and let a < I < b for I ˆ PA and I < M . Then by
Lemma 2.5, I ˆ 9y.Œa; y�

can
!� .2n/

n/ for all n 2 N. So

M ˆ 9y < b
�
Œa; y�

can
!� .2n/

n
�
;
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for all n 2 N; hence by overspill,

M ˆ 9y < b
�
Œa; y�

can
!� .2e/

e
�
;

for some nonstandard element e, and hence

M ˆ Œa; b�
can
!� .2e/

e:

It may be worth mentioning here that there are more colorings encoded in M than
are definable in I , and in the definition of an indicator we only consider M -coded
colorings. However since I is closed under exponentiation, I and M encode the
same colorings of a segment that is bounded in I .

We can now apply Lemma 2.2 to get an indicator for models of PA. Indeed we
have the following theorem.

Theorem 2.6 The function

Y.a; b/ D max e
�
Œa; b�

can
!� .2e/

e
�

is an indicator for models of PA. Moreover, the function �a.n/ D the least m such
that Œa;m�

can
!� .2n/

n is not provably total in PA and eventually dominates every
provably recursive function of PA.

3 On a Version of the Kanamori–McAloon Principle

In this section we will study the model-theoretic treatment of a version of the
Kanamori–McAloon principle. We model-theoretically show that this version, de-
noted by KMj , is not provable in PA. Then we discuss the unprovability results for
a fixed exponent. These results will give new indicators for models of PA and I†n,
respectively. Let us now introduce the statement KMj as follows. For all n and k
there exists m such that whenever f is j -regressive, that is, f .x1; : : : ; xn/ belongs
to Œxj�1; xj �, then there is a set H � m with jH j � k such that the values of f on
H depend only on x1; : : : ; xj . We use the notation m ! .k/nj -reg for this statement
and say that H is j -homogeneous. Thus for any x1 < � � � < xn and y1 < � � � < yn
in H , if for all i with 1 � i � j , xi D yi , then f .x1; : : : ; xn/ D f .y1; : : : ; yn/.
Another relative statement denoted by KM0j would be the following. For all n and k
there exists m such that whenever f .x1; : : : ; xn/ � xj , then there is a set H � m

with jH j � k such that the values of f on H depend only on x1; : : : ; xj . Clearly
KM0j implies KMj . We now show that KMj implies KM. Let f W ŒŒa; b��n ! b be
regressive. Then define the function g W ŒŒa; b��nCj ! b by

g.x1; : : : ; xnCj / D

8̂<̂
:
f if f � xj�1;
xj�1 C f if f < xj�1 & 2xj�1 � xj ;

xj otherwise;

where f D f .xj ; xjC1; : : : ; xnCj / � xj . Then g.x1; : : : ; xnCj / 2 Œxj�1; xj �,
and so there exists H0 � Œa; b� such that jH0j � k C j � 1 and the values of g
on H0 depend on x1; : : : ; xj . We can assume that for x < y both in H0 we have
2x < y (see Remark 3.2 and Lemma 3.3). Let z1 < � � � < zj�1 be the first j � 1
elements of H0. Let H1 D H0 � ¹z1; : : : ; zj�1º. Then jH1j � k and for any
x1 < x2 < � � � < xn and x1 < y2 < � � � < yn inH1, we have

f .x1; x2; : : : ; xn/ D f .x1; y2; : : : ; yn/
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since g.z1; : : : ; zj�1; x1; x2; : : : ; xn/ D g.z1; : : : ; zj�1; x1; y2; : : : ; yn/, that is, H1
is min-homogeneous for f .

Note here that for a j -regressive function f we cannot guarantee the existence of
a set H such that the values of f on H depend only on xj�1 and xj . To see this,
define the function f W ŒN�4 ! N by f .x1; x2; x3; x4/ D x2 C Œ

x1
x1C1

.x3 � x2/�.
Then clearly f .x1; x2; x3; x4/ 2 Œx2; x3�. Let H D ¹a; b; c; : : : ; d; : : : ; e; : : :º � N
be infinite, and let .d � c/. b

bC1
�

a
aC1

/ > 1. Then Œ a
aC1

.d � c/� < Œ b
bC1

.d � c/�,
and so f .a; c; d; e/ < f .b; c; d; e/.

On the other hand, suppose that f .x1; : : : ; xn/ 2 Œxi ; xj � for some i; j with
1 � i < j � n. Then the values of f on a set H cannot be independent of any
xk with i � k � j ; a simple counterexample is the function f .x1; : : : ; xn/ D xk .
Similarly, for a function f with f .x1; : : : ; xn/ � xj the values of f cannot be in-
dependent of each xk with 1 � k � j . For the infinite case KMj and KM0j are the
weakest and the strongest cases, respectively. On the surface the modifications of KM
look too similar to KM itself. Actually, since there is dependence on j -coordinates,
the relation is not that close and they are different enough to study here.

Let us now recall the regressive functions �1, �2, and �3 from [8]. Let �1.x; y/
be 0 if x C x � y and be y � x otherwise. Also define �2.x; y/ D 0 if x:x � y
and �2.x; y/ D u otherwise where u:x � y < .u C 1/ � x. Finally, �3.x; y/ D 0

if xx � y and �3.x; y/ D v otherwise where xv � y < xvC1. Now we have the
following lemma.

Lemma 3.1 (see [8]) If NH is min-homogeneous for �1, �2, and �3, then NH � .the
last three elements of NH/ has the property that x < y both inH implies xx � y.

Remark 3.2 For a given function t let KMt be the following statement. For all
k and n there exists m such that m !t .k/

n
reg, where m !t .k/

n
reg means that

whenever f W Œm�n ! m is regressive, then there is H min-homogeneous for f
such that jH j � k and x < y both in H implies that t .x/ � y. It is proved in [8]
that if t .x/ D xx , then KM implies KMt . Lemma 3.3 shows that a similar result
holds for KMj .

Lemma 3.3 Let t .x/ D xx . Then I†1 ` KMj ! .KMj /t .

Proof LetM ˆ I†1. First define the function g W ŒM �2 ! M by g.x; y/ D 0 if
�l .x; y/ D 0 for each l , 1 � l � 3, and g.x; y/ D l otherwise where l is the least
with �l .x; y/ ¤ 0. Let Œa; b�! .R.2; 4; k C 3//

nCj
j -reg. For the j -regressive function

f W ŒŒa; b��nCj ! b let us introduce the coloring h W ŒŒa; b��nCj ! b by

h.x1; : : : ; xnCj / D

´
xj if g.xj ; xjC1/ > 0;
f .x1; : : : ; xnCj / if g.xj ; xjC1/ D 0:

By KMnCj
j , there exists H0 � Œa; b� with jH0j � k C 3 such that H0 is

j -homogeneous for h and homogeneous for g. Let H1 D H0 � ¹z1; z2; z3º,
where z1 < z2 < z3 are the last three elements of H0. Clearly if g on H1 were
constantly l > 0, then we can get a contradiction (see [8, proof of Lemma 4.2]).
Hence h D f onH1, and by Lemma 3.3 for x < y both inH1 we have xx � y.

Lemma 3.4 Let j 2 N andM ˆ I†1 be nonstandard. Suppose that for nonstan-
dard elements a, e, n, and k in M and the function t .x/ D 2x there exists b 2 M
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such that Œa; b� !t .w/
2nCj
j -reg , where w is the Ramsey number R.2n C 1; e C 2; d/

with d D max¹kCn; rCj º and r D R.2n; 2; 3n/. Then there is a cut I < M such
that a < I < b and I ˆ PA C:8n; z9y.Œa; y�! .z/nj -reg/.

Proof Let b be minimal such that Œa; b� !t .w/
2nCj
j -reg , where w is the Ramsey

number R.2nC 1; e C 2; d/ with d D max¹k C n; r C j º and r D R.2n; 2; 3n/.
Let

'0.z; x1; x2; : : : ; xn/; : : : ; 'e.z; x1; x2; : : : ; xn/

be the first �0-formulas in the language of arithmetic in at most the free variables
shown. We shall prove there exists H with jH j � k which constitutes a set of
diagonal indiscernibles for these formulas; that is, for c0 < c1 < � � � < cn and
c0 < d1 < � � � < dn inH , any p < c0, and all i � e, we have

'i .p; c1; : : : ; cn/$ 'i .p; d1; : : : ; dn/:

First define the function i W Œa; b�2nC1 ! e C 2 as follows.
For x0 < x1 < � � � < x2n in Œa; b�, let

i.x0; x1; : : : ; x2n/

D min i � e9p < x0
�
'i .p; x1; : : : ; xn/ ½ 'i .p; xnC1; : : : ; x2n/

�
if such i exists, and eC 1 otherwise. Also define the function p W Œa; b�2nC1 ! b by

p.x0; x1; : : : ; x2n/

D minp < x0
�
'i .p; x1; : : : ; xn/ ½ 'i .p; xnC1; : : : ; x2n/

�
;

if i � e and by x0 otherwise, where i D i.x0; x1; : : : ; x2n/. Then define the function
f W Œa; b�2nCj ! b as follows.

For y1 < y2 < � � � < yj�1 < x0 < x1 < � � � < x2n in Œa; b�, let

f .y1; y2; : : : ; yj�1; x0; x1; : : : ; x2n/ D

8̂<̂
:
p if yj�1 � p;
yj�1 C p if p < yj�1 & 2yj�1 � x0;

x0 otherwise;

where p D p.x0; x1; : : : ; x2n/. Since Œa; b� !t .w/
2nCj
j -reg , there exists H0 which

is j -homogeneous for f with H0 � Œa; b�, jH0j � w, and for each x; y 2 H0 if
x < y, then 2x < y. By the assumption on w, there isH1 � H0 with jH1j � kC n
and jH1j � r C j such that the function i has constant value i on ŒH1�2nC1.

First suppose that i D e C 1. Let H2 D H1 � ¹z1; : : : ; znº, where z1 < � � � < zn
are the last n elements of H1. Then jH2j � k and for c0 < c1 < � � � < cn and
c0 < d1 < � � � < dn elements ofH2, we have

e C 1 D i.c0; c1; : : : ; cn; z1; : : : ; zn/

D i.c0; d1; : : : ; dn; z1; : : : ; zn/:

Hence for any p < c0, and all i � e,

'i .p; c1; : : : ; cn/$ 'i .p; z1; : : : ; zn/$ 'i .p; d1; : : : ; dn/:

Now suppose that i � e, and let y1 < � � � < yj�1 < x0 be the first j elements ofH1.
LetH2 D H1�¹y1; : : : ; yj�1; x0º. Then jH2j � r . Moreover, since x0 � 2yj�1 we
see that for x1 < � � � < x2n in H2 the value of f .y1; y2; : : : ; yj�1; x0; x1; : : : ; x2n/
is equal to either p.x0; x1; : : : ; x2n/ or p.x0; x1; : : : ; x2n/C yj�1.
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Now define the function g W ŒH2�2n ! 2 as g.x1; : : : ; xn; xnC1; : : : ; x2n/ D 0

if f .y1; y2; : : : ; yj�1; x0; x1; : : : ; x2n/ D p and 1 otherwise. Then since jH2j � r ,
there existsH3 � H2 such that jH3j � 3n andH3 is homogeneous for g.

Let x1 < � � � < xn < xnC1 < � � � < x2n < x2nC1 < � � � < x3n be elements
ofH3. Then

f .y1; y2; : : : ; yj�1; x0; x1; : : : ; x2n/

D f .y1; y2; : : : ; yj�1; x0; x1; : : : ; xn; x2nC1; : : : ; x3n/

D f .y1; y2; : : : ; yj�1; x0; xnC1; : : : ; x2n; x2nC1; : : : ; x3n/:

The common value above is always p or always p C yj�1, and in both cases we get

p D p.x0; x1; : : : ; x2n/

D p.x0; x1; : : : ; xn; x2nC1; : : : ; x3n/

D p.x0; xnC1; : : : ; x2n; x2nC1; : : : ; x3n/:

Thus for this p we see that the three formulas

'i .p; x1; : : : ; xn/; 'i .p; xnC1; : : : ; x2n/; 'i .p; x2nC1; : : : ; x3n/

are inequivalent in pairs, which is impossible. This contradiction shows that
i D e C 1, yielding the desired set of diagonal indiscernibles. Again we can
repeat the usual argument that leads to the cut I < M with a < I < b and
I ˆ PA C:8n; z9y.Œa; y�! .z/nj -reg/.

Let a; b 2M ˆ PA and a < I < b for I ˆ PA and I < M . Then by Theorem 3.9,

I ˆ 9y
�
Œa; y�! .2n/

nCj
j -reg

�
for all n 2 N. So

M ˆ 9y < b
�
Œa; y�! .2n/

nCj
j -reg

�
for all n 2 N, hence by overspill

M ˆ 9y < b
�
Œa; y�! .2c/cj -reg

�
for some nonstandard element c, and hence

Œa; b�! .2c/cj -reg:

Now suppose that c > N and M ˆ Œa; b� ! .2c/cj -reg. By an overspill argu-
ment we can see that R.2e C 1; e C 2; d/ < 2c for some nonstandard e, where
d D max¹k C e; r C j º and r D R.2e; 2; 3e/. Then Œa; b� ! .w/

2eCj
j -reg , and so by

Lemma 3.4, there exists I ˆ PA with I < M and a < I < b. Summarizing, we
have an indicator for models of PA.

Theorem 3.5 Let j 2 N. Then KMj is not provable in PA, and the function

Y.a; b/ D max c
�
Œa; b�! .2c/cj -reg

�
is an indicator for models of PA. Moreover, the function �.n/ D the leastm such that
m ! .2n/nj -reg is not provably total in PA and eventually dominates every provably
recursive function of PA.

We now turn our attention to KMn
j , the restriction of KMj to the fixed exponent

n. By modifying some proofs in [8], we show that one can get the set of diagonal
indiscernibles as in Lemma 3.4 by considering KMnCj

j .
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Lemma 3.6 Let j 2 N andM ˆ I†1 be nonstandard. Let n 2 N, and suppose
that for nonstandard elements a, k in M and the function t .x/ D xx there exists
b 2M such that Œa; b�!t .k/

nCj
j -reg. Then there is a cut I < M such that a < I < b

and I ˆ I†n C:8z9y.Œa; y�!t .z/
nCj
j -reg/.

Proof Since 2mC1 < a for each m 2 N, by overspill we have 2eC1 < a for some
e 2 M � N. We shall show that for �0-formulas '0; : : : ; 'e in the language of
arithmetic with at most nC 1 free variables, there exists a setH �M with jH j � k
which constitutes a set of diagonal indiscernibles for these formulas. First, define the
function q W M ! M by q.x/ D the largest d such that 2.eC1/:d � x. Let b be
minimal such that Œa; b� !t .k/

nCj
j -reg. Then define the function f W ŒŒa; b��nCj ! b

by
f .y1; : : : ; yj�1; x0; : : : ; xn/

D

8̂<̂
:
ı WD hıip W i � e; p < q.x0/i if yj�1 � ı < x0;
ı C yj�1 if ı < yj�1 � x0=2;
x0 otherwise;

where ıip.x1; : : : ; xn/ D 0 if 'i .p; x1; : : : ; xn/ is true and ıip.x1; : : : ; xn/ D 1

otherwise.
By the assumption there exists H1 j -homogeneous for f such that jH1j �

R.n; 2; 2k/ C j and for x < y both in H1 we have xx � y. Then either f D ı

or f D ı C yj�1 on H1. Moreover, x < y both in H1 implies x � q.y/ since
2.eC1/x D .2eC1/x < ax � xx � y. Now set H2 D H1 � ¹y1; : : : ; yj�1º,
where y1 < � � � < yj�1 are the first j � 1 elements of H2, and define the function
g W ŒH2�

nC1 ! 2 as follows: g.x0; x1; : : : ; xn/ is 0 if f .y1; : : : ; yj�1; x0; : : : ;
xn/ D ı and is 1 if f .y1; : : : ; yj�1; x0; : : : ; xn/ D ı C yj�1. Then by assumption
on H2, there exists H3 � H2 with H3 � 2k such that g is constant on H3. Since
for c0 < c1 < � � � < cn and c0 < d1 < � � � < dn inH3,

ı.c0; c1; : : : ; cn/ D ı.c0; d1; : : : ; dn/;

we get
f .y1; : : : ; yj�1; c0; c1; : : : ; cn/ D f .y1; : : : ; yj�1; c0; d1; : : : ; dn/;

and so ıip.c1; : : : ; cn/ D ıip.d1; : : : ; dn/ for each i � e and p < q.c0/. WritingH3
as ¹h1; h2; : : : ; h2kº, the subset ¹h2; h4; : : : ; h2kº constitutes the set of k diagonal
indiscernibles for formulas '0; : : : ; 'e , as required. It is not hard now to find the cut
I < M with a < I < b and I ˆ I†n C:8z9y.Œa; y�!t .z/

nCj
j -reg/.

Using Lemmas 3.3 and 3.6 we have the following.

Theorem 3.7 We have I†n ° 8x; z9y.Œx; y�! .z/
nCj
j -reg/. Moreover, in terms of

the indicator theory of Paris and Kirby, the function

Y.a; b/ D max c
�
Œa; b�! .c/

nCj
j -reg

�
is an indicator for models of I†n.

Lemma 3.8 Let A D ¹a1; : : : ; amº, where a1 < a2 < � � � < am < a. Then the
number of j -regressive functions on ŒA�n�1 is at most a22a .

Proof The proof is straightforward.
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By Lemma 3.8 and using the notion of arboricity and prehomogeneous sets of Mills
[13], the following is immediate from the proof of [13, Lemma 3.5]. Suppose that
c; n � 1, f with domain ŒA�nCj is j -regressive, and A is n-fold .c�x22x /-arboreal
with min.A/ > 0. Then there is an H � A such that H is prehomogeneous for f
and H � ¹max.H/º is .n � 1/-fold .c � x22x /-arboreal. We can now proceed as
in [8, Proposition 4.1] to establish that PHnC1 implies KMnCj

j and also KM0nCjj .
Moreover, it is well known [8] that both of PHnC1 and KMnC1 are equivalent to
1 � Con.I†n/. Since I†nC1 ` 1 � Con.I†n/, we have the following theorem.

Theorem 3.9 We have I†nC1 ` 8x; z9y.Œx; y�! .z/
nCj
j -reg/.

Theorem 3.9 together with Theorem 3.7 completely gives the strength of KMj for a
fixed exponent, and so we can summarize the results of this section as follows.

Corollary 3.10 The following are equivalent in I†1:
(a) PHnC1,
(b) KMnC1,
(c) KMnCj

j ,
(d) KM0nCjj ,
(e) 1 � Con.I†n/.
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