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Proof Mining in Topological Dynamics

Philipp Gerhardy

Abstract A famous theorem by van der Waerden states the following: Given
any finite coloring of the integers, one color contains arbitrarily long arithmetic
progressions. Equivalently, for every q, k, there is an N = N (q, k) such that
for every q-coloring of an interval of length N one color contains a progression
of length k. An obvious question is what is the growth rate of N (q, k). Some
proofs, like van der Waerden’s combinatorial argument, answer this question
directly, while the topological proof by Furstenberg and Weiss does not. We
present an analysis of (Girard’s variant of) Furstenberg and Weiss’s proof based
on monotone functional interpretation, both yielding bounds and providing a
general illustration of proof mining in topological dynamics. The bounds do
not improve previous results by Girard, but only—as is also revealed by the
analysis—because the combinatorial proof and the topological dynamics proof
in principle are identical.

1 Introduction

“Proof mining” is the activity of extracting additional information from proofs in
mathematics and computer science. The two main types of additional information
that may be extracted are quantitative and qualitative information. An example of
the former is extracting a rate of convergence from a proof that a certain iteration se-
quence in a compact metric space converges. An example of the latter is establishing
that the convergence is uniform in the starting point of the iteration or that the result
not only holds for compact metric spaces, but already for bounded ones. Naturally,
when the proof to be analyzed is constructive, we expect quantitative information—
realizers or bounds—to be present explicitly in the proof, and qualitative strength-
enings of the theorem may follow trivially from the exact structure of the realizers.
Thus, the main focus in proof mining is on extracting such information even from
ineffective proofs, that is, proofs using full classical logic.
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To achieve these aims in proof mining one focuses on two things: on the one hand,
developing general metatheorems that classify theorems and proofs from which ad-
ditional information can be extracted and, on the other hand, carrying out case stud-
ies by analyzing actual proofs. These activities are complimentary. New, stronger
metatheorems may open up new classes of proofs to analysis, and results that were
obtained ad hoc in case studies may inspire new proof mining techniques and lead to
new, stronger metatheorems.

The main tool in proof mining are so-called proof interpretations. The idea
of proof interpretations is to transform a given proof into an enriched proof from
which the desired additional information can be read off. There are various kinds
of proof interpretations spanning from, for example, cut elimination, which signifi-
cantly changes the structure of the proof during transformation, and functional inter-
pretations, which preserve the structure but at the cost of introducing functionals of
higher types into the interpretation. We will discuss this in more detail in the context
of a concrete proof analysis carried out in Section 5.

In this paper, we discuss and analyze two topological proofs of van der Waerden’s
theorem, more precisely, proofs of the Multiple Birkhoff Recurrence theorem, from
which van der Waerden’s theorem follows by an easy argument. The topological
proofs are by Furstenberg and Weiss [2] and Girard [5], where the latter proof is a
slightly modified variant of the former. The original combinatorial proof of van der
Waerden’s theorem (by van der Waerden himself [14]), does provide some bounds,
that is, a number N = N (q, k) so that for every q-coloring of [−N , N ] some color
contains an arithmetic progression of length k. However, the bounds are of Acker-
mann growth and thus of poor complexity, while the best known lower bounds are
elementary. The proof by Furstenberg and Weiss does not directly yield such a bound
and the hope is that an analysis of this “different” proof allows to extract different,
better bounds for van der Waerden’s theorem.

In [5], Girard modified the proof by Furstenberg and Weiss to facilitate the extrac-
tion of bounds for van der Waerden’s theorem from the topological proof. Girard’s
analysis is based on cut elimination and he essentially obtains the same bounds as
van der Waerden, but the analysis does not treat the full proof, only its specialization
to the setting relevant to van der Waerden’s theorem. The skeptical proof analyst
might suspect that the poor bounds are at least influenced by the well-known poor
complexity behavior of cut elimination and by the fact that cut elimination signifi-
cantly changes the structure of a given proof with cuts.

In this paper, we present a different analysis of Girard’s proof, based on so-called
monotone functional interpretation. This method is faithful to the structure of the
proof, but again yields the same bounds as van der Waerden. The analysis also re-
veals that this is not due to the extraction of bounds itself, but rather because the
proofs are “identical”: except for the different settings of finite combinatorics and
topological dynamics all the steps in the proofs by van der Waerden and Girard’s
variant of the proof of Furstenberg and Weiss are exactly the same. We also sug-
gest that Girard’s modified proof can be motivated by analyzing the Furstenberg and
Weiss proof, that is, by retaining a bit more information in the lemmas of the original
proof by Furstenberg and Weiss.

Combined, the proof analyses provide good examples of carrying out proof min-
ing in topological dynamics. Furthermore, the author plans to explore whether
the analogies between combinatorics and topological dynamics can be exploited
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for other purposes, for example, to derive a new topological proof of the Multiple
Birkhoff Recurrence theorem from Shelah’s improved combinatorial proof of van
der Waerden’s theorem (see [11]). The author hopes to pursue this in a future paper.

We now give an overview of the paper. In Section 2, we review van der Waer-
den’s theorem and the connections to multiple recurrence in topological dynamics.
In Section 3, we recall the topological proof of Multiple Birkhoff Recurrence by
Furstenberg and Weiss, and Section 4 discusses how Girard’s refined proof can be
motivated by “extracting” (or rather, retaining) some additional information in some
of the lemmas in the Furstenberg and Weiss proof. Finally, Sections 5 and 6 describe
the analysis of Girard’s proof in detail and discuss the relationship of the extracted
bounds to van der Waerden’s original combinatorial proof.

2 Van der Waerden’s Theorem and Topological Dynamics

Let us start by formally stating van der Waerden’s theorem.

Definition 2.1 An arithmetic progression of length k is a sequence of the form
a, a + b, a + 2b, . . . , a + (k − 1)b for integers a, b > 0.

Van der Waerden’s Theorem Let Z = C1 ∪ · · · ∪ Cq be a (finite) coloring of the
integers. Then one of the colors contains arbitrarily long arithmetic progressions.

This is the common formulation of van der Waerden’s theorem, but it does not sug-
gest much constructive information, except perhaps which color contains the pro-
gressions. Thus, instead of establishing the existence of arbitrarily long arithmetic
progressions, we may ask how large an interval we need to consider to ensure that for
any q-coloring of that interval some color contains a progression of length k, where
the size depends on the number of colors q and the length k. This is the version that
was actually proven in van der Waerden’s original paper [14]. This (equivalent) finite
version can be stated as follows.

Van der Waerden’s Theorem (finite version) For any q, k > 0, there exists an
N = N (q, k) > 0 such that for any q-coloring C1 ∪ · · · ∪ Cq of [−N , N ] ⊆ Z, one
of the colors contains an arithmetic progression of length k.

With this formulation the obvious question is to determine either exact values of the
function N (q, k) or at least information on the growth rate of the function. Except
for the simplest cases, exact values are difficult to determine. The study of upper and
lower bounds for van der Waerden’s theorem, though those are simpler to find than
exact values, is a dynamic field of research and keeping track of the newest exact
values and bounds is beyond the scope of this paper. In [9], the following currently
known best lower bound is presented.

Theorem 2.2 For all q ≥ 2, N (q, k) > qk

eqk (1 + o(1)).

The best upper bound known is due to Gowers [6].

Theorem 2.3 Let f (q, k) = q22k+9
, then N (q, k) ≤ 22 f (q,k)

.

The huge gap between upper and lower bounds suggests that there still is potential for
future research in this field. In van der Waerden’s original paper [14], the following
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upper bounds were obtained:

N (q, 2) = q + 1,
N (q, k + 1) = nq , where

n0 = 1,

nl+1 = N (qnl , k)+ d
N (qnl − 1, k)

k − 1
e + nl − 1.

One may simplify the last clause to nl+1 = 2N (qnl , k). As these bounds are defined
by double recursion, they essentially are of Ackermann growth.

In [11], Shelah presents a different combinatorial proof of van der Waerden’s
theorem (in fact, of the Hales-Jewett theorem, which is a generalization of van der
Waerden’s theorem) and obtains the following (at that time, first) primitive recursive
upper bounds:

f (1, q) = q + 1,

f (l + 1, q) = q f (l,q)2l
+ 1,

HJ(1, q) = 1,

HJ(n + 1, q) = HJ(n, q) · f (HJ(n, q), q(n+1)HJ(n,q)
),

N (q, k) = (k − 1)HJ(k, q),

where f is an auxiliary function and HJ(n, q) denotes a bound for the Hales-Jewett
theorem. In Hales-Jewett the number n denotes the size of an alphabet, and this size
roughly compares to the length of an arithmetic progression in van der Waerden’s
theorem. Note that Shelah’s bound for HJ(n, q) only depends on values of HJ where
n is strictly smaller and q is the same. Thus no double recursion is necessary, whereas
in van der Waerden’s bounds decreasing the other parameter comes at the price of
drastically increasing q, the number of colors.

Gowers’s bounds are obtained from his proof of Szemeredi’s theorem (first proved
in [12]), which is a density version of van der Waerden’s theorem: Instead of finite
colorings of the integers, one looks at subsets of the integers of positive density
(in some measure-theoretic sense) and finds arithmetic progressions in such sets.
Gowers uses a score of analytic techniques to obtain his result, but a more detailed
summary is beyond the scope of this paper.

Surprisingly, van der Waerden’s purely combinatorial theorem has a counterpart
in topological dynamics, where the notion of arithmetic progressions is represented
by some suitable notion of recurrence. This result was obtained by Furstenberg and
Weiss [2].1

Definition 2.4 A system (X,G) is a dynamical system if (X, d) is a compact met-
ric space and G is a group of commuting homeomorphisms of X . If G is generated
by a single homeomorphism T , we may write (X, T ) for the corresponding dynami-
cal system.

Remark There exist several equivalent ways of formulating compactness. We gen-
erally consider a space to be compact if it is totally bounded and complete.

Definition 2.5 Let (X, d) be a compact metric space and T a homeomorphism of
X . A point x ∈ X is a recurrent point for T if, for every ε > 0, there exists an n > 0
such that d(T n x, x) ≤ ε.
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The Multiple Birkhoff Recurrence theorem states that for a tuple T1, . . . , Tl of com-
muting homeomorphism, we can find a point that is recurrent simultaneously for all
Ti s.

Multiple Birkhoff Recurrence Theorem ([2]) Let (X, d) be a compact metric space
and T1, . . . , Tl commuting homeomorphisms of X . Then there exists a point x ∈ X
such that for every ε > 0 there is an n > 0 satisfying d(T n

i x, x) ≤ ε simultaneously
for i = 1, . . . , l.

It is easy to see that van der Waerden’s theorem follows from the Multiple Birkhoff
Recurrence theorem: A q-coloring of the integers can be represented by a function
x : Z → {1, . . . , q}. Define (T x)(n) = x(n + 1), let X = {T n x |n ∈ Z}, and define
a metric d(x, y) = 2−k for the biggest k such that x(l) = y(l) and x(−l) = y(−l)
for all l ≤ k. Then (X, d) is a compact metric space and T a homeomorphism of
X . Now let Ti = T i , that is, T iterated i times; obviously, the homeomorphisms Ti
commute. Applying the Multiple Birkhoff Recurrence theorem to those Ti , we find
a point that is recurrent for all T1, . . . , Tl .

Observe that if d(x, y) < 1 in our metric space, we have that x(0) = y(0) for
the corresponding colorings. Thus we merely need to find a point z ∈ X such that
d(T n

i z, z) < 1 for some n > 0 and all i = 1, . . . , l. The existence of such a point z
can be derived from the existence of a multiply recurrent point. Either the point z di-
rectly is a translate of x , that is, z = T m x , or, if z lies in the boundary of X , then there
is a T m x close enough to z to ensure the result (by the continuity of the Ti ). This then
yields the existence of some m, n > 0 such that x(m) = x(m+n) = · · · = x(m+ln),
that is, an arithmetic progression of length l + 1. For more details on this correspon-
dence, see, for example, [2], [1], and [10].

It is worth noting already here that to prove van der Waerden’s theorem from
a multiple recurrence result in topological dynamics, it is not strictly necessary to
obtain a multiply recurrent point. This is also mentioned in the paper by Furstenberg
and Weiss ([2], p. 66). It suffices to find for each ε > 0 some point z such that all
T n

i z are ε-close to z, instead of one point that works for all ε > 0.

3 The Proof by Furstenberg and Weiss

We first give an informal sketch of the proof (by Furstenberg and Weiss) of the Mul-
tiple Birkhoff Recurrence theorem. We find a recurrent point for commuting home-
omorphisms T1, . . . , Tl by induction on l. The case l = 1 is essentially the Poincaré
recurrence theorem. For the induction step, assume we know how to find a recur-
rent point for l homeomorphisms. Given l + 1 homeomorphisms T1, . . . , Tl+1, we
form l new homeomorphisms Si = Ti T −1

l+1. Applying the induction hypothesis to
the Si , we can find, for each ε > 0, some points x, y ∈ X and an n ∈ N such that
d(x, T n

i y) < ε simultaneously for i = 1, . . . l + 1. Using the concept of minimality
for dynamical systems (to be explained below), this can be strengthened to the fol-
lowing: for every x ∈ X there is a y ∈ X and an n ∈ N such that d(x, T n

i y) < ε
simultaneously. We then form a sequence of points zn—choose a z0, for z0 obtain
the corresponding y and let this be z1, for z1 obtain the corresponding z2 and so
on—satisfying d(T n j +···+ni+1 z j , zi ) < ε/2 for any i < j . By compactness of X ,
there is a pair i < j such that d(zi , z j ) < ε/2 and the induction step is complete.

Most steps of the proof are rather straightforward (once stated in an appropriate
form) and from a computational point of view, the greatest challenges are a number
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of applications of compactness in the proof. Before we discuss these in detail, let us
briefly recall each of the main lemmas in Furstenberg and Weiss’s proof.

Lemma 3.1 Let (X, d) be a compact metric space and let T : X → X be a self-
mapping of X. Then for any ε > 0 there exists an x ∈ X and an n > 0 such that
d(T n x, x) < ε.

Proof Take any x0 ∈ X and consider the sequence xi :≡ T i x0 for i = 0, 1, . . ..
By compactness, more precisely, by total boundedness, there is an m such that some
xi , x j are ε/2-close for 0 ≤ i < j ≤ m. Hence, d(T j−i xi , xi ) < ε. �

This lemma constitutes the induction base in the proof of the Multiple Birkhoff Re-
currence theorem. The next three lemmas constitute the induction step. In the fol-
lowing, (X, d) will always be a compact space and Ti , Si denote commuting home-
omorphisms of X .

Lemma 3.2 Assume that for any δ > 0 and any T1, . . . , Tl there exists a z ∈ X
and an n > 0 such that simultaneously d(T n

i z, z) < δ for all i = 0, . . . , l. Then
for any S1, . . . , Sl+1 and any ε > 0 there exist x, y ∈ X and an m > 0 such that
simultaneously d(Sm

i x, y) < ε for all i = 0, . . . , l + 1.

Proof From S1, . . . , Sl+1 form l new homeomorphisms by defining Ti :≡ Si S−1
l+1

for i = 1, . . . , l. Applying the premise to those Ti and ε, we obtain a point z ∈ X
and an n > 0 such that simultaneously d(Sn

i S−n
l+1z, z) < ε for i = 0, . . . , l. Define

x = S−n
l+1z and y = z, then d(Sn

i x, y) < ε simultaneously for all i = 0, . . . , l + 1.
�

The next lemma uses the notions of minimality and homogeneity for dynamical sys-
tems. The next two lemmas are stated and proven for a general compact metric
space and a single homeomorphism. Given (X, d) and T1, . . . , Tl , the space we have
in mind is the l-fold product of our original space (X, d) and the homeomorphism
T is T = T1 × · · · × Tl . A point x satisfying d(x, T n x) < ε for this product
space and product homeomorphism is then a point in the original space satisfying
d(x, T n

i x) < ε simultaneously for i = 1, . . . l.

Definition 3.3 A dynamical system (X,G) is minimal if no proper subset of X is
left invariant by all the transformations of G.

Definition 3.4 A closed (nonempty) subset A ⊆ X is homogeneous with regard to
a dynamical system (X,G) if there is a group G ′ of homeomorphisms commuting
with G such that G ′ leaves A invariant and (A,G ′) is minimal.

Every dynamical system (X, T ) has a minimal subsystem (using Zorn’s Lemma),
so, without loss of generality, we assume (X, T ) is minimal. Then for the l-fold
product of (X, T ) (with the new T = T1 × . . . Tl ) the diagonal subspace (i.e., the
set of l-tuples (x, x, . . . , x)) is a homogeneous set where the group G is the group
generated by (l-fold products) (T1 × · · · × T1), . . . , (Tl × · · · × Tl). For the details
of this argument see [2].

Lemma 3.5 Let a dynamical system (X, T ) be given. Let A ⊆ X be closed and
homogeneous (for a group G). If for any δ > 0 there exist u, v ∈ A and n > 0 such
that d(T nu, v) < δ, then for every x ∈ A there exists a y ∈ A and an m > 0 such
that d(x, T m y) < ε.
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Proof Let G be the group commuting with T and let ε > 0 be given. By minimality
(and compactness) of A there is a finite subset G0 ⊆ G such that min

g∈G0
d(gz, z′) < ε/2

for every z, z′
∈ A. Since the elements of G0 are (uniformly) continuous, we can

choose a δ > 0 such that d(z, z′) < δ implies d(gz, gz′) < ε/2 for all g ∈ G0.
Now, let u, v ∈ A and n > 0 be given by the premise with d(T nu, v) < δ. Let

x ∈ A be given. Then by assumption d(giv, x) < ε/2 for some gi ∈ G0. Using the
continuity of G0, we also have d(T ngi u, giv) < ε/2, so d(T ngi u, x) < ε. �

This property of homogeneous subsets is used in the next lemma.

Lemma 3.6 Let A ⊆ X be a closed subset such that for all δ > 0 and u ∈ A there
exists v ∈ A and n > 0 with d(T nv, u) < δ. Then for every ε > 0 there exists x ∈ A
and m > 0 such that d(T m x, x) < ε.

Proof Let ε > 0 be given, take any z0 ∈ A, and define ε1 = ε/4. By the premise,
there is z1 ∈ A and an n1 > 0 such that d(T n1 z1, z0) < ε1. Next, choose ε2 > 0
such that ε2 < ε1/2 and d(z, z1) < ε2 implies d(T n1 z, T n1 z1) < ε1/2 and thus also
d(T n1 z, z0) < ε/2. This step uses the continuity of T . We then choose z2, n2
for ε/2. Continuing in this fashion, we construct a sequence zi which satisfies
i < j → d(T n j +···+ni+1 z j , zi ) < ε/2. By the total boundedness of X , there is a
pair i < j such that d(zi , z j ) < ε/2 and thus for that j and n = n j + · · · + ni+1 we
have d(T nz j , z j ) < ε. �

In the final argument to get a recurrent point from points z ∈ X obtained in the
previous lemma, we consider F(x) = inf

n∈N
d(T n x, x). By the previous lemma, F(x)

is not bounded from below (by some δ > 0). Using homogeneity (of a set A as
in Lemma 3.5) and the upper semicontinuity of F , one shows that F(x) attains its
infimum, namely, 0, at points of continuity for F (on the homogeneous set A), which
then are recurrent points. For the full details of this argument see [2] and [1].

Most steps in the proof are direct appeals to continuity or the triangle inequality,
so let us return to the three applications of compactness (in the induction step):

1 In Lemma 3.5, compactness is used to obtain a finite subcover from a given
cover of the space X . Given a group G, an open neighborhood V ⊆ X , and a cover
of X by neighborhoods g−1V for g ∈ G, we want to find a finite set of elements
{g1, . . . , gk}(= G0) ⊆ G that covers X . To make the lemma computationally ex-
plicit, it is not enough to know that a finite cover exists, but we also need to know
which elements comprise the finite cover, as we need to know their continuity behav-
ior. This computational challenge can be avoided by slightly reformulating the the-
orem and the accompanying lemmas, as in Girard’s modified topological proof [5].
We will discuss this aspect in Section 4.

2 In Lemma 3.6, compactness is used in the form of total boundedness; that is,
given a sequence of points in X and an ε > 0, we want to know how many points we
need to consider to ensure that two elements are ε-close. This can be made explicit
by asking for a modulus of total boundedness, that is, a function that given an ε > 0
provides a k > 0 such that for any k elements xi ∈ X , two elements xi , x j are ε-close
for some 0 ≤ i < j ≤ k. The argument in the induction base, that is, Lemma 3.1, is
the same.
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3 A final application of compactness occurs when we obtain the multiply recur-
rent point from the fact that for every ε > 0 there exists a z ∈ X and an n > 0 such
that T n

i z and z are ε-close for all i = 1, . . . , l + 1. From a logical point of view, this
constitutes a uniformity result: Instead of ‘for every ε > 0 there exists a z ∈ X ’, we
obtain ‘there exists a z ∈ X such that for all ε > 0’. However, as discussed above, for
the proof of van der Waerden’s theorem the weaker, “nonuniform” version suffices
as we only need some point z for a particular ε, namely, ε = 1. Thus, this application
of compactness can be omitted here.

4 Elimination of Minimality and Girard’s Proof

In the proof by Furstenberg and Weiss, the appeal to minimality is crucial: without
it Lemma 3.2 cannot be strengthened to Lemma 3.5, and this strengthening is neces-
sary to form the sequence of points zn in Lemma 3.6. In [5], Girard gives a variant
of Furstenberg and Weiss’s topological proof which avoids the appeal to minimality.
This is possible because the proof of Lemma 3.2, as well as the proof of Lemma
3.1, proves more than is stated in the paper by Furstenberg and Weiss. Retaining this
additional information makes the appeal to minimality in the induction step unnec-
essary.

Let us start the discussion with Lemma 3.1. As it is stated in [2], the lemma
claims the existence of some x ∈ X and some n ∈ N such that d(x, T n x) < ε.
This is because compactness guarantees that for every ε > 0 there is an m ∈ N

such that among any m points in X two are ε close. Applying this to the set
{x0, T x0, T 2x0, . . . , T m−1x0}, we obtain—for any choice of x0 ∈ X !—two points,
for example, T i x0, T j x0 for 0 ≤ i < j < m are ε-close. Let x = T i x0 and
n = j − i and the lemma follows.

However, since the value m is uniform in the choice of x0 ∈ X , we have actually
proved the following.

Notation Let GT be a finitely generated group, that is, generated by the set
T = {T1, . . . , Tl}, then GT

M ⊆ GT (for M > 0) is the subset of group elements
which can be written as a word of length < M over the generators. If there is no
confusion about the generating set, we drop the superscript T .

Lemma 4.1 Let (X, d) be a compact metric space, let T : X → X, and let G be
the group generated by T . Let ε > 0. Then there exist N ,M ∈ N such that for each
x ∈ X min

0<n≤N
min
g∈G M

d(T ngx, gx) < ε.

If one treats Lemma 3.2 under the same aspects, we obtain a similar stronger version.
Namely, we obtain that there exist (explicit expressions for) N ,M ∈ N such that for
each z ∈ X min

0<n≤N
min

g,h∈G M
d(T ngz, hz) < ε. In other words, instead of proving the

existence of some x, y ∈ X , we obtain a finite set G M such that for any z ∈ X
we have a finite list of candidates for explicit expressions gz, hz for x, y ∈ X with
g, h ∈ G M .

This can be used in (a stronger version of) Lemma 3.6. With this additional infor-
mation, we can form the (finite) sequence z1, . . . , zk (with k large enough to appeal
to compactness for a given ε > 0) satisfying d(T n j +...+ni+1 z j , zi ) < ε for any
0 ≤ i < j ≤ k without appealing to minimality first. Already the example of three
points z0, z1, z2 is illustrative.
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Using the strengthened version of Lemma 3.2, we obtain N1,M1 for a given
ε1 = ε/2. Let ε2 > 0 be small enough so that d(x, y) < ε2 implies d(T ngx, T ngy)
< ε1/2 for all n ≤ N1 and g ∈ G N1 . Next, obtain N2,M2 for ε2.

Choose y ∈ X arbitrary. By the strengthened Lemma 3.2, there exists
g2, h2 ∈ G M2 and n2 ≤ N2 such that d(T n2 g2 y, h2 y) < ε2. By choice of ε2
this implies d(T n1+n2 g1g2 y, T n1 g1h2 y) < ε2. Moreover, there exist g1, h1 ∈ G M1

and n1 ≤ N1 such that d(T n1 g1h2 y, h1h2 y)ε1. Let z2 = g1g2 y, z1 = h1g2 y,
and z0 = h2h1x ; then those three points satisfy the above requirement. This can
obviously be extended to arbitrarily long finite sequences zn . Note that this depends
crucially on the uniformity of the bounds on Ni ,Mi in the starting point y ∈ X .

In conclusion, retaining more information (here: uniform bounds) in Lemma 3.1
and Lemma 3.2 allows one to eliminate Lemma 3.5 and the appeal to minimality
therein and prove (the conclusion of) Lemma 3.6 directly from (the conclusion of)
Lemma 3.2. Interpreting the notion of minimality is a far greater computational
challenge than keeping track of the groups G M .

We have already sketched the idea behind Girard’s modification of the proof by
Furstenberg and Weiss. For completeness sake, we briefly state the lemmas as they
appear in [5], which we will analyze in detail in Section 5. In Girard’s proof the
structure is slightly different.

Lemma 4.2 Let (X, d) be a compact metric space, let T be a homeomorphism of
X, and let G be commutative group of homeomorphisms of X such that T commutes
with G. Assume A ⊆ X is closed and left invariant by G. If

∀ε > 0∃N ∈ N∃S1, . . . SM ∈ G∀x ∈ A( min
0≤n≤N

min
0≤i, j≤M

d(T n Si x, S j x) < ε),

then

∀ε > 0∃N ∈ N∃S1, . . . SM ∈ G∀x ∈ A( min
0≤n≤N

min
0≤i, j≤M

d(T n Si x, Si x) < ε).

This lemma corresponds to the statement that the conclusion of Lemma 3.2, with
the existence of x, y made explicit as discussed above, implies the conclusion of
Lemma 3.6. From this lemma, the following version of the Multiple Birkhoff Recur-
rence theorem is proved by induction on l.

Theorem 4.3 Let T1, . . . , Tl be homeomorphisms of a compact space (X, d) and
let the Ti commute with each other. Let G be the commutative group generated by
T1, . . . , Tl , then

∀ε > 0∃N ∈ N∃S1, . . . SM ∈ G

∀x ∈ X∃n ≤ N∃i ≤ M(d(T n
1 Si x, Si x) < ε ∧ . . . d(T n

l Si x, Si x) < ε).

We will adapt Girard’s idea of modifying the Furstenberg and Weiss proof but will
keep the structure of the original proof; thus we merely skip Lemma 3.5 and the
appeal to minimality therein. Also, instead of making the S1, . . . , SM explicit, we
will compute a bound on M such that the group G M contains S1, . . . , SM .

5 Proof Analysis

In [5], Girard analyzes his modified topological proof of the Multiple Birkhoff Re-
currence theorem using cut elimination. However, Girard does not analyze the full
proof but rather the specialization of the proof to the concrete compact metric space
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of sequences representing (shifts of) a given coloring of the integers. From a suf-
ficiently formal (now first-order) proof, Girard then obtains a purely combinatorial
proof by eliminating those cuts which “prevent the proof from being purely combi-
natorial” ([5], p. 244). The bounds obtained from this combinatorial first-order proof
are the same bounds van der Waerden obtains from his combinatorial proof.

The analysis of Girard’s modified proof in this section treats the general case of
the Multiple Birkhoff Recurrence theorem; that is, the extracted bounds are valid
for arbitrary compact metric spaces and arbitrary homeomorphisms. Only later, the
generic bounds are applied to the particular compact metric spaces and homeomor-
phisms that van der Waerden’s theorem gives rise to, thus producing bounds in this
concrete case. Furthermore, the proof analysis given below leaves the structure of
the proof intact, whereas cut elimination changes the structure and blows up the size
of the proof. The individual steps of this cut-free proof may be simpler and more
elementary, but due to the increased size and lost structure the proof as a whole is
more difficult to understand.

The proof analysis presented in this section is based on Gödel’s functional (also:
Dialectica) interpretation, more precisely, on the monotone variant due to Kohlen-
bach. The general idea of analyzing proofs using functional interpretation is to give a
computational interpretation of the axioms, constants, and derivation rules of a given
formal system by functionals of higher type. Then a sufficiently formal proof can in-
ductively be transformed into an enriched proof, from which some desired additional
information can be read off. Note that this does not significantly change the struc-
ture of the proof. Of course, there are natural limits to what can be achieved by any
kind of proof interpretation: the halting problem can be expressed by a simple ∀∃∀-
statement,2 where the existential quantifier expresses after how many steps a given
Turing machine halts, if it halts at all. Obviously, there can be no computational
realizer for that existential quantifier.

With monotone functional interpretations, one looks for bounds on quantifiers
rather than exact realizers. This simplifies the interpretation of axioms and rules and
may also allow to interpret certain nonconstructive principles that allow for com-
putable bounds but do not have an exact computational interpretation at all, for ex-
ample, weak König’s lemma, which can be considered a kind of choice axiom.

Using functional interpretations, one can prove general metatheorems that classify
theorems and proofs from which additional information may be extracted. These
metatheorems do not only apply to Peano arithmetic in all finite types, and thus also
to metric spaces that can be given an effective representation in such formal systems;
they may also be extended to treat abstract metric and normed spaces, where the
spaces are represented by a new type X and the defining algebraic axioms, but where
no inherent computability structure is given. For the most recent metatheorems,
see [8] and [4]. For a comprehensive treatment of functional interpretations and
other proof interpretations, see [7] and [13].

Now, general logical metatheorems are concerned with formal systems and formal
proofs and mechanical procedures to transform a given proof into an enriched proof.
In practice, it is rarely necessary to formalize a proof completely in order to carry
out proof mining, and the proof analysis is guided by heuristics (derived from the
underlying proof interpretation) rather than blind mechanical procedures.
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The first step is usually to ensure that a given proof is in principle formalizable in
some formal system to which some metatheorem applies. This is done by identify-
ing the mathematical principles, general or particular, to some special structure like
compact metric spaces, which are actually used in the proof. This in itself allows
one to check with existing metatheorems so as to predict the kind of additional infor-
mation one can extract from the proof, which, for example, allows one to establish
uniformities without carrying out any further proof analysis.

Next, the main statements and lemmas of the theorem and proof to be analyzed
are put into a suitable form. This is done by asking for additional information, that is,
asking for a modulus of continuity when a function is assumed to be continuous or
unwinding common mathematical abbreviations such as lim

n→∞

xn = 0, which actually

means ∀ε > 0∃n∀m ≥ n(|xm | < ε). We give examples of this below.
Then one goes through the steps of the (informal) proof and carries the necessary

computational information from step to step. Where the computational meaning of
a step is not obvious, one formalizes that step in greater and greater detail, until
either the computational meaning becomes apparent or can be obtained by directly
applying the proof interpretation of choice.

We now turn to the actual analysis of the Furstenberg-Weiss proof of the Multiple
Birkhoff Recurrence theorem. As discussed in Section 4, the main building blocks of
the proof are the triangle inequality, the continuity behavior of various homeomor-
phisms, respectively, finite subsets of groups of homeomorphisms and appeals to the
total boundedness of the space. The triangle inequality has no computational con-
tent. For continuity, we ask for a modulus of continuity, and since the space (X, d)
is compact this is equivalent to a uniform modulus of continuity.

Definition 5.1 A function ωT is a modulus of uniform continuity for a mapping
T : X → X , if d(x, y) < ωT (ε) ⇒ d(T x, T y) < ε for every ε > 0 and every
x, y ∈ X .

Likewise, total boundedness is represented by a suitable modulus.

Definition 5.2 A function γ is a modulus of total boundedness if, for every
ε > 0 and for any x0, . . . , xγ (ε), there exist some 0 ≤ i < j ≤ γ (ε) such that
d(xi , x j ) < ε.

Also note that to obtain computable bounds, we eventually represent such moduli by
number-theoretic functions γ : N → N, where ε and δ are represented by k, l ∈ N,
that is, 2−k, 2−l . Here we stick to the usual mathematical notation for readability.

In these variants of the lemmas, we generally fix a group G to be the group gen-
erated by a set T1, . . . , Tl of homeomorphisms of X . The “inputs” (i.e., parameters
of the theorem) are a common modulus ωT for the set of homeomorphisms and a
modulus γ of total boundedness as well as, of course, an ε > 0. The outputs are
an upper bounds N ,M > 0 such that d(T ngx, gx) < ε for some 0 ≤ n ≤ N and
g ∈ GT

M .

Lemma 5.3 Let (X, d) be a totally bounded metric space with modulus γ of total
boundedness, let T : X → X, and let G be the group generated by T . Let ε > 0 be
given and let N = M = γ (ε/2). Then for each x ∈ X min

0<n≤N
min
g∈G M

d(T ngx, gx) < ε.

Proof This is the same proof as before, only now the total boundedness of X has
been made explicit by the modulus γ . �
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In the following, (X, d) will be a totally bounded metric space with modulus γ and
Ti , Si will refer to commuting homeomorphisms of X .

Lemma 5.4 Suppose ϕl
N and ϕl

M satisfy the following: for any δ > 0 and
any T1, . . . , Tl of X with common modulus of uniform continuity ωT , if
N = ϕl

N (δ, γ, ωT ) and M = ϕl
M (δ, γ, ωT ), then for any x ∈ X simultaneously

min
0<n≤N

min
g∈G M

d(T n
i gx, gx) < δ for i = 1, . . . , l.

Let ε > 0 and any S1, . . . , Sl+1 with common modulus of continuity ωS
be given and let N ′

= ϕl
N (ε, γ, ω

2
S) and M ′

= 2 ϕl
M (ε, γ, ω

2
S) + N ′, where

ω2
S = ωS ◦ωS . Then for any x ∈ X simultaneously min

0<n′
≤N ′

min
g′,h′

∈G M ′

d(Sn′

i g′x, h′x) < ε

for i = 1, . . . , l + 1.

Proof Let ε > 0 be given and fix x ∈ X . From the homeomorphisms Si form
T j = S j S−1

l+1 for j = 1, . . . , l and apply ϕl
N , ϕ

l
M to ε, γ and ω2

S as above. By
assumption on ϕl

N , ϕ
l
M , for some g ∈ GT

M = GS
2M and some n ≤ N simultaneously

d(Sn
j S−n

l+1gx, gx) < ε for j = 1, . . . l. Define g′
= S−n

l+1g and h′
= g, then also

simultaneously d(Sn
i g′x, h′x) < ε for i = 1, . . . , l + 1. �

As discussed in Section 4, we don’t need an equivalent of Lemma 3.5 and instead
directly “glue together” Lemma 3.2 and 3.6.

Lemma 5.5 Suppose ψ l
N , ψ

l
M satisfy the following: for any δ > 0 and any

T1, . . . , Tl with common modulus of uniformity ωT , if N = ψ l
N (δ, γ, ωT ) and

M =ψ l
M (δ, γ, ωT ), then simultaneously min

n≤N
min

g,h∈G M
d(T n

i gx, hx)<δ for i = 1, . . . , l.

Let ε > 0 and homeomorphisms T1, . . . , Tl be given and define χN (i) =

ψ l
N (εi , γ, ωT ) and χM (i) = ψ l

M (εi , γ, ωT ), where ε1 = ε/4 and εk+1 =

ω
χN (k)+kχM (k)
T (εk/2). Let N ′

= χN (γ (ε/2))·γ (ε/2) and M ′
= χM (γ (ε/2))·γ (ε/2).

Then for any x ∈ X simultaneously min
n′

≤N ′
min

g∈G M ′

d(T n
i gx, gx) < ε for i = 1, . . . , l.

Proof Set ε1 = ε/4. Given εk , we want to form εk+1 satisfying (1) εk+1 < εk/2,
and (2) for all n < χN (k) and all v = g1g2 . . . gk , k′

≤ k and gi ∈ GχM (i) we
have that d(x, x ′) < εk+1 implies that d(T n

i vx, T n
i vx ′) < εk/2. With the mild

assumption that ωT (ε) ≤ ε, one readily sees that the above definition of the sequence
εn satisfies these two properties.

Now, for any given k, we define z0, . . . , zk as follows:

(i) yk = x ,
(ii) yk−1 = hk yk for gk, hk and nk ≤ χN (k) such that d(T nk gk x, hk x) < εk

(which exist by the premise),
(iii) zi = gi . . . g1 yi for i = 1, . . . , k.

Then using the properties of the εk and the corresponding gk, hk , we get that
d(T nk zk, zk−1) < εk/2. Furthermore, using the properties of the εk and nk , this
yields d(T n j +...+ni+1 z j , zi ) < ε/2 for all 0 ≤ i < j ≤ k. By total boundedness,
some 0 ≤ i < j ≤ γ (ε/2) satisfy d(zi , z j ) < ε/2, and the result follows. �



Proof Mining 443

Multiple Birkhoff Recurrence Theorem (effective version) Let (X, d) be a metric
space with modulus of total boundedness γ , let T1, . . . , Tl be commuting homeo-
morphisms of X with common modulus of uniform continuity ωT , and let G be the
group generated by T1, . . . , Tl . Then for every ε > 0 there exist N ,M > 0 (to be de-
fined below) such that for every x ∈ X simultaneously min

0<n≤N
min
g∈G M

d(T n
i gx, gx) < ε

for i = 1, . . . , l. Define

1. N 1(ε, γ, ω) = M1(ε, γ, ω) = γ (ε/2);
2. ϕk+1

N (i) = N k(εk+1
i , γ, ω2);

3. ϕk+1
M (i) = 2Mk(εk+1

i , γ, ω2)+ N k(εk+1
i , γ, ω2);

4. εk
1 = ε/4 and εk

i+1 = ωϕ
k
N (i)+i ·ϕk

M (i)(εi/2);
5. N k+1(ε, γ, ω) = ϕk+1

N (γ (ε/2)) · γ (ε/2);
6. Mk+1(ε, γ, ω) = ϕk+1

M (γ (ε/2)) · γ (ε/2).

Then N = N l(ε, γ, ω) and M = M l(ε, γ, ω).

Proof This follows from the previous lemmas by combining the functionals ob-
tained there. �

6 Van der Waerden’s Theorem (Again)

With the bounds on the Multiple Birkhoff Recurrence theorem obtained in Sec-
tion 5, we may obtain bounds on (the finite version of) van der Waerden’s theorem.
Given a q-coloring of the integers and a desired length k of the arithmetic progres-
sion, we simply write down a modulus γ for the corresponding metric space and
a common modulus ωT of uniform continuity for the necessary homeomorphisms
T1, . . . , Tk−1. These moduli will be expressed in terms of q and k and will be
number-theoretic functions; that is, γ, ωT : N → N. Instead of mapping an ε > 0
to a δ > 0, they will map a k ∈ N representing a ε = 2−k to an l ∈ N repre-
senting a δ = 2−l . We then apply the bounds for the Multiple Birkhoff Recurrence
theorem to these moduli and ε = 1 (= 20, so k = 0). Given the resulting N ,M ,
we know that for any coloring x there are 0 < n ≤ N and m ≤ M such that
x(m) = x(m + n) = · · · = x(m + (l − 1)n). Thus M + (k − 1)N is an upper
bound on the length of an interval, so that any q-coloring of that interval contains an
arithmetic progression of length k.

Let us recall the definition of the space (X, d) derived from a given q-coloring
of the integers. A q-coloring can be represented by a function x : Z → {1, . . . , q}.
Given the shift T such that (T x)(n) = x(n + 1) the space3 X = {T n x |n ∈ Z}.
The metric on X is d(x, y) = 2−k for the largest k such that x(l) = y(l) and
x(−l) = y(−l) for all l ≤ k.

It is then clear that for a given q-coloring and a 2−k the set of all finite
sequences of length 2k + 1 with values in {1, . . . , q} is a 2−k-dense subset
of X . Thus, γ (k) = q2k+1 is a modulus of total boundedness for X . It is
also clear that the 1-shift T is uniformly continuous with modulus ωT (k) =

k + 1. For the mappings T1, . . . , Tl with Ti = T i , that is, T iterated i times,
we have the common modulus of uniformity ωT (k) = k + l.

Applying the bounds for the Multiple Birkhoff Recurrence theorem to these mod-
uli, we easily see that—modulo some ad hoc optimizations of the bounds—the
bounds obtained in this way are identical to the bounds obtained by van der Waerden
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and identical to the bounds obtained by Girard from his modified Furstenberg and
Weiss proof. This is not very surprising as, upon closer inspection, the proofs by
van der Waerden and by Girard are identical with regard to their algorithmic content;
that is, step by step the two proofs employ the same constructions and operations
to prove the result. The only difference is that one proof is formulated in the con-
text of combinatorics, whereas the other is formulated in the context of topological
dynamics.

Let us again recall the analogy between van der Waerden’s theorem and the Mul-
tiple Birkhoff Recurrence theorem. On the combinatorial side, we deal with color-
ings of the natural numbers and arithmetic progressions, on the topological side with
homeomorphisms of a compact metric space and ε-recurrent points. The length of
the progression corresponds to the number of homeomorphisms, whereas the num-
ber of colors corresponds to the number of ε-neighborhoods necessary to cover the
entire space. In both settings, the simple case is where you only have a progression
of length 2, respectively, only one homeomorphism, as then we only need to exhaust
the number of colors, respectively, ε-neighborhoods.

To inductively prove the general combinatorial result, we solve the problem for
long progressions and few colors by transforming it into a problem with shorter
progressions and more colors until we reach the trivial case. The greater set of colors
results from a coloring of blocks of natural numbers derived from the coloring of
the natural numbers. The length of the blocks must be large enough to allow one to
find long enough progressions of smaller blocks within each block, and the depth of
blocks within blocks must be large enough to allow a sequence of starting points and
endpoints for progressions across blocks on different levels to exhaust the number of
colors at the outset.

Topologically, we find a recurrent point for many homeomorphisms and big ε by
finding a point for fewer homeomorphisms and smaller ε. As in the combinatorial
setting, we find a recurrent point for fewer homeomorphisms (shorter progressions)
for a sequence of smaller and smaller ε (larger and larger number of colors) until
the length of that sequence (and a sequence of points derived from that) exhausts the
ε-neighborhoods for the original ε (original number of colors). Even the “growth”
of the ε happens in a similar way: given one εk > 0 in a sequence, the next εk+1 > 0
must be small enough to ensure that “shifts” T nk

i (by continuity of the Ti ) do not
move points that are εk+1-close more than εk apart. This has an analogue in the com-
binatorial setting in making blocks large enough to contain progressions of smaller
blocks.

Thus, the bounds are identical, because the proofs in principle are identical!
While we obtain no new bounds, we do obtain a deeper insight into the relation-
ship between the combinatorial and topological proofs of van der Waerden’s theo-
rem and the Multiple Birkhoff Recurrence theorem, respectively. These connections
may be useful when further exploring the computational content of topological and
analytical proofs of combinatorial theorems. The reverse is also conceivable, as
not only bounds, but also proof ideas may be transferred from one setting to the
other. Thus one may perhaps obtain a “new,” different topological proof of the Mul-
tiple Birkhoff Recurrence theorem from Shelah’s ingenious, improved combinatorial
proof of van der Waerden’s theorem. The author hopes to explore this in a forthcom-
ing paper.
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Notes

1. Chronologically, this result predates Gowers’s result and coincides with Furstenberg’s
ergodic theoretic proof of Szemeredi’s theorem [3], so the surprise is genuine.

2. ∀∃∀ describes the quantifier prefix before a decidable statement. Here, the statement is,
“for every Turing machine x , every input i , there is a y such that for all z either x applied
to i stops after y stops or it doesn’t stop for any number z of steps”; checking whether a
Turing machine stops after a given number of steps is, of course, decidable.

3. In Section 2, we defined X to be the completion of this space, but the completeness is
not needed, so here (X, d) is only totally bounded.
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