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Disjoint n-Amalgamation and Pseudofinite Countably
Categorical Theories

Alex Kruckman

Abstract Disjoint n-amalgamation is a condition on a complete first-order the-
ory specifying that certain locally consistent families of types are also globally
consistent. In this article, we show that if a countably categorical theory T admits
an expansion with disjoint n-amalgamation for all n, then T is pseudofinite. All
theories which admit an expansion with disjoint n-amalgamation for all n are
simple, but the method can be extended, using filtrations of Fraïssé classes, to
show that certain nonsimple theories are pseudofinite. As case studies, we exam-
ine two generic theories of equivalence relations, T �

feq and TCPZ, and show that
both are pseudofinite. The theories T �

feq and TCPZ are not simple, but they have
NSOP1. This is established here for TCPZ for the first time.

1 Introduction

The theory TRG of the random graph (also called the Rado graph) arises naturally in
two distinct ways. First, the random graph is the Fraïssé limit of the class of all finite
graphs G : the unique countable ultrahomogeneous graph which embeds a copy of
each finite graph. Second, TRG is the almost-sure theory of finite graphs, in the sense
of zero-one laws: letting G .n/ be the set of (labeled) graphs of size n and �n the
uniform measure on G .n/, we have, for every sentence ',

lim
n!1

�n

�®
G 2 G .n/

ˇ̌
G ˆ '

¯�
D 1 ” ' 2 TRG:

The latter observation shows that TRG is pseudofinite; that is, every sentence in
the theory has a finite model. In fact, the probabilistic argument shows that each
sentence ' 2 TRG has many finite models. For large n, most finite graphs of size n
satisfy '.
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The situation is very different for the class G4 of finite triangle-free graphs. The
class G4 has a Fraïssé limit, the generic triangle-free graph (also called the Henson
graph; see [18]), as well as a zero-one law for the uniform measures �n on G4.n/,
but its almost-sure theory diverges from its generic theory. Indeed, Erdős, Kleitman,
and Rothschild [15] showed that almost all large finite triangle-free graphs are bipar-
tite and hence do not contain any cycles of odd length, in contrast to the generic
triangle-free graph.

So the probabilistic argument that showed that the theory of the random graph
is pseudofinite fails for the generic triangle-free graph. In fact, it is still unknown
whether the theory of the generic triangle-free graph is pseudofinite (see Cherlin
[10], [11]). This state of affairs suggests the following very general question.

Question 1.1 When does a Fraïssé limit have a pseudofinite theory?

There are, essentially, two ways to show that a theory T is pseudofinite. The first
way is to construct finite structures which satisfy arbitrary finite subsets of T . An
example in the case of the random graph is the sequence of Paley graphs. For each
prime power q � 1.mod 4/, define a graph with domain the finite field Fq , putting
an edge between distinct elements a and b just in case a � b is a square in Fq . Then
the theories of the Paley graphs converge to TRG (see Blass, Exoo, and Harary [4] for
details, and Blass and Rossman [5] for other explicit constructions).

The second way is via a probabilistic argument. Usually, this amounts to specify-
ing a probability measure �n on some classK.n/ of finite L-structures for all n 2 !,
such that

lim
n!1

�n

�®
A 2 K.n/

ˇ̌
A ˆ '

¯�
D 1 ” ' 2 T:

The first method has the advantage of being more explicit, and the constructions
may be of combinatorial interest. But the second method tells us something more,
assuming that the measures �n are natural enough: not only do the sentences of T
have finite models, but most large structures in some class satisfy the sentences in T .
Of course, the meaning of “natural” is left intentionally vague. For example, the
measure �n should not concentrate on the nth element of some explicit sequence!
We refine our question as follows.

Question 1.2 When does a Fraïssé limit have a pseudofinite theory for a good
probabilistic reason? For example, when is it the almost-sure theory for a natu-
ral sequence .K.n/; �n/n2! of classes of finite structures equipped with probability
measures?

An example of a Fraïssé limit which is pseudofinite, but not for a good probabilistic
reason, is the vector space V of countably infinite dimension over a finite field. The
finite models of sentences in Th.V / are few and far between, existing only in certain
finite sizes and unique up to isomorphism in those sizes. This is one of a whole
family of examples of a similar character, the smoothly approximable structures,
studied by Kantor, Liebeck, and Macpherson in [21] and classified by Cherlin and
Hrushovski in [12]. Smoothly approximable structures are essentially algebraic: they
are coordinatized by certain geometries coming from vector spaces equipped with
bilinear forms.

The main purpose of this article is to advance a claim that “combinatorial” Fraïssé
limits (in contrast to the algebraic smoothly approximable structures) which are pseu-
dofinite tend to be pseudofinite for a good probabilistic reason, and moreover that
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this good probabilistic reason tends to rely on a combinatorial condition, disjoint
n-amalgamation, which generalizes the disjoint (or “strong”) amalgamation property
for Fraïssé classes with trivial algebraic closure (acl).

The starting point is Theorem 3.10, which shows that for a countably categorical
theory, disjoint n-amalgamation for all n is a sufficient condition for pseudofinite-
ness. The hypothesis of disjoint n-amalgamation for all n is very strong; however,
almost all examples of “combinatorial” countably categorical theories which are
known to be pseudofinite either have disjoint n-amalgamation for all n, or are reducts
of theories with disjoint n-amalgamation for all n. Such theories are simple (in the
sense of the model-theoretic dividing line; see Theorem 3.14). The only exceptions
(that I am aware of at the time of this writing) are built from equivalence relations.

Kim and Pillay [25] made the “rather outrageous conjecture” that every pseudo-
finite countably categorical theory is simple. The generic theory of a parameterized
family of equivalence relations, T �

feq, was suggested by Shelah as a counterexample
to this conjecture. However, to my knowledge, no proof that T �

feq is pseudofinite has
appeared in the literature.

In this article, I demonstrate pseudofiniteness of T �
feq (see Section 4.2), as well

as another generic theory of equivalence relations, TCPZ (see Section 4.3), which
was introduced (and shown to not be simple) by Casanovas, Peláez, and Ziegler
[8]. In both cases, the argument relies on a method of filtering the relevant Fraïssé
class as a union of simpler Fraïssé classes, each of which admits an expansion to
a countably categorical theory with disjoint n-amalgamation for all n. This shows
that the pseudofiniteness of these examples, too, can be viewed as a consequence of
a probabilistic argument involving disjoint n-amalgamation. An interesting feature
of this method is that each sentence of the theory is shown to be in the almost-sure
theory for a sequence .K.n/; �n/n2! of classes of finite structures equipped with
probability measures, and hence is pseudofinite for a good probabilistic reason, but
different sentences require different sequences.

Countably categorical pseudofinite theories do not have the strict order property.
Since I am not aware of a reference for this folklore result, I will give a proof here.

Proposition 1.3 No countably categorical pseudofinite theory has the strict order
property.

Proof If T has the strict order property, then it interprets a partial order with infi-
nite chains. So it suffices to show that no countably categorical partial order .P;</
with infinite chains is pseudofinite.

By compactness, we can find an infinite increasing chain ¹ai j i 2 !º with
P ˆ ai < aj if and only if i < j . In a countably categorical theory, automorphism-
invariant properties are definable, so there is a formula '.x/, with '.x/ 2 tp.ai / for
all i , such that P ˆ '.b/ if and only if there is an infinite increasing chain above b.

Now P ˆ 9x '.x/ ^ 8x .'.x/ ! 9y .x < y ^ '.y///. But in any partial
order, this sentence implies the existence of an infinite increasing chain of elements
satisfying '.x/, so its conjunction with the partial order axioms has no finite model.

Džamonja and Shelah [14] introduced the property SOP1. It is the first in a linearly
ordered hierarchy of combinatorial properties called SOPn (for n-strong order prop-
erty), which were originally defined by Shelah [29] for n � 3. A theory has NSOPn
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if it does not have the n-strong order property. As usual in model theory, the named
properties are bad: theories with NSOPn are tamer than theories with SOPn. These
properties lie strictly between nonsimplicity and the strict order property (SOP):

simple H) NSOP1 H) � � � H) NSOPn H) � � � H) NSOP:
It is worth noting that SOP2 also goes by the name TP1 (the tree property of the first
kind; see Kim and Kim [22] for a discussion), and every theory which is known to
have SOP1 also has SOP3. So it is possible that NSOP1

‹
D NSOP2 D NTP1

‹
D

NSOP3. The generic triangle-free graph has SOP3 but NSOP4 (see [29]).
Chernikov and Ramsey [13] gave an independence relation criterion for NSOP1

and used it to show that T �
feq has NSOP1. The theory TCPZ was not considered in [13],

but the methods there also suffice to show that TCPZ has NSOP1 (see Corollary 4.10).
On the other hand, almost nothing is known about pseudofiniteness of countably
categorical theories in the region between SOP1 and the strict order property. While
acknowledging that we have a paucity of other examples, I think it is reasonable to
update the outrageous conjecture of Kim and Pillay in the following way.

Conjecture 1.4 Every pseudofinite countably categorical theory has NSOP1.

In Section 2, I review the relevant background on Fraïssé theory. I introduce disjoint
n-amalgamation in Section 3.1 and prove Theorem 3.10 in Section 3.2. Section 3.3
contains some context about the role of n-amalgamation properties in model theory,
as well as an explanation of how Theorem 3.10 generalizes and unifies previous
work. In Section 4, I introduce the notion of a filtered Fraïssé class and give the
applications to generic theories of equivalence relations (T �

feq and TCPZ), along with
a negative result, Proposition 4.4, showing that this method cannot be used to show
that the generic triangle-free graph is pseudofinite.

2 Preliminaries

In this section, I give a brief review of Fraïssé theory. The “canonical language”
described in Definition 2.8 provides the bridge to general countably categorical the-
ories. (For proofs, see Cameron [7, Sections 2.6–2.8] or Hodges [19, Section 7.1].)

LetL be a relational language (not necessarily finite), and letK be a class of finite
L-structures which is closed under isomorphism.

(a) K has the hereditary property if it is closed under substructure.
(b) K has the joint embedding property if for all A;B 2 K, there exist C 2 K

and embeddings A ,! C and B ,! C .
(c) K has the amalgamation property (or 2-amalgamation) if for allA;B;C 2 K

and embeddings f WA ,! B and gWA ,! C , there exist D 2 K and embed-
dings f 0WB ,! D and g0WC ,! D such that f 0 ı f D g0 ı g.

(d) K has the disjoint amalgamation property (or disjoint 2-amalgamation)
if, in the definition of the amalgamation property, the images of B and C
in D can additionally be taken to be disjoint over the image of A in D:
.f 0 ı f /ŒA� D .g0 ı g/ŒA� D f 0ŒB� \ g0ŒC �.

(e) K is a weak Fraïssé class if it is countable up to isomorphism and has the
hereditary property, the joint embedding property, and the amalgamation
property.

(f) K is a Fraïssé class if it is a weak Fraïssé class and additionally K contains
only finitely many structures of size n up to isomorphism for all n 2 !.
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Remark 2.1 What I call a weak Fraïssé class here is often simply called a Fraïssé
class. However, as we are only interested in Fraïssé classes with countably categori-
cal generic theory, it is convenient to include the finiteness condition in the definition.
Note that in a finite relational language, the notions coincide. In many sources the
disjoint amalgamation property is called the strong amalgamation property.

Definition 2.2 Let M be a countable L-structure.
(1) The age of M is the class of all finite structures which embed in M .
(2) M is ultrahomogeneous if every isomorphism between finite substructures of

M extends to an automorphism of M .
(3) M has trivial acl if acl.A/ D A for all A � M .

Theorem/Definition 2.3 The classK is a weak Fraïssé class if and only if there is
a countable ultrahomogeneous structureMK with ageK. In this case,MK is unique
up to isomorphism and is called the Fraïssé limit of K. We call TK D Th.MK/ the
generic theory of K. We have that K is a (strong) Fraïssé class if and only if TK is
countably categorical. In this case, TK has quantifier elimination. A Fraïssé class K
has the disjoint amalgamation property if and only if MK has trivial acl.

Given a Fraïssé class K and n 2 !, I will write K.n/ for the (finite) set of structures
in K with domain Œn� D ¹1; : : : ; nº. Note that I include the empty structure in
the case n D 0. The set K.n/ contains .nŠ=j Aut.A/j/-many isomorphic copies of
every structure A in K. It will be convenient to identify these structures with their
quantifier-free n-types: for A 2 K.n/,

qftp.A/ D
®
'.x1; : : : ; xn/

ˇ̌
' is quantifier-free, and A ˆ '.1; : : : ; n/

¯
:

Since TK has quantifier elimination, we can further identify the structures in K.n/
with the set of first-order n-types over the empty set relative to TK which are nonre-
dundant, in the sense that they contain the formulas ¹xi ¤ xj j i ¤ j º.

Now each n-type relative to TK is isolated by a quantifier-free formula. In
other words, each structure A 2 K.n/ is distinguished from the others by a single
quantifier-free formula �A.x1; : : : ; xn/. In the case that L is finite, we may take �A

to be the conjunction of the atomic diagram of A. If L is infinite, then a large enough
part of the atomic diagram suffices.

Theorem 2.4 In this notation, the generic theory TK can be explicitly axiomatized
as follows.

(1) The universal theory of K: This amounts to the sentences, for n 2 !,

8x1; : : : ; xn

��^
i¤j

xi ¤ xj

�
!

� _
A2K.n/

�A.x/
��
;

together with, if L is infinite, the information about how �A determines the
other quantifier-free formulas. That is, for each n, A 2 K.n/, and quantifier-
free formula '.x/ 2 qftp.A/,

8x
�
�A.x/ ! '.x/

�
:

(2) One-point extension axioms: For all A 2 K.n/ and B 2 K.n C 1/, we say
that .A;B/ is a one-point extension ifA is the induced substructure of B with
domain Œn�. Given a one-point extension .A;B/, we have the axiom
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8x 9y
�
�A.x/ ! �B.x; y/

�
:

Definition 2.5 The theory TK;n is the (incomplete) theory axiomatized by:
(1) the sentences in the universal theory of K in at most n universal quantifiers;
(2) all one-point extension axioms for K (with no restriction on the sizes of A

and B).

A model of TK;n satisfies all the one-point extension axioms over substructures sat-
isfying one of the formulas �A for A 2 K, but its age need only agree with K up
to substructures of size at most n. We will see in Theorem 3.10 below that basic
disjoint amalgamation up to level n implies pseudofiniteness of TK;n.

It will be useful to consider expansions of TK at the level of the Fraïssé class K.

Definition 2.6 Let K and K 0 be Fraïssé classes in languages L and L0, respec-
tively, such that L � L0. We say that K 0 is a Fraïssé expansion of K if

(1) K D ¹A � L j A 2 K 0º,
(2) for all one-point extensions .A;B/ inK, and every expansion of A to a struc-

ture A0 in K 0, there is an expansion of B to a structure B 0 in K 0 such that
.A0; B 0/ is a one-point extension in K 0.

Theorem 2.7 The class K 0 is a Fraïssé expansion of K if and only if the Fraïssé
limit MK0 of K 0 is an expansion of the Fraïssé limit MK of K.

Proof Suppose that MK0 � L D MK . Then K D Age.MK/ D ¹A � L j A 2

Age.MK0/º, and Age.MK0/ D K 0. Given a one-point extension .A;B/ and an
expansionA0 ofA, we can find a substructure ofMK0 isomorphic toA0. In the reduct,
this substructure is isomorphic to A, and, since the one-point extension axiom for
.A;B/ is true ofMK , it extends to a copy ofB . We can takeB 0 to be theL0-structure
on this subset of MK0 .

Conversely, to show that MK0 is an expansion of MK , by countable categoricity
it suffices to show that MK0 � L satisfies the theory TK . It clearly satisfies the
universal part, since Age.MK0 � L/ D ¹A � L j A 2 K 0º D K. For the extension
axioms, suppose that .A;B/ is a one-point extension, and we have a copy of A in
MK0 � L. Let A0 be the L0-structure on this subset of MK0 . Since K 0 is a Fraïssé
expansion of K, we can find an expansion B 0 of B in K 0 such that .A0; B 0/ is a
one-point extension, and, since the one-point extension axiom for .A0; B 0/ is true of
MK0 , our copy of A0 extends to a copy of B 0. Hence, in the reduct, our copy of A
extends to a copy of B .

Definition 2.8 Let T be any countably categorical L-theory, and let M be its
unique countable model. The canonical language for T is the language L0 with one
n-ary relation symbol Rp for each n-type p.x/ realized in M .

We makeM into anL0-structureM 0 in the natural way by settingM 0 ˆ Rp.a/ if and
only if a realizes p.x/ inM . Let T 0 D ThL0.M 0/. Then T and T 0 are interdefinable
theories,M 0 is ultrahomogeneous, and hence is the Fraïssé limit of its ageK, andK
has the disjoint amalgamation property if and only if M has trivial acl. Note that for
each A 2 K.n/, we may take the isolating formula �A to be one of the basic n-ary
relation symbols Rp .
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3 Disjoint n-Amalgamation

3.1 Definitions To fix notation, Œn� D ¹1; : : : ; nº, P .Œn�/ is the powerset of Œn�, and
P �.Œn�/ is the set of all proper subsets of Œn�. A family F � P .Œn�/ of subsets of
Œn� is downward closed if S 0 2 F whenever S 0 � S and S 2 F .

Let T be a theory, and let A be a set of parameters in a model of T . We say that
a type p.x/ over A in the variables ¹xi j i 2 I º is nonredundant if it contains the
formulas ¹xi ¤ xj j i ¤ j 2 I º and ¹xi ¤ a j i 2 I; a 2 Aº. Given a downward
closed family of subsets F � P .Œn�/, and variables x1; : : : ; xn, a coherent F -family
of types over A is a set ¹pS j S 2 F º such that each pS is a nonredundant type over
A in the variables xS D ¹xi j i 2 Sº, and pS 0 � pS when S 0 � S . Here each xi

is a tuple of variables, possibly empty or infinite, but such that xi is disjoint from xj

when i ¤ j .
For n � 2, a disjoint n-amalgamation problem is a coherent P �.Œn�/-family

of types over a set A. A basic disjoint n-amalgamation problem is a disjoint
n-amalgamation problem over the empty set in the singleton variables x1; : : : ; xn.

A solution to a (basic) disjoint n-amalgamation problem is an extension of the
coherent P �.Œn�/-family of types to a coherent P .Œn�/-family of types; that is, a
nonredundant type pŒn� such that pS � pŒn� for all S . We say T has (basic) disjoint
n-amalgamation if every (basic) n-amalgamation problem has a solution.

If we replace P �.Œn�/ by another downward closed family of subsets F in the
definitions above, then we call the amalgamation problem partial.

First, we offer some remarks on the definitions.

Remark 3.1 In any coherent F -family of types over A, the type p¿ is a 0-type in
the empty tuple of variables, which simply specifies the elementary diagram of the
parameters A.

Remark 3.2 To specify a disjoint n-amalgamation problem, it would be sufficient
to give the types pS for all S with jS j D n � 1 and check that they agree on inter-
sections, in the sense that pS � xS\S 0 D p0

S � xS\S 0 for all S and S 0. However, it
is sometimes notationally convenient to keep the intermediate stages around.

Remark 3.3 A Fraïssé class K has the disjoint amalgamation property if
and only if TK has disjoint 2-amalgamation. Indeed, given A;B;C 2 K and
embeddings f WA ,! B and gWA ,! C , we take A to be the base set of
parameters, so p¿ D qftp.A/, and we set p¹1º.x1/ D qftp..B n A/=A/ and
p¹2º.x2/ D qftp..C n A/=A/, identifying A with its images in B and C under f
and g. By quantifier elimination, these quantifier-free types determine complete
types relative to TK . A solution to this disjoint 2-amalgamation problem is the same
as a structure D in K into which B and C embed disjointly over the image of A.

Remark 3.4 Given a Fraïssé class K, recall that we have identified K.n/, the
structures inK with domain Œn�, with the set of nonredundant quantifier-free n-types
relative to TK . A basic disjoint n-amalgamation problem relative to TK is a coherent
P �.Œn�/-family of quantifier-free types P D ¹pS j S 2 P �.Œn�/º in the variables
x1; : : : ; xn, where each type pS corresponds to a structure AS in K of size jS j. We
write K.n; P / D ¹pŒn�.x1; : : : ; xn/ 2 K.n/ j pS � pŒn� for all S 2 P �.Œn�/º for
the set of solutions to the amalgamation problem P , each of which corresponds to a
structure AŒn� in K of size n which contains all the AS as substructures. To say that
TK has basic disjoint n-amalgamation is to say that K.n; P / is nonempty for all P .
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It will be useful to observe that disjoint amalgamation gives solutions to partial amal-
gamation problems as well.

Lemma 3.5 Suppose that T has (basic) disjoint k-amalgamation for all 2 �

k � n. Then every partial (basic) disjoint n-amalgamation problem has a solution.

Proof I will consider the general case. The same proof works in the basic case.
We are given a partial disjoint n-amalgamation problem over A in variables

x1; : : : ; xn; that is, a coherent F -family of types ¹pS j S 2 F º, with F � P �.Œn�/

downward closed.
We build a solution to the partial disjoint n-amalgamation problem from the bot-

tom up. By induction on 1 � k � n, I claim that we can extend this family to a
coherent Fk-family of types, where Fk D F [ ¹S � Œn� j jS j � kº. When k D n,
we have a coherent P .Œn�/-family of types, as desired.

When k D 1, if there is any i such that i … S for all S 2 F , then the original
F -family of types says nothing about the variables xi . We add ¹iº into F1 and
choose any nonredundant type p¹iº over A in the variables xi . If ¿ … F (which only
happens if F is empty), then we also add it into F1, along with the unique 0-type p¿

containing the elementary diagram of A.
Given a coherent Fk�1-family of types by induction, with 2 � k � n, we wish

to extend to a coherent Fk-family of types. If there is any set S � Œn� with jS j D k

such that S … Fk�1, then all proper subsets of S are in Fk�1. Hence we have types
¹pR j R 2 P �.S/º which form a coherent P �.S/-family. Using k-amalgamation,
we can find a nonredundant type pS in the variables xS extending the types pR.
Doing this for all such S gives a coherent Fk-family of types, as desired.

Disjoint n-amalgamation is more general and seems more natural, but it is basic
disjoint n-amalgamation which is relevant in the proof of Theorem 3.10. We are
largely interested in theories with disjoint n-amalgamation for all n, and in this case
the two notions agree.

Proposition 3.6 A theory T has disjoint n-amalgamation for all n if and only if
T has basic disjoint n-amalgamation for all n.

Proof One direction is clear, since basic disjoint n-amalgamation is a special case
of disjoint n-amalgamation.

In the other direction, note first that there is a solution to the disjoint n-amalga-
mation problem ¹pS j S 2 P �.Œn�/º if and only if the partial type

¹x ¤ x0
j x; x0 distinctº [

[
S2P �.Œn�/

pS .xS /

is consistent (actually, we could omit the formulas asserting nonredundancy when
n > 2). Hence, by compactness, we can reduce to the case that A is finite and each
tuple of variables xi is finite.

Let N D jAj C
Pn

iD1 jxi j, where jxi j is the length of the tuple xi . Introduce
variables y1; : : : ; yN , where y1; : : : ; yjAj enumerate A and the remaining variables
relabel the x variables. Now each type pS overA determines a type in some subset of
the y variables, by replacing the parameters from A and the x variables by the appro-
priate y variables. Closing downward under restriction to smaller sets of variables,
we obtain a partial basic disjoint N -amalgamation problem over the empty set in the
singleton variables y1; : : : ; yN . By Lemma 3.5 and basic disjoint N -amalgamation,
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this partial amalgamation problem has a solution, a type pŒN �.y1; : : : ; yN / over the
empty set. Once again replacing the y variables with the original parameters from
A and x variables, we obtain a type pŒn� over A which is a solution to the original
n-amalgamation problem.

Example 3.7 The class G4 of triangle-free graphs has disjoint 2-amalgamation:
if A embeds in B and C , then we can amalgamate B and C “freely” over A by
not adding any new edge relations between B and C . But it does not have dis-
joint 3-amalgamation: the nonredundant 2-types determined by x1Rx2, x2Rx3, and
x1Rx3 cannot be amalgamated.

Generalizing, let Kk
n be the class of n-free k-hypergraphs: the language consists

of a single k-ary relationR.x1; : : : ; xk/, and the structures inKk
n are hypergraphs (so

R is symmetric and anti-reflexive) such that for every n-tuple a of distinct elements,
there is some subtuple b of length k such that :R.b/ holds. Note that G4 is K2

3 .
For n > k, Kk

n satisfies basic disjoint m-amalgamation for m < n, but fails basic
disjoint n-amalgamation, since the first forbidden configuration has size n. However,
Kk

n already fails disjoint .k C 1/-amalgamation. Over a base set A consisting of a
complete hypergraph on .n � k � 1/ vertices, the k-type over A which describes,
together with A, a complete hypergraph on .n� 1/ vertices is consistent, but .kC 1/

copies of it cannot be amalgamated.

Example 3.8 There are countably categorical theories which do not have disjoint
n-amalgamation for all n, but which admit countably categorical expansions with
disjoint n-amalgamation for all n.

As a simple example, consider the theory of a single equivalence relation with k
infinite classes. Transitivity is a failure of disjoint 3-amalgamation: the nonredundant
2-types determined by x1Ex2, x2Ex3, and :x1Ex3 cannot be amalgamated. But
if we expand the language by adding k new unary relations C1; : : : ; Ck in such a
way that each class is named by one of the Ci , the resulting theory has disjoint
n-amalgamation for all n.

For a more interesting example, the random graph (which is easily seen to have
disjoint n-amalgamation for all n) in its canonical language has a reduct to an ultra-
homogeneous 3-hypergraph, where the relation R.a; b; c/ holds if and only if there
are an odd number of the three possible edges between a, b, and c. This structure
turns out to be ultrahomogeneous in the language ¹Rº, and its age is the class of all
finite 3-hypergraphs with the property that on any four vertices a, b, c, and d , there
are an even number of the four possible 3-edges. Hence this class fails to have dis-
joint 4-amalgamation. (For more information on this example, see Macpherson [27],
where it is called the “homogeneous two-graph.” More examples of this kind can be
found in the literature on reducts of homogeneous structures; see, e.g., Thomas [30].)

3.2 Pseudofiniteness

Definition 3.9 A theory T is pseudofinite if for every sentence ' such that T ˆ ',
' has a finite model.

Theorem 3.10 below is stated in a fine-grained way: amalgamation just up to level
n gives pseudofiniteness of the theory TK;n (see Definition 2.5). The proof involves
a probabilistic construction of a structure of size N for each N from the bottom up.
This is the same idea as in the proof of Lemma 3.5, but there we could fix an arbitrary
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k-type extending a given coherent family of l-types for l < k. Here we introduce
randomness by choosing an extension uniformly at random.

The probabilistic calculation is essentially the same as the one used in the clas-
sical proofs of the zero-one laws for graphs and general L-structures (see [19,
Lemma 7.4.6]). The key point is that the amalgamation properties allow us to make
all choices as independently as possible: the quantifier-free types assigned to sub-
sets A and B of ŒN � are independent when conditioned on the quantifier-free type
assigned to A \ B . It is this independence which makes the calculation go through.

Formally, we construct a probability measure on the space LŒN � of L-structures
with domain ŒN �. Given a formula '.x/ and a tuple a from ŒN �, we write
Œ'.a/� D ¹M 2 LŒN � j M ˆ '.a/º. The space LŒN � is topologized by tak-
ing the instances of the atomic and negated atomic formulas Œ.:/R.a/� as subbasic
open sets. Of course, if L is finite, then LŒN � is a finite discrete space.

Theorem 3.10 Let K be a Fraïssé class whose generic theory TK has basic dis-
joint k-amalgamation for all 2 � k � n. Then every sentence in TK;n has a finite
model. If TK has basic disjoint k-amalgamation for all k, then every sentence in TK

has a finite model in K.

Proof I will define a probability measure �N on LŒN � for eachN 2 ! by describ-
ing a probabilistic construction of a structureMN 2 LŒN �. Recall the notation above
and in Remark 3.4.

We assign quantifier-free k-types to each subset of size k from ŒN � by induction.
When k D 0, there is no choice: by hereditarity and the joint embedding property,
there is a unique empty structure inK.0/. When k D 1, for each i 2 ŒN �, choose the
quantifier-free 1-type of ¹iº uniformly at random from K.1/. Now proceed induc-
tively: having assigned quantifier-free l-types to all subsets of size l with l < k,
we wish to assign quantifier-free k-types. For each k-tuple i1; : : : ; ik of distinct ele-
ments from ŒN �, let P D ¹pS j S 2 P �.Œk�/º be the collection of quantifier-free
types assigned to all proper subtuples, that is, pS .xS / D qftp.¹ij j j 2 Sº/. If
TK has basic disjoint k-amalgamation, K.k; P / is nonempty and finite, and we may
choose the quantifier-free k-type of i1; : : : ; ik uniformly at random from K.k; P /.

Now if TK has basic disjoint k-amalgamation for all k, we can continue this con-
struction all the way up to k D N , so that the resulting structureMN is inK.N/. Call
this the unbounded case. On the other hand, if TK has basic disjoint k-amalgamation
only for k � n, then we stop at k D n. To complete the construction, we assign any
remaining relations completely freely at random. That is, for each relation R (of
arity r > n) and r-tuple i1; : : : ; ir containing at least nC 1 distinct elements, we set
R.i1; : : : ; ir / with probability 1=2. The result is an L-structure MN which may not
be in K, but the induced structures of size at most n are guaranteed to be in K. Call
this the bounded case.

I claim that if ' is one of the axioms of TK;n (in the bounded case) or TK (in
the unbounded case), then limN !1 �N .Œ'�/ D 1. Each universal axiom ' has the
form 8x1; : : : ; xk  .x/ (with k � n in the bounded case), where  is quantifier-free
and true on all k-tuples from structures in K. Since all substructures of our random
structure of size at most k are inK, ' is always satisfied byMN , and so �N .Œ'�/ D 1

for all N .
Now suppose that ' is the one-point extension axiom 8x 9y .�A.x/ ! �B.x; y//.

Let a be a tuple of jAj-many distinct elements from ŒN �, and let b be any other
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element. Conditioning on the event that Mn ˆ �A.a/, there is a positive probability
" that MN ˆ �B.a; b/.

Indeed, in the unbounded case, or when jAj < n in the bounded case, �B specifies
the quantifier-free jBj-type of the tuple ab among those allowed by K. There is a
positive probability (1=jK.1/j) that the correct 1-type is assigned to b, and, given
that the correct l-type has been assigned to all subtuples of ab involving b of length
l < k, there is a positive probability (1=jK.k; P /j for the appropriate basic disjoint
k-amalgamation problem P ) that the correct k-type is assigned to a given subtuple
of length k. Then " is the product of all these probabilities for 1 � k � jBj. When
jAj � n in the unbounded case, the above reasoning applies for the subtuples of ab
of length at most n. On longer tuples, since �B only mentions finitely many relations,
and the truth values of these relations are assigned freely at random, there is some
additional positive probability that these will be decided in a way satisfying �B (at
least 1=2m, where m is the minimum number of additional instances of relations
which need to be decided positively or negatively to ensure satisfaction of �B ).

Moreover, for distinct elements b and b0, the events that ab and ab0 satisfy �B

are conditionally independent, since the quantifier-free types of tuples involving ele-
ments from a and b but not b0 are decided independently from those of tuples involv-
ing elements from a and b0 but not b, conditioned on the quantifier-free type assigned
to a.

Now we compute the probability that ' is not satisfied by MN . Conditioned on
the event thatMN ˆ �A.a/, the probability thatMN 6ˆ 9y �B.a; y/ is .1� "/N �jAj,
since there are N � jAj choices for the element b, each with independent probability
.1 � "/ of failing to satisfy �B . Removing the conditioning, the probability that
MN 6ˆ 9y .�A.a/ ! �B.a; y// for any given a is at most .1 � "/N �jAj, since the
formula is vacuously satisfied when a does not satisfy �A. Finally, there are N jAj

possible tuples a, so the probability that MN 6ˆ 8x 9y .�A.x/ ! �B.x; y// is at
most N jAj.1 � "/N �jAj. Since jAj is constant, the exponential decay dominates the
polynomial growth, and limN !1 �N .Œ:'�/ D 0, so limN !1 �N .Œ'�/ D 1.

To conclude, any sentence  2 TK;n is a logical consequence of finitely many
of the axioms '1; : : : ; 'm considered above. We need only pick N large enough so
that �N .Œ'i �/ > 1 � 1=m for all i . Then �N .Œ

Vm
iD1 'i �/ > 0, so the conjunctionVm

iD1 'i , and hence also  , has a model of size N . In the unbounded case, our
construction ensures that this model is in K.

Corollary 3.11 Any countably categorical theory T with disjoint n-amalgamation
for all n � 2 is pseudofinite.

Proof Let T 0 be the equivalent of T in the canonical language. Then it suffices to
show that T 0 is pseudofinite, since pseudofiniteness is preserved under interdefinabil-
ity. But T 0 is the generic theory for a Fraïssé class with basic disjoint n-amalgamation
for all n, so by Theorem 3.10, it is pseudofinite.

Remark 3.12 Since pseudofiniteness is preserved under reduct, the examples
described in Example 3.8 are pseudofinite.

3.3 Relationship to other notions The notion of n-amalgamation has been studied in
other model-theoretic contexts, usually in the form of independent n-amalgamation.
Given some notion of independence, j^, the main example being nonforking inde-
pendence in a simple theory, an independent n-amalgamation problem is given by a
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coherent P �.Œn�/-family of types overA, with the nonredundancy condition replaced
by the condition that any realization ¹ai j i 2 Sº of pS .xS / is an independent set
over A with respect to j^.

In the case n D 3, independent 3-amalgamation over models is often called the
independence theorem. It is a well-known theorem of Kim and Pillay [24] that the
independence theorem, along with a few other natural properties, characterizes fork-
ing in simple theories.

Theorem 3.13 ([24, Theorem 4.2]) Let T be a complete theory, and let j^ be a
ternary relation, written a j^A

B , where a is a finite tuple and A and B are sets. As
usual, all tuples and sets come from some highly saturated model of T . Suppose that
j^ satisfies the following properties.

(1) (Invariance) If a j^A
B and tp.a0A0B 0/ D tp.aAB/, then a0 j^A0

B 0.
(2) (Local character) For all a;B , there is A � B such that jAj � jT j and

a j^A
B .

(3) (Finite character) We have that a j^A
B if and only if for every finite tuple b

from B , a j^A
Ab.

(4) (Extension) For all a, A, and B , there is a0 such that tp.a0=A/ D tp.a=A/
and a0 j^A

B .
(5) (Symmetry) If a j^A

Ab, then b j^A
Aa.

(6) (Transitivity) If A � B � C , then a j^A
B and a j^B

C if and only if
a j^A

C .
(7) (Independence theorem) Let M ˆ T be a model, let a and a0 be tuples such

that tp.a=M/ D tp.a0=M/, and let A and B be sets. If A j^M
B , a j^M

A,
and a0 j^M

B , then there exists a00 such that tp.Aa00=M/ D tp.Aa=M/,
tp.Ba00=M/ D tp.Ba0=M/, and a00 j^M

AB .
Then T is simple, and j^ is nonforking ( j^ D j^

f ).

Disjoint n-amalgamation is a strong form of independent amalgamation, where the
relevant independence relation is the disjointness relation j^

=, defined by A j^
=
C
B

if and only if A \ B � C . We say that a theory has trivial forking if j^
f D j^

=.

Theorem 3.14 A countably categorical theory T with disjoint 2-amalgamation
(i.e., trivial acl) and disjoint 3-amalgamation is simple with trivial forking.

Proof We can use Theorem 3.13 to show that j^
f D j^

=. Most of the conditions are
straightforward to check, so I will only remark on a few of them. For local character,
we can takeA D a\B , soA is finite and a j^

=
A
B . For extension, we find a0 by real-

izing the type tp.a=A/ [ ¹ai ¤ b j ai from a such that ai … A; and b 2 Bº. This is
consistent by trivial acl and compactness. Finally, for the independence theorem, we
apply disjoint 3-amalgamation to amalgamate the three 2-types p¹12º D tp.aA=M/,
p¹13º D tp.a0B=M/, and p¹23º D tp.AB=M/ (first removing any redundant ele-
ments of M from a, a0, A, and B).

Remark 3.15 A consequence of Theorem 3.14 is that the class of triangle-
free graphs G4 does not admit a Fraïssé expansion to a class with disjoint
n-amalgamation for all n, since its generic theory is not simple (see [29]).

Remark 3.16 Motivated by the fact that many examples of simple theories
(such as TRG and ACFA; see Chatzidakis and Hrushovski [9]) satisfy independent
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n-amalgamation for n � 3, Kolesnikov [26] and Kim, Kolesnikov, and Tsuboi
[23] developed a hierarchy of notions of n-simplicity for 1 � n � !, where
1-simplicity coincides with simplicity. If a countably categorical theory T has
disjoint k-amalgamation for all 2 � k � n, then it is .n � 2/-simple with trivial
forking, and if it has disjoint n-amalgamation for all n, then it is !-simple.

Several other appearances of n-amalgamation properties in model theory are worth
mentioning. In the context of abstract elementary classes (AECs), independent
n-amalgamation of models goes by the name “excellence” (see, e.g., Baldwin [2]).
Disjoint n-amalgamation for classes of finite structures has also been studied by
Baldwin, Koerwien, and Laskowski [3] with applications to AECs. And in the
context of stable theories, Goodrick, Kim, and Kolesnikov [17] have uncovered a
connection between existence and uniqueness of independent n-amalgamation and
definable polygroupoids, generalizing earlier work of Hrushovski [20] on indepen-
dent 3-amalgamation and groupoids.

The observation that disjoint n-amalgamation is sufficient for pseudofiniteness
generalizes and unifies a number of earlier observations. I will note a few here.

(i) Oberschelp [28] identified an unusual syntactic condition which is sufficient
for the almost-sure theory of a class of finite structures under the uniform
measures to agree with its generic theory. A universal sentence is called para-
metric if it is of the form 8x1; : : : ; xn ..

V
i¤j xi ¤ xj / ! '.x//, where '

is a Boolean combination of atomic formulas R.y1; : : : ; ym/ such that each
variable xi appears among the yj . For example, reflexivity 8x R.x; x/ and
symmetry 8x; y .x ¤ y ! .R.x; y/ $ R.y; x/// are parametric condi-
tions, while transitivity 8x; y; z ..R.x; y/ ^ R.y; z// ! R.x; z// is not a
parametric condition, since each atomic formula appearing only involves two
of the three quantified variables. A parametric class is the class of finite
models of a set of parametric axioms.

Any parametric class has disjoint n-amalgamation for all n. It is easiest to
see this by checking basic disjoint n-amalgamation: the restrictions imposed
by a parametric theory on the relations involving nonredundant n-tuples and
m-tuples are totally independent when n ¤ m.

(ii) In their work on the random simplicial complex, Brooke-Taylor and Testa [6]
introduced the notion of a local Fraïssé class and showed that the generic
theory of a local Fraïssé class is pseudofinite, by methods similar to those
in the proof of Theorem 3.10. A universal sentence is called local if it is of
the form 8x1; : : : ; xn .R.x1; : : : ; xn/ !  .x//, where R is a relation in the
language and  is quantifier-free. A local class is the class of finite models
of a set of local axioms.

Again, any local class has n-amalgamation for all n. A local theory
only imposes restrictions on tuples which satisfy some relation. So disjoint
n-amalgamation problems can be solved “freely” by simply not adding any
further relations.

(iii) Ahlman [1] has investigated countably categorical theories in a binary
relational language (one with no relation symbols of arity greater than 2)
which are simple with SU-rank 1 and trivial pregeometry. In the case when
acleq.¿/ D ¿, this agrees with what I call a simple theory with trivial forking
( j^

f D j^
=) above.
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Ahlman shows that in such a theory T there is a ¿-definable equivalence
relation � with finitely many infinite classes such that T can be axiomatized
by certain .�;�/-extension properties describing the possible relationships
between elements in different classes. Further, he shows that these theo-
ries are pseudofinite. The definition of .�;�/-extension property is some-
what technical, so I will not give it here. But this condition implies that T
has an expansion (obtained by naming the finitely many classes of �) with
n-amalgamation for all n. The fact that the language is binary ensures that
describing the possible relationships between pairs of elements suffices.

4 Generic Theories of Equivalence Relations

4.1 Filtered Fraïssé classes We will extend the disjoint n-amalgamation argument for
pseudofiniteness to certain nonsimple theories, using the notion of a filtered Fraïssé
class.

Definition 4.1 A Fraïssé class K is filtered by a chain K0 � K1 � K2 � � � � if
each Kn is a Fraïssé class, and

S
n2! Kn D K.

Theorem 4.2 Let K be a Fraïssé class filtered by ¹Kn j n 2 !º. Then ' 2 TK if
and only if ' 2 TKn

for all sufficiently large n.

Proof It suffices to check for each of the axioms of TK given in Theorem 2.4.
Since each Kn is a subclass of K, every universal sentence in TK is also in TKn

. Let
.A;B/ be a one-point extension with corresponding axiom '. For large enough n,
the structures A and B are in Kn, so .A;B/ is also a one-point extension in Kn, and
' 2 TKn

.

Pseudofiniteness is preserved in filtered Fraïssé classes.

Corollary 4.3 If a Fraïssé class K is filtered by ¹Kn j n 2 !º and each generic
theory TKn

is pseudofinite, then the generic theory TK is pseudofinite.

Proof Each sentence ' in TK is also in TKn
for sufficiently large n, and hence '

has a finite model.

As a consequence, if K is filtered by ¹Kn j n 2 !º, and each Kn admits a Fraïssé
expansion with disjoint n-amalgamation for all n, then K is pseudofinite. This argu-
ment is used in the next two sections to establish pseudofiniteness of the theories T �

feq
and TCPZ.

It is worth noting that this method cannot be used to show that the theory of the
generic triangle-free graph is pseudofinite. Let G1, G2, and G3 be the graphs on
three vertices with a single edge, two edges, and three edges, respectively. For any
filtration ¹Kn j n 2 !º of the Fraïssé class G4 of triangle-free graphs, some Kn

must include the graphs G1 and G2 but not G3. But Proposition 4.4 shows that such
a class does not admit a Fraïssé expansion with disjoint n-amalgamation for all n.

Proposition 4.4 Let K be a Fraïssé class consisting of graphs (in the language
with a single edge relation E), and suppose that K contains the graphs G1 and
G2 but not G3. Then no Fraïssé expansion of K has disjoint 2-amalgamation and
disjoint 3-amalgamation.
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Proof Suppose for contradiction that K has a Fraïssé expansion K 0 in the lan-
guage L0 with disjoint 2-amalgamation and disjoint 3-amalgamation. Let p.x/ be
any quantifier-free 1-type in K 0. Then by disjoint 2-amalgamation we can find some
quantifier-free 2-type q.x; y/ in K 0 such that q.x; y/ ˆ p.x/ ^ p.y/ ^ x ¤ y.
Now, letting p¿ be the unique quantifier-free 0-type in K 0, the family of types
¹p¿; p.x/; p.y/; p.z/; q.x; y/; q.y; z/; q.x; z/º is a basic disjoint 3-amalgamation
problem for K 0. Then we must have q.x; y/ ˆ :xRy, for otherwise the reduct to L
of any solution to the 3-amalgamation problem would be a copy of G3 in K.

Let H be the graph on two vertices, v1 and v2, with no edge. Note that H is
in K. Labeling the vertices of G1 by v1, v2, v3, so that the unique edge is v2Rv3,
G1 is a one-point extension of H . Now H admits an expansion to a structure in K 0

(described by q.v1; v2/) in which both vertices v1 and v2 have quantifier-free type p,
so sinceK 0 is a Fraïssé expansion ofK,G1 admits a compatible expansion to a struc-
ture in K 0; call it G0

1. Let p0.y/ D qftpG0
1
.v3/, and let qi .x; y/ D qftpG0

1
.vi ; v3/

for i D 1; 2. Note that we have qi .x; y/ ˆ p.x/ ^ p0.y/ for i D 1; 2, but
q1.x; y/ ˆ :xRy, while q2.x; y/ ˆ xRy. That is, the pair of 1-types p.x/ and
p0.y/ are consistent with both xRy and :xRy. We will use this situation to build a
triangle.

Again, labeling the vertices of G2 by v1, v2, v3, so that :v1Rv2, G2 is a one-
point extension of H . Since H admits an expansion to a structure H 0 in K 0 so
H 0 ˆ q1.v1; v2/, G2 admits a compatible expansion to a structure G0

2 in K 0. Let
p00 D qftpG0

2
.v3/, r1.x; z/ D qftpG0

2
.v1; v3/, and r2.y; z/ D qftpG0

2
.v2; v3/. Note

that r1.x; z/ ˆ p.x/ ^ p00.z/ ^ xRz and r2.y; z/ ˆ p0.x/ ^ p00.z/ ^ yRz.
Now the family of types ¹p¿; p.x/; p

0.y/; p00.z/; q2.x; y/; r1.x; z/; r2.y; z/º is
a basic disjoint 3-amalgamation problem for K 0. But the reduct to L of any solution
is a copy of G3 in K.

4.2 The theory T �
feq Let L be the language with two sorts, O and P (for “objects”

and “parameters”), and a ternary relation Ex.y; z/, where x is a variable of sort P
and y and z are variables of sortO . ThenKfeq is the class of finite L-structures with
the property that for all a of sort P , Ea.y; z/ is an equivalence relation on O .

The class Kfeq is a Fraïssé class. We define T �
feq to be the generic theory of Kfeq.

Our aim is to show that it is pseudofinite. Before giving the details of the proof, I
will describe the simple idea. Filter the class Kfeq by the subclasses Kn in which
each equivalence relation in the parameterized family has at most n classes. Expand
these classes by parameterized predicates naming each class. The resulting class has
n-amalgamation for all n, and hence has pseudofinite generic theory.

Theorem 4.5 The theory T �
feq is pseudofinite.

Proof For n � 1, letKn be the subclass ofKfeq consisting of those structures with
the property that for all a of sort P , the equivalence relationEa has at most n classes.
Let us check that Kn is a Fraïssé class.

It clearly has the hereditary property. For the disjoint amalgamation property,
suppose that we have embeddings f WA ,! B and gWA ,! C of structures in Kn.
We specify a structure D with domain A [ .B n f ŒA�/ [ .C n gŒA�/ into which B
and C embed in the obvious way over A. That is, for each parameter a in P.D/,
we must specify an equivalence relation on O.D/. If a is in P.A/, then it already



154 Alex Kruckman

defines equivalence relations on B and C . First, number the Ea-classes in A by
1; : : : ; l . Then, if there are further unnumberedEa-classes inB and C , number them
by l C 1; : : : ; mB and l C 1; : : : ; mC , respectively. Note that mB ; mC � n. Now
define Ea in O.D/ to have max.mB ; mC / classes by merging the classes assigned
the same number in the obvious way. The situation is even simpler if a is not in
P.A/. Say without loss of generality that it is in P.B/. Then we can extend Ea to
O.C/ by adding all elements ofO.C ngŒA�/ to a single existing Ea-class. The joint
embedding property follows from the amalgamation property by taking A to be the
empty structure.

For any structureA inKfeq, if jO.A/j D N , then for all a 2 P.A/, the equivalence
relation Ea has at most N classes, so A 2 KN . Hence Kfeq D

S1

nD1Kn. So Kfeq
is a filtered Fraïssé class, and by Corollary 4.3, it suffices to show that each TKn

is
pseudofinite.

Let L0
n be the expanded language which includes, in addition to the relation E,

n binary relation symbols C1.x; y/; : : : ; Cn.x; y/, where x is a variable of sort P
and y is a variable of sort O . Let K 0

n be the class of finite L0
n-structures which are

expansions of structures inKn such that for all a of sort P , each of the Ea-classes is
picked by one of the formulas Ci .a; y/.

We need to check that K 0
n is a Fraïssé expansion of Kn. Certainly we have

Kn D ¹A � L j A 2 K 0
nº, since every structure in Kn can be expanded to one

in K 0
n by labeling the classes for each equivalence relation arbitrarily. Suppose now

that .A;B/ is a one-point extension in Kn and A0 is an expansion of A to a structure
in K 0

n. If the new element b 2 B is in P.B/, then it defines a new equivalence
relation Eb on O.A/ D O.B/, and we can expand B to B 0 in K 0

n by labeling the
Eb-classes arbitrarily. On the other hand, suppose that b is in O.B/. Then for each
parameter a, either b is an existing Ea-class labeled by Ci .a; y/, in which case we
set Ci .a; b/, or b is in a newEa-class, in which case we set Cj .a; b/ for some unused
Cj .

Finally, note that TK0
n

has disjoint 2-amalgamation, since it is a Fraïssé class with
the disjoint amalgamation property. I claim that it also has disjoint n-amalgamation
for all n � 3. Indeed, the behavior of the ternary relation Ex.y; z/ is entirely
determined by the behavior of the binary relations Ci .x; y/, and an L0

n-structure
.P.A/;O.A// is in K 0

n if and only if for every a in P.A/ and b in O.a/, Ci .a; b/

holds for exactly one i . So any inconsistency is already ruled out at the level of the
2-types. Since in a coherent P �.Œn�/-family of types for n � 3, every pair of vari-
ables is contained in one of the types, we conclude that there are no inconsistencies,
and every disjoint n-amalgamation problem has a solution.

So TK0
n

has disjoint n-amalgamation for all n, and hence it and its reduct TKn
are

pseudofinite by Theorem 3.10.

A natural question is whether T �
feq is, in fact, the almost-sure theory for the classKfeq

for the uniform measures. It is not, as the following proposition shows. Of course,
since we have described Kfeq in a two-sorted language, there is some ambiguity as
to what we mean by the uniform measures. For maximum generality, let us fix two
increasing functions f; gW! ! !. For n 2 !, let Kfeq.f .n/; g.n// be the struc-
tures in Kfeq with object sort of size f .n/ and parameter sort of size g.n/, and let
�f .n/;g.n/ be the uniform measure on Kfeq.f .n/; g.n//.
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Proposition 4.6 There is a sentence ' in T �
feq such that

lim
n!1

�f .n/;g.n/

�®
A 2 Kfeq

�
f .n/; g.n/

� ˇ̌
A ˆ '

¯�
D 0:

Proof An example of such a sentence ' is
8.x W P /8.x0

W P /8.y W O/8.y0
W O/ 9.z W O/�

y ¤ y0
!

�
Ex.y; z/ ^Ex0.y0; z/

��
;

which expresses that any two equivalence classes for distinct equivalence relations
intersect. We have that ' is in T �

feq, since for any structure in Kfeq with parameters
a ¤ a0 and objects b; b0 (possibly b D b0), we can add a new object element c
which is Ea-equivalent to b and Ea0 -equivalent to b0, so ' is implied by the relevant
one-point extension axioms.

I will sketch the asymptotics. The measure �f .n/;g.n/ amounts to picking g.n/
equivalence relations on a set of size f .n/ uniformly and independently. The
expected number of equivalence classes in an equivalence relation on a set of size
n, chosen uniformly, grows asymptotically as n

log.n/
.1 C o.1// (see Flajolet and

Sedgewick [16, Proposition 8.8]). Thus, most of the g.n/ equivalence relations
have equivalence classes which are much smaller (with average size approximately
log.n/) than the number of classes, and the probability that every Ea-class is large
enough to intersect every Eb-class nontrivially for all distinct a and b converges to
zero.

Proposition 4.6 shows that T �
feq is not the almost-sure theory ofKfeq for the measures

�f .n/;g.n/, but it would be interesting to know whether such an almost-sure theory
exists.

Question 4.7 Does the classKfeq have a first-order zero-one law for the measures
�f .n/;g.n/? If so, does the almost-sure theory depend on the relative growth rates of
f and g?

4.3 The theory TCPZ Let L be the language with a symbol En.xIy/ of arity 2n for
all n � 1. Then KCPZ is the class of finite L-structures with the property that En is
an equivalence relation on n-tuples for all n, and there is a single En-class consisting
of all n-tuples which do not consist of n distinct elements.

The classKCPZ is a Fraïssé class. We define TCPZ to be the generic theory ofKCPZ.
In [8], Casanovas, Peláez, and Ziegler introduced the theory TCPZ and showed that
it has NSOP2 and is not simple. For completeness, I will show how to combine the
“independence lemma” from [8] with the 3-amalgamation criterion due to Chernikov
and Ramsey [13] to show that, in fact, TCPZ has NSOP1.

We write j^
u for coheir independence: given a model M and tuples a and b,

a j^
u
M
b if and only if tp.a=Mb/ is finitely satisfiable inM ; that is, for every formula

'.x;m; b/ 2 tp.a=Mb/, there exists m0 2 M such that ˆ '.m0; m; b/.

Theorem 4.8 ([13, Theorem 5.7]) T has NSOP1 if and only if for every M ˆ T

and b0c0 �M b1c1 such that c1 j^
u
M
c0, c0 j^

u
M
b0, and c1 j^

u
M
b1, there exists b

such that bc0 �M b0c0 �M b1c1 �M bc1.

For our purposes, the reader can take the independent 3-amalgamation condition in
Theorem 4.8 as the definition of NSOP1. (For the original definition and further
discussion of this property, see [13] or [14].)
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Lemma 4.9 ([8, Lemma 4.2]) Let a; b; c; d 0; d 00 be tuples, and let F be a finite
set from a model M ˆ TCPZ. Assume that a and c have only elements of F in
common (a j^

=
F
c). If d 0a �F d 0b �F d 00b �F d 00c, then there exists d such that

da �F d 0a �F d 00c �F dc.

Corollary 4.10 The theory TCPZ has NSOP1.

Proof Suppose that we are givenM ˆ TCPZ and d 0a �M d 00c such that c j^
u
M
a,

a j^
u
M
d 0, and c j^

u
M
d 00. Let p.x; y/ D tp.d 0a=M/ D tp.d 00c=M/. To verify

the condition in Theorem 4.8, we need to show that p.x; a/ [ p.x; c/ is consis-
tent.

Suppose it is inconsistent. Then there is some finite subset F � M such
that letting q.x; y/ D tp.d 0a=F / D tp.d 00c=F /, q.x; a/ [ q.x; c/ is incon-
sistent. Since c j^

u
M
a, we certainly have c j^

=
M
a. By increasing F , we

may assume that c j^
=
F
a. By countable categoricity, q is isolated by a single

formula �.x; y/ over F , and �.d 0; y/ 2 tp.a=Md 0/, so by finite satisfiabil-
ity there exists b in M satisfying q.d 0; b/. Since d 0 �M d 00, we also have
ˆ q.d 00; b/.

Now the assumptions of Lemma 4.9 are satisfied, and we can find d satisfying
q.d; a/ and q.d; c/, which contradicts inconsistency.

Now we turn to pseudofiniteness of TCPZ. The strategy is the same as in Section 4.2:
filter the Fraïssé class KCPZ by bounding the number of equivalence classes, and
expand to a class with disjoint n-amalgamation for all n by naming the classes.

Theorem 4.11 The theory TCPZ is pseudofinite.

Proof For n � 1, let Kn be the subclass of KCPZ consisting of those structures
with the property that for all k, the equivalence relation Ek has at most n classes, in
addition to the class of redundant tuples.

The class Kn has the hereditary property, and the joint embedding property
follows from the amalgamation property by taking A to be the empty structure. For
the disjoint amalgamation property, we wish to amalgamate embeddings f WA ,! B

and gWA ,! C of structures in Kn. We specify a structure D with domain
A [ .B n f ŒA�/ [ .C n gŒA�/ into which B and C embed in the obvious way
over A. Since the relations Ek are independent, we can do this separately for each.
Make sure to put all redundant k-tuples into the Ek-class reserved for them, number
the Ek-classes which intersect A nontrivially, then go on to number the classes
which just appear in B and C , and merge those classes which are assigned the same
number, exactly as in Theorem 4.5.

For any structureA inKCPZ, if jAj D N , then the number of n-tuples consisting of
distinct elements from A reaches its maximum of NŠ when n D N . When n > N ,
every n-tuple from A contains repeated elements. So the number of En-classes is
bounded above by NŠC 1 for all n, and A 2 KN ŠC1. Hence Kfeq D

S1

nD1Kn. So
KCPZ is a filtered Fraïssé class, and by Corollary 4.3, it suffices to show that each
TKn

is pseudofinite.
Let L0

n be the expanded language which includes, in addition to the relations Ek ,
.nC 1/ k-ary relation symbols C 0

k
.x/; : : : ; C n

k
.x/ for each k. LetK 0

n be the class of
finite L0

n-structures which are expansions of structures inKn such that for all k, each



Disjoint n-Amalgamation 157

Ek-class is picked out by one of the C i
k
, with the class of redundant tuples picked

out by C 0
k

.
We have Kn D ¹A � L j A 2 K 0

nº, since every structure in Kn can be expanded
to one in K 0

n by labeling the classes for each equivalence relation. Suppose now that
.A;B/ is a one-point extension in Kn, and A0 is an expansion of A to a structure
in K 0

n. If any k-tuple involving the new element b is part of a class which exists
in A, then we label it by the appropriate C i

k
. If adding the new element adds new

Ek-classes, then we simply label these classes by unused C j

k
(by the bound n on

the number of classes, there will always be enough of the C j

k
). So K 0

n is a Fraïssé
expansion of Kn.

It remains to show that TK0
n

has disjoint n-amalgamation for all n. Suppose we
have a coherent P �.Œn�/-family of types. As noted before, the relations Ek are
independent, so we can handle them each separately. And the behavior of Ek is
entirely determined by the behavior of the relations C i

k
, so it suffices to set these.

But the only restriction here is that every k-tuple should satisfy exactly one C i
k
, and

it should be C 0
k

if and only if the tuple contains repeated elements. So to solve our
amalgamation problem, we simply assign relations from the C i

k
arbitrarily to those

nonredundant k-tuples which are not already determined by the types in the family.
Hence TK0

n
has disjoint n-amalgamation for all n, so it and its reduct TKn

are
pseudofinite.

Proposition 4.12 There is a sentence ' in TCPZ such that

lim
n!1

�n

�®
A 2 KCPZ.n/

ˇ̌
A ˆ '

¯�
D 0:

Proof An example of such a sentence ' is 8x 8y 8y0 9z .E1.x; z/ ^ E2.y; y
0I

x; z//. This sentence says that for all x, the function �x mapping an element z in the
E1-class of x to the E2-class of xz is surjective onto the E2-classes. The sentence '
is in TCPZ, since for any A inKfeq and elements a, b, and b0 in A, we can embed A in
a structure B in Kfeq with an object c such that c is E1-equivalent to a and .a; c/ is
E2-equivalent to .b; b0/. If b D b0, then we must take a D c; otherwise, we can add
a new element satisfying this condition. So ' is implied by the relevant one-point
extension axioms.

The measure �n amounts to picking an equivalence relation on the k-tuples of
distinct elements from a set of size n for each k uniformly and independently. Since
our sentence only involves E1 and E2, we just need to consider the equivalence
relations on 1-tuples (there are n of them) and the nonredundant 2-tuples (of which
there are n2 � n). Citing again the fact that the expected number of equivalence
classes in a random equivalence relation grows asymptotically as n

log.n/
.1Co.1// (see

[16, Proposition 8.8]), we see that with high probability there are more E2-classes
( n2

log.n2�n/
.1Co.1//) than the size of the averageE1-class (log.n/), in which case the

function �x is not surjective for all x, and the probability that ' is satisfied converges
to zero.

In this case, too, it would be interesting to know whether there is a zero-one law for
the uniform measures.
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