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The K -Degrees, Low for K Degrees,
and Weakly Low for K Sets

Joseph S. Miller

Abstract We call A weakly low for K if there is a c such that K A(σ ) ≥

K (σ ) − c for infinitely many σ ; in other words, there are infinitely many strings
that A does not help compress. We prove that A is weakly low for K if and only
if Chaitin’s � is A-random. This has consequences in the K -degrees and the low
for K (i.e., low for random) degrees. Furthermore, we prove that the initial seg-
ment prefix-free complexity of 2-random reals is infinitely often maximal. This
had previously been proved for plain Kolmogorov complexity.

1 Introduction

If A ∈ 2ω is 1-random, then there is a connection between the degree of randomness
of A, the prefix-free (Kolmogorov) complexity of initial segments of A, and the
(lack of) power of A as an oracle. We explore some aspects of this connection. See
Section 2 for a brief introduction to effective randomness.

We say that A ∈ 2ω is weakly low for K if (∃c)(∃∞n) K (n) ≤ K A(n) + c.
Making use of ≤

+ to indicate a suppressed additive constant, we can write this as
(∃∞n) K (n) ≤

+ K A(n). Nies, Stephan, and Terwijn [22] call A low for � if
Chaitin’s � is A-random. In Section 3, we show that A is weakly low for K if and
only if it is low for �. This result is analogous to a celebrated result of Nies. Call
A ∈ 2ω low for K if K (σ ) ≤

+ K A(σ ) and low for 1-random if every 1-random is
A-random. Nies [21] proved that these two notions—each stating that A is useless
as an oracle in a specific context—are equivalent.

The equivalence of weakly low for K and low for � has a variety of consequences.
In Section 4, we use it to prove that the initial segment prefix-free complexity of 2-
random reals is infinitely often maximal. This had previously been proved for plain
Kolmogorov complexity [22; 16].
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Section 5 looks at consequences in the LR/LK-degrees. Nies partially relativized
the notions of low for K and low for 1-random to introduce two ways of comparing
the power of oracles in the context of effective randomness. He defined X ≤LK Y
to mean that K Y (σ ) ≤

+ K X (σ ), and X ≤LR Y to mean that every Y -random is X -
random. These partial orders induce the low for K degrees and the low for random
degrees, respectively. They turn out to be the same. It is clear that X ≤LK Y implies
X ≤LR Y ; Kjos-Hanssen, Miller, and Solomon [12] proved the converse. Note that
this extends the result of Nies, since X is low for K if and only if X ≤LK ∅ and X is
low for 1-random if and only if X ≤LR ∅.

We prove that if X ≤LR Y and Y is low for �, then X ≤T Y ′. Thus, if Y is low
for �, it has countably many predecessors in the LR-degrees; the converse is open.
It also follows that if X and Y are 2-random relative to each other, then they form a
minimal pair in the LR-degrees.

In Section 6, we consider the K -degrees. Downey, Hirschfeldt, and LaForte [7; 8]
defined X ≤K Y to mean that K (X � n) ≤

+ K (Y � n). In other words, Y has higher
initial segment prefix-free complexity than X , up to a constant. The induced partial
order is called the K -degrees. If higher complexity implies more randomness, then
one can interpret X ≤K Y as saying that Y is more random than X .

We prove that if X is 1-random, then prefix-free complexity relative to X can
be expressed in terms of the prefix-free complexity of initial segments of X . In
particular, K X (σ ) =

+ mins∈ω K (X � 〈σ, s〉) − 〈σ, s〉. This implies that if X is 1-
random and X ≤K Y , then Y ≤LK X . Note that this result is not new; it follows
from the corresponding result for the LR-degrees [19] and the equivalence between
≤LR and ≤LK. As a corollary to the work of Section 5, the cones above 2-random
reals in the K -degrees are countable. This is not true for all 1-random reals.

2 Preliminaries

We assume that the reader is familiar with basic computability (recursion) theory,
as would be found in Part I of Soare [25]. We give a quick introduction to effec-
tive randomness, touching on the definitions and results needed in this paper. For
a more thorough introduction, see Li and Vitányi [14], Nies [20], or the upcoming
monograph of Downey and Hirschfeldt [6].

By strings we refer to elements of 2<ω. We identify strings with natural numbers
using an effective bijection; for concreteness, identify σ ∈ 2<ω with n ∈ ω if 1σ
is the binary expansion of n + 1. We call elements of 2ω reals and abuse notation
by conflating X ∈ 2ω with the element of [0, 1] that has binary expansion 0.X . The
nonuniqueness of binary expansion will not be an issue below.

For σ ∈ 2<ω, let [σ ] = {X ∈ 2ω
: σ ≺ X}, that is, the set of reals extending σ .

If S ⊆ 2ω is a c.e. set, then
⋃

σ∈S[σ ] is called a 60
1 class. The complement of a 60

1
class is called a 50

1 class. A Martin-Löf test is a uniform sequence {Vn}n∈ω of 60
1

classes such that µ(Vn) ≤ 2−n , where µ is the standard Lebesgue measure on 2ω. A
real X ∈ 2ω is said to pass a Martin-Löf test {Vn}n∈ω if X /∈

⋂
n∈ω Vn . We say that

X ∈ 2ω is 1-random (or Martin-Löf random) if it passes all Martin-Löf tests. There
is a universal Martin-Löf test, that is, a single test {Un}n∈ω that is passed only by the
1-random reals.
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Define A-randomness by relativizing Martin-Löf’s definition to an oracle A ∈ 2ω.
An essential tool in understanding relativized randomness is van Lambalgen’s the-
orem [27]: X ⊕ Y is 1-random if and only if X is 1-random and Y is X -random.
Note that by applying van Lambalgen’s theorem twice, we can show that if X and
Y are both 1-random, then X is Y -random if and only if Y is X -random. We call X
n-random if it is ∅(n−1)-random.

There is an important connection between the randomness of real numbers and
the complexity, or information content, of finite binary strings. A set D ⊆ 2<ω is
prefix-free if no element of D is a proper prefix of another element. A prefix-free
machine is a partial computable function M : 2<ω

→ 2<ω with prefix-free domain.
If M is a prefix-free machine, then let

KM (σ ) = min{|τ | : M(τ ) = σ },

so KM (σ ) is the length of the shortest M-description of σ . There is a universal
prefix-free machine U : 2<ω

→ 2<ω that is optimal for prefix-free machines: if M is
any such machine, then KU (σ ) ≤

+ KM (σ ). We write K (σ ) for KU (σ ) and call it
the prefix-free (Kolmogorov) complexity of σ ∈ 2<ω. Plain Kolmogorov complexity
C is defined in the same way as prefix-free complexity except without restricting the
domains of machines. It is well known that the 1-random reals can be characterized
in terms of the prefix-free complexity of their initial segments. Schnorr proved that
X ∈ 2ω is 1-random if and only if K (X � n) ≥

+ n.
Since U has prefix-free domain,

∑
σ∈2<ω 2−K (σ )

≤
∑

τ∈dom U 2−|τ |
≤ 1; this is

called Kraft’s inequality.1 It has a useful effective converse. A Kraft-Chaitin set is
a c.e. set W ⊆ ω × 2<ω such that

∑
〈d,σ 〉∈W 2−d

≤ 1. Given such a set, the Kraft-
Chaitin theorem says that there is a prefix-free machine M such that 〈d, σ 〉 ∈ W im-
plies that KM (σ ) ≤ d . Thus, K (σ ) ≤

+ d for all 〈d, σ 〉 ∈ W . Closely related to the
Kraft-Chaitin theorem is the fact that K is an optimal information content measure.
A function K̂ : ω → R∪{∞} is an information content measure if

∑
n∈ω 2−K̂ (n)

≤ 1
and {〈k, n〉 : K̂ (n) ≤ k} is computably enumerable. Not only is K an information
content measure (when viewed as a function of ω), but it is not hard to see that if
K̂ is another information content measure, then W = {〈k + 1, n〉 : K̂ (n) < k} is a
Kraft-Chaitin set; hence K (n) ≤

+ K̂ (n).
We write U A and K A for the relativizations of the universal prefix-free machine

and prefix-free complexity, respectively, to an oracle A ∈ 2ω. The results mentioned
above remain true in their relativized forms. In particular, X ∈ 2ω is A-random if
and only if K A(X � n) ≥

+ n. The following result relates K A to unrelativized
prefix-free complexity when A ∈ 2ω is 1-random (see also Lemma 6.1).

Ample Excess Lemma (Miller and Yu [19]) Let A ∈ 2ω be 1-random.

1.
∑

n∈ω 2n−K (A�n) < ∞.
2. K A(n) ≤

+ K (A � n) − n.

Note that (1) implies (2) by applying the Kraft-Chaitin theorem relativized to A.
Chaitin proved that � =

∑
τ∈dom U 2−|τ | is 1-random. It is easy to see that � is

a c.e. real, meaning that there is a computable, nondecreasing sequence of rational
numbers {�s}s∈ω such that � = lim �s . It follows from Calude, Hertling, Khous-
sainov, and Wang [4] and Kučera and Slaman [13] that every 1-random c.e. real is �
for the right choice of universal machine. Chaitin showed that � ≡T ∅′ (this also
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follows from Arslanov’s completeness criterion). It is easy to see, given what we
know, that the 2-random reals are exactly the 1-random, low for � reals.

Proposition 2.1 (Nies, Stephan, and Terwijn [22]) Let A ∈ 2ω be 1-random. Then
A is 2-random if and only if it is low for �.

Proof By definition, A is 2-random if and only if A is 1-random relative to ∅′.
Since ∅′

≡T �, this is equivalent to A being �-random. By van Lambalgen’s
theorem, A is �-random if and only if � is A-random, in other words, exactly when
A is low for �. �

3 Weakly Low for K Is the Same As Low for �

We show that being weakly low for K is equivalent to being low for �. An in-
teresting alternate proof of the harder direction, that low for � implies weakly low
for K (Theorem 3.3), has recently been found by Bienvenu. A Solovay function
is a computable f : ω → ω such that K (n) ≤

+ f (n) (which is equivalent to∑
n∈ω 2− f (n) converging) and (∃∞n) f (n) ≤

+ K (n). Bienvenu and Downey [3]
proved that a computable function f is a Solovay function if and only if

∑
n∈ω 2− f (n)

is finite and 1-random. To see how this implies Theorem 3.3, let f be a com-
putable function such that

∑
n∈ω 2− f (n)

= �. Then f is a Solovay function, so
K (n) ≤

+ f (n). If A is not weakly low for K , then limn→∞ K (n) − K A(n) = ∞;
hence limn→∞ f (n) − K A(n) = ∞. Therefore, f is not a Solovay function relative
to A. Relativizing the result of Bienvenu and Downey, � is not A-random; that is, A
is not low for �.

Theorem 3.1 If A is weakly low for K , then A is low for �.

Proof We show the contrapositive. First, we define two families of c.e. sets
{Wσ }σ∈2<ω and {Dσ }σ∈2<ω . Fix σ ∈ 2<ω. Search for the least stage s ∈ ω such
that σ ≺ �s , in other words, such that σ appears to be a prefix of �. If no such
stage is found, then Wσ and Dσ will be empty. Now, for any τ ∈ 2<ω such that
U (τ ) ↓ after stage s, enumerate 〈|τ |, U (τ )〉 into Dσ . Also enumerate 〈|τ |, U (τ )〉
into Wσ as long as it preserves the condition that

∑
〈d,n〉∈Wσ

2−d
≤ 2−|σ |. Note that

if Ks(n) 6= K (n), then 〈K (n), n〉 ∈ Dσ .
We claim that if σ ≺ �, then Wσ = Dσ . It follows from our definition that∑
〈d,n〉∈Dσ

2−d
≤ � − �s . Observe that if σ ≺ �, then � − �s ≤ 2−|σ |. In this

case,
∑

〈d,n〉∈Dσ
2−d

≤ 2−|σ |, so Wσ = Dσ . The idea is that we have used an
approximation of � to efficiently approximate all but finitely many values of K (n).

Consider the A-c.e. set W = {〈d + |τ | − |σ |, n〉 : U A(τ ) = σ and 〈d, n〉 ∈ Wσ }.
By the construction of {Wσ }σ∈2<ω and Kraft’s inequality,∑

〈e,n〉∈W

2−e
=

∑
U A(τ )↓=σ

∑
〈d,n〉∈Wσ

2−d−|τ |+|σ |
≤

∑
U A(τ )↓

2−|τ |
≤ 1.

This proves that W is a Kraft-Chaitin set relative to A. Therefore, there is a constant
k ∈ ω such that if 〈e, n〉 ∈ W , then K A(n) ≤ e + k.

Now, assume that � is not A-random. For any c ∈ ω, there are τ, σ ∈ 2ω such that
U A(τ ) = σ , |σ |−|τ | ≥ c, and σ ≺ �. Let s ∈ ω be the least stage such that σ ≺ �s
(which must exist because � is not a dyadic rational). There is an N ∈ ω such that if
n ≥ N , then Ks(n) 6= K (n) (by the usual conventions on stages, N = s + 1 is suffi-
cient). For all n ≥ N , we have 〈K (n), n〉 ∈ Wσ ; hence 〈K (n) + |τ | − |σ |, n〉 ∈ W .
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But this means that K A(n) ≤ K (n) + |τ | − |σ | + k ≤ K (n) + k − c, for all but
finitely many n. But c was arbitrary, so A is not weakly low for K . �

For the other direction we use the fact that � is essentially interchangeable with any
other 1-random c.e. real. This follows from work on Solovay reducibility. Write
X ≤S Y to mean that there is a c ∈ ω and a partial computable function f : Q → Q

such that if q < Y is rational, then 0 ≤ X − f (q) ≤ c(Y − q) [26]. In other words,
good approximations of Y from the left give us good approximations of X from the
left. Kučera and Slaman [13] showed that if X is a 1-random c.e. real, then X ≡S �.

When he introduced the reducibility, Solovay [26] proved that X ≤S Y implies
X ≤K Y . Relativizing the proof to an oracle A, we see that X ≤S Y implies that
K A(X � n) ≤

+ K A(Y � n), from which it follows that A-randomness is closed
upward in the Solovay degrees. Together with the result of Kučera and Slaman, if X
is a 1-random c.e. real, then X is random relative to A if and only if A is low for �.

We also need a simple lemma.

Lemma 3.2 Let A be an oracle. If V is any 60
1 [A] class, then there is a 60

1 [A]

class V̂ such that
1. µ(V̂ ) ≤ 3µ(V ),
2. if X is an endpoint of an open interval in V , then X ∈ V̂ .

Furthermore, an index for V̂ can be found uniformly from an index from V and is
independent of A.

Proof Let V̂ =
⋃

{(a − ε, a + 2ε) : [a, a + ε] ⊆ V }. It is easy to check that V̂ has
the required properties. �

Theorem 3.3 If A is low for �, then A is weakly low for K .

Proof Assume that A is not weakly low for K . Let S ⊆ 2ω be a 60
1 class such that

µ(S) ≤ 1/2 and 2ω r S contains only 1-random reals. For example, we could take
S = U1, where {Un}n∈ω is a universal Martin-Löf test. Let X = inf(2ω r S). Note
that X is a 1-random c.e. real; from the discussion above, if we prove that X is not
A-random, then A is not low for �.

For each n, we define a 60
1 [A] class Vn such that µ(Vn) ≤ 2−n−2. It will not

be the case that X ∈ Vn ; in fact, we will have Vn ⊆ S. On the other hand, it will
always be true that X is an endpoint of an open interval in Vn . We claim that this is
sufficient. By the previous lemma, we can form a computable sequence {V̂n}n∈ω of
60

1 [A] classes such that X ∈
⋂

n∈ω V̂n and µ(V̂n) ≤ 3µ(Vn) ≤ 3 · 2−n−2 < 2−n .
Therefore, X is covered by a Martin-Löf test relative to A, so X is not A-random.

We turn to the definition of {Vn}n∈ω. Assume that S =
⋃

s∈ω[σs], where {σs}s∈ω

is a prefix-free computable sequence of strings. Fix n ∈ ω. If m = |σs |, put [σs] into
Vn as long as σs is among the first 2m−K A(m)−n−2 strings of length m in {σs}s∈ω. In
other words, Vn is built from the same sequence that defines S but with the restriction
that strings of length m can contribute at most 2−K A(m)−n−2 to its measure. Note
that the stage-wise approximations to 2m−K A(m)−n−2 approach it from below, so Vn
is 60

1 [A]. Also note that

µ(Vn) ≤

∑
m∈ω

2−K A(m)−n−2
= 2−n−2

∑
m∈ω

2−K A(m)
≤ 2−n−2,

where the last step uses Kraft’s inequality.
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Next we prove that there is a v ∈ ω such that if |σs | ≥ v, then [σs] ⊆ Vn .
Let J (m) = |{s ∈ ω : |σs | = m}|. We claim that I (m) = m − log(J (m)) is
an information content measure. Clearly, I is computable from above. Note that
2−I (m)

= J (m)2−m is exactly the contribution to the measure of S made by the
strings in {σs}s∈ω of length m. Since {σs}s∈ω is prefix-free,

∑
m∈ω 2−I (m)

=

µ(S) ≤ 1/2. This shows that I is an information content measure, so there is c such
that (∀m) K (m) ≤ I (m) + c. Because A is not weakly low for K , there is a v large
enough that K A(m) ≤ K (m) − c − n − 2, for all m ≥ v. For such m,

2m−K A(m)−n−2
≥ 2m−K (m)+c

≥ 2m−I (m)
= 2log(J (m))

= J (m).

Therefore, [σs] is put into Vn as long as |σs | ≥ v.
We can now show that X is an endpoint of an open interval in Vn . This is because

X is not a binary rational and thus not an endpoint of [σs], for any s. Since there are
only finitely many strings in {σs}s∈ω of length less than v, there is an ε small enough
such that (X −ε, X) is disjoint from all corresponding intervals. But (X −ε, X) ⊆ S,
so (X − ε, X) ⊆ Vn . This completes the proof. �

It has been shown that every nonempty 50
1 class has a low for � member [9; 23],

giving us a weakly low for K basis theorem.

4 All 2-Random Reals Maximize K Infinitely Often

While it is impossible for every initial segment of a real to have maximal complexity
(with respect to either C or K ), almost every real infinitely often achieves maximal
initial segment complexity up to a constant. Call A ∈ 2ω infinitely often (i.o.) K
maximizing if (∃∞n) K (A � n) ≥

+ n + K (n). Similarly, A is i.o. C maximizing if
(∃∞n) C(A � n) ≥

+ n.2 The right side of each inequality represents the maximal
possible complexity for a string of length n.

Solovay [26] proved that i.o. K maximizing implies i.o. C maximizing. In fact, he
proved that strings with (essentially) maximal K complexity must have (essentially)
maximal C complexity. Solovay also proved that almost all reals are i.o. K maximiz-
ing. Yu, Ding, and Downey [28] analyzed his argument to prove that 3-randomness
is sufficient to imply that a real is i.o. K maximizing. In the other direction, Martin-
Löf [15] showed that every i.o. C maximizing real is 1-random, while Schnorr [24]
refuted the converse. Nies, Stephan, and Terwijn [22] showed that i.o. C maximizing
implies 2-randomness. They also showed the converse, as did Miller [16], classifying
the i.o. C maximizing reals. Putting these facts together,

3-random H⇒ i.o. K maximizing H⇒ i.o. C maximizing ⇐⇒ 2-random.

We resolve the status of i.o. K maximizing, answering a question in [17].

Theorem 4.1 A is 2-random if and only if it is infinitely often K maximizing.

Proof Assume that A is 2-random. Then A is low for � by Proposition 2.1,
hence weakly low for K by Theorem 3.3. By the ample excess lemma, K A(n) ≤

+

K (A � n) − n. Rearranging, we have K (A � n) ≥
+ n + K A(n). Because A is

weakly low for K , there are infinitely many n such that K A(n) ≥
+ K (n). Note that

K (A � n) ≥
+ n + K (n) for these n, so A is infinitely often K maximizing. �
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It is interesting to note that Solovay [26] proved that strings with maximal C-
complexity need not have maximal K -complexity, so the equivalence of i.o. C and
K maximizing is not true on the level of strings.

5 Applications to the LR/LK-Degrees

The work of Section 3 has consequences in the LR/LK-degrees.

Theorem 5.1 If X ≤LR Y and Y is low for �, then X ≤T Y ′.

Proof We have X ≤LK Y , so

K Y (X � n) ≤
+ K X (X � n) ≤

+ K X (n) ≤
+ K (n), (1)

for all n ∈ ω. Because Y is low for �, it is weakly low for K , so there is a c ∈ ω
such that S = {n ∈ ω : K (n) ≤ K Y (n) + c} is infinite. Together with (1), there is a
d ∈ ω such that if n ∈ S, then K Y (X � n) ≤ K Y (n) + d . By relativizing Chaitin’s
counting theorem [5, Lemma I3], there is an e ∈ ω such that

|{σ ∈ 2n
: K Y (σ ) ≤ K Y (n) + d}| ≤ e,

for all n ∈ ω. Let T ⊆ 2<ω be the tree defined by

σ ∈ T iff (∀n < |σ |)[ n ∈ S → K Y (σ � n) ≤ K Y (n) + d ].

Note that |[T ]| ≤ e and X ∈ [T ], where [T ] denotes the set of infinite paths
through T . Also note that S ≤T Y ′ and so T ≤T Y ′. But every isolated infinite
path through a tree is computable from the tree; hence X ≤T Y ′. �

Corollary 5.2 If Y is low for �, then it has countably many predecessors in the
LR-degrees.

It is possible that the converse holds.

Open Question If Y is not low for �, must it have continuum many predecessors
in the LR-degrees?

Not all reals have countably many LR-predecessors. Barmpalias, Lewis, and
Soskova [2] proved that if Y ∈ 2ω is non-GL2 (i.e., Y ′′ �T (Y ⊕ ∅′)′), then it has
continuum many predecessors in the LR-degrees. Furthermore, Barmpalias [1] has
answered the question positively for 10

2 reals. Note that the LR-predecessors of a
real form a Borel set, so if Y has uncountably many LR-predecessors, then it has
continuum many. In fact, Y has continuum many LR-degrees below it, because each
LR-degree is countable (if X ≡LK Y , then X ′

≡T Y ′ [21]).
The next proof uses some basic facts about 2-randomness. By definition, X ∈ 2ω

is 2-random if and only if X is ∅′-random. This is equivalent to X being �-random,
since � ≡T ∅′. Hence by van Lambalgen’s theorem, X ⊕ � is 1-random. Second,
Kautz [11] proved that every 2-random X is GL1; in other words, X ′

≤T X ⊕ ∅′.
Finally, we say that Y is 2-random relative to X if it is X ′-random. Note that almost
every pair of reals are two random relative to each other.

Corollary 5.3 If X, Y ∈ 2ω are 2-random relative to each other, then they form a
minimal pair in the LR-degrees.
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Proof Since X is 2-random relative to Y , it must be 2-random, so X ′
≡T X⊕∅′

≡T
X ⊕� and X ⊕� is 1-random. We know that Y is X ′-random, hence X ⊕�-random.
Applying van Lambalgen’s theorem, X ⊕ � is Y -random. So if we assume that
A ≤LR Y , then X ⊕ � is A-random.

Now assume that A ≤LR X . By Theorem 5.1 and the fact that X is low for
�, we have A ≤T X ′

≡T X ⊕ �. So we have proved that A is computed by an A-
random real. This means that A is a base for 1-randomness, which Hirschfeldt, Nies,
and Stephan proved to be equivalent to A being low for 1-randomness [10]. In other
words, A ≡LR ∅. This shows that X and Y are a minimal pair in the LR-degrees. �

6 Remarks on the K -Degrees

Recall that X ≤K Y means that K (X � n) ≤
+ K (Y � n). Miller and Yu [19] proved

that if X ∈ 2ω is 1-random and X ≤K Y , then Y ≤LR X , which is equivalent to
Y ≤LK X . Below we give a more direct proof that X ≤K Y implies Y ≤LK X on the
1-randoms. We use the following lemma.

Bounding Lemma (Miller and Yu [18]) If
∑

n∈ω 2−g(n) < ∞ and g ≤T X with use
n, then K (X � n) ≤

+ n + g(n).

It turns out that the initial segment complexity of X codes the behavior of K X

in a fairly simple way. Fix a pairing function, that is, an effective bijection
〈·, ·〉 : ω2

→ ω. We may assume that 〈n, m〉 is greater than or equal to both n
and m. We also apply the pairing function to strings, having identified them with
natural numbers.

Lemma 6.1 If X is 1-random, then K X (σ ) =
+ mins∈ω K (X � 〈σ, s〉) − 〈σ, s〉.

Proof By the ample excess lemma, there is a c ∈ ω with
∑

n∈ω 2n−K (X�n)
≤ 2c.

Let W = {〈K (X � 〈σ, s〉) − 〈σ, s〉 + c + k + 1, σ 〉 : σ ∈ 2<ω and s, k ∈ ω}. Note
that W is X -c.e. (which is the purpose of k). Also,∑

〈d,σ 〉∈W

2−d
=

∑
n∈ω

∑
k∈ω

2−K (X�n)+n−c−k−1
=

∑
n∈ω

2n−K (X�n)−c
≤ 1,

so W is a Kraft-Chaitin set relative to X . This implies that

K X (σ ) ≤
+ min

s∈ω
K (X � 〈σ, s〉) − 〈σ, s〉.

For the other direction, let

g(〈σ, s〉) =

{
K X

s (σ ) if s = 0 or K X
s (σ ) < K X

s−1(σ ),
〈σ, s〉 otherwise.

Here, K X
s (σ ) is the stage s approximation of K X (σ ), which by standard conventions

on the use function can only depend on X � s 4 X � 〈σ, s〉.3 Therefore, g ≤T X
with use n. Next we want to bound

∑
n∈ω 2−g(n). Note that σ ∈ 2<ω contributes

less than
∑

k∈ω 2−K X (σ )−k
+

∑
s∈ω 2−〈σ,s〉

= 2 ·2−K X (σ )
+

∑
s∈ω 2−〈σ,s〉 to the sum.

Therefore, ∑
n∈ω

2−g(n)
≤ 2

∑
σ∈2<ω

2−K X (σ )
+

∑
〈σ,s〉∈ω

2−〈σ,s〉
≤ 2 + 2 < ∞,
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by Kraft’s inequality. Applying the bounding lemma, K (X � n) ≤
+ n + g(n). For

σ ∈ 2<ω, choose the least s such that K X
s (σ )= K X (σ ). Then K X (σ )=g(〈σ, s〉) ≥

+

K (X � 〈σ, s〉) − 〈σ, s〉. Hence K X (σ ) ≥
+ mins∈ω K (X � 〈σ, s〉) − 〈σ, s〉. �

Theorem 6.2 ([19]+[12]) If X is 1-random and X ≤K Y , then Y ≤LK X.

Proof Immediate from the lemma. �

The theorem allows us to apply results about the LK-degrees to the K -degrees. For
example, Nies [21] proved that if X ≡LK Y , then X ′

≡T Y ′ (in fact, the jumps are
truth-table equivalent). This means that if X ≡K Y and X is 1-random (hence Y is
too), then X ′

≡T Y ′. So 1-random K -degrees are countable. It is not hard to produce
continuum many reals X ∈ 2ω such that K (X � n) =

+ n/2; thus not all K -degrees
are countable.

Section 5 also tells us something about the K -degrees.

Theorem 6.3 The cone above a 2-random in the K -degrees is countable.

Proof Let X ∈ 2ω be 2-random. By Proposition 2.1, X is low for �. Assume
X ≤K Y , then Y ≤LK X , so Y ≤T X ′ by Theorem 5.1. �

It is known that some 1-random reals have uncountable upper cones in the K -
degrees [18]. On the other hand, it is open whether there are maximal K -degrees.

Open Question (See [17]) Is there a maximal K -degree? Is every 2-random K -
degree maximal?

Notes

1. Strictly speaking, Kraft considered finite prefix-free codes.

2. Starting with Yu, Ding, and Downey [28], these notions have been called strong Chaitin
random and Kolmogorov random, respectively. Since they were neither introduced by
Kolmogorov nor Chaitin, and since Chaitin has used “strong Chaitin randomness” to
denote one of his characterizations of 1-randomness, it seems reasonable to look for
alternative names. One may even question the need for names, since both notions are
equivalent to 2-randomness. For these reasons, we have adopted the descriptive—if
artless—terms used in this paper.

3. This is the only place we use the fact that 〈m, n〉 ≥ max{m, n}. We could do away with
this restriction on our pairing function by simply stipulating that the use of K X

s (σ ) is at
most 〈σ, s〉.
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