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Semigroups in Stable Structures

Yatir Halevi

Abstract Assume that G is a definable group in a stable structure M . Newel-
ski showed that the semigroup SG.M/ of complete types concentrated on G is
an inverse limit of the 1-definable (in M eq) semigroups SG;�.M/. He also
showed that it is strongly �-regular: for every p 2 SG;�.M/, there exists n 2 N
such that pn is in a subgroup of SG;�.M/. We show that SG;�.M/ is in fact an
intersection of definable semigroups, so SG.M/ is an inverse limit of definable
semigroups, and that the latter property is enjoyed by all1-definable semigroups
in stable structures.

1 Introduction

A semigroup is a set together with an associative binary operation. Although the
study of semigroups originated at the beginning of the 20th century, not much atten-
tion has been given to semigroups in stable structures. One of the few facts known
about them is the following.

Proposition (Hrushovski [6]) A stable semigroup with left and right cancellation,
or with left cancellation and right identity, is a group.

Recently,1-definable semigroups in stable structures made an appearance in a work
by Newelski [13]. Let G be a definable group inside a stable structure M . Define
SG.M/ to be all the types of S.M/ which are concentrated on G. We can give
SG.M/ a structure of a semigroup by defining for p; q 2 SG.M/,

p � q D tp.a � b=M/;

where a ˆ p, b ˆ q and a j^M b.
Newelski gives an interpretation of SG;�.M/ (where � is a finite set of invariant

formulas) as an1-definable set in M eq, and thus SG.M/ may be interpreted as an
inverse limit of1-definable semigroups in M eq.
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As a result, he shows that for every local type p 2 SG;�.M/, there exists n 2 N
such that pn is in a subgroup of SG;�.M/. In fact, he shows that pn is equal to a
translate of a �-generic of a �-definable connected subgroup of G.M/.

Definition A semigroup S is called strongly �-regular or an epigroup if for all
a 2 S , there exists n 2 N such that an is in a subgroup of S .

Question Is this property enjoyed by all1-definable semigroups in stable struc-
tures?

Since we are dealing with 1-definable semigroups, remembering that every
1-definable group in a stable structure is an intersection of definable groups,
an analogous question arises.

Question Is every1-definable semigroup in a stable structure an intersection of
definable ones? Is SG;�.M/ an intersection of definable semigroups?

We answer these questions in this article.
It is a classical result about affine algebraic semigroups that they are strongly

�-regular. Recently, Brion and Renner [1] proved that this is true for all algebraic
semigroups. In fact, we will show the following.

Proposition Let S be an1-definable semigroup inside a stable structure. Then
S is strongly �-regular.

At least in the definable case, this is a direct consequence of stability; the general
case is not harder but a bit more technical.

One can ask if what happens in SG;�.M/ is true in general 1-definable semi-
groups. That is, is every element a power away from a translation of an idempotent?
However, this already is not true in M2.C/.

As for the second question, in Section 4 we show that SG;�.M/ is an intersection
of definable semigroups. In fact, we show the following.

Theorem SG.M/ is an inverse limit of definable semigroups in M eq.

Unfortunately, not all1-definable semigroups are an intersection of definable ones.
Milliet [11] showed that every1-definable semigroup inside a small structure is

an intersection of definable semigroups. Hence, it is also true for !-stable structures
and, for instance, in algebraically closed fields (ACFs). This is not true for any stable
theory (or even superstable theory). See Example 3.2.1 for a counterexample.

However, there are some classes of semigroups for which this does hold. We recall
some basic definitions from semigroup theory that we will need. (See Section 2.2 for
more information.)

Definition

1. An element e 2 S in a semigroup S is an idempotent if e2 D e.
2. A semigroup S is called an inverse semigroup if for every a 2 S there exists

a unique a�1 2 S such that
aa�1a D a; a�1aa�1

D a�1:

3. A Clifford semigroup is an inverse semigroup in which the idempotents are
central. A surjective Clifford monoid is a Clifford monoid in which for every
a 2 S there exist g 2 G and idempotent e such that a D ge, where G is the
unit group of S .
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These kinds of semigroups do arise in the context of SG.M/. It is probably folklore,
but one may show (see Section 4.2) that if G is 1-based, then SG.M/ is an inverse
monoid. In Section 4.2 we give a condition on G for SG.M/ to be Clifford.

Theorem Let S be an 1-definable surjective Clifford monoid in a stable struc-
ture. Then S is contained in a definable monoid, extending the multiplication on S .
This monoid is also a surjective Clifford monoid.

As a result of the proof, every such monoid is an intersection of definable ones.
In the process of proving the above theorem, we show two results which might be

interesting in their own right.
Since1-definable semigroups in stable structures are s�r, one may define a par-

tial order on them given by

a � b, a D be D f b for some e; f 2 E.S1/;

where S1 is S [ ¹1º and where we define 1 to be the identity element. If for every
a; b 2 S , a � b � a; b, one may show that there exists n 2 N such that every product
of n C 1 elements is already a product of n of them (see Proposition 3.3.4). As a
result, any such semigroup is an intersection of definable ones. In particular, we have
the following.

Proposition Let E be an1-definable commutative idempotent semigroup inside
a stable structure. Then E is contained in a definable commutative idempotent semi-
group. Furthermore, it is an intersection of definable ones.

2 Preliminaries

2.1 Notation We fix some notation. We will usually not distinguish between sin-
gletons and sequences unless otherwise necessary to avoid confusion. Thus, we
may write a 2 M and actually mean a D .a1; : : : ; an/ 2 M

n. We will denote
A;B;C; : : : as parameter sets and denoteM;N; : : : as models. When talking specifi-
cally about semigroups, monoids, and groups (either definable,1-definable, or mod-
els) we will denote them by S , M , and G, respectively. We use juxtaposition ab for
concatenation of sequences, or AB for A [ B if dealing with sets. That being said,
since we will be dealing with semigroups, when there is a chance of confusion we
will try to differentiate between the concatenation ab and the semigroup multiplica-
tion ab by denoting the latter by a � b.

2.2 Semigroups The work of Clifford and Preston (see [2], [3]) is still a very good
reference for the theory of semigroups, but Higgins [4] and Howie [5] are much more
recent sources.

A set S with an associative binary operation is called a semigroup. An element
e 2 S is an idempotent if e2 D e. We will denote by E.S/ the subset of all idem-
potents of S . By a subgroup of S , we mean a subsemigroup G � S such that there
exists an idempotent e 2 G such that .G; �/ is a group with neutral element e. More-
over, S is strongly �-regular (s�r) if for each a 2 S , there exits n > 0 such that an

lies in a subgroup of S .

Remark These types of semigroups are also known as epigroups, and their ele-
ments are known as group-bound.
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A semigroup with an identity element is called a monoid. Observe that any semi-
group can be extended to a monoid by artificially adding an identity element. We
will denote it by S1. If S is a monoid, we will denote by G.S/ its subgroup of
invertible elements.

Given two semigroups S; S 0, a homomorphism of semigroups is a map
' W S ! S 0

such that '.xy/ D '.x/'.y/ for all x; y 2 S . If S; S 0 are monoids, then we say that
' is a homomorphism of monoids if in addition '.1S / D 1S 0 .

Definition 2.2.1 The natural partial order on E.S/ is defined by
e � f , ef D fe D e:

Proposition 2.2.2 ([2, Section 1.7]) For every e; f 2 E.S/, we have the follow-
ing:

1. eSe is a subsemigroup of S ; in fact, it is a monoid with identity element e;
2. eSe � fSf , e � f ;
3. every maximal subgroup of S is of the form G.eSe/ (the unit group of eSe)

for e 2 E.S/;
4. if e ¤ f , then G.eSe/ \G.fSf / D ;.

There are various ways to extend the partial order on the idempotents to a partial
order on the entire semigroup. (See [4, Section 1.4] for a discussion about them.) We
will use the natural partial order on S . While it has various equivalent definitions,
we present the one given in [4, Proposition 1.4.3].

Definition 2.2.3 The relation
a � b, a D xb D by; xa D a for some x; y 2 S1

is called the natural partial order on S .

Notice that this extends the partial order on E.S/. If S is s�r, this partial order takes
a more elegant form as follows.

Proposition 2.2.4 ([4, Corollary 1.4.6]) On s�r semigroups there is a natural
partial order extending the order on E.S/:

a � b, a D be D f b for some e; f 2 E.S1/:

2.2.1 Clifford and inverse semigroups

Definition 2.2.5 A semigroup S is called regular if for every a 2 S , there exists
at least one element b 2 S such that

aba D a; bab D b:

Such an element b is a called a pseudo-inverse of a.

Definition 2.2.6 A semigroup S is called an inverse semigroup if for every a 2 S ,
there exists a unique a�1 2 S such that

aa�1a D a; a�1aa�1
D a�1:

Some basic facts about inverse semigroups include the following.

Proposition 2.2.7 ([5, Section V.1, Theorem 1.2, Proposition 1.4]) Let S be an
inverse semigroup.
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1. For every a; b 2 S , .a�1/�1 D a and .ab/�1 D b�1a�1.
2. For every a 2 S , aa�1 and a�1a are idempotents.
3. The idempotents commute. Thus E.S/ is a commutative subsemigroup, and

hence a semilattice.

The basic example for inverse semigroups is the set I.X/ of partial one-to-one map-
pings for a set X , which means that the domain is a (possibly empty) subset of X .
The composition of two “incompatible” mappings will be the empty mapping. The
first surprising fact is that this is an inverse semigroup, but one can say even more (a
generalization of Cayley’s theorem for groups).

Theorem 2.2.8 (Wagner–Preston representation theorem [5, Section V.1, Theo-
rem 1.10]) If S is an inverse semigroup, then there exist a set X and a monomor-
phism � W S ! I.X/.

If S is an inverse semigroup, then the partial order on S gets the form a � b if there
exists e 2 E.S/ such that a D eb.

Proposition 2.2.9

1. � is a partial order relation.
2. If a; b; c 2 S such that a � b, then ac � bc and ca � cb. Furthermore,
a�1 � b�1.

Definition 2.2.10 A Clifford semigroup is an inverse semigroup in which the
idempotents are central.

Remark Different sources give different, but equivalent, definitions of a Clifford
semigroup. For instance, Howie defines a Clifford semigroup to be a regular semi-
group S in which the idempotents are central (see [5, Section IV.2]). One may show
that S is an inverse semigroup if and only if it is regular and the idempotents com-
mute (see [5, Section V.1, Theorem 1.2]), so the definitions coincide.

The following is well known, but we will add a proof instead of adding another
source.

Proposition 2.2.11 S is a Clifford semigroup if and only if it is an inverse semi-
group and aa�1 D a�1a for all a 2 S .

Proof Assume that S is a Clifford semigroup, and let a 2 S . Since aa�1 and
a�1a are idempotents and central,

aa�1
D a.a�1a/a�1

D .a�1a/aa�1
D a�1a.aa�1/ D a�1.aa�1/a D a�1a:

Conversely, we must show that the idempotents are central. For a 2 S and e 2 E.S/,
we will show that ea D .ea/.a�1e/.ea/ D .ea/.ea�1/.ea/ and thus, by the unique-
ness of the pseudoinverses, ea D ae. By our assumption,

.ea/.ea�1/.ea/ D eae.a�1e/.ea/ D eae.ea/.a�1e/ D eaeaa�1e:

Again, .ea/.a�1e/ D .a�1e/.ea/ so

D eaa�1eea D eaa�1ea;

and by the commutativity of the idempotents (e and aa�1),

D eaa�1a D ea:
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Definition 2.2.12 ([5, Chapter IV]) A semigroup S is said to be a strong
semilattice of semigroups if there exist a semilattice Y , disjoint subsemigroups
¹S˛ W ˛ 2 Y º, and homomorphisms ¹�˛;ˇ W S˛ ! Sˇ W ˛; ˇ 2 Y; ˛ � ˇº such that

1. S D
S

˛ S˛ ,
2. �˛;˛ is the identity,
3. for every ˛ � ˇ � 
 in Y , �ˇ;
�˛;ˇ D �˛;
 .

Theorem 2.2.13 ([5, Section IV.2, Theorem 2.1]) S is a Clifford semigroup if and
only if it is a strong semilattice of groups. The semilattice isE.S/, the disjoint groups
are ®

Ge D G.eSe/ W e 2 E.S/
¯
;

the maximal subgroups of S , and the homomorphism �e;ef is given by multiplication
by f .

3 1-Definable Semigroups and Monoids

Let S be an1-definable semigroup in a stable structure. Assume that S is defined
by ^

i

'i .x/:

Remark We assume that S is defined over ; just for notational convenience.
Moreover, we assume that the 'i ’s are closed under finite conjunctions.

3.1 Strongly �-regular Our goal is to prove that an1-definable semigroup inside a
stable structure is s�r. To better understand what is going on, we start with an easier
case.

Definition 3.1.1 A stable semigroup is a stable structure S such that there is a
definable binary function � which makes .S; �/ into a semigroup.

The following was already noted by Losey and Schneider in [9] for semigroups with
chain conditions, but we give it in a “stable semigroup” setting.

Proposition 3.1.2 Any stable semigroup has an idempotent.

Proof Let a 2 S , and let
�.x; y/ D 9u.u � a D a � u ^ u � x D y/:

Obviously, S ˆ �.a3m
; a3n

/ form < n. Moreover, S is stable, and hence � does not
have the order property. Thus there exists m < n such that S ˆ �.a3n

; a3m
/. Let

C 2 S be such that C � a3n
D a3m and commutes with a.

Since 3n > 2 � 3m, then multiplying by a3n�2�3m yields Ca2.3n�3m/ D a3n�3m .
Notice that since C commutes with a, Ca3n�3m is an idempotent.

Proposition 3.1.3 Any stable semigroup is s�r .

Proof Let a 2 S . From the proof of Proposition 3.1.2, there exists C 2 S

that commutes with a and n > 0 such that Ca2n D an. Set e WD Can. Indeed,
an D e � an � e and an � eCe D e.

Remark Given a 2 S , there exists a unique idempotent e D ea 2 S such that
an belongs to the unit group of eSe for some n > 0. Indeed, for two idempotents
e ¤ f the unit groups of eSe and fSf are disjoint (see Proposition 2.2.2).
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Furthermore, we have the following.

Lemma 3.1.4 (Munn [12]) Let S be a semigroup, and let x 2 S . If for some n,
xn lies in a subgroup of S with identity e, then xm lies in the unit group of eSe for
all m � n.

Corollary 3.1.5 There exists n > 0 (depending only on S ) such that for all a 2 S ,
an belongs to the unit group of eaSea.

Proof Let �i .x/ be the formula “xi 2 the unit group of exSex ,” and letS
i Œ�.x/� D S1.S/, since every elementary extension of S is also stable and hence

s�r . By compactness, there exist n1; : : : ; nk > 0 such that S1.S/ D Œ�n1
_� � �_�nk

�.
Our desired integer is n D n1 � � �nk .

We return to the general case of S being an1-definable semigroup inside a stable
structure. The following is an easy consequence of stability.

Proposition 3.1.6 Every chain of idempotents in S , with respect to the partial
order on them, is finite and uniformly bounded.

Our goal is to show that for every a 2 S , there exists an idempotent e 2 S and n 2 N
such that an is in the unit group of eSe.

We will want to assume that S is a conjunction of countably many formulas. For
that we will need to make some observations. The following is well known but we
add a proof for completion,

Lemma 3.1.7 Let S be an1-definable semigroup. Then there exist1-definable
semigroups Hi such that each Hi is defined by at most a countable set of formulas,
and S D

T
Hi .

Proof Let S D
V

i2I 'i , and assume that the 'i ’s are closed under finite conjunc-
tions. By compactness, we may assume that for all i and x, y, z,

'i .x/ ^ 'i .y/ ^ 'i .z/! .xy/z D x.yz/:

Let i0 2 I . By compactness, there exists i01 2 I such that for all x; y,
'i0

1
.x/ ^ 'i0

1
.y/! 'i0.xy/:

Thus, construct a sequence i0; i01 ; i02 ; : : : , and define

Hi0 D

^
j

'i0
j
:

This is indeed a semigroup, and

S D
\
i2I

Hi :

The following is also well known,

Proposition 3.1.8 ([6]) An1-definable semigroup in a stable structure with left
and right cancellation, or with left cancellation and right identity, is a group.

As a consequence, we have the following.

Lemma 3.1.9 Let S be an1-definable semigroup, and let Ge � S be a maximal
subgroup (with idempotent e 2 E.S/), where Ge is relatively definable in S .
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Proof Let S D
V

i 'i .x/. By compactness, there exists a definable set S � S0

such that for all x; y; z 2 S0,
x.yz/ D .xy/z:

Let Ge.x/ be^
i

'i .x/^ .xe D ex D x/^
^

i

.9y 2 S0/
�
'i .y/^ye D ey D y^yx D xy D e

�
:

This1-formula defines the maximal subgroup Ge .
Let Ge � G0 be a definable group containing Ge (see [6]). We have that G0 \ S

is an1-definable subsemigroup of S with cancellation, and hence a subgroup. It is
thus contained in the maximal subgroup Ge and so equal to it.

Lemma 3.1.10 Let S be an 1-definable semigroup, and let S � S1 be an
1-definable semigroup containing it. If S1 is s�r, then so is S .

Proof Let a 2 S , and let an 2 Ge � S1, where Ge is a maximal subgroup of
S1. Thus an 2 Ge \ S . Since Ge \ S is an1-definable subsemigroup of S with
cancellation, it is a subgroup.

We may, thus, assume that S is the conjunction of countably many formulas.
Furthermore, we may, and will, assume that S is commutative. Indeed, let a 2 S .

By compactness, we may find a definable set S � S0 such that for all x; y; z 2 S0,
x.yz/ D .xy/z:

Define D1 D ¹x 2 S0 W xa D axº and then
D2 D

®
x 2 S W .8c 2 D1/ xc D cx

¯
;

where D2 is an1-definable commutative subsemigroup of S with a 2 D2.

Lemma 3.1.11 There exist definable sets Si such that S D
T
Si , the multiplica-

tion on Si is commutative, and that for all 1 < i there exists Ci 2 Si and ni ; mi 2 N
such that

1. ni > 2mi ;
2. ei WD Cia

ni �mi is an idempotent;
and furthermore, for all 1 < j � i :

3. nj �mj � ni �mi ;
4. ej ei D ei ;
5. eia

ni �mi D ani �mi .

Proof By compactness, we may assume that S D
T
Si , where

S0 � S1 � S2 � � � �

are definable sets such that for all i > 1, we are allowed to multiply associatively and
commutatively at most 20 elements of Si and get an element of Si�1.

Let i > 1, and let �.x; y/ be
9u 2 Si ux D y:

Obviously, ˆ �.a3k
; a3l

/ for k < l . By stability, � does not have the order prop-
erty. Thus there exist k < l such that ˆ �.a3l

; a3k
/. Let Ci 2 Si be such that

Cia
3l
D a3k .
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Since l > k, we have 3l > 2 � 3k (this gives (1)). Let ni D 3
l andmi D 3

k . Then
ei WD Cia

ni �mi 2 Si�1 is an idempotent (this gives (2)). For this, first note that

Cia
2ni �2mi D Cia

niani �2mi D amiani �2mi D ani �mi :

Hence,
.Cia

ni �mi /.Cia
ni �mi / D C 2

i a
2ni �2mi D Cia

ni �mi :

We may take ni � mi to be minimal, but then since Si � Sj for j < i , we have
nj �mj � ni �mi (this gives (3)).

As for (4), if 1 < j < i , then

eiej D Cia
ni �miCja

nj �mj D Cia
ni �mi CmjCja

nj �2mj ;

but ni �mi Cmj � nj , so

Cia
ni �mi Cmj �njCja

2nj �2mj D Cia
ni �mi Cmj �nj anj �mj D ei :

Statement (5) follows quite similarly to what we have done.

Proposition 3.1.12 Let S be an1-definable semigroup inside a stable structure.
Then S is strongly �-regular.

Proof Let a 2 S . For all i > 1, let Si , Ci , ni , and mi be as in Lemma 3.1.11. Set
ki D ni �mi , and let

ei�1 D Cia
ki and ˇi�1 D eiCiei :

Notice that these are both elements of Si�1 (explaining the subindex).
By Lemma 3.1.11(4), we get a descending sequence of idempotents

e1 � e2 � � � �

with respect to the partial order on the idempotents. By stability it must stabilize.
Thus we may assume that e WD e1 D e2 D � � � and that it is an element of S .

Moreover, for all i > 1,

ˇ1 D ˇ1 � e D ˇ1a
kiC1 � ˇi D e � a

kiC1�k2ˇi :

So
ˇ1 D e � a

kiC1�k2eCiC1e;

which is a product of � 20 elements of SiC1 and thus 2 Si . Also ˇ1 2 S . In
conclusion, by setting k WD k2 and ˇ WD ˇ1,

ake D eak
D ak ; akˇ D ˇak

D e; and ˇe D eˇ D ˇ:

So ak is in the unit group of eSe.

Corollary 3.1.13 There exists n 2 N such that for all a 2 S , an is an element of
a subgroup of S .

Proof This is by compactness.

Corollary 3.1.14 A semigroup S has an idempotent.

Remark In the notation of Section 4, Newelski [13] showed that SG;�.M/ is an
1-definable semigroup in M eq and that it is s�r. Proposition 3.1.12, thus, gives
another proof.
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3.2 A counterexample It is known that every 1-definable group inside a stable
structure is an intersection of definable ones. It would be even better if every such
semigroup were an intersection of definable semigroups. Milliet [11] showed that
every1-definable semigroup inside a small structure is an intersection of definable
semigroups. This is particularly true for !-stable structures. So, for instance, any
1-definable subsemigroup of Mn.k/ for k ˆ ACF is an intersection of definable
semigroups. Unfortunately, this is not true already in the superstable case, as the
following example will show.

Example 3.2.1 Pillay and Poizat [15] give an example of an1-definable equiv-
alence relation which is not an intersection of definable ones. This will give us our
desired semigroup structure.

Consider the theory of a model which consists of universe Q (the rationals) with
the unary predicates

Ua D ¹x 2 Q W x � aº
for a 2 Q. The equivalence relation E is defined by^

a<b

��
Ua.x/! Ub.y/

�
^

�
Ua.y/! Ub.x/

��
:

It is an equivalence relation and, in particular, a preorder (reflexive and transitive).
Notice that it also follows that E cannot be an intersection of definable preorders.
For if E D

V
Ri (for preorders Ri ), then we also have

E D
^
.Ri ^Ri /;

where xRiy D yRix (sinceE is symmetric). ButRi ^Ri is a definable equivalence
relation (the symmetric closure) and hence trivial. So the Ri ’s are trivial.

Milliet [11] showed that in an arbitrary structure, every1-definable semigroup is
an intersection of definable semigroups if and only if this is true for all1-definable
preorders. As a consequence, in the above structure we can define an 1-definable
semigroup which will serve as a counterexample. Specifically, it will be the following
semigroup.

If the preorder is on a set X , add a new element 0 and add 0R0 to the preorder.
Define a semigroup multiplication on R:

.a; b/ � .c; d/ D

´
.a; d/ if b D c;
.0; 0/ otherwise:

Remark This example also shows that even “presumably well behaved”
1-definable semigroups need not be an intersection of definable ones. In the
example at hand, the maximal subgroups are uniformly definable (each of them is
finite) and the idempotents form a commutative semigroup.

3.3 Semigroups with negative partial order We showed in Proposition 3.1.12 that
every1-definable semigroup in a stable structure is strongly �-regular, and hence
the natural partial order on it has the following form:

For any a; b 2 S , a � b if there exists f; e 2 E.S1/ such that a D be D f b.

Remark Note that this order generalizes the order on the idempotents.

In a similar manner to what was done with the order of the idempotents, we have the
following.
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Proposition 3.3.1

1. Every chain of elements with regard to the natural partial order is finite.
2. By compactness, the length of the chains is uniformly bounded.

Definition 3.3.2 We will say that a semigroup S is negatively ordered with
respect to the partial order if

a � b � a; b

for all a; b 2 S .

Example 3.3.3 A commutative idempotent semigroup (an (inf)-semilattice) is
negatively ordered.

Negatively ordered semigroups were studied by Maia and Mitsch [10]. We will only
need the definition.

Proposition 3.3.4 Let S be a negatively ordered semigroup. Assume that the
length of chains is bounded by n. Then any product of n C 1 elements is a prod-
uct of n of them.

Proof Let a1 � : : : � anC1 2 S . Since S is negatively ordered,
a1 � : : : � anC1 � a1 � : : : � an � � � � � a1 � a2 � a1:

Since n bounds the length of chains, we must have
a1 � : : : � ai D a1 � : : : � aiC1

for a certain 1 � i � n.

This property is enough for an1-definable semigroup to be contained inside a defin-
able one.

Proposition 3.3.5 Let S be an1-definable semigroup (in any structure). If every
product of nC 1 elements in S is a product of n of them, then S is contained inside
a definable semigroup. Moreover, S is an intersection of definable semigroups.

Proof Let S � S0 be a definable set where the multiplication is defined. By
compactness, there exists a definable subset S � S1 � S0 such that

(i) any product of � 3n elements of S1 is an element of S0;
(ii) associativity holds for products of � 3n elements of S1;
(iii) ] any product of nC 1 elements of S1 is already a product of n of them.

Let

S1 � S2 D

°
x 2 S0 W 9y1; : : : ; yn 2 S1

n_
iD1

x D y1 � : : : � yi

±
:

We claim that if a 2 S1 and b 2 S2, then ab 2 S2; indeed, this follows from the
properties of S1. Define

S3 D ¹x 2 S2 W xS2 � S2º:

Our desired definable semigroup is S3.

As a consequence of these two propositions, we have the following.

Proposition 3.3.6 Every1-definable negatively ordered semigroup inside a sta-
ble structure is contained inside a definable semigroup. Furthermore, it is an inter-
section of definable semigroups.
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Since every commutative idempotent semigroup is negatively ordered, we have the
following corollary.

Corollary 3.3.7 Let E be an 1-definable commutative idempotent semigroup
inside a stable structure. ThenE is contained in a definable commutative idempotent
semigroup. Furthermore, it is an intersection of definable ones.

Proof We only need to show that the definable semigroup containing E can be
made commutative idempotent. For that to happen, we need to demand that all the
elements of S1 (in the proof of Proposition 3.3.5) be idempotents and that they com-
mute, but that can be satisfied by compactness.

3.4 Clifford monoids We assume that S is an1-definable Clifford semigroup (see
Section 2.2.1) inside a stable structure.

The simplest case of Clifford semigroups, commutative idempotent semigroups
(semilattices), were considered in Section 3.3.

Understanding the maximal subgroups of a semigroup is one of the first steps
when one wishes to understand the semigroup itself. Lemma 3.1.9 is useful and will
be used implicitly.

Recall that every Clifford semigroup is a strong semilattice of groups. Between
each two maximal subgroups Ge and Gef there exists a homomorphism �e;ef given
by multiplication by f .

Definition 3.4.1 By a surjective Clifford monoid we mean a Clifford monoid M
such that for every a 2M , there exist g 2 G.M/ and e 2 E.M/ such that a D ge.

Surjectivity refers to the fact that these types of Clifford monoids are exactly the
ones with �e;ef surjective.

We restrict ourselves to1-definable surjective Clifford monoids.

Theorem 3.4.2 Let M be an1-definable surjective Clifford monoid in a stable
structure. Then M is contained in a definable monoid, extending the multiplication
on M . This monoid is also a surjective Clifford monoid. Furthermore, every such
monoid is an intersection of definable surjective Clifford monoids.

Proof Let M � M0 be a definable set where the multiplication is defined. By
compactness, there exists a definable subset M �M1 �M0 such that

(i) associativity holds for � 6 elements of M1;
(ii) any product of � 6 elements of M1 is in M0;
(iii) 1 is a neutral element of M1;
(iv) if x and y are elements of M1 with y an idempotent, then xy D yx.

By the standard argument for stable groups, there exists a definable group
G1 � G �M1;

where G1 � M is the maximal subgroup of M associated with the idempotent 1.
By Proposition 3.3.7, there exists a definable commutative idempotent semigroup
E.M/ � E �M1. Notice that for every g 2 G and e 2 E,

ge D eg:

Define
M2 D ¹m 2M0 W 9g 2 G; e 2 E m D geº:

The desired monoid is M2.
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This, furthermore, is a standard corollary of the above proof.

We do not have an argument for Clifford monoids which are not necessarily surjec-
tive. But we do have a proof for a certain kind of inverse monoids. We will need this
result in Section 4.

Theorem 3.4.3 Let M be an1-definable monoid in a stable structure such that
1. its unit group G is definable,
2. E.M/ is commutative, and
3. for every a 2M , there exist g 2 G and e 2 E.M/ such that

a D ge:

ThenM is contained in a definable monoid, extending the multiplication onM . This
monoid also has these properties.

Remark Incidentally, M is an inverse monoid (recall the definition from Sec-
tion 2.2.1). It is obviously regular and the pseudo-inverse is unique since the idem-
potents commute (see the preliminaries). Also, as before, every such monoid is an
intersection of definable ones.

Proof Let M � M0 be a definable set where the multiplication is defined and
associative. By compactness, there exists a definable subset M � M1 � M0 such
that

(i) associativity holds for � 6 elements of M1;
(ii) any product of � 6 elements of M1 is in M0;
(iii) 1 is a neutral element of M1;
(iv) if x and y are idempotents of M1, then xy D yx.

By Proposition 3.3.7, there exists a definable commutative idempotent semigroup
E.M/ � E �M1.

Let
E1 D ¹e 2 E W 8g 2 G g

�1eg 2 Eº:

E1 is still a definable commutative idempotent semigroup that contains E.M/.
Moreover, for every e 2 E1 and g 2 G,

g�1eg 2 E1:

Define
M2 D ¹m 2M0 W 9g 2 G; e 2 E1 m D geº:

The desired monoid is M2. Indeed, if g; h 2 G and e; f 2 E1, then there exist
h0 2 G and e0 2 E1 such that

eh D h0e0;

thus
ge � hf D gh0

� e0f:

4 The Space of Types SG .M/ on a Definable Group

Let G be a definable group inside a stable structure M . Assume that G is definable
by a formula G.x/. Define SG.M/ to be all the types of S.M/ which are on G.
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Definition 4.0.1 Let p; q 2 SG.M/, and define

p � q D tp.a � b=M/;

where a ˆ p, b ˆ q and a j^M b.

Notice that the above definition may also be stated in the following form:

U 2 p � q, dq.U / 2 p;

where U is a formula and dq.U / WD ¹g 2 G.M/ W g�1U 2 qº (see [13]). Thus, if
� is a finite family of formulas, in order to restrict the multiplication to SG;�.M/,
the set of �-types on G, we will need to consider invariant families of formulas.

Definition 4.0.2 Let � � L be a finite set of formulas. We will say that � is
(G-)invariant if the family of subsets of G definable by instances of formulas from
� is invariant under left and right translation in G.

From now on, unless stated otherwise, we will assume that� is a finite set of invari-
ant formulas. For �1 � �2, let

r
�2

�1
W SG;�2

.M/! SG;�1
.M/

be the restriction map. These are semigroup homomorphisms. Thus

SG.M/ D lim
 �
�

SG;�.M/:

Newelski [13] showed that SG;�.M/ may be interpreted in M eq as an1-definable
semigroup. Our aim is to show that these 1-definable semigroups are in fact an
intersection of definable ones and, as a consequence, that SG.M/ is an inverse limit
of definable semigroups of M eq.

4.1 SG;�.M/ is an intersection of definable semigroups Let '.x; y/ be a
G-invariant formula. The proof that SG;'.M/ is interpretable as an 1-definable
semigroup in M eq is given in [13]. We will show that it may be given as an
intersection of definable semigroups.

Proposition 4.1.1 (Pillay [14]) There exists n 2 N and a formula d'.y; u/ such
that, for every p 2 SG;'.M/, there exists a tuple cp � G such that

d'.y; cp/ D .dpx/'.x; y/:

Moreover, d' may be chosen to be a positive Boolean combination of '-formulas.

Let Ed'
be the equivalence relation defined by

c1Ed'
c2 ”8y.d'.y; c1/$ d'.y; c2//:

Set Zd'
WD

M
Ed'

, which is the sort of canonical parameters for a potential
'-definition.

Remark We may assume that cp is the canonical parameter for d'.M; cp/,
namely, that it lies in Zd'

. Just replace the formula d'.y; u/ with the formula

 .y; v/ D 8u
��
�.u/ D v

�
! d'.y; u/

�
;

where v lies in the sort M
Ed'

and � WM ! M
Ed'

.
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Each element c 2 Zd'
corresponds to a complete (but not necessarily consistent) set

of '-formulas:

p0
c WD

®
'.x; a/ W a 2M and ˆ d'.a; c/

¯
[

®
:'.x; a/ W a 2M and 6ˆ d'.a; c/

¯
:

Remark Notice that p0
c may not be closed under equivalence of formulas, but the

set of canonical parameters c 2 Zd'
such that p0

c is closed under equivalence of
formulas is the definable set®

c 2 Zd'
W 8t18t2

�
'.x; t1/ � '.x; t2/!

�
d'.t1; c/$ d'.t2; c/

��¯
:

Thus we may assume that we only deal with sets p0
c which are closed under equiva-

lence of formulas.

The set of c 2 Zd'
such that p0

c is k-consistent is definable:

Zk
d'
D ¹c 2 Zd'

W p0
c is k-consistentº:

Define
Z D

\
k<!

Zk
d'
:

There is a bijection (p 7! cp) between SG;'.M/ and Z.
The following is a trivial consequence of Proposition 4.1.1.

Lemma 4.1.2 There exists a formula ˆ.u; v; y/ with u; v in the sort Zd'
such

that
ˆ.cp; cq; a/, '.x; a/ 2 p � q:

Moreover,ˆ is a positive Boolean combination of d'-formulas (and so of '-formulas
as well).

Proof Since ' is G-invariant, for simplicity we will assume that '.x; y/ is in fact
of the form '.l �x � r; y/. Let cp; cq � G be tuples whose images in Zd'

correspond
to the '-types p; q 2 SG;'.M/, respectively.

Remembering that u D .uij /1�i;j �n is a tuple of variables, we may write

d'.l; r; y; u/ D
_
i<n

^
j <n

'.l � uij � r; y/:

Since

dq

�
'.b � x � c; a/

�
D

®
g 2 G.M/ W '

�
.b � g/ � x � c; a

�
2 q

¯
D

®
g 2 G.M/ Wˆ d'.b � g; c; a; cq/

¯
and

d'.b � g; c; a; cq/ D
_
i<n

^
j <n

'
�
b � g �

�
.cq/ij � c

�
; a

�
;

we get that

'.b � x � c; a/ 2 p � q”ˆ

_
i<n

^
j <n

d'

�
b;

�
.cq/ij � c

�
; a; cp

�
:

We use this to define a partial binary operation on Zd'
.
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Definition 4.1.3 For c1; c2; d 2 Zd'
, we will say that c1 � c2 D d if d is the

unique element of Zd'
that satisfies

ˆ d'.a; d/”ˆ ˆ.c1; c2; a/

for all a 2M .

By compactness, there exists k 2 N such that for all c1; c2 2 Z
k
d'

, there exists a
unique d 2 Zd'

such that c1 � c2 D d . For simplicity, we will assume that this
happens for Z1

d'
.

Theorem 4.1.4 Z is contained in a definable semigroup extending the multipli-
cation on Z.

Proof By compactness, there exists k 2 N such that the multiplication is associa-
tive on Zk

d'
and the product of two elements of Zk

d'
is in Z1

d'
. For simplicity, let us

assume that this happens for Z2
d'

.

Claim If cp 2 Z and c 2 Z2
d'

, then cp � c 2 Z
2
d'

.

Let U1; U2 2 pcp �c . Hence®
g 2 G.M/ W g�1U1 2 p

0
c

¯
;
®
g 2 G.M/ W g�1U2 2 p

0
c

¯
2 p:

Since p is consistent, there exists g 2 G.M/ such that g�1U1; g
�1U2 2 p

0
c . Since

c 2 Z2
d'

, p0
c is 2-consistent. Thus, the claim follows.

Define
bZ2

d'
D ¹c 2 Z2

d'
W c �Z2

d'
� Z2

d'
º:

bZ2
d'

is the desired definable semigroup.

Corollary 4.1.5 Z D SG;'.M/ is an intersection of definable semigroups.

Looking even closer at the above proof, we may show that SG.M/ is an inverse limit
of definable semigroups.

Assume that �2 D ¹'1; '2º and �1 D ¹'1º. In the above notation,

Z�2
D Zd'1

�Zd'2
:

For c D hc1; c2i 2 Z�2
, define

p0
c D p

0
c1
[ p0

c2

and then
Z.�2/ D

\
Zk

�2

similarly.
For c; c0; d 2 Z.�2/, we will say that c � c0 D d if d is the unique element

d 2 Z.�2/ that satisfies

c1 � c
0
1 D d1 and c2 � c

0
2 D d2:

As before, we assume that such a unique element already exists for any pair of ele-
ments in Z1

�2
D Z1

'1
�Z1

'2
. The restriction maps r�2

�1
W Z1

�2
! Z1

�1
are definable

homomorphisms. Generally, for every � D ¹'1; : : : ; 'nº and i < !,

Zi
� D Z

i
'1
� � � � �Zi

'n
;
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where the multiplication is coordinate-wise. So the restriction commutes with the
inclusion. As a result, we have the following.
Theorem 4.1.6 We have that SG.M/ is an inverse limit of definable semigroups:

lim
 �
�;i

Z�
i D lim

 �
�

SG;�.M/:

4.2 The case where SG .M/ is an inverse monoid We would like to use the theorems
we proved in Section 3 to improve the result in the situation where SG.M/ is an
inverse monoid. We will first see that this situation might occur. Notice that the
inverse operation �1 on SG.M/ is an involution.
Proposition 4.2.1 (Lawson [8]) Let S be a compact semitopological �-semigroup
(a semigroup with involution) with a dense unit group G. Then the following are
equivalent for any element p 2 S :

1. p D pp�p;
2. p has a unique quasi-inverse;
3. p has a quasi-inverse.

Remark In the situation of G.M/ ,! SG.M/, the above proposition can be
proved directly using model theory and stabilizers.
Translating the above result to our situation and using results in 1-based groups (see
[14]), we have the following.
Corollary 4.2.2 The following are equivalent:

1. for every p 2 SG.M/, p is the generic of a right coset of a connected
M -1-definable subgroup of G;

2. for every p 2 SG.M/, p � p�1 � p D p;
3. SG.M/ is an inverse monoid;
4. SG.M/ is a regular monoid.

Thus if G is 1-based, then SG.M/ is an inverse monoid.
Proof Statements (2), (3), and (4) are equivalent by Proposition 4.2.1, and (1) is
equivalent to (2) by Kowalski [7, Lemma 1.2].

With a little more work, one may characterize when SG.M/ is a Clifford monoid.
Definition 4.2.3 A right-and-left coset of a subgroupH is a right cosetHa such
that aH D Ha.
Proposition 4.2.4 ([7]) p 2 SG.M/ is a generic of a right-and-left coset of an
M -1-definable connected subgroup of G if and only if p � p � p�1 D p.
We have the following easy lemma.
Lemma 4.2.5 Assuming that pp�1p D p, we have

pp�1
D p�1p, ppp�1

D p:

We use the previous lemma to get the following.
Proposition 4.2.6 The following are equivalent:

1. every p 2 SG.M/ is the generic of a right-and-left coset of a connected
M -1-definable subgroup of G;

2. SG.M/ is a Clifford monoid.
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As a result, it may happen that SG.M/ is an inverse (or Clifford) monoid. One may
wonder if in these cases we may strengthen the result.

Lemma 4.2.7 If SG.M/ is a Clifford monoid, then so is SG;�.M/. The same
goes for inverse monoids.

Proof In order to show that SG;�.M/ is a Clifford monoid, we must show that it
is regular and that the idempotents are central.

Indeed, this follows from the fact that the restriction maps are surjective homo-
morphisms and that if qj� is an idempotent, there exists an idempotent p 2 SG.M/

such that pj� D qj� (see [13]).

Assume that � is a finite invariant set of formulas. We will show that if SG.M/ is
an inverse monoid, then SG;�.M/ is an intersection of definable inverse monoids.

We recall some definition from [13]. Since � is invariant for p 2 SG;�.M/, we
have a map

dp W DefG;�.M/! DefG;�.M/

defined by
U 7!

®
g 2 G.M/ W g�1U 2 p

¯
:

Here DefG;�.M/ are the �-M -definable subsets of G.M/.
Furthermore, for p 2 SG;�.M/, define

Ker.dp/ D
®
U 2 DefG;�.M/ W dp.U / D ;

¯
:

Lemma 4.2.8 ([13, Proposition 4.12]) Let � be a finite invariant set of formulas,
and let p 2 SG;�.M/ be an idempotent. Then®

q 2 SG;�.M/ W Ker.dq/ D Ker.dp/
¯
D

®
g � p W g 2 G.M/

¯
D G.M/p:

In particular, it is definable (in M eq).

Corollary 4.2.9 If SG;�.M/ is a regular semigroup, then

SG;�.M/ D
[

p idempotent

G.M/p:

Proof Let q 2 SG;�.M/. By regularity, there exists Qq such that

q D q Qqq and Qq D Qqq Qq;

where Qqq is the desired idempotent and Ker.q/ D Ker. Qqq/.

Recall Theorem 3.4.3. Note that a semigroup S fulfilling the requirements of the
theorem is an inverse monoid. It is obviously regular and the pseudoinverse is unique
since the idempotents commute. We get the following.

Corollary 4.2.10 If SG.M/ is an inverse semigroup, then SG;�.M/ is an inter-
section of definable inverse semigroups.

Proof Since SG.M/ is inverse, so are the SG;�.M/. By [13] the unit group of
SG;�.M/ is definable, and by the previous corollary, for every p 2 SG;�.M/, there
exist an idempotent e and g 2 G.M/ such that

p D ge:



Semigroups in Stable Structures 435

References

[1] Brion, M., and L. E. Renner, “Algebraic semigroups are strongly �-regular,” pp. 55–59 in
Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics, vol. 71 of Fields
Institute Communications, Springer, New York, 2014. MR 3308315. DOI 10.1007/
978-1-4939-0938-4_2. 418

[2] Clifford, A. H., and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I,
vol. 7 of Mathematical Surveys, American Mathematical Society, Providence, 1961.
Zbl 0111.03403. MR 0132791. 419, 420

[3] Clifford, A. H., and G. B. Preston, The Algebraic Theory of Semigroups, Vol. II,
vol. 7 of Mathematical Surveys, American Mathematical Society, Providence, 1967.
Zbl 0178.01203. MR 0218472. 419

[4] Higgins, P. M., Techniques of Semigroup Theory, Oxford University Press, New York,
1992. Zbl 0744.20046. MR 1167445. 419, 420

[5] Howie, J. M., Fundamentals of Semigroup Theory, vol. 12 of London Mathematical
Society Monographs Series, Oxford University Press, New York, 1995. Zbl 0835.20077.
MR 1455373. 419, 420, 421, 422

[6] Hrushovski, E., “Unidimensional theories are superstable,” Annals of Pure and Applied
Logic, vol. 50 (1990), pp. 117–38. Zbl 0713.03015. MR 1081816. DOI 10.1016/
0168-0072(90)90046-5. 417, 423, 424

[7] Kowalski, P., “Stable groups and algebraic groups,” Journal of the London Mathematical
Society, Second Series, vol. 61 (2000), pp. 51–57. Zbl 1026.20025. MR 1745401. DOI
10.1112/S0024610799008261. 433

[8] Lawson, J. D., “Points of continuity for semigroup actions,” Transactions of the Ameri-
can Mathematical Society, vol. 284 (1984), pp. 183–202. Zbl 0516.54031. MR 0742420.
DOI 10.2307/1999282. 433

[9] Losey, G., and H. Schneider, “Group membership in rings and semigroups,” Pacific
Journal of Mathematics, vol. 11 (1961), pp. 1089–98. Zbl 0103.01103. MR 0136672.
DOI 10.2140/pjm.1961.11.1089. 422

[10] Maia, A. F., and H. Mitsch, “Semigroups with negative natural partial order,” Pure Math-
ematics and Applications, vol. 14 (2003), pp. 289–303. Zbl 1066.20054. MR 2153944.
427

[11] Milliet, C., “On enveloping type-definable structures,” Journal of Symbolic Logic,
vol. 76 (2011), pp. 1023–34. Zbl 1244.03112. MR 2849257. DOI 10.2178/jsl/
1309952532. 418, 426

[12] Munn, W. D., “Pseudo-inverses in semigroups,” Proceedings of the Cambridge Philo-
sophical Society, vol. 57 (1961), pp. 247–50. Zbl 0228.20057. MR 0121410. 423

[13] Newelski, L., “Topological dynamics of stable groups,” Journal of Symbolic Logic,
vol. 79 (2014), pp. 1199–223. Zbl 1353.03022. MR 3343536. DOI 10.1017/jsl.2014.25.
417, 425, 430, 434

[14] Pillay, A., Geometric Stability Theory, vol. 32 of Oxford Logic Guides, Oxford Univer-
sity Press, New York, 1996. Zbl 0871.03023. MR 1429864. 430, 433

[15] Pillay, A., and B. Poizat, “Pas d’imaginaires dans l’infini!” Journal of Symbolic Logic,
vol. 52 (1987), pp. 400–403. Zbl 0631.03014. MR 0890448. DOI 10.2307/2274390.
426

Acknowledgments

I would like to thank my Ph.D. advisor, Ehud Hrushovski, for our discussions, his ideas
and support, and his careful reading of previous drafts. I would also like to thank the
anonymous reviewer for his/her comments and careful reading. The research leading to

http://www.ams.org/mathscinet-getitem?mr=3308315
https://doi.org/10.1007/978-1-4939-0938-4_2
https://doi.org/10.1007/978-1-4939-0938-4_2
http://www.emis.de/cgi-bin/MATH-item?0111.03403
http://www.ams.org/mathscinet-getitem?mr=0132791
http://www.emis.de/cgi-bin/MATH-item?0178.01203
http://www.ams.org/mathscinet-getitem?mr=0218472
http://www.emis.de/cgi-bin/MATH-item?0744.20046
http://www.ams.org/mathscinet-getitem?mr=1167445
http://www.emis.de/cgi-bin/MATH-item?0835.20077
http://www.ams.org/mathscinet-getitem?mr=1455373
http://www.emis.de/cgi-bin/MATH-item?0713.03015
http://www.ams.org/mathscinet-getitem?mr=1081816
https://doi.org/10.1016/0168-0072(90)90046-5
https://doi.org/10.1016/0168-0072(90)90046-5
http://www.emis.de/cgi-bin/MATH-item?1026.20025
http://www.ams.org/mathscinet-getitem?mr=1745401
https://doi.org/10.1112/S0024610799008261
https://doi.org/10.1112/S0024610799008261
http://www.emis.de/cgi-bin/MATH-item?0516.54031
http://www.ams.org/mathscinet-getitem?mr=0742420
https://doi.org/10.2307/1999282
http://www.emis.de/cgi-bin/MATH-item?0103.01103
http://www.ams.org/mathscinet-getitem?mr=0136672
https://doi.org/10.2140/pjm.1961.11.1089
http://www.emis.de/cgi-bin/MATH-item?1066.20054
http://www.ams.org/mathscinet-getitem?mr=2153944
http://www.emis.de/cgi-bin/MATH-item?1244.03112
http://www.ams.org/mathscinet-getitem?mr=2849257
https://doi.org/10.2178/jsl/1309952532
https://doi.org/10.2178/jsl/1309952532
http://www.emis.de/cgi-bin/MATH-item?0228.20057
http://www.ams.org/mathscinet-getitem?mr=0121410
http://www.emis.de/cgi-bin/MATH-item?1353.03022
http://www.ams.org/mathscinet-getitem?mr=3343536
https://doi.org/10.1017/jsl.2014.25
http://www.emis.de/cgi-bin/MATH-item?0871.03023
http://www.ams.org/mathscinet-getitem?mr=1429864
http://www.emis.de/cgi-bin/MATH-item?0631.03014
http://www.ams.org/mathscinet-getitem?mr=0890448
https://doi.org/10.2307/2274390


436 Yatir Halevi

these results has received funding from the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement
291111.

Institute of Mathematics
Hebrew University of Jerusalem
Givat Ram
Jerusalem
Israel
yatir.halevi@mail.huji.ac.il

mailto:yatir.halevi@mail.huji.ac.il

	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Semigroups

	3 infty-Definable Semigroups and Monoids
	3.1 Strongly pi-regular
	3.2 A counterexample
	3.3 Semigroups with negative partial order
	3.4 Clifford monoids

	4 The Space of Types SG(M) on a Definable Group
	4.1 SG,Delta(M) is an intersection of definable semigroups
	4.2 The case where SG(M) is an inverse monoid

	References
	Acknowledgments
	Author's addresses

