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Immunity and Hyperimmunity
for Sets of Minimal Indices

Frank Stephan and Jason Teutsch

Abstract We extend Meyer’s 1972 investigation of sets of minimal indices.
Blum showed that minimal index sets are immune, and we show that they are
also immune against high levels of the arithmetic hierarchy. We give optimal
immunity results for sets of minimal indices with respect to the arithmetic hier-
archy, and we illustrate with an intuitive example that immunity is not simply
a refinement of arithmetic complexity. Of particular note here are the fact that
there are three minimal index sets located in 53 −63 with distinct levels of im-
munity and that certain immunity properties depend on the choice of underlying
acceptable numbering. We show that minimal index sets are never hyperimmune;
however, they can be immune against the arithmetic sets. Lastly, we investigate
Turing degrees for sets of random strings defined with respect to Bagchi’s size-
function s.

1 A Short Introduction to Shortest Programs

The set of shortest programs is

{e : (∀ j < e) [ϕ j 6= ϕe]}. (1.1)

In 1967, Blum [2] showed that one can enumerate at most finitely many shortest
programs. Five years later, Meyer [11] formally initiated the investigation of minimal
index sets with questions on the Turing and truth-table degrees of (1.1).

Meyer’s research parallels inquiry from Kolmogorov complexity where one
searches for shortest programs generating single numbers or strings. The clearest
confluence of Kolmogorov randomness and minimal index sets manifests itself in
Schaefer’s set of shortest descriptions [14],

{e : (∀ j < e) [ϕ j (0) 6= ϕe(0)]}, (1.2)
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which serves as the set of minimal indices for Kolmogorov complexity. The size-
minimal random strings discussed in the last section of this paper are generalizations
of both the Kolmogorov numberings and the minimal index set (1.2).

For underlying Kolmogorov numberings ϕ, the set (1.1) forms a subset of the
Kolmogorov random strings. The converse inclusion fails in general since multiple
Kolmogorov random indices can represent the same function. Moreover, one can
choose a Gödel numbering ψ such that (1.1) lies entirely within the nonrandom
strings, except for a finite set. For example, let ψi = ϕ j whenever 2 j

≤ i < 2 j+1. In
this case, all minimal indices are of the form 2i and have a Kolmogorov complexity
which is, up to a constant, the same as i .

In contrast to Meyer [11], we shall focus on the set of minimal indices with respect
to domains,

MIN = {e : (∀ j < e) [W j 6= We]},

rather than functions. We also consider natural variants of MIN.

Definition 1.1 We call MIN and following sets sets of minimal indices. Minimal
index sets are based on equivalence relations and each set contains the least repre-
sentative from each equivalence class:

MIN∗
= {e : (∀ j < e) [W j 6=

∗ We]},

MINm
= {e : (∀ j < e) [W j 6≡m We]},

MINT(n)
= {e : (∀ j < e) [W j 6≡T(n) We]},

and

MINT(ω)
=

⋂
n∈ω

MINT(n)

= {e : (∀ j < e)(∀n) [(W j )
(n)

6≡T (We)
(n)

]},

where A ≡T(n) B is shorthand for A(n) ≡T B(n). Here A(n) denotes the nth Turing
jump of A. If n = 0, we omit “(n)” from the notation.

For simplicity, we place ω and ∅ in the same m-equivalence class as the rest of
the recursive sets (for the remainder of this paper). If the particular Gödel numbering
is relevant to the discussion, we shall add a subscript, as in MINϕ .

We recall the following definitions.

Definition 1.2 Let (De)e∈ω be the canonical numbering of the finite sets.

(i) A set is immune if it is infinite and contains no infinite r.e. sets.
(ii) A set A is hyperimmune if it is infinite and there is no recursive function f such

that
(a)

(
D f (i)

)
i∈ω is a family of pairwise disjoint sets, and

(b) D f (i) ∩ A 6= ∅ for all i .

The following is a generalization of Definition 1.2(i).

Definition 1.3 Let C be a family of sets. A set is C-immune if it is infinite and
contains no infinite members of C. If C is the class of r.e. sets, then we write immune
in place of C-immune.
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Blum showed that MIN is immune [2], and Meyer showed that MIN is not hyper-
immune [11]. Section 2 contains analogous immunity results for the other minimal
index sets. In Theorem 2.6, in particular, we use immunity or “thinness” to distin-
guish among minimal index sets contained in the same level of the arithmetic hierar-
chy. Theorem 2.13 and Corollary 2.15 together provide a counterexample which is
useful for intuition: they show that immunity is not, in fact, a simple refinement of
arithmetic complexity. After inspecting the minimal index sets in Definition 1.1, one
might suspect that greater immunity implies greater arithmetic complexity; however,
this is not true in general.

Section 3 shows that the 5n-immunity of some, but not all, minimal index sets
depends on the Gödel numbering. We show that minimal index sets are not hyper-
immune (Section 4). Using this fact, we construct a set which neither contains nor is
disjoint from any arithmetic set, yet is majorized by a recursive function and contains
a minimal index set (Corollary 4.6). Lastly, in Section 5, we show that size-minimal
Kolmogorov random strings need not be Turing complete. This contrasts with the
more usual random strings, the special case where size is simply length, which are
wtt-complete under any Gödel numbering and truth-table complete under any Kol-
mogorov numbering [5].

For further background on minimal index sets, we refer the reader to Schaefer [14]
and Teutsch [17]. Notation not mentioned here follows Odifreddi [12] and
Soare [16].

2 Immunity and Fixed Points

Schaefer [14] made the following observations with regard to minimal functions, but
the results translate easily into sets. He attributes the main idea of (i) to Blum [2],
Theorem 3, and (ii) to Case.

Theorem 2.1 (Schaefer [14])

(i) MIN is immune.
(ii) MIN∗ is 62-immune.

Proposition 2.2 and Lemma 2.3 will be needed to prove Theorem 2.6.

Proposition 2.2

(i) MIN∗
∈ 53.

(ii) MINm
∈ 53.

(iii) MIN≡1 ∈ 53.

Proof (i) {〈 j, e〉 : W j =
∗ We} ∈ 63 (see [16]). �

(ii) For any r.e. sets A and B,

A ≤m B ⇐⇒ (∃e)(∀x) [ϕe(x)↓ ∧ (x ∈ A ⇐⇒ ϕe(x) ∈ B)] ,

which shows that A ≤m B is a 6∅′

2 relation. It follows that A ≡m B is also a
6∅′

2 relation. In particular, for

C = {〈 j, e〉 : W j ≡m We},

we have
C ∈ 6∅′

2 = 63.
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Hence,
e ∈ MINm

⇐⇒ (∀ j < e)
[
〈 j, e〉 6∈ C

]
,

which places MINm
∈ 53. �

(iii) The same proof idea as for (ii) works because injectivity can be tested with a
∅′ oracle. �

Lemma 2.3(i) is an immediate consequence of Schaefer’s theorem, MIN∗
⊕ ∅′

≡T ∅′′′ (see [14]); however, we give a more direct proof below.

Lemma 2.3

(i) MIN∗
6∈ 63.

(ii) MINm
6∈ 63.

(iii) MIN≡1 6∈ 63.

Proof

(i) Suppose MIN∗
∈ 63; let a be the *-minimal index for ω and recall that the set

of cofinite indices
COF = {e : We =

∗ ω}

is 63-complete (see [16]). Note that

W j 6=
∗ We ⇐⇒ (∀y) (∃x > y) (∃s) (∀t > s) [W j,t (x) 6= We,t (x)] (2.1)

and

COF = (MIN∗
∩ COF) ∪ (MIN∗ ∩ COF)

= {a} ∪
{
e : (∀ j ≤ e)

[
j ∈ MIN∗

− {a} H⇒ W j 6=
∗ We

]}
.

Now COF ∈ 53, by (2.1) and because MIN∗
− {a} ∈ 63 by assumption. This

contradicts the fact that COF is 63-complete. �

(ii) {e : We ≡m C} is 63-complete whenever C is r.e. This set now plays the role
of COF from part (i) (see [18]). �

(iii) {e : We ≡1 C} is 63-complete whenever C is r.e., infinite, and coinfinite
(see [3]). Since W j ≡1 We is decidable in 63, the same argument again applies. �

This completes the proof of the theorem. �

The proofs of Theorem 2.6 and Corollary 2.7 illustrate the connection between im-
munity for minimal indices and generalized fixed points. In the following theorem,
the cases =

∗ and ≡T were first proven by Arslanov. The remaining cases are due to
Jockusch, Lerman, Soare, and Solovay.

Theorem 2.4 (Generalized fixed points, Arslanov [1], Jockusch et al. [4]) For every
n ≤ ω,

(i) f ≤T ∅′
H⇒ (∃e) [We =

∗ W f (e)],
(ii) f ≤T ∅′′

H⇒ (∃e) [We ≡m W f (e)],
(iii) f ≤T ∅(n+2)

H⇒ (∃e) [We ≡T(n) W f (e)].
Furthermore, e can be found effectively from n and an index for f (in an acceptable
numbering of a ∅′-, ∅′′-, or ∅(n+2)-recursive function, respectively).
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Definition 2.5 An integer n is an i th prime power if n = pk
i for some k ≥ 1, where

pi is the i th prime number.

The following theorem shows that immunity can be used to distinguish between
certain MIN-sets, even when the arithmetic hierarchy cannot.

Theorem 2.6 MINm, MIN∗, and MIN≡1 are all in 53 −63, but
(i) MINm is 63-immune, whereas

(ii) MIN∗ contains an infinite 63 set, and
(iii) MIN≡1 contains an infinite 62 set.

Proof We already showed MINm,MIN∗,MIN≡1 ∈ 53 −63 in Theorem 2.3.

(i) MINm is known to be infinite as there are infinitely many many-one degrees
of r.e. sets. If MINm had an infinite 63-subset, then there would be a ∅′′-recursive
function f such that f (e) > e and f (e) ∈ MINm for all e. This would imply

(∀e) [W f (e) 6≡m We],

in contradiction to a result of Jockusch, Lerman, Soare, and Solovay (Theorem 2.4)
which says that such a ∅′′-recursive function does not exist. �

(ii) Recall that
INF = {e : We is infinite}

and for every k, let

Pk = {n : n is a kth prime power},

Ak = {e : We ⊆
∗ Pk} ∩ INF,

A = {e : (∃k) (∀ j < e) [e ∈ Ak ∧ j 6∈ Ak]}.

Now A ⊆ MIN∗, as e ∈ A implies W j 6=
∗ We for all j < e. Since the Aks are

disjoint, any infinite B satisfies B ⊆
∗ Ak for at most one k. Moreover, each Ak

contributes a distinct element to A; hence A is infinite. Finally,

We ⊆
∗ Pk ⇐⇒ (∃y) (∀x ≥ y) [x ∈ We H⇒ x ∈ Pk]

⇐⇒ (∃y) (∀x ≥ y) [x 6∈ We ∨ x ∈ Pk]

⇐⇒ (∃y) (∀x ≥ y) (∀t) [x 6∈ We,t ∨ x ∈ Pk],

which makes Ak ∈ 13, on account of INF ∈ 52. It follows that A ∈ 63. �

(iii) Define a sequence of finite sets by

Ak = {x : 0 ≤ x ≤ k}.

Furthermore, define

Bk = {e : We has at least k elements} ∈ 61,

which means that

Ck = {e : We has exactly k elements} = Bk ∩ Bk+1 ∈ 12.

It follows from the pigeonhole principle that

We ≡1 Ak ⇐⇒ e ∈ Ck,

and, therefore,
{〈e, k〉 : We ≡1 Ak} ∈ 12.
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Now
A =

{
e : (∃k) (∀ j < e)

[
W j 6≡1 Ak ∧ We ≡1 Ak

]}
is a 62 set. Moreover, A is infinite because each Ak represents a distinct ≡1 class.
Since A ⊆ MIN≡1 , it follows that MIN≡1 is not 62-immune. �

This completes the proof. �

Remark It is worth noting that MIN≡1 is immune (simply because it is a subset of
MIN).

Now we want to determine the immunity of MINT(n).

Corollary 2.7 For all n < ω, MINT(n) is 6n+3-immune.

Proof We follow the proof of Theorem 2.6(i) and as before, MINT(n) is infinite (this
will follow from Corollary 4.5).

Let n ≥ 0 and let A be an infinite, 6n+3 set. Suppose A ⊆ MINT(n) . Since A
is infinite and r.e. in ∅(n+2), A has a ∅(n+2)-recursive subset B. Define a ∅(n+2)-
recursive function g by

g(e) = (µi) [i > e ∧ i ∈ B].

Now for all e, g(e) > e and g(e) ∈ MINT(n) . Therefore,

(∀e) [We 6≡T(n) Wg(e)],

contradicting Theorem 2.4. �

We now show that Corollary 2.7 is optimal. This will follow from a result by Lempp
and Lerman.

Theorem 2.8 (Lempp and Lerman [6]) Any countable partial order P with jump
which is consistent with

(i) its order relation,
(ii) the order-preserving property of the jump operator,

(iii) the property of the jump operator that the jump of an element is strictly greater
than the element, and

(iv) the property that a nonjump element lies between 0 and 0′, a single jump ele-
ment lies between 0′ and 0′′, and so on,

can be effectively embedded into the r.e. degrees.

The next corollary follows from Theorem 2.8 and will be useful in the proof of
Theorem 2.11. In the case of n = 0, Corollary 2.9 says that there exists a recursive
sequence of low, pairwise minimal r.e. sets.

Corollary 2.9 For every n, there exists a recursive sequence of r.e. sets A0, A1, . . .
such that for all C r.e. in ∅(n) and i 6= j ,

(i) ∅ <T(n) Ai ,
(ii) (Ai )

′
≡T(n) ∅′,

(iii)
[
C ≤T (Ai )

(n)
∧ C ≤T (A j )

(n)]
H⇒ C ≤T ∅(n).
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Definition 2.10 For n ≥ 0,
(i) LOWn

= {e : We ≡T(n) ∅},
(ii) HIGHn

= {e : We ≡T(n) ∅′
}.

Theorem 2.11 For all n ≥ 0, MINT(n) is not 6n+4-immune.

Proof Let n ≥ 0 and let A0, A1, . . . be the corresponding sequence of sets obtained
from Corollary 2.9. Define

Bk =

[
{x : Wx ≤T(n) Ak} ∩ LOWn

]
,

B = {e : (∃k) (∀ j < e) [e ∈ Bk ∧ j 6∈ Bk]} .

Note that B ≤T(n) A is a 6B⊕A′

n+2 relation. Since, for any x , both Wx ≤T(n) ∅′ and
(Ak)

′
≤T(n) ∅′, it follows that{

x : Wx ≤T(n) Ak
}

∈ 6∅′

n+2 = 6n+3.

This places Bk ∈ 1n+4, on account of LOWn
∈ 5n+3. Therefore, B ∈ 6n+4.

It remains to show that B is an infinite subset of MINT(n) . Note that Bi ∩ B j = ∅
for i, j with i 6= j . Indeed, if e ∈ Bi ∩ B j , then

We ≤T(n) Ai ∧ We ≤T(n) A j ∧ e 6∈ LOWn,

contradicting Property (iii) of Corollary 2.9. Now since Bk 6= ∅ and each Bk con-
tributes exactly one element to B, B must be infinite.

Finally, assume e ∈ B and let k be such that e ∈ Bk and j 6∈ Bk for all j < e.
Then for j < e,

We ≤T(n) Ak ∧ W j 6≤T(n) Ak,

which implies We 6≡T(n) W j . So e ∈ MINT(n) . That is, B ⊆ MINT(n) . �

Remark Any set is 1n-immune if and only if it is 6n-immune. Therefore, our
theorems regarding 6n-immunity also give the results for 1n-immunity.

Figure 1 on page 114 summarizes the immunity results obtained above. The arith-
metic results are optimal by Lemma 2.3 and [17], Theorem 1.3.4. The set-theoretic
inclusions are immediate from the definitions. Based on this diagram, one might
be tempted to believe that minimal index sets which are higher in the arithmetic hi-
erarchy are also more immune. This is not true, and we devote the remainder of
this section to a counterexample. Indeed, the set MINThick-∗, defined below, is in
64 −54 and only 62-immune, whereas MINm

∈ 53 is 63-immune. Our omission
of MINThick-∗ from Figure 1 makes the diagram coherent.

Definition 2.12 For A, B ⊆ ω, define the equivalence relation

A ≡Thick-∗ B ⇐⇒ (∀n)
[

A[n]
=

∗ B[n]

]
,

where A[n]
= {x : 〈x, n〉 ∈ A}.

Theorem 2.13

(i) MINThick-∗
∈ 64.

(ii) MINThick-∗
6∈ 54.

Proof (i) {〈 j, e〉 : W j =
∗ We} ∈ 63, so {〈 j, e〉 : W j ≡Thick-∗ We} ∈ 54. �
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MIN∗
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Figure 1 A naïve approach to minimal index sets, by reverse inclusion.

(ii) Let A ∈ 54. Then there exists a relation R ∈ 63 such that

x ∈ A ⇐⇒ (∀y) [R(x, y)].

Since COF is 63-complete (see [16]), there exists a recursive function g such that
R(x, y) if and only if Wg(x,y) is cofinite. Therefore,

x ∈ A ⇐⇒ (∀y)
[
Wg(x,y) =

∗ ω
]
.

Define a recursive function f by

ϕ
[y]

f (x) = ϕg(x,y).

Then

W f (x) ≡Thick-∗ ω ⇐⇒ (∀y)
[
Wg(x,y) =

∗ ω
]

⇐⇒ x ∈ A,

which makes

Thick-COF = {e : We ≡Thick-∗ ω}

54-complete.
Suppose toward a contradiction that MINThick-∗

∈ 54, and let a be the ≡Thick-∗-
minimal index for ω. Then

Thick-COF = {e : We ≡Thick-∗ ω}

= {a} ∪

{
e : (∀ j < e)

[
j ∈ MINThick-∗

− {a} H⇒ W j 6≡Thick-∗ We

]}
.

Now Thick-COF ∈ 64, since W j ≡Thick-∗ We can be decided in 54 and because

MINThick-∗
− {a} ∈ 54

by assumption. This contradicts the fact that Thick-COF is 54-complete. �
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Thickness contributes nothing to immunity, as evidenced by Corollary 2.15.

Lemma 2.14 (Semi-fixed points) There exists a recursive function ν such that

(∀ f ≤T ∅′) (∃e)
[
Wν(e) ≡Thick-∗ W f (e)

]
.

Proof Using the s-m-n theorem, define a recursive function ν by

ϕν(x)(〈z, n〉) =

{
ϕϕx (n)(z) if ϕx (n)↓ ,
↑ otherwise,

so that for any x ∈ TOT,

W [n]

ν(x) = Wϕx (n).

Let f ≤T ∅′ and define, again using the s-m-n theorem, a recursive sequence of
∅′-recursive functions { fn} by

ϕ fn(x)(z) = ϕ f (x)(〈z, n〉)

so that

W fn(x) = W [n]

f (x).

By the generalized fixed point theorem (Theorem 2.4), we can uniformly find a re-
cursive sequence {en} such that for all n,

Wen =
∗ W fn(e).

Let e be an index so that

ϕe(n) = en .

Then for all n,

W [n]

ν(e) = Wϕe(n) = Wen =
∗ W fn(e) = W [n]

f (e).

This means that

(∃e)
[
Wν(e) ≡Thick-∗ W f (e)

]
, (2.2)

which is what we intended to show. �

Comparing Corollary 2.15 with Theorems 2.1 and 2.6, we note that the thick operator
does not at all affect immunity.

Corollary 2.15 MINThick-∗ is 62-immune but not 63-immune.

Proof MINThick-∗ is 62-immune follows immediately from the fact that
MIN∗

⊇ MINThick-∗ and Theorem 2.1(ii). We show MINThick-∗ is not 63-immune
by modifying the proof of Theorem 2.6(ii). All that is needed is to change the
definition of Ak so that it only applies to the first row of each r.e. set:

Ak =

{
e : W [0]

e ⊆
∗ Pk

}
∩ INF.

The rest of the proof is the same. �
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3 5n-Immunity

Our discussion from Section 2 gives tight bounds with respect to6n-immunity. With
the exception of MINm, however, in which case Theorem 2.6 gives an optimal im-
munity result, we are still left with open questions regarding 5n-immunity. Unlike
the other results from Section 2, 51-immunity for MIN, 52-immunity for MIN∗,
and 5n+3-immunity for MINT(n) depend on the numbering for the partial-recursive
functions.

Theorem 3.1 There exist Gödel numberings ψ and ν such that

(i) MINψ contains an infinite 51-subset,
(ii) MINν is 51-immune.

Proof Let ϕ be a given Gödel numbering from which the numberings ψ and ν are
built. We denotes domϕe throughout this proof.

(i) Define a Gödel numbering ψ such that ψ2x = ϕx and domψy = {y} when y is
not a power of two. Furthermore, define a partial recursive function θ by

θ(x) =

{
n if n is the first element enumerated into Wx ,
↑ otherwise,

and a 51-set A by

A = {y : (∀x) [y 6= 2x
∧ [(2x < y ∧ θ(x)↓) H⇒ θ(x) 6= y]]}.

We now show A ⊆ MINψ . Let y ∈ A, z < y and assume by way of contradiction
that domψz = domψy . Now z = 2x for some x by definition of ψ , since y is not a
power of two. It follows that

Wx = domψ2x = domψz = domψy = {y},

and so θ(x) = y. On the other hand, 2x < y and θ(x)↓, which means that θ(x) 6= y
by definition of A. This is a contradiction.

It remains to verify that A is infinite. For every x > 2, there is a member y ∈ A
between 2x and 2x+1. This follows from easy cardinality reasons: there are 2x

− 1
domains, namely, {{2x

+ 1}, . . . , {2x+1
− 1}}, represented among the ψ-indices be-

tween 2x and 2x+1. The only ψ-indices between 2x and 2x+1 that are not members
of A are those which have one of the following domains: {{θ(0)}, . . . , {θ(x)}}. It
follows that there are at least (2x

− 1) − (x + 1) members of A between 2x and
2x+1. �

(ii) Define the numbering ν such that

ν0 is everywhere undefined

and for x ≥ 0, j ∈ {0, 1, . . . , 2x
− 1},

ν2x + j =


ϕx if there are at least 2x

− j − 1 indices n ≤ x
such that {2x , 2x

+ 1, . . . , 2x
+ j} ⊆ Wn ,

ν0 otherwise.
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Note that ν2x +(2x −1) = ϕx for all x , which makes ν a Gödel numbering.
Suppose there were an infinite, 51-set We such that We ⊆ MINν . Choose x large

so that x ≥ e and
2x

+ j ∈ We ⊆ MINν . (3.1)

Now
{2x , 2x

+ 1, . . . , 2x
+ j − 1} ⊆ MINν ⊆ We. (3.2)

By the definition of ν and (3.1),

There are 2x
− j − 1 indices n ∈ {0, 1, . . . , x} − {e}

such that {2x , 2x
+ 1, . . . , 2x

+ j} ⊆ Wn . (3.3)

By (3.2) and (3.3),

There are 2x
− j indices n ∈ {0, . . . , x}

such that {2x , 2x
+ 1, . . . , 2x

+ j − 1} ⊆ Wn .

Thus ν2x +( j−1) = ϕx , contradicting the fact that 2x
+ j ∈ MINν . This means that

MINν is 51-immune. �

This completes the proof. �

Theorem 3.2 There exist Gödel numberings ψ and ν such that
(i) MIN∗

ψ contains an infinite 52-subset,
(ii) MIN∗

ν is 52-immune.

Proof Let ϕ be a given Gödel numbering from which the numberings ψ and ν are
built. We denotes domϕe throughout this proof.

(i) Let E0, E1, E2, . . . be a recursive partition of the natural numbers into infinitely
many infinite sets, for example,

En = {〈x, n〉 : x ∈ ω}.

Define

A = {n : (∃k, e) [2e < n ∧ |We − En| < k ∧ |We ∩ En| > k]}, (3.4)

and let
P = {0, 20, 21, 22, . . . }.

Let B[e, k, n] denote the bracketed clause in (3.4). We verify that A ∩ P is an
infinite 52-set. Note that for a fixed 〈k, e〉, B[e, k, n] can be decided with a halting
set oracle. It follows that A ∈ 62; hence A ∩ P ∈ 52. Moreover, for each index e,
there exists at most one n satisfying B[e, k, n] (whether or not Wn is finite) because
the Ens are pairwise disjoint. It follows that A contains at most e + 1 indices below
2e+1. In particular, A has a member between 2e and 2e+1 for every e > 2, which
proves that A ∩ P is infinite.

Define a Gödel numbering ψ so as to satisfy
1. ψ2n = ϕn ,
2. Vn = En if n ∈ A ∩ P ,

where Vn = domψn . This can be done as follows. Let {As}s∈ω be a recursive
62-approximation of A satisfying

n ∈ A ⇐⇒ (∀∞s) [n ∈ As].
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For n ∈ P , enumerate 〈x, n〉 into Vn if and only if there is a stage s > x such that
n /∈ As . Then Vn = En if n ∈ A, and Vn is finite subset of En otherwise.

It remains to show that A ∩ P ⊆ MIN∗
ψ . Assume that n ∈ A ∩ P . By definition

of A, for all numbers 2x
∈ P satisfying 2x < n,

V2x = Wx 6=
∗ En = Vn .

For the remaining indices x 6∈ P with x < n, we have

Vx = Ex 6=
∗ En = Vn .

Therefore n ∈ MIN∗
ψ . �

Remark The proof above shows even a bit more. Since finite sets are not =
∗-

minimal, we see that there is a recursive set, namely, P , such that MIN∗
ψ ∩ P is an

infinite 52-set.

(ii) We use the fact that the 52-sets are those which are co-r.e. relative to K . Let
W0,W1,W2, . . . be an acceptable numbering of the r.e. sets with corresponding par-
tial recursive functions ϕ0, ϕ1, ϕ2, . . . , let U K

0 ,U
K
1 ,U

K
2 , . . . be an acceptable num-

bering relative to K, and let

B = {2x
+ j : 0 ≤ j < 2x

∧ there are at least 2x
− j − 1

indices n ≤ x such that {2x , 2x
+ 1, . . . , 2x

+ j} ⊆ U K
n }.

Since B ∈ 62, let {Bs} be a recursive approximation to B satisfying

z ∈ B ⇐⇒ (∃t) (∀s > t) [z ∈ Bs].

We define the numbering ν0, ν1, . . . with corresponding domains V0, V1, . . . so that
the following three conditions hold:

1. V0 = ω;
2. for j ∈ {0, 1, 2, . . . , 2x

− 1},

V2x + j = Wx ∪ {t : (∃s > t) [2x
+ j 6∈ Bs]};

3. ν2x +(2x −1) = ϕx .
This ordering satisfies

V2x + j =
∗

{
Wx if 2x

+ j ∈ B,
ω otherwise.

(3.5)

Condition (3) makes ν a Gödel numbering, so it remains only to show that MIN∗
ν

does not contain an infinite 52-subset. Assume to the contrary that U K
e ⊆ MIN∗

ν .
As in Theorem 3.1(ii), choose x large so that x ≥ e and

2x
+ j ∈ U K

e ⊆ MIN∗
ν . (3.6)

Note that j > 0 because 2x /∈ B. It now follows from the definition of ν that

{2x , 2x
+ 1, . . . , 2x

+ j − 1} ⊆ MIN∗
ν ⊆ U K

e . (3.7)

From (3.5) and (3.6) we have that 2x
+ j ∈ B, so by definition of B,

There are 2x
− j − 1 indices n ∈ {0, 1, . . . , x} − {e}

such that {2x , 2x
+ 1, . . . , 2x

+ j} ⊆ U K
n .

(3.8)
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Finally by (3.7) and (3.8),

There are 2x
− j indices n ∈ {0, . . . , x}

such that {2x , 2x
+ 1, . . . , 2x

+ j − 1} ⊆ U K
n .

This means that 2x
+ j − 1 ∈ B and, therefore, V2x + j−1 =

∗ Wx , contradicting that
2x

+ j ∈ MIN∗
ν . �

This completes the proof. �

An analogous result holds for MINT(n) using the following two results.

Theorem 3.3 (Sacks Jump Theorem [13], [16]) Let B be any set and let S be r.e. in
B ′ with B ′

≤T S. Then there exists a B-r.e. set A with A′
≡T S. Furthermore, an

index for A can be found uniformly from an index for S.

Lemma 3.4 (Schwarz [15]) Let B be a 6k+3 set, where k ≥ 0. Then there exists a
recursive function f satisfying

x ∈ B H⇒ f (x) ∈ LOWk,

x 6∈ B H⇒ f (x) ∈ HIGHk .

Proof It is known (see [16], Theorem IV.4.3) that for any A ∈ 63, there exists a
recursive function f satisfying

x ∈ B H⇒ f (x) ∈ COF,

x 6∈ B H⇒ f (x) ∈ HIGH0,

where HIGH0 is the index set of the Turing complete r.e. sets. This proves the lemma
for the case n = 0. Relativizing (see [16], Theorem IV.4.3), we obtain for each
B ∈ 6k+3 a recursive g satisfying

x ∈ B H⇒ W ∅(k)

g(x) is cofinite,

x 6∈ B H⇒ W ∅(k)

g(x) ≡T ∅(k+1).

k iterations of the Sacks Jump Theorem 3.3 now yield the result. �

Theorem 3.5 For every k ≥ 0, there exist Gödel numberings ψ and ν such that

(i) MINT(k)
ψ contains an infinite 5k+3-subset,

(ii) MINT(k)
ν is 5k+3-immune.

Proof Fix k ≥ 0. Let ϕ be any Gödel numbering and let We denote domϕe.

(i) Let E0, E1, . . . be a sequence of r.e. sets satisfying
1. (∀n)

[
(En)

′
≡T(k) ∅′

]
,

2. (∀i 6= j)
[
Ei 6≡T(k) E j

]
.

For example, we can take E0, E1, . . . to be the sets constructed in Corollary 2.9. Let

A = {n : (∀e) [2e < n H⇒ We 6≤T(k) En]}.

Since (En)
′
≡T(k) ∅′ for all k, we have A ∈ 5k+3. Let

P = {20, 21, 22, . . . }.
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Finally, define the Gödel numbering ψ to satisfy
1. ψ2n = ϕn ,
2. Vn = En if n ∈ P ,

where Vn denotes the domain of ψn .
Note that A ∩ P is infinite, as there are at most e nonmembers below 2e for

every e. As A ∩ P ∈ 5k+3, it remains only to show that A ∩ P ⊆ MINT(k)
ψ . Let

n ∈ A ∩ P . If 2x < n, then

V2x = Wx 6≤T(k) En = Vn .

If x < n and x /∈ P , then

Vx = Ex 6≡T(k) En = Vn .

Hence n ∈ MINT(k)
ψ . �

(ii) Let U0,U1, . . . be an acceptable numbering relative to ∅(k+2). Define

B = {2x
+ j : 0 ≤ j < 2x

∧ there are at least 2x
− j − 1

indices n ≤ x such that {2x , 2x
+ 1, . . . , 2x

+ j} ⊆ Un}.

Since B ∈ 6k+3, Lemma 3.4 gives off a corresponding recursive function f . Let g
be the recursive “jump inversion” from Lemma 3.3 and let

g(k) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
k

.

We define the Gödel numbering ν0, ν1, . . . with corresponding domains V0, V1, . . .
by

1. V0 = K;
2. for 0 ≤ j < 2x

− 1, V2x + j = g(k)
(
(Wx )

(k)
⊕

(
W f (2x + j)

)(k))
;

3. ν2x +(2x −1) = ϕx .
Now ν satisfies

V2x + j ≡T(k)

{
Wx if 2x

+ j ∈ B,
K otherwise.

(3.9)

Due to the similarity between (3.9) and (3.5), we can now proceed exactly as in
Theorem 3.2(ii). �

This completes the proof. �

Remark All of the Gödel numberings in this section can be converted into Kol-
mogorov numberings using a method such as [14], Theorem 2.17.

4 Properties of MINT(ω)

We investigate the minimal index set MINT(ω) . The main lemma of this section is
Corollary 4.1, which follows from Lerman’s revision (see [7]) of Theorem 2.8 to
account for the join operator. That the jump operator can be included when greatest
element is omitted from the language was also mentioned in the discussion following
(see [6], Theorem 7.10).
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Corollary 4.1 There exists a recursive sequence {xk} such that for all n and i ,(
Wxi

)(n)
6≤T ⊕

j 6=i

(
Wx j

)(n)
. (4.1)

In particular, (Wxi )
(n)

|T (Wx j )
(n) whenever i 6= j .

A direct proof of Corollary 4.1, without reference to [6] or [7], appears in [17],
Theorem 6.1.1.

Remark According to Lerman’s result, it is even possible to replace (4.1) with the
stronger relation (

Wxi

)(n)
6≤T

(
⊕
j 6=i

Wx j

)(n)
.

Definition 4.2 Let f be a total function and let A = {a0, a1, . . . } be an infinite set
where the an are indexed in ascending order: an < an+1.

(i) The function pA(n) = an is called the principal function of A.
(ii) A function f majorizes a set A if (∀n) [ f (n) > pA(n)].

Lemma 4.3 (Medvedev [10]) An infinite set A is hyperimmune if and only if A is
not majorized by a recursive function.

We obtain the following satisfying result.

Theorem 4.4 MINT(ω)

(i) is infinite,
(ii) contains no infinite arithmetic subsets, and

(iii) is not hyperimmune.

Proof

(i) Corollary 4.1 provides an infinite list of distinct ≡T(ω) classes. �

(ii) Follows from Corollary 2.7, because MINT(ω)
⊆ MINT(n) for every n. �

(iii) We verify that MINT(ω) gets majorized. Let {xk} be as in Corollary 4.1. Then
for all n and i 6= j ,

Wxi 6≡T(n) Wx j .

Without loss of generality, x0 < x1 < · · · since {xk} is recursive. Define the recur-
sive function

f (0) = x1,

f (n + 1) = x[2 f (n)],

and let p be the principal function of MINT(ω) . Note that f (0) > 0 = p(0) and
assume for the purposes of induction that f (n) > p(n). Note that

p(n) ≤ x p(n) < x f (n) < x f (n)+1 < · · · < x2 f (n) = f (n + 1),

so at least f (n) xks lie strictly between p(n) and f (n + 1), namely,

{x f (n), x f (n)+1, . . . , x2 f (n)−1}.
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Hence, at least f (n) distinct ≡T(ω)-equivalence classes are represented by indices
strictly between p(n) and f (n + 1). Since less than f (n) classes are represented in
indices up to p(n), there necessarily must be a new ≡T(ω) -class introduced strictly
between p(n) and f (n + 1). This forces p(n + 1) < f (n + 1). Hence f majorizes
MINT(ω) . The result now follows immediately from Lemma 4.3. �

This completes the proof. �

Consequently, the other minimal index sets in this paper share properties (i) and (iii).

Corollary 4.5 Every set containing MINT(ω) , including MIN∗, MINm, and MINT,
is infinite but not hyperimmune.

Remark ∅(ω) is another familiar set which is hyperarithmetic and majorized by
a recursive function. However, unlike MINT(ω) , ∅(ω) contains a copy of ∅′. This
means that ∅(ω) is not at all immune.

Lusin once constructed a set of reals which neither contains nor is disjoint from any
perfect set (see [8]; [9], Theorem 2.25). By modifying Lusin’s construction and
gently expanding MINT(ω) , we obtain an analogous construction for the arithmetic
hierarchy which contains a familiar subset.

Corollary 4.6 There exists a set X ⊇ MINT(ω) such that X
(i) contains no infinite arithmetic sets,

(ii) is not disjoint from any infinite arithmetic set, and
(iii) is majorized by a recursive function.

5 Size-Minimal Random Strings

We recall a theorem of Arslanov.

Theorem 5.1 (Arslanov Completeness Criterion [1]) For any r.e. set A,

A ≡T ∅′
⇐⇒ (∃ f ≤T A) (∀x) [W f (x) 6= Wx ].

In this section, s is a recursive function whose name stands for “size.” Size-minimal
indices and descriptions of smallest size have received attention in [14], Section 3.
Schaefer shows that there exists a recursive size-function s (independent of the Gödel
numbering ϕ) such that

MINϕ,s = {e : (∀ j) [s( j) < s(e) H⇒ ϕ j 6= ϕe]}

is hyperimmune, although this cannot happen as long as s(e) ≤ s(e + 1) for all e.
When MINϕ,s is hyperimmune we have MINϕ,s 6≥wtt ∅′ (see [14]) and when s is the
identity function we have MINϕ,s ≡T ∅′′ (see [11]); however, the Turing degree of
MINϕ,s remains open in general.

Our investigation of size-minimal indices leads us to a generalization of the Kol-
mogorov random strings. Recall that the Kolmogorov random strings are defined
as

Rϕ = {x : (∀ j) [l( j) < l(x) H⇒ ϕ j (0) 6= x]},

where l is the length function for integers encoded in binary. l could be taken to be
any recursive function s, however, as in

Rϕ,s = {x : (∀ j) [s( j) < s(x) H⇒ ϕ j (0) 6= x]}.
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Let
N = {x : (∃ j) [s( j) < s(x) ∧ ϕ j (0) = x]}

be the complement of Rϕ,s . Clearly N is an r.e. set.

Theorem 5.2 The Turing degree of N depends on which of the following two cases
applies:

(a) for all c there is an x /∈ N with s(x) > c;
(b) there is a constant c such that for all x /∈ N it holds that s(x) < c.

In the first case, N ≡T K . In the second case, N can have any many-to-one r.e.
degree (other than ∅ or ω).

Proof Assume (a). Let t be a recursive function such that ϕt (e)(0) is the first element
enumerated into We whenever it exists; so ϕt (e)(0) is defined if and only if We 6= ∅.
Now define a function f N such that for every e, W f N (e) = {x}, where x is the first
number found such that x /∈ N and s(x) > s[t (e)]. This means ϕt (e)(0) /∈ W f N (e).
It follows that We 6= W f N (e) for all e; hence, the Turing degree of N is fixed-point
free. By Arslanov’s Completeness Criterion 5.1, N ≡T K.

Assume (b). In this case, not much can be said about the Turing degree of N .
Indeed, the m-degree of N can be chosen to be equivalent to the m-degree of any r.e.
B as follows, with B, B both not empty.

Given ϕ and B, one constructs s via a sequence a0, a1, a2, . . . in stages. For this,
let b0, b1, b2, . . . be a recursive one-one enumeration of the set B. Now a0, a1, a2, . . .
is chosen using the Padding Lemma such that the following hold:

1. ax ≥ ay + 2 for all y < x ;

2. ax /∈ {2b0, 2b0 + 1} ∪ {2b1, 2b1 + 1} ∪ · · · ∪ {2bx , 2bx + 1};

3. ϕax (0) =

{
2bx if s(2bx ) = 1,
2bx + 1 if s(2bx ) = 0;

4. if x ∈ {a0, a1, . . . , ax }, then s(x) = 0 else s(x) = 1.
In the last condition, s designates a0, a1, . . . to be the “small” indices; all other in-
dices are “large”. Note that the first and last condition together imply that s(x) and
s(x + 1) are never both 0. Thus, according to the third condition, B ≤m N by
x ∈ B ⇔ 2x + 1 − s(2x) ∈ N . Furthermore,

(N (2x), N (2x + 1)) =


(0, 0) if s(2x) = 0 and x /∈ B;
(0, 1) if s(2x) = 0 and x ∈ B;
(0, 0) if s(2x) = 1 and x /∈ B;
(1, 0) if s(2x) = 1 and x ∈ B.

This can be used to show that N ≤m B. So N and B are many-one equivalent. �
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