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The Nonabsoluteness of Model Existence in
Uncountable Cardinals for L!1;!

Sy-David Friedman, Tapani Hyttinen, and Martin Koerwien

Abstract For sentences ' of L!1;! , we investigate the question of absolute-
ness of ' having models in uncountable cardinalities. We first observe that hav-
ing a model in @1 is an absolute property, but having a model in @2 is not as
it may depend on the validity of the continuum hypothesis. We then consider
the generalized continuum hypothesis (GCH) context and provide sentences for
any ˛ 2 !1 n ¹0; 1; !º for which the existence of a model in @˛ is nonabsolute
(relative to large cardinal hypotheses). Finally, we present a complete sentence
for which model existence in @3 is nonabsolute.

Throughout, we assume that ' is an L!1;!-sentence which has infinite models.
By the downward Löwenheim–Skolem theorem, ' must have a countable model, so
the property “having a countable model” is an absolute property of such sentences
in the sense that its validity does not depend on the properties of the set-theoretic
universe we work in. More precisely, if V � W are transitive models of Zermelo–
Fraenkel set theory with choice (ZFC) with the same ordinals and ' 2 V , V ˆ “'
is an L!1;!-sentence” (with a natural set-theoretic coding of such sentences), then
V ˆ “' has a countable model” if and only if W ˆ “' has a countable model.”
The purpose of this paper is to investigate the question of how far we can replace
“countable” by higher cardinalities.

A main tool for absoluteness considerations is Shoenfield’s absoluteness theorem
(see Jech [9, Theorem 25.20]). It states that any property expressed by either a †1

2- or
a …1

2-formula is absolute between transitive models of ZFC with the same ordinals.
As John Baldwin observed in [1], it follows from results of Grossberg and Shelah
[7] that the property of ' having arbitrarily large models is absolute. (It can be
expressed in the form of the existence of an infinite indiscernible sequence, which
by Shoenfield is absolute.) Since the Hanf number of the logic L!1;! equals Æ!1 , it
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follows that the existence of models in cardinalities above that number is absolute.
Therefore the context we are interested in is where ' (absolutely) does not have a
model of size Æ!1 .

1 The Case @1

For complete sentences ' (meaning that any model of ' satisfies the same L!1;!-
sentences), having a model in @1 is an absolute notion. We have the following char-
acterization (which appears also in [1] as well as Gao [5]) of ' having a model of
size @1 (which is a †1

1-property and therefore absolute by Shoenfield’s absoluteness
theorem):

(�) There exist two countable models M;N of ' such that M is a proper ele-
mentary (in the fragment of ') substructure of N .

To see that this is a characterization, note first that if ' has an uncountable model,
(�) holds by Löwenheim–Skolem. For the converse, we use the completeness of ',
which implies that any two countable models of ' are isomorphic (by Scott’s isomor-
phism theorem, since ' is complete and thus characterizes its countable models up to
isomorphism). Then, as N Š M , we can find a proper countable L!1;!-elementary
extension of N as well and continue this procedure !1 many times (taking unions
at limit stages). The union of this elementary chain will then be a model of ' of
size @1.

If the sentence is not complete, criterion (�) does not obviously imply the exis-
tence of an uncountable model. By a theorem of Gregory (see [6]), it can be seen
that it actually does. We will, however, provide a different criterion (see (��) below)
for which we have a relatively basic proof (essentially only using the omitting types
theorem for L!1;!) that it is equivalent to ' having an uncountable model. Thus
we have that for any (even incomplete) L!1;!-sentence, model existence in @1 is
absolute.1

In the following, we consider the sentence ' as a set-theoretic object using stan-
dard coding of formulas of L!1;! . ' can thus be regarded as a hereditarily countable
set.

The following property, which (again by Shoenfield) is absolute, characterizes '
as having a model of size @1:

(��) There is a countable transitive model U of ZFC� (ZFC without the power-
set axiom) containing ' with U ˆ “!1 exists, ' is hereditarily countable, and
there is a model of ' with universe !1.”

First, suppose that ' has a modelM of size @1, say, one with universe !1. As both
' andM are elements ofH!2 (the collection of sets hereditarily of size at most @1),
we have H!2 ˆ ZFC� C “there is a model of ' with universe !1.” Now it suffices
to take a countable (first-order) elementary substructure U � H!2 containing ', and
U will have the properties of (��).

Conversely, assuming that (��) holds for some countable U , we can take an ele-
mentary extension U 0 of U where all (in the sense of U ) hereditarily countable sets
are unchanged and all (in U ) uncountable ones become sets of size @1. This can be
achieved using Keisler [11, Theorem 36, Corollary A], noting that it holds for models
of ZFC� (instead of full ZFC as the corollary originally assumes), as the powerset
axiom is not used for it. In particular, this is true for the !1 of U 0 on which we
know a modelM of ' lives. (Note that U 0 ˆ .M ˆ '/ implies thatM ˆ ' in the
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real universe; to see this, use that U 0 contains the fragment of ' and satisfaction for
formulas in this fragment is absolute between U 0 and the real universe.) So we get a
model of ' of size @1.

There is another absolute criterion characterizing ' having an uncountable model,
but it requires going beyond the logicL!1;! . Let us consider the extensionL!1;!.Q/
of L!1;! obtained by adding an extra quantifier Q with the semantics “there exist
uncountably many.” As is shown by Barwise [2], L!1;!.Q/ admits a completeness
theorem which actually has a very natural (absolute) deduction calculus. Now the
statement

(� � �) There is a proof of :Qx.x D x/ starting from '

characterizes ' having only countable models. Thus the negation of (� � �) is an
(absolute) property characterizing ' having an uncountable model. Note that this
argument shows that model existence in @1 is absolute even forL!1;!.Q/-sentences.

2 Going Beyond @1

It is not generally true that the existence of a model of size @2 is an absolute property.
A very simple way to see this is to take any sentence ' that has models exactly up

to size continuum. We easily find even complete sentences with this property. Then
clearly, ' has a model of size @2 if and only if the continuum hypothesis fails.

More generally, such a sentence has a model of size @˛ if and only if 2@0 � @˛ .
So for any ˛ > 1, the existence of a model of size @˛ is nonabsolute.

There are many examples of complete L!1;!-sentences in the literature having
models exactly up to size continuum, but they are mostly more complicated than
necessary for our purposes, because their authors have been interested in additional
properties. Therefore we provide here a very simple such example which uses the
idea of coding full binary trees. This same idea has been used in Malitz’s examples
showing that the Hanf number for complete L!1;!-sentences equals Æ!1 (see Malitz
[12]).

Let the language L consist of countably many binary relation symbols En
(n < !), and let � 2 L!1;! be the conjunction of
� all En are equivalence relations such that E0 has two classes and each En-
class is the union of exactly two EnC1-classes;
� 8x; y

��V
n<! En.x; y/

�
! x D y

�
:

It is an easy back-and-forth argument to show that any two countable models of �
are isomorphic, so � is complete. Every model represents a set of branches through a
full binary tree, so there cannot be models greater than the continuum. On the other
hand, the Cantor space 2! together with the relations “En.x; y/ if and only if x and
y coincide on the nC 1 first components” is a model of � of size continuum.

3 Going Beyond @1 under the Assumption of GCH

As we have seen, playing with the cardinal exponential function provides trivial ex-
amples for the nonabsoluteness of the existence of models of cardinality greater than
@1. A next natural question is if this is the only nonabsoluteness phenomenon there
is. That is, under the additional assumption of GCH, does the existence of models
in cardinalities greater than @1 become an absolute notion? We will provide differ-
ent incomplete sentences and later on even a complete one that show the answer is
negative.
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3.1 A reminder about two-cardinal properties As we will see later, there is an in-
teresting connection between classical first-order two-cardinal properties and model
existence for L!1;!-sentences. We recall the following definition.

Definition 1 Let T be a first-order theory in a signature containing a unary pred-
icate P . Given two infinite cardinals � � �, we say that T admits .�; �/ if there is a
model of T of size � such that PM D ¹a 2M jM ˆ P.a/º has cardinality �.

As is already exposed in Chang and Keisler’s classical textbook (see [3, Chap-
ter 7.2]), admitting certain pairs .�; �/ is a nonabsolute property for certain theories.
There, examples are given where admitting .�C; �/ is equivalent to the existence of a
special �C-Aronszajn tree or where admitting .�CC; �/ is equivalent to the existence
of a �C-Kurepa tree (or, equivalently, a �C-Kurepa family).

3.2 Some set theory We now recall the two classical concepts of Kurepa families
and special Aronszajn trees. The first-order examples in [3] showing nonabsoluteness
of the existence of certain two-cardinal models and our later exposed examples of
L!1;!-sentences showing nonabsoluteness of model existence in certain cardinalities
code those objects in their models. The coding is such that the existence of a certain
two-cardinal model or the existence of a model in a certain cardinality is equivalent
to the existence of such an object (which is independent from ZFC C GCH as we
will see in the following).

Definition 2 Let � be any infinite cardinal. A �C-Kurepa family is a family F of
subsets of some set A with jAj D �C such that jF j > �C and for any subset B � A
with jBj D �, j¹X \ B j X 2 F ºj � �.

Let KH�C be the statement that there exists a �C-Kurepa family.

It is folklore that the existence of Kurepa families in different @˛ (˛ < !1) is inde-
pendent from one another. We will now describe the formal arguments for the cases
we need. (Essentially the same arguments would work more generally for “switching
on and off” independently the existence of Kurepa families in different @˛ .) In the
constructible universe, KH�C is true for all cardinals �. (This follows from the fact
that }C holds at successor cardinals in L; see Jensen [10].) On the other hand, we
have the following.

Theorem 3 The consistency of “ZFCC there are uncountably many inaccessible
cardinals” implies the consistency of ZFCC GCHC8˛ < !1:KH@˛C1

.

Proof This is a slight generalization of Silver’s argument that if � is inaccessible,
then after forcing with Coll.!1; < �/, the forcing to convert � into @2 with countable
conditions, KH@1 fails (see [9, Theorem 27.9]).

Assume GCH, let �0 be @1, and define .�ˇ /0<ˇ<!1 inductively: set �ˇC1 the
least inaccessible cardinal greater than �ˇ , and for ˇ < !1 a limit ordinal set
�ˇ D sup¹�
 j 
 < ˇºC. Let P be the fully supported product of the forcings
Coll.�ˇ ; < �ˇC1/ for ˇ < !1. Then in the extension, �ˇ equals @ˇC1, while the
GCH still holds. We claim that KH�ˇ fails for each ˇ < !1.

Indeed, the forcing P can be factored as P.< ˇ/�P.� ˇ/, where P.< ˇ/ refers
only to the collapses Coll.�
 ; < �
C1/ for 
 < ˇ and P.� ˇ/ refers only to the col-
lapses Coll.�
 ; < �
C1/ for 
 � ˇ. Similarly, V ŒG� factors as V ŒG.< ˇ/�ŒG.� ˇ/�.
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In the model V ŒG.< ˇ/�, �ˇC1 is still inaccessible, so we can apply Silver’s argu-
ment to conclude that KH�ˇ fails in V ŒG.< ˇ/�ŒG.� ˇ/� D V ŒG�, using the closure
of the forcing P.� ˇ/ under sequences of length less than �ˇ .

Definition 4 A tree is a partially ordered set .T;</ such that for any element
t 2 T , the set ¹x j x < tº is well ordered by <. The rank rk.t/ of t is the order type
of ¹x j x < tº. For any ordinal ˛, let T˛ D ¹t 2 T j rk.t/ D ˛º.

For any cardinal �, a �C-tree is a tree T such that T�C D ; and for all ˛ < �C,
0 < jT˛j < �

C. T is normal if
� jT0j D 1;
� every element has at least two immediate successors;
� for any t 2 T and ˛ with rk.t/ < ˛ < �C, there is some t 0 > t with
rk.t 0/ D ˛.

A normal �C-tree T is a special �C-Aronszajn tree if there is some set A of size
� and a function f W T ! A such that for all t; t 0 2 T , t < t 0 implies f .t/ ¤ f .t 0/.

It is a consequence of GCH that special �-Aronszajn trees exist for all successor
cardinals � that are not successors of singular cardinals (see Specker [13]). More-
over, in the constructible universe, special Aronszajn trees exist even in successors
of singular cardinals. (This is a consequence of�� ; see [10].)

On the other hand, the consistency of “ZFC C9� (� supercompact)” implies the
consistency of “ZFCCGCHC there are no special @˛-Aronszajn trees for all count-
able limit successors ˛.”

We start with a model of GCH with a supercompact cardinal � and force with
Coll.!1; < �/. As is argued by Cummings, Foreman, and Magidor [4], this forcing
preserves a stationary reflection property sufficient to ensure that weak square fails
at @� for � a limit ordinal of countable cofinality. By a result of Jensen in [10], weak
square at a cardinal � is equivalent to the existence of a special Aronszajn tree on �C.

3.3 Connecting first-order two-cardinal properties with L!1;!-model existence We
will describe how a first-order theory T can be turned into an L!1;!-sentence � in
such a way that T admitting certain .�; �/ is equivalent to the existence of a model
of � of size �.

We start with the definition of an L!1;!-sentence �˛0 characterizing @˛ (for
˛ < !1), which means that it (absolutely) has a model of size @˛ , but no bigger
model. We wish to point out that the idea we use here of characterizing cardinals
using �-like orderings for various � is not new. Also, there exist other ways of
characterizing cardinals in the literature, most notably Hjorth’s examples presented
in [8] that are even complete sentences.

Let L˛0 D ¹Qˇ ; an; <; F ºˇ�˛In<! , where the Qˇ are unary predicates, the an
are constant symbols, < is a binary, and F is a ternary relation symbol.

Let �˛0 2 .L˛0/!1;! be the conjunction of the following sentences:
� The universe is the union of allQˇ .
� Q0 D ¹an j n < !º, where all an designate distinct elements.
� For any ˇ < ˛,QˇC1 is disjoint from anyQ
 for all 
 � ˇ.
� For any limit ordinal ˇ � ˛,Qˇ D

S

<ˇ Q
 .

� < linearly orders QˇC1 for every ˇ < ˛ and x < y implies that for some
ˇ < ˛, both x and y belong toQˇC1.
� F.a; b; c/ implies that for some ˇ < ˛, a 2 QˇC1, b < a, and c 2 Qˇ .
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� For every ˇ < ˛ and every a 2 QˇC1, F.a; �; �/ defines a total injective
function from ¹x j x < aº intoQˇ .

Note that for ˇ a limit ordinal or zero,Qˇ is not ordered by < and if ˛ D 0, both
< and F are empty relations.

Clearly, if M ˆ �˛0 , then in M the ordering of QˇC1 must be jQˇ j-like (i.e.,
any proper initial segment has cardinality at most jQˇ j). This implies that jQˇC1j is
at most jQˇ jC, and since Q0 is countable by definition, we see inductively that the
cardinality of each Qˇ is bounded by @ˇ . Also, there clearly exist models such that
jQˇ j D @ˇ for all ˇ � ˛.

Now suppose we have a first-order theory T in a language containing a unary
predicate P . For ˇ < ˛ < !1, we define the L!1;!-sentence �

˛;ˇ
T as the conjunction

of
� T ,
� �˛0 , and
� P D Qˇ .

Proposition 5 Let ˇ < !1 and 0 < n < !. T admits .@ˇCn;@ˇ / if and only if
�
ˇCn;ˇ
T has a model of cardinality @ˇCn.

Proof If M ˆ �
ˇCn;ˇ
T has cardinality @ˇCn, we must have jQˇ j D @ˇ in that

model. (Here we use that n is finite!) Now the reduct ofM to the language of T is a
model of size @ˇCn where P has size @ˇ .

Conversely, given a model of T of size @ˇCn where P has size @ˇ , it is easy to
expand this model to be a model of �ˇCn;ˇT .

Note that this Proposition becomes false if n is allowed to be infinite.

3.4 Examples of incomplete sentences: Successor cardinals We quote Chang and
Keisler’s results [3, Theorems 7.2.11, 7.2.13 ] (adapting the notation slightly).
� There is a sentence '1 in a finite languageL such that for all infinite cardinals
�, '1 admits .�C; �/ if and only if there exists a special �C-Aronszajn tree.
� There is a sentence '2 in a suitable language such that for all infinite cardinals
�, '2 admits .�CC; �/ if and only if a �C-Kurepa family exists.

From the preceding section we get thus infinitary sentences �˛C1;˛'1 and �˛C2;˛'2

such that
� �

˛C1;˛
'1 has a model of cardinality @˛C1 if and only if a special @˛C1-

Aronszajn tree exists;
� �

˛C2;˛
'2 has a model of cardinality @˛C2 if and only if an @˛C1-Kurepa family

exists.
Now recalling the set-theoretic facts from Section 3.2, we get the following results.

Theorem 6 Let ˛ < !1 be a limit ordinal. Assuming ZFC, GCH, and the exis-
tence of a supercompact cardinal, model existence in @˛C1 is nonabsolute forL!1;!-
sentences.

Theorem 7 Let ˛ < !1. Assuming ZFC, GCH, and the existence of uncountably
many inaccessible cardinals, model existence in @˛C2 is nonabsolute for L!1;!-
sentences.

At this point, we have covered all cases of successor cardinals @˛ for 1 < ˛ < @!1 .
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3.5 Examples of incomplete sentences: Limit cardinals We would also like to find
examples of (incomplete) sentences where model existence in @˛ is nonabsolute
modulo ZFC C GCH for countable limit ordinals ˛. With a slight variation of our
examples involving special Aronszajn trees, we can deal with limits that are greater
than !.

Since the construction is rather straightforward, we will only give an informal
description of it.

The sentence '1 used to prove Theorem 6, which is given explicitly in [3], involves
essentially a binary relation T coding a tree and a unary predicate U and has the
property that wheneverM ˆ '1 and jM j D jUM jC, then T has a subtree which is
a special jM j-Aronszajn tree.

Now, fixing some ˛ < !1 greater than !, we start with the sentence �˛0 (see
Section 3.3), and for all ˇ < ˛, we add the sentence '1 relativized to

S

�ˇC1Q


(i.e., the set
S

�ˇC1Q
 with the induced structure in the language of '1 is a model

of '1) with Qˇ taking the role of U . That is, we are coding special Aronszajn trees
at every levelQˇC1 where jQˇC1j D jQˇ jC.

The result is a sentence �˛1 for which (assuming consistency of supercompact
cardinals) the existence of a model of size @˛ is nonabsolute modulo ZFC C GCH.
The reason is that if no special @!C1-Aronszajn tree exists, the maximum cardinality
of a model of �˛1 is @! since whenever for some 
 < ˛, jQ
C1j D jQ
 jC D @!C1,
a special @!C1-Aronszajn tree will be coded in the model. Note that, in any case, �˛1
will have models of size @! since GCH implies the existence of special ˛n-Aronszajn
trees for all finite n > 0. Therefore these examples do not show nonabsoluteness of
model existence in @! .

4 A Complete Sentence

Both the first-order examples from [3] and our L!1;!-examples from the preceding
section are highly incomplete (i.e., many first-order or L!1;!-statements are unde-
cided), and it seems a very nontrivial task to turn them into complete theories while
conserving the properties that matter to us.

We will now introduce a method of completing incomplete L!1;!-sentences that
has the benefits of providing fairly explicit axiomatizations as well as some means
of constructing models of the resulting complete sentence with certain properties.
This method will then be applied to an incomplete sentence coding @2-Kurepa trees
(similar to the examples from the preceding section).

Definition 8 Let � 2 L!1;! .

� A � -chain is a family .M˛/˛<� of models of � such that whenever
˛ < ˇ < �, we haveM˛ �Mˇ .
� � is preserved under chains if, for any � -chain .M˛/˛<�,M D

S
˛<�M˛ is

a model of � .

As in the classical first-order case, it is still true that any …2-sentence is preserved
under chains, that is, any sentence of the form 8 Nx9 Ny . Nx; Ny/, where  is quantifier-
free (but possibly infinitary). We have to be a little careful with the definition of…2

as, for example, infinite disjunctions of universal formulas might not be preserved
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under chains. A simple example is given by the sentence

� D
_

S�! finite

8x
�
U.x/$

_
i2S

x D ai

�
in the language of countably many constants ai and a unary predicate U . This sen-
tence expresses that U is finite.

Definition 9 Let � 2 L!1;! .
� Set Sqf.�/ D ¹tpqf. Na/ j 9M ˆ �. Na 2 M/º (where tpqf. Na/ is the quantifier-

free type of Na).
� � is qf-small if Sqf.�/ is countable.

Note that by the downward Löwenheim–Skolem theorem, we can define Sqf.�/ by
referring only to countable models of � .

Definition 10 Suppose � is qf-small.
� For any pair p. Nx/; q. Nx Ny/ 2 Sqf.�/, define the sentence �p;q D 8Nx.p. Nx/!
9 Nyq. Nx Ny//.
� Set �� D � ^

V
p;q2Sqf .�/Ip�q

�p;q .

If � is preserved under chains, then �� is as well. However, there are con-
sistent � for which �� is inconsistent. An example would be the sentence
� D 8a; b; c; d.R.a; b/ ^ R.c; d/ ! a D c ^ b D d/, which expresses that
exactly two points are R-related.

Proposition 11 For any � , if �� is consistent, it is complete.

Proof We show @0-categoricity. Let M;N ˆ �� be countable, and suppose that
f is a finite partial isomorphism mapping a tuple Na 2 M to a tuple Nb 2 N . Now
let c 2 M be any point, and set p D tpqf. Na/ .D tpqf. Nb// and q D tpqf. Nac/. Since
N ˆ �p;q , we find a d 2 N with Nbd ˆ q, so we can extend f by mapping c to d .
Now after enumerating bothM and N , we can construct a total isomorphism as the
union of finite partial isomorphisms by adding every point ofM to the domain and
every point of N to the range eventually.

Definition 12 A sentence � 2 L!1;! has the extension property for countable
models (EPC) if, for any countableM ˆ � and p. Nx/ � q. Nx Ny/ in Sqf.�/, whenever
some Na 2 M realizes p, there is a countable N ˆ � withM � N containing some
Nb with Na Nb ˆ q.

Theorem 13 Suppose that � 2 L!1;! is preserved under chains, is qf-small, and
has the EPC. Then

(1) �� is consistent;
(2) any countable model of � has an extension that is a model of ��;
(3) �� is the only completion of � with property (2) that is still preserved under

chains.

Proof LetM ˆ � be countable. Enumerate all possible pairs . Na; q/, where Na 2M
and tpqf. Na/ � q 2 Sqf.�/ as .. Nan; qn//n<! . Construct a�-chain .Mn/n<! of models
of � such that, in Mn, we add a tuple Nbn with the property that Nan Nbn ˆ qn. Let
M 1 D

S
n<!Mn. Do the same procedure for M 1 in place of M to get some M 2.

Repeat this ! many more times, and setN D
S
k<!M

k . Since � is preserved under
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chains we still have N ˆ � , and we just added all necessary witnesses in the chains
to satisfy all �p;q as well, so we have constructed a model of �� that contains the
modelM we started with.

The uniqueness of �� follows from the fact that if some � has the same prop-
erties, including being preserved under chains, we can form a �-chain .Mn/n<!
with M2n ˆ �� and M2nC1 ˆ � for all n. Then by preservation under chains, the
union must be a model of both �� and � , and we conclude by completeness of both
sentences.

Now we turn to the definition of an incomplete sentence coding @2-Kurepa families,
which we will then complete by the described technique.

Our language will be L D ¹S;L;U; V;En; <;R; F;G;H ºn<! , where S and L
are unary predicates, all En as well as U; V;<;R are binary relations, and F , G, and
H are ternary relations.

Before we give the formal definition of our sentence, we describe informally what
a model of it looks like.
� .L;</ is a linear order.
� The elements of S code subsets of L via the relation R such that any two of

them coincide on an initial segment of L with a maximum element and are
disjoint above that initial segment.
� F defines a binary function mapping two elements of S to the point of L
where they become disjoint.
� For every a 2 L,U and V define setsUaD ¹x jU.a; x/º, VaD ¹x jV.a; x/º,

and all those sets are pairwise disjoint.
� The En are such that every set Ua and Va with the restrictions of the En
satisfies the theory of binary splitting equivalence relations given in Section 2.
In particular, all these sets have size at most 2@0 D @1.
� G codes bijections between every initial segment ¹x j x < aº and the set Ua.
This makes .L;</ @2-like.
� H codes intersections of sets coded by elements of S with initial segments
¹x j x < aº as elements of Va. Consequently, on each initial segment, there
are at most @1 many possibilities for the sets coded by elements of S .

Let � be the conjunction of the following statements.
(A1) Both U.x; y/ or V.x; y/ imply x 2 L. Writing Ux D ¹y j U.x; y/º and

Vx D ¹y j V.x; y/º, the sets L, S , Ux , Vx (for all x 2 L) are pairwise
disjoint and their union is everything.

(A2) All En define equivalence relations on every set Ux and Vx , where on every
Ux or Vx , E0 has exactly two classes and every En-class is the union of
exactly two EnC1-classes. In addition,

V
n<! xEny implies x D y.

(A3) < is a linear ordering of L. For x 2 L we write L<x D ¹y 2 L j y < xº and
L�x D L<x [ ¹xº.

(A4) F.s; t; x/ implies s; t 2 S and x 2 L. F defines a symmetric function from
S � S to L.

(A5) R � S�L. For s 2 S we writeRs D ¹x 2 L j R.s; x/º. For any two distinct
s; t 2 S , Rs and Rt are identical on L�F.s;t/ and disjoint on L n L�F.s;t/.

(A6) G.x; y; z/ implies x 2 L, y < x, and z 2 Ux . For every x 2 L, G.x; �; �/
defines a bijective function Gx W L<x ! Ux by Gx.y/ D z if and only if
G.x; y; z/.
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(A7) H.x; y; z/ implies x 2 L, y 2 S , and z 2 Vx . For every x 2 L, H.x; �; �/
defines a surjective function Hx W S ! Vx by Hx.y/ D z if and only
if H.x; y; z/. Hx has the property that Hx.s/ D Hx.t/ if and only if
F.s; t/ � x.

It is easy to construct a model of � , but � is not a complete sentence. We ver-
ify that it satisfies the hypotheses of Theorem 13. The axioms are all at most …2-
statements, so we have preservation under chains. Also, since the equivalence rela-
tions En are refining and L n ¹Enºn<! is finite, Sqf.�/ is countable.

Toward showing EPC, letM ˆ � be countable, let Na D .a1; : : : ; an/ 2 M , and
let p. Nx/; q. Nx; y/ 2 Sqf.�/ with Na ˆ p and p � q. (Note that it suffices to consider
a single variable y instead of an arbitrary tuple.) We want to find some countable
N �M and b 2 N such that Nab ˆ q. There are several cases.

� Suppose S.y/ 2 q. Nx; y/. We will add a new point y to S and define a set
Ry respecting the requirements of q and the axioms of � . The requirements
can be R.y; xi /, :R.y; xi / as well as F.y; xj / D xi , F.y; xj / ¤ xi and
Hxi .y/ D xj , Hxi .y/ ¤ xj , Hxi .y/Enxj , :Hxi .y/Enxj for components
xi ; xj in Nx and n < !. (G does not matter here since it does not involve
elements from S ; also note that conditions like F.y; xj / > xi translate to
F.y; xj / D xk ^ xk > xi since F is not a function but a relation symbol.)

Consider the set of all elements z 2 L occurring in Nx such that one of the
following holds:
(i) q ` F.y; xi / D z for some xi in Nx, or
(ii) q ` R.y; z/ and there is some s 2 S withM ˆ R.s; z/, or
(iii) q ` Hz.y/ D xi andM ˆ Hz.s/ D xi for some xi in Nx and s 2 S .

Let A D ¹a 2 L j q ` R.y; a/º. We now have two cases.
– There is no such z. Then, we choose any c 2 L that is smaller than
any element of Nx, as well as an arbitrary element s 2 S . We set
Ry D A [ .Rs \ L�c/ and naturally F.y; s/ D c. (Note that Ry and
every Rt (t 2 S ) are disjoint above c since (ii) fails.)

– There is such an element. Let z be the maximal such. We set
Ry D A [ .Rxi \ L�z/ if z satisfies (i) and Ry D A [ .Rs \ L�z/ in
cases (ii) and (iii). (Choose any such s arbitrarily.) If we are in case (ii)
or (iii) and q implies F.y; s/ ¤ z, we also add a new element w to L
which is greater than z and smaller than any element of Nx that is larger
than z, and we declare R.s;w/, R.y;w/, F.s; y/ D w.

In either of the two cases, we will have to turn M with the additional y
(and possibly w) into a model of � . We have to set the F - and H -relations
which can be done straightforwardly (respecting possible requirements from
q forH ; we may have to add new points to sets Va for a > z). In cases where
we added the point w, we also have to add new sets Uw ; Vw as well as a new
point to each Ua for a > w, and extend G accordingly.
� Now suppose L.y/ 2 q. Nx; y/. Add a new element z to L for y in an arbitrary

cut that complies with the conditions xi < y or xi > y contained in q. Add
R.xi ; z/whenever demanded by q, and for any other s 2 S addR.s; z/ if and
only if R.t; z/ and F.s; t/ > z for some element t 2 S . Finally, we have to
add new sets Uz and Vz as well as a new point a to each Uw with w > z and
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declare G.w; z; a/. We may have to add a new point to sets Vw for w > z

too.
� Should Uxi .y/ or Vxi .y/ belong to q, it is easy to see that there must already
be some b 2M with Nab ˆ q.

Now we apply Theorem 13 to � . Immediately we see that �� implies the follow-
ing.
� The ordering on L is dense without endpoints.
� Every set Rs is dense (and thus unbounded) and codense in L.
� s ¤ t implies Rs ¤ Rt (“R is extensional”).

But we know more about the properties of ��. The countable model of �� is
extendable, so there is an uncountable model. In addition, we have seen in the veri-
fication of EPC that we have a lot of freedom in adding new elements to countable
models of � , and thus to models of ��, so that we can conclude the existence of
models of �� with
� .L;</ isomorphic to a proper initial segment of �1 � !2, where �1 is the
saturated dense linear order without endpoints of size @1 (we assume GCH);
� all .Ux ; En/n<! and .Vx ; En/n<! isomorphic to .2! ; Fn/, where we define
�Fn� if and only if �.k/ D �.k/ for all k � n.

Now we consider the class P of all such models with the following additional
properties.
� .L;</ is an initial segment of .�1 � !2; </.
� S is a subset of !3 of size @1 (so all models in P will have size @1).
� The setsUx and Vx (x 2 L) equal 2!�¹.x; 0/º and 2!�¹.x; 1/º, respectively,
and the En defined on them are the natural ones (compare with Fn above).

We order the elements of P by the superstructure relation�. Since �� is preserved
under unions, the poset .P;�/ is !2-closed (meaning every sequence of length less
than !2 of elements of P has a lower �-bound; clearly the union of the chain of
models will do).

Now we show that .P;�/ has the !3-cc. Take anyX � P of size @3. We shall find
two elements ofX which have a common extension. By the pigeonhole principle and
the delta-system lemma, we may assume that
� the collection of the underlying sets (of the models inX ) form a delta system;
� the L-part of all models in X is identical;
� the L-structure of all models in X is identical on the root of the delta system;
and
� the collection of sets Rs (s 2 S ) is identical for all elements of X .

Two models M;N 2 X may only differ on their S -part. We would like to make
the unionM [N into a model of � . The problem is that if the models are not already
identical, there will be x 2 SM , y 2 SN outside the root such that Rx D Ry , so
F.x; y/ cannot be defined in such a way that axiom (A4) holds. The solution is to
end-extend L in order to make Rx and Ry disjoint on a final segment.

Suppose that in �1 � !2, L is an initial segment contained in ¹x j x < aº.
Enumerate the elements of SM n SN as .s˛/˛<� (for some � � @1). Now induc-
tively do the following: given ˛ < !1 there is a unique t 2 SN n SM such that
Rs˛ D Rt . Set R.s˛; a/, R.t; a/, F.s˛; t / D a, and R.s˛; a˛/ (but not R.t; a˛/),
where a˛ 2 �1 � !2 is greater than a and any already chosen aˇ (ˇ < ˛). Now we
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have to add sets Ua˛ and Va˛ and extendG andH to get a modelM 0 of � containing
bothM and N . We do so in such a way that it is still possible to add @1 more points
to those sets Ua˛ and Va˛ later on (which will be necessary when we construct an
extension satisfying ��; see below). Note that we do not have to add any point to the
Ux , Vx for x 2 LM , which is fortunate since that would be impossible.

Having obtained a model M 0 of � containing both M and N as submodels, our
final task in proving !3-cc is to extendM 0 to an elementM 00 of P. In particular, we
wantM 00 to have the following properties.
� M 00 must be a model of ��.
� LM

00 must be an initial segment of �1 � !2.
� The sets UM 00

x and VM 00

x must be equal to 2! � ¹.x; 0/º and 2! � ¹.x; 1/º,
respectively.

We will construct a continuous chain .M˛/˛<!1 of models of � starting from
M0 D M 0 such thatM 00 D

S
˛<!1

M˛ satisfies our requirements. We have several
sets of “tasks” (each enumerated in order-type !1) that we want to perform along that
chain.
� Let W be an enumerated set of the tasks “add the element w to the L-part of
the so far constructed model” for any w 2 �1 � !2 that is smaller than some
a˛ . (We constructed the elements a˛ above.) Thus after performing all tasks
inW , the L-part ofM 00 will be an initial segment of �1 �!2 (the smallest one
containing all a˛).
� Having reached stage ˛ of the chain, enumerate all pairs . Na; q/ with Na 2 M˛

and tpqf. Na/ � q 2 Sqf.�/ as T˛ D .. Naˇ ; qˇ //ˇ<!1 (cf. the proof of The-
orem 13). Designate the set of tasks “add a tuple Nb such that Naˇ Nb ˆ qˇ ”
by T˛ .
� Having reached stage ˛ of the chain, let X˛ and Y˛ , respectively, be enumer-
ated sets of the tasks “add the element .�; .x; 0// to Ux” and “add the element
.�; .x; 1// to Vx” for all � 2 2! and x 2 LM˛ .

At each stage ˛ of the chain, add elements to the model M˛ such that the least
task in W as well as in all Tˇ ; Xˇ ; Yˇ (ˇ � ˛) is performed. Then remove those
tasks from the sets W;Tˇ ; Xˇ ; Yˇ . By possibly adding additional elements, we can
do this while obtaining a modelM˛C1 of � . (The arguments and techniques are the
same as in the proof that � has EPC.) Again, when we add new sets Uw and Vw , we
do so in such a way that it is still possible to add @1 many additional elements to
them later on.

Note that at each stage, we only have to add countably many elements in each
Ux , Vx and the L-part ofM˛ , so we do not encounter the problem of saturating at a
countable stage of the chain construction the Ux , Vx for x > a (a as defined above)
or any part of L above a. This would be a serious problem as, for example, adding
a new element w to the order requires adding a new element to the Ux with x > w

(because of the properties of G). We thus are able to carry out the construction
through all countable ordinals and obtain M 00 as the union of the chain with the
required properties. This concludes the proof of !3-cc.

Let G be a P-generic filter over V ;
S
G will be a model of �� of size @V3 . But

since the forcing is !2-closed and has !3-cc, all cardinals are preserved, and, in par-
ticular, @V ŒG�3 D @V3 . That is, we get a model of �� of size @3 in a generic extension.
On the other hand, any such model codes an @2-Kurepa family, which means that it
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is consistent with ZFC C GCH (assuming the existence of an inaccessible cardinal
and noting that the forcing preserves GCH2) that �� has no model of size @3.

5 Final Observations

The question of absoluteness of model existence (under ZFCC GCH) in @! remains
open. On the other hand, the technique of finding complete examples described in
Section 4 should be applicable more widely to obtain complete examples of non-
absoluteness of model existence (under ZFC C GCH) in cardinals greater than @3.
Interestingly, however, this method seems to be problematic for finding examples for
model existence in @2, at least with the approach of trying to code Kurepa families.
The reason is that it seems difficult to code an !1-like ordering without making many
elements definable over others (or even getting infinite definable closures over finite
tuples), which destroys any chance to have EPC.

As a last remark, our use of the concept of Kurepa families has the slight flaw that
in order to find set-theoretic universes which do not contain such families, we have to
assume the existence of inaccessible cardinals. For the special Aronszajn technique,
we even have to assume the consistency of supercompact cardinals. It would be nice
to find L!1;!-sentences for which under GCH the existence of models of certain
cardinalities is not absolute, without assuming the existence of large cardinals.

Notes

1. This has also been observed recently by Paul Larson. His argument uses iterated generic
ultrapowers. Rami Grossberg points out that he knew of this fact already in the 1980s
but did not publish it, and that others like Shelah, Barwise, and Keisler most likely knew
of it even earlier.

2. This is a standard argument. For any (infinite) �, each subset of � added by the forcing
is of the form

¹˛ < � j G \ A˛ is nonemptyº;

where EA D .A˛/˛<� is in the ground model and each A˛ is an antichain in the forcing.
(This is because we can take a name � for the given set, let B˛ be a maximal antichain
consisting of conditions which decide “˛ 2 �”, and take A˛ to consist of the elements
of B˛ which force “˛ 2 �”.)
As GCH holds in the ground model and the forcing has !3-cc, the fact that the forcing

has size !3 implies that there are only ..!3/!2/� D .!3/
� many (in the sense of the

ground model) such sequences EA. For � � !2, this is 2� D �C. As the forcing does not
add subsets of !1, the GCH will also hold at ! and !1.

References

[1] Baldwin, J. T., “Amalgamation, absoluteness and categoricity,” pp. 22–50 in Proceedings
of the 11th Asian Logic Conference, World Science Publishing, Hackensack, N.J., 2012.
MR 2868504. DOI 10.1142/9789814360548_0002. 137, 138

[2] Barwise, J., “The role of the omitting types theorem in infinitary logic,” Archiv für Math-
ematische Logik und Grundlagenforschung, vol. 21 (1981), pp. 55–68. Zbl 0467.03034.
MR 0625530. DOI 10.1007/BF02011633. 139

http://www.ams.org/mathscinet-getitem?mr=2868504
http://dx.doi.org/10.1142/9789814360548\protect \T1\textunderscore 0002
http://www.emis.de/cgi-bin/MATH-item?0467.03034
http://www.ams.org/mathscinet-getitem?mr=0625530
http://dx.doi.org/10.1007/BF02011633


150 Friedman, Hyttinen, and Koerwien

[3] Chang, C. C., and H. J. Keisler, Model Theory, 3rd edition, vol. 73 of Studies in Logic
and the Foundations of Mathematics, North-Holland, Amsterdam, 1990. MR 1059055.
140, 142, 143

[4] Cummings, J., M. Foreman, and M. Magidor, “Squares, scales and stationary reflection,”
Journal of Mathematical Logic, vol. 1 (2001), pp. 35–98. Zbl 0988.03075. MR 1838355.
DOI 10.1142/S021906130100003X. 141

[5] Gao, S., “On automorphism groups of countable structures,” Journal of Symbolic Logic,
vol. 63 (1998), pp. 891–96. Zbl 0922.03045. MR 1649067. DOI 10.2307/2586718. 138

[6] Gregory, J., “Elementary extensions and uncountable models for infinitary finite quanti-
fier language fragments,” Notices of the American Mathematical Society, vol. 17 (1970),
pp. 967–68. 138

[7] Grossberg, R., and S. Shelah, “On the number of nonisomorphic models of an infinitary
theory which has the infinitary order property, I,” Journal of Symbolic Logic, vol. 51
(1986), pp. 302–22. MR 0840407. DOI 10.2307/2274053. 137

[8] Hjorth, G., “Knight’s model, its automorphism group, and characterizing the un-
countable cardinals,” Journal of Mathematical Logic, vol. 2 (2002), pp. 113–44.
Zbl 1010.03036. MR 1900550. DOI 10.1142/S0219061302000084. 141

[9] Jech, T., Set Theory, 3rd millennium edition, revised and expanded, Springer Mono-
graphs in Mathematics, Springer, Berlin, 2003. MR 1940513. 137, 140

[10] Jensen, R. B., “The fine structure of the constructible hierarchy,” with a section by Jack
Silver, Annals of Mathematical Logic, vol. 4 (1972), pp. 229–308. MR 0309729. 140,
141

[11] Keisler, H. J., Model Theory for Infinitary Logic: Logic with Countable Conjunctions
and Finite Quantifiers, vol. 62 of Studies in Logic and the Foundations of Mathematics,
North-Holland, Amsterdam, 1971. Zbl 0222.02064. MR 0344115. 138

[12] Malitz, J., “The Hanf number for complete L!1;! -sentences,” pp. 166–81 in The Syntax
and Semantics of Infinitary Languages, edited by J. Barwise, vol. 72 of Lecture Notes in
Mathematics, Springer, Berlin, 1968. MR 0234827. 139

[13] Specker, E., “Sur un problème de Sikorski,” Colloquium Mathematicum, vol. 2 (1949),
pp. 9–12. Zbl 0040.16703. MR 0039779. 141

Acknowledgments

Friedman’s work partially supported by the John Templeton Foundation under grant
number 13152, The Myriad Aspects of Infinity, and by the Austrian Science Fund (FWF)
through project number P 22430-N13. Hyttinen’s work partially supported by the Acad-
emy of Finland under grant number 1123110. Koerwien’s work partially supported by
the John Templeton Foundation under grant number 13152, The Myriad Aspects of In-
finity.
We would like to express our gratitude to the John Templeton Foundation for support-

ing the Infinity Project (hosted by the CRM in Barcelona) in which the presented work
has been accomplished. We also greatly thank John Baldwin, Fred Drueck, Rami Gross-
berg, and Andrés Villaveces for helpful discussions at the CRM, especially on the idea of
coding Kurepa families into models to show nonabsoluteness of model existence. Rami
Grossberg in particular suggested generalizing a theory coding an @1-Kurepa family to
higher cardinalities to achieve nonabsoluteness of model existence in cardinalities above
@2. He also was the first to recognize a problem in dealing with @! by this construction.

http://www.ams.org/mathscinet-getitem?mr=1059055
http://www.emis.de/cgi-bin/MATH-item?0988.03075
http://www.ams.org/mathscinet-getitem?mr=1838355
http://dx.doi.org/10.1142/S021906130100003X
http://www.emis.de/cgi-bin/MATH-item?0922.03045
http://www.ams.org/mathscinet-getitem?mr=1649067
http://dx.doi.org/10.2307/2586718
http://www.ams.org/mathscinet-getitem?mr=0840407
http://dx.doi.org/10.2307/2274053
http://www.emis.de/cgi-bin/MATH-item?1010.03036
http://www.ams.org/mathscinet-getitem?mr=1900550
http://dx.doi.org/10.1142/S0219061302000084
http://www.ams.org/mathscinet-getitem?mr=1940513
http://www.ams.org/mathscinet-getitem?mr=0309729
http://www.emis.de/cgi-bin/MATH-item?0222.02064
http://www.ams.org/mathscinet-getitem?mr=0344115
http://www.ams.org/mathscinet-getitem?mr=0234827
http://www.emis.de/cgi-bin/MATH-item?0040.16703
http://www.ams.org/mathscinet-getitem?mr=0039779


The Nonabsoluteness of Model Existence in Uncountable Cardinals for L!1;! 151

Friedman
Kurt Gödel Research Center for Mathematical Logic
1090 Wien
Austria
sdf@logic.univie.ac.at

Hyttinen
Department of Mathematics University of Helsinki
FI-00014 Helsinki
Finland
tapani.hyttinen@helsinki.fi

Koerwien
Kurt Gödel Research Center for Mathematical Logic
1090 Wien
Austria
kwienmart@gmail.com

mailto:sdf@logic.univie.ac.at
mailto:tapani.hyttinen@helsinki.fi
mailto:kwienmart@gmail.com

	1 The Case 1
	2 Going Beyond 1
	3 Going Beyond 1 under the Assumption of GCH
	3.1 A reminder about two-cardinal properties
	3.2 Some set theory
	3.3 Connecting first-order two-cardinal properties with Lomega1,omega-model existence
	3.4 Examples of incomplete sentences: Successor cardinals
	3.5 Examples of incomplete sentences: Limit cardinals

	4 A Complete Sentence
	5 Final Observations
	Notes
	References
	Acknowledgments
	Author's addresses

