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Levels of Uniformity

Rutger Kuyper

Abstract We introduce a hierarchy of degree structures between the Medvedev
and Muchnik lattices which allow varying amounts of nonuniformity. We use
these structures to introduce the notion of the uniformity of a Muchnik reduc-
tion, which expresses how uniform a reduction is. We study this notion for sev-
eral well-known reductions from algorithmic randomness. Furthermore, since
our new structures are Brouwer algebras, we study their propositional theories.
Finally, we study if our new structures are elementarily equivalent to each other.

1 Introduction

Over the years, the uses of the Medvedev and Muchnik lattices in computability the-
ory have expanded far beyond their applications to intuitionistic logic, as originally
intended by Medvedev. These two lattices formalize when a mass problem, that is, a
set A � !! , is “easier” than another mass problem B. Both say that a mass prob-
lem A is easier than a mass problem B, or that A reduces to B, if every function in
B computes a function in A. However, the Medvedev lattice imposes an additional
restriction, saying that this reduction should be uniform, in the sense that the oracle
Turing machine performing the computation should be the same for every function
in B. On the other hand, in the Muchnik lattice we can choose a different machine
for each function. Thus, the Medvedev and Muchnik lattices are the most uniform
and the most nonuniform approach to reducing mass problems.

In practice, there are many reductions between mass problems that turn out to
only be Muchnik reductions and not Medvedev reductions. This is especially true in
algorithmic randomness, where the fact that the reductions are not uniform can often
be shown using a straightforward majority vote argument. Thus, the conclusion is
often that the reductions are only Muchnik reductions; that is, that they are highly
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nonuniform. However, this is often not actually the case, but merely results from
the fact that we do not yet know of a finer-grained hierarchy between Medvedev and
Muchnik reducibility (indeed, in these kind of arguments all one usually needs to
know is some finite initial fragment of what one is trying to compute, so it is not
as nonuniform as one might expect). This article aims to resolve that problem by
introducing exactly such a hierarchy.

Higuchi and Kihara [3] introduced five structures between the Medvedev and
Muchnik lattices. One of these is the lattice they call D1

! and which we will call
M1 in this article. Roughly speaking, in this lattice the reductions do not have to
be fully uniform, but the nonuniform choice has to be a …0

1-condition. In slightly
more detail, a mass problem A 1-reduces to a mass problem B if there is a uni-
formly…0

1-sequence V0;V1; : : : covering B such that we can compute an element of
A uniformly from an element f 2 B together with an i 2 ! such that f 2 Vi .

A natural extension of this definition is to replace …0
1 by …0

n in the informal
definition just given. This is what we do in Section 2, which yields the notion of
n-reducibility, and the corresponding degree structures Mn for every n 2 !. In that
section, we will also show that the resulting degree structure is always a Brouwer
algebra, a lattice with an additional implication operator which can be used to give
semantics for propositional logics between intuitionistic logic and classical logic.
The Medvedev and Muchnik lattices are also known to be Brouwer algebras. For
M1 this was shown in [3], and it is the only Brouwer algebra among the intermediate
degree structures studied by Higuchi and Kihara.

In Section 3, we study maps between Mn and Mm for n ¤ m. We show that
the natural surjection from Mn to Mm for m > n preserves joins and meets, but
not necessarily implications. On the other hand, we show that there are embeddings
preserving joins and implications in the other direction.

Next, in Section 4, we introduce the uniformity of a pair .A;B/ with A �w B.
This notion tries to capture how uniform a Muchnik reduction exactly is, as motivated
above. The uniformity is the least number n 2 ! such that A �n B, if any such n
exists. Thus, the uniformity is the least n 2 ! such that …0

n-choices suffice to make
the reduction uniform.

We apply this notion of uniformity to algorithmic randomness in Section 5. Here
we study the uniformity of some well-known Muchnik reductions from algorithmic
randomness. This also allows us to give natural examples separating n-reducibility
from m-reducibility for n ¤ m.

As mentioned above, the structures Mn are all Brouwer algebras. We study their
propositional theories as Brouwer algebras in Sections 6 and 7. While, just as for
the Medvedev and Muchnik lattices, their theories are not intuitionistic propositional
logic (IPC), we show that there are principal factors of Mn that do capture exactly
IPC if n � 1 or n � 4 (a study motivated by Skvortsova’s magnificent result stating
that such factors exist for the Medvedev lattice). This also allows us to show that the
theory of M1 is exactly Jankov’s logic, the deductive closure of IPC and the weak
law of the excluded middle :p _ ::p, answering a question of Higuchi and Kihara
[4]. The problem remains open for n D 2 and n D 3.

Finally, in Section 8, we study the first-order theories of the Mn as lattices. We
show that Mn and Mm are not elementarily equivalent if n ¤ m, except for the case
n;m 2 ¹0; 1º, which we do not currently know how to deal with.
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Our notation is mostly standard. We use ˚ to denote joins or least upper bounds in
lattices, and similarly ˝ to denote meets or greatest lower bounds in lattices. When
we write ‰.�/.n/# for some Turing functional ‰ W !! ! !! , we mean that ‰
halts on input n in at most j� j steps with the partial oracle � (i.e., � is a finite string
of natural numbers). We assume a fixed, computable pairing function hn;mi. We
let ˆe be the Turing functional with index e. For any set A � !! , we let C.A/
be the upwards closure of A under Turing reducibility; that is, the set of those f
such that for some g 2 A we have f �T g. We fix effective listings ¹Sn

e ºe2! of
all †0

n-classes and ¹P n
e D Sn

e ºe2! of all …0
n-classes. When we say that a sequence

V0;V1; : : : is uniformly …0
n, we mean there is a computable sequence u0; u1; : : :

such that Vi D P n
ui

. We will denote concatenation of finite strings x and y both by
xy and by x_y.

For undefined notions from computability theory, we refer to Odifreddi [16], for
undefined notions from algorithmic randomness, we refer to Downey and Hirschfeldt
[1] and Nies [15], and for more background on the Medvedev lattice we refer to the
surveys of Sorbi [20] and Hinman [5].

2 The n-Uniform Degrees

In this section we will introduce the n-uniform degrees and prove some basic results
about them.

Definition 2.1 Let A;B � !! , and let n 2 !. Then we say that A n-uniformly
reduces to B (notation: A �n B) if there exists a sequence V0;V1; : : : of uni-
formly …0

n sets with B �
S

i2! Vi and a uniformly computable sequence e0; e1; : : :

such that for every i 2 ! and every f 2 B \ Vi , we have ˆei
.f / 2 A. If both

A �n B and B �n A, then we say that A and B are n-uniformly equivalent (nota-
tion: A �n B). We let Mn D P .!!/=�n and call its elements the n-uniform
degrees.

For n D 1, this structure was introduced by Higuchi and Kihara in [3], as mentioned
in the Introduction. Their definition, while different at first sight, is equivalent to
ours, as they have shown in [3, Theorem 26].

We will often drop the adjective “uniform” and talk about n-reducibility,
n-equivalence, and the n-degrees instead. If A �n B and V0;V1; : : : and e0; e1; : : :

are as in Definition 2.1 above, then we say that these sequences witness that A �n B.

Remark 2.2 Note that, in Definition 2.1 we can replace …0
n by †0

nC1 without
changing the concept. Namely, if there are a sequence Ui D

S
V i

j covering B

with Vi uniformly …0
n and a computable sequence e0; e1; : : : such that ˆei

.f / 2 A

for every f 2 B \ Vi , then it is not hard to see that the sequences .V i
j /i;j 2! and

.ei /i;j 2! witness that A �n B.

Clearly the relation �n is reflexive on the n-degrees, but let us verify that it is also
transitive.

Proposition 2.3 The relation �n is transitive on P .!!/ � P .!!/, hence it
induces an ordering on Mn.

Proof Let A �n B be witnessed by V0;V1; : : : and e0; e1; : : : , and let B �n C

be witnessed by U0;U1; : : : and s0; s1; : : : . For all i; j 2 !, let Wi;j be as in
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Lemma 2.4 below applied to Vi and ˆsj
. Now, if we let Tj be the class of functions

f for which ˆsj
is total, then Uj \ C � Tj . So,

ˆsj
.Wi;j \ Uj \ C/ � Vi \ B:

Thus, ˆei
.ˆsj

.Wi;j \ Uj \ C// � A. On the other hand, the sequence
.Wi;j \ Uj /i;j 2! covers C , which completes the proof.

Lemma 2.4 Let ˆ be a Turing functional, and let T � !! be the class of func-
tions f for which ˆ.f / is total. Then for every n � 1 and every …0

n-class V ,
we have that ˆ�1.V/ is …0

n within T ; that is, there is a …0
n-class W such that

ˆ�1.V/ D W \ T . Furthermore, we can find an index for W uniformly in n and
indices for ˆ and V .

Proof Note that ˆ�1 commutes with unions and intersections (for this we do not
even need it to be computable), and that we have that ˆ�1.J�K/ is †0

1 uniformly
in � (here, J�K D ¹f 2 !! j � � f º). In fact, ˆ�1.J�K/ is also …0

1 within
T uniformly in � ; that is, there are W� which are …0

1 uniformly in � such that
ˆ�1.J�K/ D W� \ T . Indeed, let W� be the …0

1-class®
f

ˇ̌
8n

�
ˆ.f � n/ � j� j# ! ˆ.f � n/ � j� j D �

¯�
:

From this we can directly construct a W , as required.

We would like to mention that there is another natural, equivalent definition of
n-reducibility, although we will not use this fact in this article. Informally, we have
that n-reducibility is the same as reducibility uniformly in the nth jump, which we
formalize as follows.

Proposition 2.5 Let A;B � !! , and let n 2 !. Then A �n B if and only if
there exists a Turing functional ‰ W !! ! ! such that for every f 2 B, we have
that ‰.f .n//#, and ˆ‰.f .n//.f / 2 A.

Proof First, let A �n B. Fix witnesses V0;V1; : : : and e0; e1; : : : for this fact.
Given f 2 B, let i be least such that f 2 Vi . Note that such an i exists since
V0;V1; : : : covers B. Furthermore, i is computable in f .n/. Now let ‰.f .n// be ei .
Then

ˆ‰.f .n//.f / D ˆei
.f / 2 A:

Conversely, let ‰ be as in the statement of the proposition. Let Ve be the class
of those f 2 !! such that ‰.f .n//# D e. Then Ve is †0

nC1. Furthermore, for
each f 2 Ve \ B, we have that ˆe.f / 2 A. Thus, by applying Remark 2.2 to the
sequences V0;V1; : : : and 0; 1; : : : , we see that A �n B, as desired.

Next, we show that 0-reducibility is just Medvedev-reducibility, so the bottom level
of our hierarchy of reducibilities is the completely uniform Medvedev-reducibility.

Proposition 2.6 Medvedev-reducibility and 0-reducibility coincide.

Proof Clearly Medvedev-reducibility implies 0-reducibility. Conversely, if
A �0 B, then by definition there are computable sequences �0; �1; : : : and e0; e1; : : :

such that every f 2 B starts with some string �i , and such that if �i � f for f 2 B,
thenˆei

.f / 2 A. We can then uniformly compute an element of A from an element
f 2 B by computing the least i such that �i � f and sending f to ˆei

.f /.
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As mentioned in the Introduction, for every n the n-uniform degrees form a Brouwer
algebra. This is what we prove next. For n D 0, the Medvedev lattice was shown by
Medvedev [13], and the Muchnik lattice was shown by Muchnik [14]. For n D 1,
this result is due to Higuchi and Kihara [3, Proposition 16], but the general proof
below is our own.

Whenever we have a map ˛ W P .!!/ ! P .!!/, we say that ˛ induces a map
from Mn to Mm if, whenever A �n B, we have that ˛.A/ �m ˛.B/. In this case,
we implicitly identify ˛ with its induced map from Mn to Mm sending the n-degree
of A to the m-degree of ˛.A/.

Proposition 2.7 For every n 2 !, the n-uniform degrees form a Brouwer algebra.

Proof The join and meet are induced by the same set operation as in the Medvedev
lattice; that is, they are induced by the operations

A ˚ B D ¹f ˚ g j f 2 A; g 2 Bº

and
A ˝ B D 0_A [ 1_B

for A;B � !! . The proofs are a straightforward generalization of those for the
Medvedev lattice (see, e.g., Sorbi [20, Theorem 1.3]).

For the implication, consider the operation induced by
A !n B D

®
u_e_f

ˇ̌
.P n

¹uº.i//i2! covers A ˚ ¹f º

and ˆ¹eº.i/

��
A ˚ ¹f º

�
\ P n

¹uº.i/

�
� B

¯
:

Here, .P n
i /e2! is an effective enumeration of all …0

n-classes, as mentioned in the
Introduction.

Then A ˚ .A !n B/ �n B. For this, consider the sequence V0;V1; : : : ,
where Vi consists of those g ˚ .u_e_f / such that if ¹uº.i/#, then we have that
g ˚ f 2 P n

u.i/
. Then each Vi is a …0

n-class, and if g ˚ .u_e_f / 2 .A ˚ .A !n

B// \ Vi , then ˆ¹eº.i/.g ˚ f / 2 B. Thus, if we let ki be an index for the Turing
functional sending g˚ .u_e_f / to ˆ¹eº.i/.g˚ f /, then V0;V1; : : : and k0; k1; : : :

witness that A ˚ .A !n B/ �n B.
Conversely, if A ˚ C �n B, fix u and e such that P n

u.0/
;P n

u.1/
; : : : and

e.0/; e.1/; : : : witness this. Then, for every f 2 C , we have u_e_f 2 A !n B,
which shows that A ˚ C �n B if and only if C �n A !n B.

We can now also easily show that !n induces a well-defined operation on Mn: if
A1 �n A2 and B1 �n B2, we have that

A1 !n B1 �n A2 !n B2 , B1 �n A1 ˚ .A2 !n B2/

, B2 �n A2 ˚ .A2 !n B2/

, A2 !n B2 �n A2 !n B2;

where we use that we already know that ˚ induces a well-defined operation on Mn,
as argued above. That A2 !n B2 �n A1 !n B1 follows in the same way.

Let us conclude this section by remarking that instead of just looking at n 2 !, we
could also make a version of Definition 2.1 where we look at all ordinals ˛ < !CK

1 .
We expect many of the results in this article hold in this more general setting, but also
expect the proofs will get more technical. So, for reasons of clarity, we have decided
to restrict ourselves to n 2 !, which we think already covers the most important part.
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3 Maps Between Mn and Mm

In this section, we will show that there are natural maps between Mn and Mm for
n;m 2 ! [ ¹wº. First, we show that the natural surjection from Mn to Mm for
n < m preserves the lattice structure, but not the Brouwer algebra structure. This is
known for the Medvedev and Muchnik lattices from Muchnik [14].

Note that n-reducibility implies Muchnik-reducibility for every n 2 !. Therefore,
let us introduce the following convention: whenever we talk about the set ! [ ¹wº,
we think of it as an ordered set, where the order on ! is the usual ordering, and w is
the largest element.

Proposition 3.1 Let n;m 2 ! [ ¹wº with n � m. Then the surjection from Mn

onto Mm induced by the identity map on P .!!/ is a well-defined map preserving ˚

and ˝, but not necessarily !.

Proof First, that the map is well defined follows directly from the fact that A �n B

implies that A �m B. The preservation of ˚ and ˝ follows directly from the fact
that they are induced by the same set operations. That the implication is not preserved
follows from the fact proved below in Corollary 5.4 that for every m there are A;B

such that A �m B but A —n B for all n < m; therefore B !m A �m !! while
B !n A 6�n !

! . Thus, B !n A does not contain a computable element and is
therefore not even Muchnik-equivalent to B !m A.

It is known from Sorbi [19] that there is an embedding of the Muchnik lattice into the
Medvedev lattice preserving joins and implications. Higuchi and Kihara [3, Corol-
lary 42] showed that M1 also embeds into M as a partially ordered set. In fact, this
embedding can be easily seen to preserve joins and implications, as we explain next.

Theorem 3.2 ([3, Corollary 42]) There is an embedding of M1 into M preserving
joins and implications, induced by

˛.A/ D
®
f

ˇ̌
p.f / 2 A and m.f / < 1

¯
;

where m.f / D j¹i j f .i/ D 0ºj and p.f / is .f � Œk;1// � 1 for the least
k such that m.f � Œk;1// D 0. (Here, f � Œk;1/ is the function given by
.f � Œk;1//.n/ D f .nC k/.) Furthermore, ˛.A/ �1 A for all A.

Proof We only prove that joins and implications are preserved, using the fact from
the proof of [3, Corollary 42] that the map induced by ˛ is well defined, preserves the
order, and satisfies ˛.A/ �1 A. Thus, we know that ˛.A/˚ ˛.B/ �M ˛.A ˚ B/.
Conversely, given f 2 ˛.A/ and g 2 ˛.B/, we show how to uniformly compute
a function h 2 ˛.A ˚ B/. For this, we use an auxiliary number ks , where we set
k�1 D 0. At stage s, we define h.2s/ and h.2s C 1/. First, check if either f .s/ D 0

or g.s/ D 0. If so, let h.2s/ D h.2s C 1/ D 0, and let ks D 0. Otherwise, let
h.2s/ D f .ks�1/, h.2sC 1/ D g.ks�1/, and ks D ks�1 C 1. Then it can be directly
verified that h 2 ˛.A ˚ B/, and since we computed h uniformly in f and g, we
have ˛.A/˚ ˛.B/ �M ˛.A ˚ B/.

For the implication, again we already know that ˛.A/ ! ˛.B/ �M ˛.A ! B/

from the fact that the order is preserved. Conversely, ˛.A/ ! ˛.B/ �1 A ! B

because ˛.A/ �1 A and ˛.B/ �1 B. Thus, ˛.˛.A/ ! ˛.B// �M ˛.A ! B/.
However, C �M ˛.C/ holds for any C by sending f to f C 1, so we see that
˛.A/ ! ˛.B/ �M ˛.A ! B/, as desired.
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We now show that we have such embeddings for all n;m 2 ! [ ¹wº with m � n.

Theorem 3.3 Let n 2 ! [ ¹wº. Then there exists a map un W P .!!/ ! P .!!/

such that for every m � n, the map un;m W Mn ! Mm induced by un is a well-
defined embedding preserving joins and implications. Furthermore, un.A/ �n A

for all n and A.

Proof If n D w, then we can use Sorbi’s embedding of the Muchnik lattice into
the Medvedev degrees mentioned above. Also, if n D 0, then there is nothing to be
proved, and if n D 1, this follows from Theorem 3.2. So, we let n 2 ! with n � 2.

In the case of the Muchnik lattice, we have a natural representative of the Muchnik
degree of A in the Medvedev lattice: take the Medvedev degree of the upwards
closure of A, which is the same as the Medvedev degree of

S
¹B � !! j B �w Aº.

In other words, the Muchnik degree of A contains a maximal mass problem. This is
what is used in the embedding of Sorbi for the Muchnik lattice. In our current case it
is harder to find a natural representative; we cannot just take

S
¹B � !! j B �n Aº

because A does not n-reduce to this set in general. This is caused by the fact that, in
general, there is not a “universal” sequence of uniform …0

n-classes covering A.
Thus, we need to find a different approach which works around this nonexistence

of a universal sequence. For this, note that given any set C � P .2!n
/, there is a

natural …0
n-class V which covers part of C : take those X such that

8m19m2 : : :8mn�19mn

�
.m1; : : : ; mn/ 2 X

�
:

We will show that this is in a certain sense a universal way of making …0
n-choices.

Furthermore, if we do not take !n but !nC1, by a slight modification we can make
a natural …0

n-class which uses this extra space to code functions, and if we go up
to !nC2, we can use this extra space to be able to deal with multiple …0

n-classes at
once. We will use this to define our desired representative.

We now give the full details. Consider f 2 .!nC1 � !/! (where we implicitly
identify .!nC1 � !/! with !! in some computable way). In what follows, when we
write x 2 f , we mean that there is some i 2 ! with f .i/ D x. We now inductively
define when f is .�; s/-†-valid and when f is .�; s/-…-valid, where 1 � s � n and
� 2 !nC1�s:

(i) f is .�; 1/-…-valid if and only if there is a k 2 ! such that for all m 2 !,
.�_m; k/ 2 f .

(ii) f is .�; 1/-†-valid if and only if there are a k 2 ! and an m 2 ! such that
.�_m; k/ 2 f .

(iii) f is .�; sC 1/-…-valid if and only if it is .�_m; s/-†-valid for everym 2 !.
(iv) f is .�; sC 1/-†-valid if and only if it is .�_m; s/-…-valid for somem 2 !.
First, let us consider how a valid f code functions in a computable way.

If f is .�; 3/-…-valid, then we know that for each m 2 ! there is an am

such that f is .�_m_am; 1/-…-valid, and therefore there is a km such that
.�_m_am

_t; km/ 2 f for every t 2 !. Given m, let km be least (in the order
f .0/; f .1/; : : :) such that .�_m_am

_t; km/ 2 f for some am; t 2 !. In this case,
we let podd.�; f / D k0k1 : : : . This is computable uniformly in � and f .

On the other hand, if f is .�; 2/-…-valid, then we know that for eachm 2 ! there
are km and am such that .�_m_am; km/ 2 f . Again, let km be the least such km,
and define peven.�; f / D k0k1 : : : . Then this is computable uniformly in � and f .
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We now let

un.A/ D
®
f

ˇ̌
9i

�
f is .i; n/-…-valid

�
, and

8�
�
f is .�; 3/-…-valid and f

is .� � 1; n/-…-valid ) podd.�; f / 2 A
�¯

if n is odd, and we let

un.A/ D
®
f

ˇ̌
9i

�
f is .i; n/-…-valid

�
, and

8�
�
f is .�; 2/-…-valid and f

is .� � 1; n/-…-valid ) peven.�; f / 2 A
�¯

if n is even. For the remainder of the proof, let us assume that n is odd; the even case
proceeds in the same way.

First, we claim that un.A/ �n A. Indeed, to show that un.A/ �n A, or in fact
even un.A/ �M A, send f to the function g given by

g
�
hi; a1; : : : ; ani

�
D

�
ia1 � � � an; f .an�2/

�
:

It is easy to verify that this gives an element of un.A/.
Conversely, consider the classes V� consisting of those f such that f is

.� � 1; n/-…-valid and such that f is .�; 3/-…-valid. The former is a …0
n-condition,

and the latter is…0
3. Thus this is a…0

n-class uniformly in � since n � 2 and n is odd,
hence n � 3. Also note that it covers un.A/ because if f is .i; n/-…-valid, then it
is .�; 3/-…-valid for some string � by definition. Furthermore, for each such f we
can uniformly compute an element of A given a � such that f 2 V�, by computing
podd.�; f /. This shows that A �n un.A/ and hence un.A/ �n A.

In particular, if m � n, then we see that un.A/ �m un.B/ implies that A �n B.
Next, assume that A �n B. Then also A �n un.B/, as shown above. We will show
that un.A/ �M un.B/. Fix a computable sequence �i;a1;:::;an

and a computable
sequence e0; e1; : : : such that ˆei

.Vi \ un.B// � A, where

Vi D

\
a12!

[
a22!

� � �

\
an2!

J�i;a1;:::;an
K:

Given any f 2 un.B/, we show how to uniformly compute an element ‰.f / of
un.A/. To define ˆ.f /.m/, wait until a stage s such that �i;a1;:::;an

� f for some
i; a1; : : : ; an � s for which no element of ˆ.f / � m begins with i; a1; : : : ; an

and such that ˆei
.f /.an�2/Œs�#. If so, let .i; a1; : : : ; an/ be the least sequence

(in some fixed computable well-ordering of !nC1) for which this holds, and let
f .m/ D .ia1 � � � an; ˆei

.f /.an�2//. Then‰.f / is total because f is in un.B/\Vi

for some i 2 !. We can also directly verify that ‰.f / is .i; n/-…-valid for this i .
Finally, note that for every m 2 !, letting ‰.f /.m/ D .ia1 � � � an; b/, we have

that b D ˆei
.f /.an�2/ by construction. Furthermore, ‰.f / is .i; n/-…-valid if and

only if
8a19a2 � � � 8an.�i;a1;:::;an

� f /;

if and only if f 2 Vi . From this we can directly verify that if‰.f / is .�; 3/-…-valid
and .� � 1; n/-…-valid, then we have that podd.�;‰.f // D ˆe�.0/

.f / 2 A. Thus,
‰.f / 2 un.A/ and therefore A �n B if and only if un.A/ �M un.B/. This also
implies that the induced map is well defined for every m.
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We have already seen that un.A/ ˚ un.B/ �M un.A ˚ B/. Conversely,
given f 2 un.A/ and g 2 un.B/, we show how to construct a function
‰.f ˚ g/ 2 un.A ˚ B/. What we basically need to use is the fact that the
conjunction of two †0

nC1-formulas is again a †0
nC1-formula. However, we need to

make sure we preserve the coding, which takes a little more work.
To define‰.f ˚g/.h2i; j; a2; a4; : : : ; an�4i/, we let f .i/ D .sb1 � � � bn; x/. Now

we define

‰.f ˚ g/
�
h2i; j; a2; a4; : : : ; an�4i

�
D

�
hs; j i

_b1
_

hb2; a2i
_b3 � � �

_bn�3
_.2 � bn�2/

_bn�1
_bn; x

�
:

To define ‰.f ˚ g/.h2i C 1; a2; a4; : : : ; an�4i/, we let g.i/ D .sb1 � � � bn; x/. Now
we define

‰.f ˚ g/
�
h2i C 1; j; a2; a4; : : : ; an�4i

�
D

�
hj; si_b1

_
ha2; b2i

_b3 � � �
_bn�3

_.2 � bn�2 C 1/_bn�1
_bn; x

�
:

Then, if � D .hs; ti_a1
_

ha2; b2i
_

� � �
_an�3/, it can be directly verified that

‰.f ˚ g/ is .�; 3/-…-valid if and only if f is .sa1a2 � � � an�3; 3/-…-valid and g is
.ta1b2 � � � an�3; 3/-…-valid. Furthermore, in this case we have that

podd
�
�;‰.f ˚ g/

�
D podd.�; f /˚ podd.�; g/:

Now, a straightforward calculation shows that ‰.f ˚ g/ is .hs; ti; n/-…-valid if and
only if f is .s; n/-…-valid and g is .t; n/-…-valid. Combining all of this, we see that
‰.f ˚ g/ 2 un.A ˚ B/, which is what we needed to show.

Finally, that the implication is preserved can be proved in the same way as in
the proof of Theorem 3.2, using the fact that C �M un.C/ for every C as shown
above.

4 Uniformity

Using the n-degrees, we can now introduce the measure of uniformity mentioned in
the Introduction.

Definition 4.1 Let A �w B. Then we say that the uniformity of A to B is the
least n 2 ! such that A �n B, if such an n exists, and w otherwise.

As we will see later, there are cases when the uniformity is not a natural number.
However, if A is a reasonable class, in the sense that it is arithmetical, then it turns
out that the uniformity is in fact a natural number. This follows from the following
result, which is due to Higuchi and Kihara [3], but the proof given here is our own.

Proposition 4.2 ([3, Proposition 27]) Let A �w B be such that A is †0
nC1. Then

the uniformity of A to B is at most max.n; 2/.

Proof Let ˆ be a Turing functional. Let T � !! be the class of functions f for
whichˆ.f / is total, which is a…0

2-class. From Lemma 2.4 we then see that we have
that ˆ�1.A/ \ T is †0

max.n;2/C1
.

Now, let Vi be ˆ�1
i .A/ \ T , and let ei D i . Then the Vi ’s cover B since we

assumed that A �w B, and ˆe.Ve/ � A. The result now follows, as discussed in
Remark 2.2.
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Remark 4.3 Note that, in the proof above, the reduction does not depend on B,
but only on A. Thus, given any †0

nC1-class A, there is a single reduction which
witnesses that A �max.n;2/ B for every B with B �w A.

Corollary 4.4 If A is arithmetical, then the uniformity of A to B is a natural
number.

In Theorem 5.3 below, we will see that Proposition 4.2 is optimal for n � 2. For
n D 2, this follows from the following elegant pair of theorems.

Theorem 4.5 (Jockusch [7, Theorems 5 and 6]) We have that DNC2 �w DNC3,
but DNC2 —M DNC3.

Theorem 4.6 ([4, Corollary 72]) We have
DNC2 —1 DNC3:

Corollary 4.7 The uniformity of DNC2 to DNC3 is 2.

Proof This follows from the previous two theorems and the fact that DNC2 is a
…0

1-class.

5 Uniformity and Algorithmic Randomness

To illustrate the definition given in the previous section, we will now study the unifor-
mity of some well-known Muchnik reductions from algorithmic randomness. First,
we will study a version of the effective 0-1-law, which is originally due to Kučera [9].
This will be a helpful tool during the remainder of this article.

Theorem 5.1 (Effective 0-1-law, Kučera [9, p. 248], Kautz [8, Lemma IV.2.1]) Let
n 2 !, let V be a …0

n-class of positive measure, and let X be n-random. Then there
is a k 2 ! with X � Œk;1/ 2 V .

Proof See, for example, [1, Theorem 6.10.2].

Theorem 5.2 Let n 2 !, let A be a mass problem, and let n-Random be the class
of n-randoms. Then A �n n-Random if and only if there exists a …0

n-class V of
positive measure such that A �M V .

Proof First, assume that A �n n-Random, and let this be witnessed by V0;V1; : : :

and e0; e1; : : : . Then some Vi has positive measure by countable additivity, and
A �M Vi as witnessed by ei .

Conversely, let V be a …0
n-class of positive measure, and let ‰ be such that

‰.V/ � A. By the effective 0-1-law, we know that for each n-random X there
is an m 2 ! such that X � Œm;1/ 2 V . Let Vm D 2m_V ; that is, Vm is
the …0

n-class consisting of those X such that X � Œm;1/ 2 V . Then the Vm

cover the class of n-randoms, as we have just argued. Furthermore, if m is such that
X 2 Vm, then we can compute an element of A uniformly from X and m, namely,
‰.X � Œm;1//.

That for some…0
n-classes V we have that n-reducibility is optimal, that is, that there

are …0
n-classes V and mass problems A such that A �M V but A —m n-Random

for any m < n, will follow from the next theorem.
For any ordinal ˛ which is not 0 or a limit ordinal, we say that f is ˛-DNC

(diagonally noncomputable) if f is DNC relative to ;.˛�1/. Kučera [9] has shown
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that every n-random set computes an n-DNC function, which lies at the basis of the
following theorem.

Theorem 5.3 Let n 2 ! with n � 1. Then n-DNC Muchnik-reduces to
n-randomness, with uniformity n. Also, .! C 1/-DNC Muchnik-reduces to
.! C 1/-randomness, with uniformity w.

Proof Let us first consider n 2 !. From the standard proof of Kučera’s result men-
tioned above (see, e.g., [1, Theorem 8.8.1]), we know that there is a …0;;.n�1/

1 -class
V (which is a specific kind of …0

n-class) for which n-DNC Medvedev-reduces to V .
Now apply Theorem 5.2. Alternatively, for n � 2 we can use that the collection of
n-DNC functions is …0;;.n�1/

1 and apply Proposition 4.2.
On the other hand, let m < n, and assume toward a contradiction that n-DNC

m-reduces to n-randomness. Fix witnesses V0;V1; : : : and e0; e1; : : : for this fact (so
V0;V1; : : : are uniformly…0

m). Without loss of generality, we may assume that every
Vi is a subclass of 2! . We show that ;.m/ computes an n-DNC function f , which is
a contradiction.

Indeed, given k 2 !, to define f .k/, look for the first � 2 2<! and i 2 !

such that Vi has strictly positive measure above � and such that ˆei
.�/.k/ #. Since

the measure of a …0
m-class is ;.m/-computable, we can do this computably in ;.m/.

Furthermore, note that such � and i have to exist by countable additivity. Now
ˆei

.�/.k/ ¤ ¹kº;.n�1/
.k/ since � can be extended to an n-random within Vi (after

all, it has positive measure above �/ and ˆei
.Vi / � n-DNC. Thus, f is n-DNC, as

desired.
Finally, let us consider n D w. The upper bound (i.e., the fact that .! C 1/-DNC

Muchnik-reduces to .! C 1/-randomness) again follows from the standard proof.
On the other hand, if .! C 1/-randomness m-reduces to .! C 1/-DNC for some
natural number m, then the same argument as above shows that ;.m/ computes an
.! C 1/-DNC function, which is again a contradiction.

The previous theorem now also allows us to separate n-reducibility fromm-reducibi-
lity for n ¤ m.

Corollary 5.4 For every n 2 ! [ ¹wº, there are mass problems A �n B such
that for no m < n, we have A �m B.

Recall that n-DNC2m is the class of n-DNC functions f for which f .m/ � 2m.

Corollary 5.5 Let n 2 ! with n � 1. Then n-DNC2m Muchnik-reduces to
n-randomness, with uniformity n. Furthermore, !-DNC2m Muchnik-reduces to
!-randomness, with uniformity w.

Proof This follows from the same proof as Theorem 5.3.

Next, let us compare our notion with the notion of layerwise computability intro-
duced by Hoyrup and Rojas [6]. When looking at the uniformity of some A to
n-randomness, we allow arbitrary …0

n-classes covering the class of n-randoms to
witness this reduction. Instead, we could also decide to only allow the class Vn to be
the nth layer, that is, the complement of Un for some fixed universal n-randomness
test U0;U1; : : : . We now show that this is strictly weaker than our notion.
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Proposition 5.6 We do not have that n-DNC2m reduces layerwise to n-random-
ness; that is, there is no computable e0; e1; : : : such that ˆei

.Vi / is contained in
n-DNC2m for every i 2 !, where Vi is the complement of Ui and U0;U1; : : : is
some fixed universal n-randomness test.

Proof Toward a contradiction, assume that such a sequence ei exists; we show
that there is a computable n-DNC2m function f , which is a contradiction. Given
m, to define f .m/, look for the first i 2 ! and k 2 ! such that at least measure
2�iC1-many strings � satisfy ˆei

.�/.m/# D k. Such a string must exist, since for
every X 2 Vi , we have that ˆei

.X/.m/# 2 ¹0; : : : ; 2mº and Vi has measure at least
1 � 2�i , so at least measure 1�2�i

2mC1
-many X must be sent to the same value k, and

if i is large enough, then 1�2�i

2mC1
is at least 2�iC1. Furthermore, for any i and k such

that at least measure 2�iC1-many strings � satisfy ˆei
.�/.m/# D k, we know that

�
�
Vi \

®
X

ˇ̌
ˆei

.X/.m/# D k
¯�

� 1 � .2�i
C 1 � 2�iC1/ D 2�i > 0;

so there is some X in this set and for such X we have that ˆei
.X/ is n-DNC2m , so

k ¤ ¹mº;.n�1/
.m/. Therefore, f is n-DNC2m , as desired.

Next, let us study the result from Kautz [8, Theorem IV.2.4(iv)] which states that
every 2-random degree is hyperimmune, that is, that every 2-random set computes
a function which is not computably dominated. Note that the noncomputably domi-
nated functions form a …0

3-class, so Proposition 4.2 tells us that the uniformity is at
most 3. However, our version of the effective 0-1-law (see Theorem 5.2) tells us that
it is even at most 2. We next show that the uniformity is exactly 2.

Theorem 5.7 The uniformity of the noncomputably dominated functions to the
2-random sets is 2.

Proof The upper bound follows from the standard proof and our effective 0-1-law,
as discussed above. Toward a contradiction, assume that there exists a sequence
V0;V1; : : : � 2! of uniformly …0

1-classes and uniformly computable e0; e1; : : :

which witness that the noncomputably dominated functions 1-reduce to the 2-random
sets. Then at least one Vi has positive measure; without loss of generality, we may
assume that this is V0. Let q > 0 be a rational such that V0 has measure at least q.
We will use a majority vote argument to show that there is a computable function
which is not computably dominated—a contradiction.

We will define a computable function f and a sequence V0 � W0 � W1 � � � �

of …0
1-classes such that every Wi has measure at least q.1

2
C 2�i�2/ and such that

f .i/ � ˆe0
.X/.i/ for every X 2 Wi . In particular, W D

T
i2! Wi has positive

measure, so it is nonempty. Furthermore, if X 2 W � V0, then f dominates the
function ˆe0

.X/, which is a contradiction.
We letW�1 D V0. At stage s we define f .s/ and Ws . LetUs�1 be a prefix-free set

of strings such that JUs�1K D Ws�1. Look for n 2 ! such that for at least measure
1�q2�s�3-many strings � 2 2n, we have that either � 2 Us�1 orˆe0

.�/.s/#. Such
an n must exist since Ws�1 � V0. Once this happens, we let

Ws D Ws�1 n
q®
� 2 2n

ˇ̌
ˆe0

.�/.s/"
¯y
;
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and we let f .s/ be the maximum of ˆe0
.�/.s/ for those � 2 2n for which

ˆe0
.�/.s/#. Then Ws has measure at least

�.Ws�1/ � q2�s�3
D q

�1
2

C 2�s�3
C 2�s�3

�
D q

�1
2

C 2�s�2
�
;

and it is clear that f .s/ � ˆe0
.X/.s/ for every X 2 Ws .

Next, we consider another result from Kautz [8, Theorem IV.2.4(v)] which states that
the 2-random sets even compute 1-generic sets.

Theorem 5.8 The uniformity of 1-genericity to 2-randomness is 2.

Proof Again, that the uniformity is at most 2 follows from the standard proof
together with our effective 0-1-law (see Theorem 5.2). If it were the case that
1-genericity 1-reduced to 2-randomness, then the noncomputably dominated func-
tions would also 1-reduce to the 2-random sets because the 1-generic sets uniformly
compute functions which are not computably dominated (this follows directly from
the proof of Kurtz [10, Corollary 1.1a] that every (weakly) 1-generic set is hyperim-
mune). This contradicts Theorem 5.7.

6 Theory of the 1-Uniform Degrees as a Brouwer Algebra

In this section, we study the propositional theory of M1 as a Brouwer algebra. (For
more background on this, we refer to Sorbi [20].)

As for the Medvedev lattice, the theory of M1 is not IPC because the top element
is join-irreducible. We want to study what happens if we look at factors M1=A, that
is, the quotient of M1 by the principal filter generated by the degree of A. Skvortsova
[18] has shown that there is such a factor of the Medvedev lattice for which the theory
is IPC. Her techniques were slightly improved in Kuyper [12]. We will show that
these techniques can be adapted to prove that there is a factor of M1 which has as
theory IPC (which implies that the theory of M1 is Jankov’s logic Jan, i.e., IPC plus
the weak law of the excluded middle :p_::p; see the proof of [12, Corollary 5.3]).

The crucial ingredient we need to adapt Skvortsova’s techniques to M1 is the next
proposition.

Proposition 6.1 Let A 2 M1 be a Muchnik degree, that is, the degree of some
set of functions which is upwards closed under Turing reducibility. Then A is meet-
irreducible. In fact, for all B;C 2 M1 we have

A !1 .B ˝ C/ �1 .A !M B/˝ .A !M C/ �M .A !1 B/˝ .A !1 C/:

Proof Let A;B;C 2 M1 with A a Muchnik degree. If A is the degree of the
empty mass problem, then the result is certainly true; so, we may assume this is not
the case. It is not hard to see that the meet-irreducibility follows from the second
claim. That

.A !M B/˝ .A !M C/ �M .A !1 B/˝ .A !1 C/

is also not hard to see; it follows from the fact that a uniform reduction is a special
case of an n-reduction. So, it remains to prove that

A !1 .B ˝ C/ �1 .A !M B/˝ .A !M C/:
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Let u_e_f 2 A ! .B ˝ C/. We claim that there exists a � 2 !<! and an i 2 !

such that for every h extending � we have .h˚ f /˚ f 2 P 1
¹uº.i/

, and such that

ˆ¹eº.i/

��
� ˚

�
f � j� j

��
˚

�
f � 2j� j

��
.0/#:

For now, let us assume that this claim holds and explain how this proves the result.
Namely, consider the …0

1-classes Wu;e;�;i where all elements of Wu;e;�;i are of the
form u_e_f , and u_e_f 2 Wu;e;�;i if and only if ¹eº.i/Œj� j�#, ¹uº.i/Œj� j�#,

ˆ¹eº.i/

��
� ˚

�
f � j� j

��
˚

�
f � 2j� j

��
.0/#;

and .h ˚ f / ˚ f 2 P 1
¹uº.i/

for every h extending � . Then, if u_e_f is in both
A ! .B ˝ C/ and Wu;e;�;i , compute

a D ˆ¹eº.i/

��
� ˚

�
f � j� j

��
˚

�
f � 2j� j

��
.0/:

Let b be an index for the functional sending h0 ˚h1 toˆ¹eº.i/...�
_h0/˚h1/˚h1/

without the first bit. Then it can be directly verified that

a_b_f 2 .A !M B/˝ .A !M C/;

where we use the fact that A is dense because it is upwards closed under Turing
reducibility. Furthermore, the Wu;e;�;i cover A !1 .B ˝ C/ by the claim. Thus,
this proves the result.

So, let us prove the claim. Toward a contradiction, assume that such � and i do
not exist. Fix a g 2 A. Then we also know that �_g 2 A for every string � , again
since A is dense.

We will now construct an h such that h ˚ f �T g (and hence h ˚ f 2 A)
and such that .h˚ f /˚ f …

S
i2! P 1

¹eº.i/
, which is a contradiction. We construct

h D
S

i �i by a finite extension argument. Let ��1 D ;. Given �i�1, to define �i we
let � � �i�1 be the first string such that J.�˚.f � j� j//˚.f � 2j� j/K\P 1

¹uº.i/
D ;.

Let �i D �_g.i/.
Note that such a string � always exists: namely, if such a string did not exist,

we have that ..�i�1
_g/ ˚ f / ˚ f 2 P 1

¹uº.i/
. So, there is some s 2 ! with

ˆ¹eº.i/....�i�1
_g/ ˚ f / ˚ f / � 4s/.0/#. Since we assumed the claim is false,

we then know that there is some v 2 !! extending .�i�1
_g/ � s for which

.v ˚ f / ˚ f … P 1
¹uº.i/

. Thus, there is some .�i�1
_g/ � s � � � v such that

J.� ˚ .f � j� j//˚ .f � 2j� j/K is disjoint from P 1
¹uº.i/

, as desired.
Note that the entire procedure is f -computable, so h ˚ f computes g. Further-

more, .h ˚ f / ˚ f …
S

i2! V¹eº.i/ by construction, which proves the claim and
hence the result.

In the terminology of [18], we have just shown that the set of Muchnik degrees is
canonical in M1. This allows us to show the following result. Given a Brouwer alge-
bra B , recall that a valuation (relative to B) is a function mapping the propositional
variables to elements of a Brouwer algebra. Such a valuation can be canonically
extended to the set of all formulas by interpreting _ as ˝, ^ as ˚, ! as !, and ?

as 1. We now say that the propositional theory of B , written as Th.B/, is the set of
all formulas � such that for all valuations v we have that v.�/ D 0. Again, for more
background we refer to Sorbi [20].
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Theorem 6.2 Let A be a computably independent set, and let

A D ¹i_f j f �T A
Œi�

º:

Then Th.M1=A/ D IPC.

Proof We give a sketch. The proof uses the exact same technique as the proof of
[12, Theorem 1.1]. The only real modification is that we need a new proof of the fact
that the Muchnik degrees are canonical in M1, which we have just given.

In a bit more detail, the proof in [12] proceeds as follows.
(1) First, [12, Theorem 3.3] shows that there are certain embeddings of

.P .I /;�/ into intervals ŒB;A�M. It can be directly verified that the proof
given there also works for M1 (in fact, it works for every Mn).

(2) Next, [12, Corollary 4.3] and [12, Corollary 4.5] extend these embeddings to
free Brouwer algebras. This uses the previous fact together with the fact that
the set of Muchnik degrees is canonical in the Medvedev lattice. As we have
just shown, this is also true in M1, so these two corollaries also hold in M1.

(3) Finally, [12, Theorem 1.1] combines these facts with some general lattice-
theoretic facts and some computability-theoretic facts. In the proof, certain
sets are constructed such that certain equalities hold between certain mass
problems in the Medvedev lattice; but of course, if things are Medvedev-
equivalent they are certainly 1-equivalent. Therefore, the proof proceeds in
the same way for M1.

Corollary 6.3 We have
Th.M1/ D Jan:

Proof See the proof of [12, Corollary 5.3].

Let us next note that the technique discussed in this section does not work for n � 2.

Proposition 6.4 Let n 2 !. If f; g are�0
n, then C.¹f º/˝C.¹gº/ �n C.¹f; gº/.

Proof If n � 1, this follows from the fact that the bottom element of Mn is meet-
irreducible. So, assume that n � 2. Clearly C.¹f º/ ˝ C.¹gº/ �n C.¹f; gº/; in
fact, this reduction is even a Medvedev reduction since it is just inclusion. For the
converse, note that the upper cone of a �0

n-set is †0
nC1. By Remark 2.2 above, we

therefore see thatC.¹f º/˝C.¹gº/ �n C.¹f; gº/ by sending h 2 C.¹f; gº/\C.¹f º/

to 0_h and h 2 C.¹f; gº/ \ C.¹gº/ to 0_h.

Corollary 6.5 The set of Muchnik degrees is not canonical in Mn for n � 2.

Proof Let f , g be two incomparable �0
2-functions. Then B ˝ C �2 A by the

previous proposition. On the other hand, we do not have B �w A nor C �w A

since f and g are incomparable.

Thus, if we want to study the theory of Mn for n � 2, a different technique is needed.

7 Theory of the n-Uniform Degrees as a Brouwer Algebra for n � 4

In Sorbi and Terwijn [21], it is shown that there are factors of the Muchnik lattice
which yield IPC. A different proof is given in Kuyper [11]. By studying how uniform
the reductions in that proof are, we show that such factors in fact exist for Mn with
n � 4.
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Theorem 7.1 Let A be the class of 1-generic�0
2-functions together with the com-

putable functions, and let n � 4. Then Mn=A has theory IPC.

Proof This follows from a careful analysis of the proof for the Muchnik lattice
in [11, Theorem 5.8]. In that proof, a function ˛ from A to 2<! satisfying certain
properties is constructed. First note that we can see such a function as a partial
function ˇ from ! ! 2<! instead, identifying functions in A with their�0

2-indices.
Then the graph of ˇ is †0

4.
(i) Checking that e is an index for a �0

2-set, that is, that ¹eº;0 is total, is …0
3.

(ii) Checking that ¹eº;0 is 1-generic is …0
3. Let W0;W1; : : : be an effective enu-

meration of the c.e. sets. Then ¹eº;0 is 1-generic if and only if

8e9n9s
�
8t � s

�
¹eº;0Œt� � n 2 WeŒs�

�
_ 8�8t � s

�
� � ¹eº;0Œt�

! � … WeŒt �
��
:

(iii) In the construction we need to check if ¹e0º;0

�T ¹e1º;0 for e0; e1 which are
indices for �0

2-sets, this is †0
4:

9a8n9s8t � s
�
¹aº

¹e1º.;0�s/Œt�

.n/Œt � #D ¹e0º
;0Œt�.n/Œt �

�
:

(iv) In the construction we need to, given e0 and finitely many points already
defined, do some kind of splitting to find an e1 satisfying certain properties
(this happens in [11, Theorem 4.3]). We can find this index e1 effectively
from e0 and the points already defined.

Now, any function f is in some ˛�1.C.�// if and only if f is not in A (which is
…0

4) or if there exists an e with f D ¹eº;0 (which is …0
3) such that ˇ.e/ extends �

(which is †0
4, as argued above). Thus, every ˛�1.�/ is †0

5. Using Remark 2.2 it is
not hard to see that the meet of two†0

nC1-classes is their union in Mn. Furthermore,
since each ˛�1.C.�// is upwards closed, and for upwards closed A and B we have
that their join is just their intersection and that

A !n B D
®
f 2 !!

ˇ̌
8g 2 A.f ˚ g 2 B/

¯
for all n 2 ! [ ¹wº, we see that the Muchnik degrees of ¹˛�1.�/ j � 2 2<!º and
the Mn-degrees of ¹˛�1.�/ j � 2 2<!º for n � 4 are all pairwise isomorphic. Since
these are the only degrees used in the proof in [11], the remainder of the proof is now
exactly the same as for the Muchnik lattice.

Corollary 7.2 For n � 4, we have that Th.Mn/ D Jan.

Proof See the proof of [12, Corollary 5.3].

Thus, we have dealt with the cases n � 1 and n � 4. The author currently does not
know how to deal with the cases n D 2 and n D 3. However, we conjecture the
following.

Conjecture 7.3 The propositional theories of M2 and M3 are Jan; in fact, there
are principal factors of M2 and M3 which have as propositional theory IPC.

8 Elementary Equivalence

Finally, in this section we will show that the first-order theories of the n-degrees as
lattices (or equivalently, as partially ordered sets) are pairwise different. Recall that a
degree of solvability is a degree of a singleton ¹f º, and that the degrees of solvability
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ordered by �M are isomorphic to the Turing degrees, as shown by Medvedev [13].
First, we show that Dyment’s (Dyment is the maiden name of Skvortsova) definition
of the degrees of solvability in the Medvedev lattice from Dyment [2] works in every
Mn.

Proposition 8.1 For every n 2 ! [ ¹wº, the degrees of solvability in Mn are
definable as exactly those A for which there is a B >n A such that every C >n A

satisfies C �n B.

Proof For one direction, given a degree of solvability ¹f º, let
B D

®
e_g

ˇ̌
ˆe.g/ D f ^ g —T f

¯
:

Then B >n A for every n 2 ! [ ¹wº, and if C >n A is witnessed by V0;V1; : : :

and e0; e1; : : : , then we can witness C �n B by sending g 2 Vi \ C to ei
_g.

For the converse, let us first consider the case n D w. Let A and B be as in
the statement of the proposition. Then B —w A so there is an f 2 A such that
letting C D ¹f º, we have C �w B. Furthermore, we clearly have C �w A. Now,
if C > A, then we would have C �w B by our assumption on B, a contradiction.
Thus A �w C , and A is therefore a degree of solvability.

Finally, let us consider the converse direction for n 2 !, in which case we follow
the proof of [2] (see, e.g., [20, Theorem 2.3]). That is, given A which is not a degree
of solvability and B —n A, we construct a C >n A with C �n B. We construct C

as a set of the form ¹xi
_fi j i 2 !º with fi 2 A, which ensures that C �M A and

hence C �n A. Our remaining requirements are therefore
(a) Pe;u: 9j 2 !:¹eº.j /" _ ¹uº.j /" _ˆ¹eº.j /.C \ P n

¹uº.j /
/ ª B,

(b) Re;u: 9j 2 !:¹eº.j /" _ ¹uº.j /" _ˆ¹eº.j /.A \ P n
¹uº.j /

/ ª C .
The construction is now as in the Medvedev case, so we refer to [20, Theorem 2.3]
for the details.

For the Medvedev lattice, the following result is from [2, Theorem 3.5]; we general-
ize it to our setting.

Proposition 8.2 For every n 2 !, the Muchnik degree B of A (i.e., the degree of
C.A/ D ¹f 2 !! j 9g 2 A.f �T g/º) is definable by the formula �.A;B/ given
by

8¹f º
�
¹f º �n B ! ¹f º �n A

�
^ 8C

�
8¹f º

�
¹f º �n C ! ¹f º �n A

�
! C �n B

�
;

where we use the result from Proposition 8.1 that the degrees of solvability are defin-
able. In particular, Muchnik reducibility is definable by

 .A0;A1/ D 8B0; B1

�
�.A0;B0/ ^ �.A1;B1/ ! B0 �n B1

�
:

Proof First, given A, let B be the Muchnik degree of A. Then clearly ¹f º �n B

implies that ¹f º �n A; in fact, ¹f º �w B implies that ¹f º �M B. Next, let C

be such that for every f with ¹f º �n C we have ¹f º �n A. Then in particular,
for every f 2 C we have f �T g for some g 2 A, and therefore f 2 B. Thus
�.A;B/ holds.

Conversely, given A, B with �.A;B/, let C be the Muchnik degree of A. We
will show that B �n C . First, if f 2 B, then ¹f º �n B, so ¹f º �n A by the
first conjunct of �.A;B/. So, f �T g for some g 2 A, and therefore we see that
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B � C ; thus C �M B. Finally, apply the second conjunct of �.A;B/ to C to
obtain C �n B.

In Proposition 6.4, we gave a sufficient condition so that the meet of two Muchnik
degrees C.¹f º/ and C.¹gº/ is n-equivalent to C.¹f; gº/. We now give an example
of a situation in which this is not the case.

Proposition 8.3 Let n 2 ! with n � 1, let X be weak n-random, let Y be
n-random, and let X and Y be Turing incomparable (in particular, these conditions
are all satisfied if X ˚ Y is n-random). Then C.¹Xº/˝ C.¹Y º/ —n C.¹X; Y º/.

Proof Assume toward a contradiction that C.¹Xº/ ˝ C.¹Y º/ �n C.¹X; Y º/ is
witnessed by V0;V1; : : : and e0; e1; : : : . Since the Vi cover C.¹Xº/, we know
there is some i 2 ! with X 2 Vi . Fix such an i . Determine s 2 ! such that
ˆei

.X/Œs�#. Note that then ˆei
.X/Œs� D 0 because X does not compute Y . Also,

since X is weakly n-random we know that �.Vi \ JX � sK/ > 0, because X is
not in any …0

n-class of measure 0. So, by the effective 0-1-law (see Theorem 5.1)
applied to Y , we know that Y � Œk;1/ 2 Vi \ JX � sK for some k 2 !.
But then X � s � Y � Œk;1/ so ˆei

.Y � Œk;1//.0/# D 0, and therefore
ˆei

.Y � Œk;1//# 2 0_C.¹Xº/. Thus Y �T Y � Œk;1/ �T X , which is a
contradiction.

We now show that Mn and Mm are not elementarily equivalent for almost all n ¤ m;
we have to exclude the case n D 0 and m D 1.

Theorem 8.4 Let n;m 2 ![ ¹wº with n < m andm � 2. Then Mn and Mm are
not elementarily equivalent.

Proof First, if m D w, then this follows from the fact that �n and �w do not
coincide, as shown in Corollary 5.4, together with the fact shown in Proposition 8.2
above that Muchnik reducibility is definable in Mn. That is, take the formula � which
says that there are A and B such that A — B while A �w B. Then � holds with �

interpreted as �n, but clearly not with � interpreted as �w .
Next, let m 2 !. By Shore and Slaman [17], we know that the jump is defin-

able in the Turing degrees, so in particular the �0
n-degrees are definable in the Tur-

ing degrees. Since the degrees of solvability are definable, as shown in Proposi-
tion 8.1 above, we can therefore express the statement “for all f; g 2 �0

m, we have
that C.¹f º/ ˝ C.¹gº/ is a Muchnik degree” by a first-order formula �. Then �
holds in Mm by Proposition 6.4. On the other hand, since the Muchnik degree of
C.¹f º/ ˝ C.¹gº/ is given by C.¹f; gº/, we see that � does not hold in Mn by
Proposition 8.3.

We should note that the result of Shore and Slaman on the definability of the jump
used above is very complex, and that it is probably too strong a tool for the simple
thing we wish to prove. However, the author currently does not know of an easier
example separating the first-order theories of these lattices.

We conclude with the following open question concerning the single case
excluded in Theorem 8.4.

Question 8.5 Are M0 and M1 elementarily equivalent?
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