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Dp-Minimality: Basic Facts and Examples

Alfred Dolich, John Goodrick, and David Lippel

Abstract We study the notion of dp-minimality, beginning by providing sev-
eral essential facts about dp-minimality, establishing several equivalent defini-
tions for dp-minimality, and comparing dp-minimality to other minimality no-
tions. The majority of the rest of the paper is dedicated to examples. We estab-
lish via a simple proof that any weakly o-minimal theory is dp-minimal and then
give an example of a weakly o-minimal group not obtained by adding traces of
externally definable sets. Next we give an example of a divisible ordered Abelian
group which is dp-minimal and not weakly o-minimal. Finally we establish that
the field of p-adic numbers is dp-minimal.

1 Introduction

In this note we study many basic properties of dp-minimality as well as developing
several fundamental examples. Dp-minimality—see Definition 2.3—was introduced
by Shelah in [19] as possibly the strongest of a family of notions implying that a
theory does not have the independence property—for which see [20]. The study of
dp-minimality beyond Shelah’s original work was continued by Onshuus and Usvy-
atsov in [16] focusing primarily on the stable case and by the second author in [11]
primarily in the case of theories expanding the theory of divisible ordered Abelian
groups. Our goal in this paper is to provide many basic foundational facts on dp-
minimality as well as to explore concrete examples of dp-minimality in the ordered
context as well as the valued field context. Much of our motivation arises out of
the program of attempting to explore the impact of abstract model theoretic notions,
such as dp-minimality, in concrete situations such as ordered model theory on the
reals or the study of valued fields. As such, this note may be seen as providing
some ground work for further study in this direction—for example, Simon [22] has
recently shown that an infinite definable subset of a dp-minimal divisible ordered
Abelian group must have interior.
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We give a brief outline of the content of our note. Section 2 is dedicated to defi-
nitions and providing several relevant background facts on dp-minimality. Many of
these facts are inherent in [19] but we isolate them here and provide straightforward
proofs. Section 3 is a brief discussion of the relationship of dp-minimality to some
other minimality notions. In Section 4 we focus on weak o-minimality (for which
see [14]) and algebraically closed valued fields (for which see [18]). We show that
weakly o-minimal theories as well as the theory of algebraically closed valued fields
are dp-minimal by showing that, more generally, VC-minimal theories (for which
see [2]) are dp-minimal. We also provide an example of a weakly o-minimal group
which is not obtained by expanding an o-minimal structure by convex sets. Work in
Section 3 as well as results from [11] indicate that a dp-minimal theory expanding
that of divisible ordered Abelian groups has some similarity to a weakly o-minimal
theory and we may naturally ask whether any such theory is weakly o-minimal. Sec-
tion 5 provides a negative answer via an example arising from the valued field con-
text. Our final section is dedicated to showing that the theory of the p-adic field is
dp-minimal.

2 Basic Facts on DP-Minimality

We develop several basic facts about dp-minimality. The vast majority of the material
found below is implicit in Shelah’s paper [19], but typically in the more general
context of strong dependence. We provide proofs of these various facts for clarity
and ease of exposition. Recall the following definition.

Definition 2.1 Fix a structure M. An ICT pattern in M consists of a pair of for-
mulas ϕ(x, y) and ψ(x, y) and sequences {ai : i ∈ ω} and {bi : i ∈ ω} from M so
that, for all i, j ∈ ω, the following is consistent:

ϕ(x, ai ) ∧ ψ(x, b j ) ∧

∧
l 6=i

¬ϕ(x, al) ∧

∧
k 6= j

¬ψ(x, bk).

Remark 2.2 Definition 2.1 should more formally be referred to as an ICT pattern
of depth two but in this paper we only consider such ICT patterns and thus we omit
this extra terminology.

Definition 2.3 A theory T is said to be dp-minimal if in no model M |H T is there
an ICT pattern.

It is often very convenient to use the following definition and fact.

Definition 2.4 We say two sequences {ai : i ∈ I } and {b j : j ∈ J } are mutually
indiscernible if {ai : i ∈ I } is indiscernible over

⋃
j∈J b j and {b j : j ∈ J } is

indiscernible over
⋃

i∈I ai . We call an ICT pattern mutually indiscernible if the
witnessing sequences are mutually indiscernible.

Fact 2.5 T is dp-minimal if and only if in no model M |H T is there a mutually
indiscernible ICT pattern.

Proof This is a simple application of compactness and Ramsey’s theorem. �

Before continuing we should mention an alternative characterization of dp-minimality.
To this end we have the following definition.
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Definition 2.6 A theory T is said to be inp-minimal if there is no model of M of T
formulas ϕ(x, y) and ψ(x, y), natural numbers k0 and k1, and sequences {ai : i ∈ ω}

and {bi : i ∈ ω} so that {ϕ(x, ai ) : i ∈ ω} is k0-inconsistent, {ψ(x, b j ) : j ∈ ω} is
k1-inconsistent and for any i, j ∈ ω the formula ϕ(x, ai ) ∧ ψ(x, b j ) is consistent.

With this definition we have the following fact.

Fact 2.7 ([16], Lemma 2.11) If T does not have the independence property and is
inp-minimal then T is dp-minimal.

The next fact is extremely useful in showing that a theory is not dp-minimal. It is key
in establishing the relationship between dp-minimality and indiscernible sequences
that follows.

Fact 2.8 Let T be a complete theory and let C be a monster model for T . Sup-
pose there are formulas ϕ0(x, y) and ϕ1(x, y) and mutually indiscernible sequences
{ai : i ∈ ω} and {bi : i ∈ ω} so that

ϕ0(x, a0) ∧ ¬ϕ0(x, a1) ∧ ϕ1(x, b0) ∧ ¬ϕ1(x, b1)

is consistent. Then T is not dp-minimal.

Proof By compactness there are mutually indiscernible sequences ai for i ∈ Z and
bi for i ∈ Z and c so that

|H ϕ0(c, a0) ∧ ¬ϕ0(c, a1) ∧ ϕ1(c, b0) ∧ ¬ϕ1(c, b1).

By applying compactness and Ramsey’s theorem we assume that {ai : i < 0} and
{ai : i > 1} are both indiscernible over

⋃
i∈Z bi ∪ {c} as well as that {bi : i < 0}

and {bi : i > 1} are both indiscernible over
⋃

i∈ω ai ∪ {c}. Let d i = a_2i a2i+1

and ei = b
_
2i b2i+1 for i ∈ Z. Note that these two sequences are mutually in-

discernible. Let ψ0(x, y0 y1) be ϕ0(x, y0) ↔ ¬ϕ0(x, y1) and ψ1(x, y0 y1) be
ϕ1(x, y0) ↔ ¬ϕ1(x, y1). Then C |H ψ0(c, d0) ∧ ψ1(c, e0) and if i 6= 0, then
|H ¬ψ0(c, d i ) ∧ ¬ψ1(c, ei ) by the indiscernibility assumptions. It follows that ψ0,
ψ1, {d i : i ∈ ω} and {ei : i ∈ ω} witness that T is not dp-minimal. �

Using the identical proof as above we show the following.

Fact 2.9 The following are equivalent.
1. There are formulas ϕi (x, y) for 1 ≤ i ≤ N and sequences ai

j for 1 ≤ i ≤ N
and j ∈ ω so that for every η : {1, . . . , N } → ω the type∧

1≤i≤N

ϕi (x, ai
η(i)) ∧

∧
1≤i≤N

∧
j 6=η(i)

¬ϕi (x, ai
j )

is consistent.
2. There are formulas ψi (x, y) for 1 ≤ i ≤ N and mutually indiscernible se-

quences {ai
j : j ∈ ω} for 1 ≤ i ≤ N so that the type∧

1≤i≤N

ψi (x, ai
0) ∧

∧
1≤i≤N

¬ψi (x, ai
1)

is consistent

As in the case of the independence property and strong dependence we have a char-
acterization of dp-minimality in terms of splitting indiscernible sequences.
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Fact 2.10 The following are equivalent for a theory T .

1. T is dp-minimal.
2. If {ai : i ∈ I } is an indiscernible sequence and c is an element then there is a

partition of I into finitely many convex sets I0, . . . , In , at most two of which
are infinite, so that, for any 1 ≤ l ≤ n, if i, j ∈ Il , then tp(ai/c) = tp(a j/c).

3. If {ai : i ∈ I } is an indiscernible sequence and c is an element then there
is a partition of I into finitely many convex sets I0, . . . , In , at most two of
which are infinite, so that, for any 1 ≤ l ≤ n, the sequence {ai : i ∈ Il} is
indiscernible over c.

Proof

(1) ⇒ (3) Suppose T is dp-minimal and for contradiction suppose that there is
an indiscernible sequence (which for notational simplicity we assume consists of
singletons) {ai : i ∈ I } and an element c witnessing the failure of (3). Without loss
of generality, we assume that I is a sufficiently saturated dense linear order without
endpoints. By [1, Corollary 6] there is an initial segment I0 ⊆ I and a final segment
I1 ⊆ I so that the sequences {ai : i ∈ I0} and {ai : i ∈ I1} are indiscernible over c.
We may choose I0 to be maximal in the sense that for no convex J with I0 ⊂ J ⊆ I
is {a j : j ∈ J } indiscernible over c and similarly for I1. If I \ (I0 ∪ I1) is finite then
(3) holds so I \ (I0 ∪ I1) is infinite and thus contains an interval.

Let J0 and J1 be disjoint convex sets so that I0 ⊂ J0 ⊂ I and I1 ⊂ J1 ⊂ I . We
find j∗1 < · · · < j∗n ∈ J0 and a formula ϕ(x, y1, . . . , yn) so that ¬ϕ(c, ai1 , . . . ain )
holds for all i1 < · · · < in ∈ I0 but ϕ(c, a j∗1

, . . . , a j∗m ) holds. We choose a se-
quence of n-tuples d i for i ∈ ω as follows: let d0 = a j∗1

, . . . , a j∗n . If i > 0,
let d i = ai1 , . . . , ain where i1, . . . , in is any increasing sequence of elements with
ik ∈ I0 for all 1 ≤ k ≤ n and so that in < min{l ∈ I : al ∈ d i−1}. Note that
{d i : i ∈ ω} is indiscernible. Similarly, we may find k∗

j1 < · · · < k∗

jm ∈ J1 and a for-
mula ψ(x, y1, . . . , ym) so that ¬ψ(c, ai1 , . . . , aim ) holds for all i1 < · · · < im ∈ I1
but ψ(c, ak∗

1
, . . . , ak∗

m ) holds.
We build a sequence of m-tuples {ei : i ∈ ω} as follows: e0 = ak∗

1
, . . . , ak∗

m . For
i > 0, let ei = ai1 , . . . , aim where i1, . . . , im is any increasing sequence from I1 and
i1 > max{l ∈ I : al ∈ ei−1}. Notice that {d i : i ∈ ω} and {e j : j ∈ ω} are mutually
indiscernible sequences. Thus the formulas ϕ(x, y1, . . . , yn) and ψ(x, y1, . . . , ym)

and the sequences d i , ei for i ∈ ω form a configuration as found in Fact 2.8 and T is
not dp-minimal.

(3) ⇒ (2) Immediate.

(2) ⇒ (1) For contradiction suppose there are formulas ϕ(x, y) and ψ(x, y) and
mutually indiscernible sequences {ai : i ∈ 3 ×ω} and {bi : i ∈ 3 ×ω} (lexicograph-
ically ordered) which witness the failure of dp-minimality. Such sequences must
exist by compactness. For i ∈ 3 × ω, let ci = a_i bi . Note this is an indiscernible
sequence. Pick d realizing the type

ϕ(x, aω) ∧ ψ(x, b2×ω) ∧

∧
i 6=ω

¬ϕ(x, ai ) ∧

∧
j 6=2×ω

¬ψ(x, b j ).
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If i 6= ω or 2 × ω, then |H ¬ϕ(d, ai ) ∧ ¬ψ(d, bi ),

if i = ω, then |H ϕ(d, aω) ∧ ¬ψ(d, bω), and

if i = 2 × ω, then |H ¬ϕ(d, a2×ω) ∧ ψ(d, b2×ω).

It follows that the indiscernible sequence {ci : i ∈ 3×ω} cannot be decomposed into
convex subsets of which at most two are infinite so that the type over d is constant
on each convex set. Hence (2) fails. �

We use the preceding fact to provide a characterization of dp-minimality which al-
lows us to consider formulas with more than one free variable in a variant of Def-
inition 2.3 as well as to consider sets of parameters of arbitrary size in a variant of
Fact 2.10.

Fact 2.11 For any theory T the following are equivalent.
1. T is dp-minimal.
2. For all n ∈ ω if {ai : i ∈ I } is an indiscernible sequence and c is an n-tuple

from the universe then there is a partition of I into convex sets I1, . . . , Il
of which at most 2n are infinite so that if 1 ≤ l ≤ n and i, j ∈ Il then
tp(ai/c) = tp(a j/c).

3. For all n ∈ ω if {ai : i ∈ I } is an indiscernible sequence and c is an n-tuple
from the universe then there is a partition of I into convex sets I1, . . . , Il of
which at most 2n are infinite so that if 1 ≤ l ≤ n the sequence {ai : i ∈ Il} is
indiscernible over c.

4. For all n ∈ ω there is no sequence of formulas ϕ1(x, y), . . . , ϕ2n (x, y) with
|x | = n and sequences {a j

i : i ∈ ω} with 1 ≤ j ≤ 2n so that for any
η : {1, . . . , 2n

} → ω the type∧
1≤k≤2n

ϕk(x, ak
η(k)) ∧

∧
1≤k≤2n

∧
{t∈ω:η(k)6=t}

¬ϕk(x, ak
t )

is consistent.

Proof The equivalence of (1), (2), and (3) is immediate using Fact 2.10 and the
fact that dp-minimality is preserved upon naming constants. (4) ⇒ (1) is trivial.
To finish we show that (2) ⇒ (4) for which we essentially repeat the proof that
(2) ⇒ (1) from Fact 2.10. If (4) fails we find formulas ϕ1(x, y), . . . , ϕ2n (x, y)
with |x | = n and, using Fact 2.9 together with compactness, mutually indiscernible
sequences {a j

i : i ∈ (n + 1) × ω} (here (n + 1) × ω is lexicographically ordered)
witnessing this failure. Let bi = a1

i
_

· · ·
_

a2n

i for i ∈ (n + 1)×ω and note that this
is an indiscernible sequence. Pick c realizing∧

1≤ j≤2n

ϕ j (x, a j
j×ω) ∧

∧
1≤ j≤2n

∧
α∈(n+1)×ω
α 6= j×ω

¬ϕ j (x, a j
α) .

Then the sequence bi and d witness the failure of (2). �

Given a dp-minimal theory T it is reasonable to ask if the bound in Fact 2.11(4) may
be improved from 2n to n + 1. This holds in the stable case and we sketch the proof.

Fact 2.12 If T is dp-minimal and stable then there is no sequence of formulas

ϕ1(x, y), . . . , ϕn+1(x, y)
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with |x | = n and sequences {a j
i : i ∈ ω} with 1 ≤ j ≤ n so that for any

η : {1, . . . , n + 1} → ω the type∧
1≤k≤n+1

ϕk(x, ak
η(k)) ∧

∧
1≤k≤n+1

∧
{t∈ω:η(k)6=t}

¬ϕk(x, ak
t )

is consistent.

Sketch of proof By [16, Theorem 3.5] T is stable and dp-minimal if and only if
every 1-type has weight 1. Thus if T is stable and dp-minimal every n-type has
weight at most n. Apply [16, Lemma 2.3 and Lemma 2.11] and the result follows.

�

This fact also holds for weakly o-minimal T (we defer discussion of this to Sec-
tion 3). In fact, it is tempting to restate the result with stable replaced by rosy and
use þ-weight as in [17] but at the moment it is not clear if the result follows. Over-
all we do not know whether these improved bounds hold for a general dp-minimal
theory. (This has recently been established in [13].)

We finish with two facts which are useful in studying specific examples. The first
of these is particularly useful when studying theories which admit some type of cell
decomposition—namely, the p-adics.

Fact 2.13 Suppose that ϕ(x, y) and ψ(x, y) are formulas witnessing that a theory
T is not dp-minimal. Further suppose that ϕ(x, y) is ϕ1(x, y)∨ · · · ∨ϕn(x, y). Then
for some 1 ≤ l ≤ n ϕl(x, y) and ψ(x, y) witness that T is not dp-minimal.

Proof There are mutually indiscernible sequences {ai : i ∈ Z} and {bi : i ∈ Z} so
that, for any i∗, j∗ ∈ Z, the type

ϕ(x, ai∗) ∧ ψ(x, b j∗) ∧

∧
i 6=i∗

¬ϕ(x, ai ) ∧

∧
j 6= j∗

¬ψ(x, b j )

is consistent. For each i∗ ∈ Z there is l(i∗) ∈ {1, . . . , n} so that

ϕl(i∗)(x, ai∗) ∧ ψ(x, b0) ∧

∧
i 6=i∗

¬ϕ(x, ai ) ∧

∧
j 6= j∗

¬ψ(x, b j )

is consistent. Thus for some infinite I ⊆ Z and 1 ≤ l∗ ≤ n if i ∈ I then
l(i) = l∗. It follows that the formulas ϕl∗(x, y) and ψ(x, y) together with the se-
quences {ai : i ∈ I } and {bi : i ∈ Z} witness that T is not dp-minimal. �

Our final fact shows that a counterexample to dp-minimality may always be found
which uses only a single formula rather than two as in Definition 2.3.

Fact 2.14 Suppose that T is not dp-minimal. Then there is a formula θ(x, y) and
sequences {ci : i ∈ ω} and {d i : i ∈ ω} so that for any i 6= j the type

θ(x, ci ) ∧ θ(x, d j ) ∧

∧
k 6=i

¬θ(x, ck) ∧

∧
l 6= j

¬θ(x, dl)

is consistent.

Proof Suppose that the formulas ϕ(x, y) and ψ(x, y) and the sequences

{ai : i ∈ ω + ω} and {b j : j ∈ ω + ω}
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witness that T is not dp-minimal. Let θ(x, y1, y2) be ϕ(x, y1) ∨ ψ(x, y2). For
i ∈ ω, let ci be ai bi and, for j ∈ ω, let d j be aω+ j bω+ j . We claim this is as the fact
requires. Fix i, j ∈ ω. There is α realizing the type

ϕ(x, ai ) ∧ ψ(x, bω+ j ) ∧

∧
k 6=i

¬ϕ(x, ak) ∧

∧
l 6=ω+ j

¬ψ(x, bl).

Thus α realizes θ(x, ci ) and θ(x, d j ). If k 6= i , then α realizes ¬ϕ(x, ai ) and
¬ψ(x, bi ) and hence realizes ¬θ(x, ci ). Finally, if l 6= j then α realizes

¬ϕ(x, aω+l) and ¬ψ(x, bω+l)

and hence ¬θ(x, d j ) as desired. �

3 Relationship with Similar Notions

In this brief section we examine the relationship between dp-minimality and various
other strong forms of dependence. We begin with the notion of VC-density as studied
in [3]. For the ensuing definition we fix 1(x, y) a finite set of formulas where we
consider y as the parameter variables. If A is a set of |y|-tuples we write S1(A) for
the set of complete 1-types with parameters from A.

Definition 3.1 A theory T has VC-density one if for any finite set of for-
mulas 1(x, y) there is a constant C so that for any finite set A of |y|-tuples∣∣S1(A)∣∣ ≤ C |A|

|x |.

For example, in [3], it is shown that any weakly o-minimal theory and any quasi
o-minimal theory with definable bounds (for which see [5]) has VC-density one. We
have a strong relationship between VC-density one and dp-minimality.

Proposition 3.2 If T has VC-density one, then T is dp-minimal.

Proof Suppose that T is not dp-minimal. Apply Fact 2.14 to find a formula ϕ(x, y)
and sequences ai and b j as described there. For N ∈ N, let

AN = {ai : i ≤ N } ∪ {b j : j ≤ N }.

By the failure of dp-minimality we immediately see that S{ϕ}(AN ) ≥
1
4 |AN |

2

for all N . Thus T does not have VC-density one. �

Note that the above proof only requires that we have that
∣∣S1(A)∣∣ ≤ C |A| for 1

consisting of formulas of the form ϕ(x, y), that is, with only one free variable.

Corollary 3.3 Any weakly o-minimal theory as well as any quasi o-minimal theory
with definable bounds is dp-minimal.

We give a short direct proof of the dp-minimality of any weakly o-minimal theory
in Section 4. Also under the assumption of VC-density one we obtain the improved
bounds in Fact 2.11(4) as discussed in Section 2. With the same proof as in Proposi-
tion 3.2 we show the following.

Proposition 3.4 If T has VC-density one there is no sequence of formulas

ϕ1(x, y), . . . , ϕn+1(x, y)
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with |x | = n and sequences {a j
i : i ∈ ω} with 1 ≤ j ≤ n so that for any

η : {1, . . . , n + 1} → ω the type∧
1≤k≤n+1

ϕk(x, ak
η(k)) ∧

∧
1≤k≤n

∧
{t∈ω:η(k)6=t}

¬ϕk(x, ak
t )

is consistent.

We consider the notion of VC-minimality as introduced in [2].

Definition 3.5 Fix a theory T and a monster model C |H T . T is VC-minimal if
there is a family of formulas8 of the form ϕ(x, y) (where the length of y is allowed
to vary) so that

1. if ϕ(x, y), ψ(x, y) ∈ 8, and a, b ∈ C , then one of
(a) ϕ(C, a) ⊆ ψ(C, b),
(b) ψ(C, b) ⊆ ϕ(C, a),
(c) ¬ϕ(C, a) ⊆ ψ(C, b),
(d) ψ(C, b) ⊆ ¬ϕ(C, a);

2. if X ⊆ C is definable then there are a finite collection of ϕi (x, y) from8 and
tuples ai ∈ C so that X is a Boolean combination of the sets ϕi (C, ai ).

In [2] Adler cites the theory of algebraically closed valued fields (ACVF), for which
see [18], and any weakly o-minimal theory [14] as typical examples of VC-minimal
theories. Adler also claims without proof that any VC-minimal theory is dp-minimal.
As we are interested in verifying that, in particular, weakly o-minimal as well as
ACVF are dp-minimal we will provide a proof of this fact which we defer to Sec-
tion 4.

The implication that VC-minimality implies dp-minimality may not be reversed
as the following proposition shows.

Proposition 3.6 Let L be the language consisting of unary predicates Pi with
i ∈ ω1. For any finite I ⊆ ω1 and J ⊆ ω1 with I ∩ J = ∅, let σI,J,n be the sentence

∃
≥n(

∧
i∈I

Pi x ∧

∧
j∈J

¬Pj x).

Let T = {σI,J,n : for all I, J, n}. T is complete, has quantifier elimination, is dp-
minimal (in fact has VC-density one), but is not VC-minimal.

Proof We sketch a proof and leave the details to the interested reader. Complete-
ness and quantifier elimination for T are elementary. Quantifier elimination and
Fact 2.10(2) yield that T is dp-minimal. For the non-VC minimality of T use quan-
tifier elimination to show that there is no family8 of formulas ϕ(x, y) satisfying the
compatibility conditions in the definition of VC-minimality and so that any Pi (x) can
be obtained by a finite Boolean combination of sets defined by instances of 8. �

Thus we have an example of a theory which has VC-density one (and hence is dp-
minimal) but is not VC-minimal. We conjecture that the theory of the p-adics is also
not VC-minimal but have been unable to verify this. We do not have an example of
a theory which is dp-minimal but does not have VC-density one.
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4 Weakly O-Minimal Theories and ACVF

As alluded to in the previous section, here we show that any VC-minimal the-
ory is dp-minimal which allows us to conclude that any weakly o-minimal theory
is dp-minimal and that ACVF, or in fact any C-minimal theory (see [15]), is dp-
minimal. Dp-minimality for weakly o-minimal theories first appears in [16, Corol-
lary 3.8] where it is shown that any weakly o-minimal theory obtained via “Shelah
expansion”—which we discuss below—is dp-minimal. We show via an example that
not all weakly o-minimal theories may be obtained in this way. The dp-minimality
of weakly o-minimal theories is also established in [3] by indirect arguments. Before
proving that VC-minimality implies dp-minimality we need some more background
on VC-minimality. Suppose that T is VC-minimal witnessed by a family 8. We say
that 8 is directed if for any ϕ(x, y), ψ(x, y) ∈ 8 and any a, b ∈ C|y| (here C is a
monster model) one of

(i) ϕ(C, a) ⊆ ψ(C, b),
(ii) ψ(C, b) ⊆ ϕ(C, a),

(iii) ϕ(C, a) ∩ ψ(C, b) = ∅.
We need the following fact.

Fact 4.1 ([2], Proposition 6) If T is VC-minimal, then after potentially naming
constants there is a directed family 8 witnessing VC-minimality.

We can now establish that VC-minimal theories are dp-minimal, as originally re-
marked by Adler in [2].

Theorem 4.2 A VC-minimal theory is dp-minimal.

Proof By Fact 4.1 we may assume that T is directed VC-minimal since dp-
minimality is preserved under naming or deleting constants. Fix 8 a directed
VC-minimal instantiable family. By Proposition 3.2 and the subsequent remark, in
order to establish that T is dp-minimal it suffices to show that if1 = {ψ1(x, y), . . . ,
ψm(x, y)} is a finite family of L-formulas, then there is a constant N ∈ R so that
if A ⊆ C |y| is finite then S1(A) ≤ N |A|. Fix 1; by compactness there is a finite
subset 80 ⊆ 8, 80 = {ϕ1(x, z), . . . , ϕn(x, z)} so that any instance of a formula
in 1 is a finite Boolean combination of instances of formulas in 80. (Note that we
assume every formula in 80 has the same set of parameter variables which we may
simply achieve by padding.) There is M ∈ N so that any instance of a formula in 1
is equivalent to a Boolean combination of at most M instances of elements of 80.
Thus if A ⊂ C |y| is finite there is B ⊂ C |z| with |B| ≤ M |A| so that if p ∈ S1(A)
there is q ∈ S80(B) with q ` p. Thus we may assume that 1 ⊆ 8. If p ∈ S1(A)
for A finite so that p contains at least one positive instance of an element of 1 then
there is ψi (x, a) ∈ p so that if 1 ≤ j ≤ m and b ∈ A then ψ j (x, b) ∈ p if and only
if ψi (C, a) ⊆ ψ j (C, b). Hence

∣∣S1(A)∣∣ ≤ |1| |A| + 1 and the result follows. �

Corollary 4.3 Any weakly o-minimal theory is dp-minimal and any C-minimal the-
ory is dp-minimal. In particular, the theories of algebraically closed valued fields
and real closed valued fields (for which see [7]) are dp-minimal.

Proof By [2] weakly o-minimal theories and C-minimal theories are VC-minimal
and algebraically closed valued fields are the archetypical example of a C-minimal
theory whereas real closed valued fields are weakly o-minimal. �
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Corollary 4.3 requires that the theory T be weakly o-minimal. We ask if the theory
of a weakly o-minimal structure M is dp-minimal—recall that a weakly o-minimal
structure need not have weakly o-minimal theory. We do not know of an example of
a weakly o-minimal structure whose theory is not dp-minimal. Given the close rela-
tionship between a theory being weakly o-minimal and elimination of ∃

∞ (for which
see [6, Section 2]) we are led to ask about the relationship between dp-minimality
and elimination of ∃

∞. For example, by [11, Lemma 3.3], any dp-minimal theory
expanding that of divisible ordered Abelian groups must eliminate ∃

∞. However,
in full generality this implication is false. Consider the theory T of an equivalence
relation with infinitely many infinite classes together with a finite class of size n for
each n ∈ N. It is straightforward to verify that T is dp-minimal; for example, we
may use Theorem 4.2 by simply noting that the VC-minimality of T is witnessed by
the equivalence relation and equality. T obviously does not eliminate ∃

∞. Of course,
the converse is also false; the random graph eliminates ∃

∞ but is not dp-minimal.
As mentioned earlier, Onshuus and Usvyatsov [16, Corollary 3.8] prove that the

theory of a Shelah expansion of an o-minimal structure is dp-minimal. The Shelah
expansion is constructed by beginning with a structure M and an |M |

+-saturated
elementary extension N of M and expanding M to M∗ by adding predicates for all
sets of the form X ∩ Mm where X ⊆ N m is N-definable. It follows by results in [4]
that if M is o-minimal then M∗ has weakly o-minimal theory. Notice of course that
the theory of any reduct of M∗ must also be weakly o-minimal and dp-minimal.

To complete the picture regarding weak o-minimality and dp-minimality we give
an example of a structure M = 〈M, <, . . . 〉 which is a model of the theory of dense
linear orderings, has weakly o-minimal theory, and so that no model elementary
equivalent to M may be obtained as a reduct of a Shelah expansion. The candidate
for an example of a weakly o-minimal theory which cannot be obtained via a Shelah
expansion is given by Example 2.6.2 in [14]. In particular, we consider the structure,
M = 〈Z × Q, <, f 〉 where < is the lexicographic order and f : Z × Q → Z × Q is
the function f (x, y) = (−x, y). As noted in [14], it follows easily that this structure
has weakly o-minimal theory. Notice that f is a locally increasing function but for
any (x, y) ∈ Z × Q if w > x then f ((w, v)) < f ((x, y)). This is the feature of this
structure we exploit to establish.

Proposition 4.4 Let M0 � N be o-minimal structures. In the structure induced
by N on M0, there is no definable function f : M0 → M0 so that 〈M0, <, f 〉

|H Th(M).

Proof Without loss of generality, N is |M0|-saturated. By [21, Section 1] it suffices
to show that for no definable X ⊂ (N )2 is X ∩ M0 the graph of a function f so
that 〈M0, <, f 〉 |H Th(M). Suppose for contradiction that such an X exists. By the
o-minimality of N we decompose X into cells C1, . . . ,Cn . By [21, Section 1] the
structure induced on M0 by N is weakly o-minimal and thus for some 1 ≤ i ≤ n
and for some a ∈ M0 the graph of f � [a,∞) is contained in Ci ∩ M0. There
are now two equally simple cases. Either Ci is the graph of a continuous (without
loss of generality) monotone function or Ci is the region between the graphs of two
continuous functions g1 and g2 which we may also assume to be monotone.

Suppose that Ci is the graph of g. Thus g(a) = f (a). Pick b > a so that
f (b) > f (a) (note such a b must exist). We must have that g(b) = f (b) and hence
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g is increasing. Yet we may also pick c so that c > a and f (c) < f (a) and hence
since g(c) = f (c), g must be decreasing, a contradiction.

Now suppose that Ci is the region between g1 and g2. First we claim that g2
must be decreasing. Otherwise, for b > a with f (b) < f (a) we would have that
g2(b) ≥ g2(a) > f (a) > f (b) > g1(b); hence the points (b, f (a)) and (b, f (b))
lie in M0 ∩ Ci contradicting that this intersection should be the graph of a function.
A similar argument shows that for all c ∈ M0 if c > f (a) then g2(a) ≤ c. Pick
b > a so that f (b) > f (a); thus g2(a) < f (b), whence g2(b) < f (b), which is
impossible. �

5 A Complicated DP-Minimal Divisible Ordered Abelian Group

In this section we focus on theories T which extend that of dense linear ordering
and so necessarily contain a symbol <. A reasonable question arising out of the
work found in [11] is whether every dp-minimal T expanding the theory of divisible
ordered Abelian groups must be weakly o-minimal. In this section we show via an
example that the answer to this question is “no.”

For the example let R((xR)) be the field of generalized power series with real
coefficients, real exponents, and well-ordered supports. For a ∈ R((xR)) write v(a)
for its valuation. We wish to consider only the additive ordered structure of the field
augmented with a new relation. Let L be the language consisting of a binary function
+, a binary relation <, a constant 0, unary functions sq for q ∈ Q, a unary predicate
P , and binary predicates Rn for each natural number n ∈ ω (including 0).

Let R be the L structure with universe R((xR)) where +, <, 0 are interpreted in
the obvious way. Interpret the sq as multiplication by q for each q ∈ Q. Interpret P
as

{x ∈ R((xR)) : v(x) ∈ Z, v(x) < 0} ∪ {x ∈ R((xR)) : v(x) ≥ 0}.

Let R0 be the equivalence relation of being in the same connected component of P
or of R((xR)) \ P . For each n > 0, let Rn be the set of all pairs (x, y) so that either
x ∈ P and there is a sequence x = x0 < x1 < · · · < xn = y such that xi ∈ P if and
only if i is even, but there is no such sequence x = x0 < x1 < · · · < xn+1 = y, or
else x /∈ P and there is a sequence x = x0 < x1 < · · · < xn = y such that xi ∈ P
if and only if i is odd, but there is no sequence x = x0 < x1 < · · · < xn+1 = y.
Notice that the Rn are definable in the language with just the group structure and P .
We add them for quantifier elimination.

Our first goal is to axiomatize Th(R) and to show this theory has quantifier elim-
ination. To this end we describe a theory T we intend to show axiomatizes Th(R).
T consists of

(1) the usual axioms for an ordered divisible Abelian group in the language
{+, <, 0}, and sq denotes scalar multiplication by q;

(2) 0 ∈ P;
(3) x ∈ P if and only if −x ∈ P;
(4) P and ¬P are open sets;
(5) if x ≤ y and the interval [x, y] ⊆ P , then for any Q-linear combination z of

x and y with positive coefficients, z lies in the same connected component of
P as x and y;
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(5′) if x ≤ y and the interval [x, y] ⊆ ¬P , then any Q-linear combination z of
x and y with positive coefficients, z lies in the same connected component of
¬P as x and y;

(6) R0 is a symmetric relation, and if x ≤ y, then R0(x, y) holds if and only if
the interval [x, y] lies entirely within P or entirely within ¬P;

(7) for any x, y and positive n < ω, Rn(x, y) holds if and only if x < y and there
are exactly n “alternations of P” between x and y; more precisely, either
(a) x ∈ P and there is a sequence x = x0 < x1 < · · · < xn = y such

that xi ∈ P if and only if i is even, but there is no such sequence
x = x0 < x1 < · · · < xn+1 = y, or else

(b) x /∈ P and there is a sequence x = x0 < x1 < · · · < xn = y
such that xi ∈ P if and only if i is odd, but there is no sequence
x = x0 < x1 < · · · < xn+1 = y;

(8) for any positive x there is a y such that R1(x, y);
(8’) for any positive x there is a y such that R1(y, x).

For M |H T and a ∈ M we introduce some useful notation. If a ∈ P(M) (respec-
tively, ¬P(M)) and C is the convex component of P(M) (or ¬P(M)) containing a,
then [a] = C ∪ −C . We say [a] ≤ [b] if |a| ≤ |b|, and let [a]≤ =

⋃
[b]≤[a]

[b]. So
the content of axiom 8 is that the induced ordering on the classes [a] is a discrete
ordering with a left endpoint [0] but no right endpoint.

Lemma 5.1 Suppose M |H T and a, b ∈ M.

1. If [a] < [b], then a + b ∈ [b].
2. If [a] = [b], then a + b ∈ [a]≤.
3. [a]≤ is closed under Q-linear combinations.

Proof (1) If 0 < a < b, then a + b > b; so if a + b /∈ [b], then by axiom 5,
2b < a + b. But this implies that b < a, contradiction. If a < 0 < b, then
0 < −a < b; so 0 < a + b < b. So if a + b /∈ [b], then by axiom 5 again,
2a + 2b < b, and b < 2(−a), a contradiction to axiom 5. The other two cases are
similar.

(2) Without loss of generality, |a| ≤ |b|. If 0 < a ≤ b, then 0 < a + b ≤ 2b ∈ [b],
by axiom 5. If a < 0 < b, then 0 < a + b < b, and so a + b ∈ [b]≤ = [a]≤. The
other cases are similar.

(3) For any nonzero q ∈ Q, qa ∈ [a] by axioms 3 and 5; the rest follows by (2). �

Proposition 5.2 T is complete and has quantifier elimination.

Proof We prove both statements simultaneously by a back-and-forth argument:
suppose that M and N are ω-saturated models of T , a = (a0, . . . , an−1) ⊆ M ,
b = (b0, . . . , bn−1) ⊆ N , and tpqf(a,M) = tpqf(b, N ). Then for every a′

∈ M , we
show that there is some b′

∈ N such that tpqf((a, a′),M) = tpqf((b, b′), N ). We do
this by cases.

Case A a′ is in the Q-linear span of a. Say a′
= 6i<nsqi (ai ).

Let b′
∈ N be the corresponding Q-linear combination of b. If we pick i < n

such that qi 6= 0 and [ai ] is as large as possible, then by Lemma 5.1, [a′
] = [ai ], and

similarly [b′
] = [bi ]. The equality of the quantifier-free types now follows directly.
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Case B a′ is not in the Q-linear span of a but there is an element c in the Q-linear
span of a such that [a′

] = [c].
Without loss of generality, a′ > 0. Let

S0 =
{

x ∈ SpanQ(a) ∩ [c] : x < a′
}

and let
S1 =

{
x ∈ SpanQ(a) ∩ [c] : a′ < x

}
.

For ` = 0, 1, let 〈d`i : i < ω〉 be an enumeration of S`. Since tpqf(a,M)= tpqf(b, N ),
we can take corresponding sets T0 and T1 in N , with corresponding enumerations
〈e`i : i < ω〉.

Let f 0
i = a′

− d0
i and let f 1

i = d1
i − a′ (these are always positive points). Then,

using the fact that the [·]-classes in both M and N are discrete linear orderings, we
can pick elements g`i ∈ N such that

I. if there is any x ∈ SpanQ(a) such that [x] = [ f `i ] (or Rn(x, f `i ), or
Rn( f `i , x)), then let y ∈ SpanQ(b) be the corresponding element and pick g`i
such that [g`i ] = [y] (or Rn(y, g`i ), or Rn(g`i , y));

II. if x ∈ SpanQ(a) and [x] < [ f `i ] (or [ f `i ] < [x]), then let y ∈ SpanQ(b) be
the corresponding element, and we require that [y] < [g`i ] (or [g`i ] < [y]).

Claim 5.3 There is an element b′
∈ N satisfying the conditions,

1. b′ is in the same [·]-class as any element of T0 or T1,
2. T0 < b′ < T1,

3. [b′
− e`i ] = [g`i ] for any i < ω and ` = 0, 1,

4. b′ /∈ SpanQ(b).

(Note that one of T0 or T1 may be empty, so half of the second condition may be
vacuous.)

Proof First assume T0 and T1 are nonempty, for simplicity. One case is where{
[g0

i ] : i < ω
}

and
{
[g1

i ] : i < ω
}

have least elements—then call these elements [g0
i ]

and [g1
j ], and without loss of generality [g0

i ] ≤ [g1
j ]. If [g0

i ] < [g1
j ] and [g0

i ]
+

denotes the positive elements of this class, then pick some b′
∈ e0

i + [g0
i ]

+ such that

(i) b′ /∈ SpanQ(b),

(ii) T0 < b′ < T1, and

(iii) for any k such that a′
− d0

k ∈ [ f 0
i ], b′

∈ e0
k + [g0

i ]
+.

(This is always possible since [g0
i ]

+ is infinite, being closed under scaling by posi-
tive elements of Q, and using compactness and ω-saturation.) Using Lemma 5.1, it
follows that for any k < ω and ` = 0, 1, [b′

− e`k] = [g`k ]. On the other hand, if
[g0

i ] = [g1
i ], then in picking the element b′ as above, we can ensure in addition that

b′
∈ e1

j − [g1
i ]

+, and that for every k such that d1
k − a′

∈ [ f 1
i ], b′

∈ e1
k − [g1

i ]
+; this

is enough to ensure that b′ satisfies the properties we want.
If

{
[g0

i ] : i < ω
}

and
{
[g1

i ] : i < ω
}

have no least elements, then we can use com-
pactness and ω-saturation to pick b′

∈ N such that for every i < ω, b′
∈ e0

i + [g0
i ]

+

and b′
∈ e1

i − [g1
i ]

+, and it automatically follows that b′ /∈ SpanQ(b). The “mixed
case” (one of these sets has a least element, the other does not) is handled similarly.
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Finally, if T0 is empty, note that T1 cannot have a least element (since if x ∈ T1
then 1

2 x must be as well), so the usual compactness argument ensures there is a b′ in
the right [·]-class such that b′ < T1. As above, we can also ensure that [b′

−e1
i ] = g1

i
for each i < ω. The case where T1 = ∅ is symmetric. �

With b′ as above, Lemma 5.1 ensures that tpqf(b, b′) = tpqf(a, a′).

Case C Cases A and B fail, but there is some i < n such that a′
∈ [ai ]≤.

Choose c0, c1 ∈ SpanQ(a) such that [c0] < [a′
] < [c1] but the “distances” are

minimized; that is, if possible, there is some positive m such that Rm(c0, a′) holds
(and similarly for c1), and such a number m is minimized. (Note that since a′

6= 0,
we have [0] < [a′

], so such a c0 always exists, although it may be zero.) There
are subcases: for instance, if Rm0(c0, a′) and Rm1(a

′, c1) hold, then we just need to
pick b′

∈ N such that for the corresponding d0, d1 ∈ SpanQ(b), Rm0(d0, b′) and
Rm1(b

′, d1) hold. On the other hand, if there is no such m0 and no such m1, then
compactness and ω-saturation yield a corresponding b′

∈ N . The final subcase (a′

is a finite distance from one of the ci but not the other) is handled in the same way,
noting that axiom 8 ensures that if there are infinitely many components of P(N )
between d0 and d1, then there are always elements b′

∈ N such that Rk(d0, b′) or
Rk(b′, d1), for any k < ω.

Case D Previous cases fail, but there is some i < n and some positive m such that
Rm(ai , |a′

|) holds.
Choose i and m such that m is minimal. By Lemma 5.1, the truth values of

Rk(c, a′) and Rk(a′, c) for any c ∈ SpanQ(a) are now uniquely determined. By
axiom 8, there is a corresponding b′

∈ N .

Case E The only remaining case is that |a′
| is greater than every |ai | and

Rm(ai , |a′
|) fails for every possible i and every m < ω. Then by Lemma 5.1,

the only additional information needed to determine tpqf((a, a′),M) is the sign
of a′. A corresponding b′

∈ N exists by axiom 8 and ω-saturation. �

Corollary 5.4 If M |H T and X ⊂ M is infinite and definable then X has interior
yet T is not weakly o-minimal.

Proof This follows immediately from the quantifier elimination. �

Corollary 5.5 T does not have the independence property.

Proof Let I be indiscernible over ∅ with uncountable cofinality. Without loss of
generality, I is increasing, and there are three possibilities: either all elements of I
are in the same [·]-class, or else we have some n < ω such that Rn(ai , ai+1) holds
for every ai ∈ I , or else neither of these hold and there are infinitely many [·]-classes
between two adjacent elements of I . Suppose that A is any finite set. Then there are
only finitely many [·]-classes in dcl(A) (by Lemma 5.1), and in either of the three
cases, it is straightforward to check using quantifier elimination that some cofinal
subsequence of I is indiscernible over A. �

Corollary 5.6 T is dp-minimal.

Proof Suppose that t (x, y) is any term in T . Since the only function symbols in
the language of T are + and the unary function symbols sq , and these are assumed
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to satisfy the usual commutative, associate, and distributive laws, it follows that for
some q ∈ Q and some term s(y),

T ` ∀x∀y
[
t (x, y) = sq(x)+ s(y)

]
.

If a, b ∈ M |H T , then there is some c ∈ P(M) such that [c] > [s(a)] and
[c] > [s(b)]. By Lemma 5.1, as long as q 6= 0, M |H P(t (c, a)) ∧ P(t (c, b)).
So for any t (x, y) that depends nontrivially on x ,

T ` ∀y0∀y1∃x
[
P(t (x, y0)) ∧ P(t (x, y1))

]
.

The same argument works with ¬P or ¬Rn in place of P , and for finite conjunctions
of such formulas.

This means that if {ϕ(x; ai ) : i < ω} is a k-inconsistent sequence of formulas in
T , each of which is a conjunction of atomic formulas and negated atomic formulas,
then each ϕ(x; ai ) can be assumed to be a conjunction of formulas of the following
three forms:

t0(x; ai ) < t1(x; ai ),

¬ (t0(x; ai ) < t1(x; ai )) , or
Rn(t0(x; ai ), t1(x; ai )).

So each ϕ(x; ai ) is a finite union of convex sets. From here we can argue as in the
weakly o-minimal case to show that T is inp-minimal. �

Thus we have a nonweakly o-minimal theory T extending the theory of divisible
ordered Abelian groups which is dp-minimal. Notice though that Corollary 5.4 indi-
cates that infinite definable subsets in models of T are not too complicated; namely,
they must have interior. Simon [22] has recently shown that this must be the case,
specifically an infinite definable subset of a dp-minimal divisible ordered Abelian
group must have interior.

6 DP-Minimality of the p-adics

In this section our main goal is to show that if Qp is a p-adic field, then Th(Qp)
is dp-minimal. Indeed, we show the following stronger result: if K is a expansion
of Qp such that Th(K ) is a p-minimal theory (e.g., K = Qp or K = Qan

p , for p-
minimality see [12]), then Th(K ) is dp-minimal. The main technical portion of our
proof is written in a more general context than that of p-minimal fields in the hopes
that the ideas may be generalized to other valued fields.

We begin by establishing some notation and fixing the context for our work. In
what follows, N denotes the positive integers. Let K be a valued field, considered
as a one-sorted structure in the language Lvf = Lring ∪ {v(x) ≤ v(y)}. Write
v : K ×

→ 0 for the valuation and value group. We allow the possibility that K has
extra structure beyond Lvf. We assume that K is very saturated. Furthermore, we
assume that K is elementarily equivalent to a structure K0 such that the value group
of K0 is Z. For example, K0 is either Qp or Qan

p , and K is a elementary extension of
K0. Let R be the valuation ring of K and let m be its maximal ideal.

Fix k ∈ N. Note that 1 + mk is a definable subgroup of K ×. Adapting no-
tation from Hrushosvki, we write RVk(K ) for the quotient K ×/(1 + mk). Let
πk : K ×

→ RVk(K ) be the quotient map. For notational convenience, we define
πk(0) to be a new element ∞ which we adjoin to RVk(K ).
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Proposition 6.1 For all z ∈ K and all x, y ∈ K \ {z}, πk(x − z) = πk(y − z) if
and only if v(x − y) ≥ v(y − z)+ k.

Proof Since the claim is first-order, it suffices to verify it in K0:

πk(x − z) = πk(y − z) ⇐⇒
x − z
y − z

− 1 ∈ mk

⇐⇒
x − y
y − z

∈ mk

⇐⇒ v(x − y) ≥ v(y − z)+ k.

Note for the last equivalence we use the fact that the value group of K0 is Z. �

The following definition isolates a property of cells in Qp. (See Definition 6.10
below for the definition of a cell.)

Definition 6.2 The formula ϕ(x; y0, y1, . . . , yl) is cell-like if there is k ∈ N such
that πk(x − y0) = πk(x ′

− y′

0) implies ϕ(x; y0, y1, . . . , yl) ↔ ϕ(x ′
; y′

0, y1, . . . , yl).
We call y0 the center of ϕ(x; y0, . . . , yn).

When ϕ(x, Ey) is a cell-like formula and S is the set defined by ϕ(x, d), we also say
that S is cell-like, and we refer to d0 as the center of S. In Proposition 6.12 below,
we verify that a cell in Qp is indeed cell-like. We say that an ICT pattern is cell-like
if both formulas in the ICT pattern are cell-like.

Suppose we have an ICT pattern with formulas ϕ1(x, Ey), ϕ2(x, Ey) and correspond-
ing parameter sequences 〈d1, j 〉 j∈N, 〈d2, j 〉 j∈N. Then, for notational convenience, we
let i range over {1, 2}, we write Si, j for the definable set {x ∈ K : ϕi (x, di, j )}, and
we write 〈Si, j 〉i, j to refer to the ICT pattern itself. We now state our main technical
result on cell-like ICT patterns.

Proposition 6.3 Let K be as above, and assume further that K has a finite residue
field. If 〈Si, j 〉i, j is a cell-like ICT pattern in K , then there is c ∈ K and there is a
cell-like ICT pattern 〈S̃i, j 〉i, j such that the center of each S̃i, j is c.

Proof Suppose that in K we have an ICT pattern, with the notation in the paragraph
above, where the formulas ϕ1(x, Ey) and ϕ2(x, Ey) are cell-like. We may assume that
the parameter sequences 〈d1, j 〉 j∈N and 〈d2, j 〉 j∈N are mutually indiscernible. Recall
that y0 is the center of ϕi (x; Ey). Write ci, j for (di, j )0; that is, ci, j is the center of
Si, j . Choose k large enough so that it witnesses that both ϕ1 and ϕ2 are cell-like. We
write π as an abbreviation for πk .

Without loss of generality, we may assume that the sequences 〈v(c1, j − c2,1)〉 j
and 〈v(c2, j − c1,1)〉 j are weakly increasing; that is, v(c1,1 − c2,1) ≤ v(c1,2 − c2,1)
and v(c2,1 − c1,1) ≤ v(c2,2 − c1,1). (If necessary, temporarily replace the parameter
sequences with ones of order type Z, then re-index.)

Claim 6.4 Either v(c1,1 − c2,1) + 2k ≤ v(c2,2 − c2,1) or v(c2,1 − c1,1) + 2k ≤

v(c1,2 − c1,1).

Proof We split into two cases: either v(c1,1 − c2,1) = v(c1,2 − c2,1) or not.

Case 1 Assume v(c1,1 − c2,1) = v(c1,2 − c2,1). By the indiscernibility of
〈c1, j 〉 j over {c2, j } j , we have v(c1, j − c2,1) = v(c1,1 − c2,1) for all j . Since the
residue field is finite, a pigeonhole argument shows that there are j < j ′ such
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that π2k(c1, j − c2,1) = π2k(c1, j ′ − c2,1). In fact, by indiscernibility, we have
π2k(c1,1 − c2,1) = π2k(c1,2 − c2,1). In other words,

v(c1,2 − c1,1) ≥ v(c2,1 − c1,1)+ 2k,

as desired.

Case 2 Now assume v(c1,1−c2,1) 6= v(c1,2−c2,1). Using the assumption before the
statement of the claim, we have v(c1,1 − c2,1) < v(c1,2 − c2,1). By indiscernibility,
〈v(c1, j − c2,1)〉 j is an increasing sequence in 0. Thus there is j > 1 such that
v(c1,1 − c2,1)+ 2k < v(c1, j − c2,1). In fact, by indiscernibility, we have

v(c1,1 − c2,1)+ 2k < v(c1,2 − c2,1). (1)

We now show that v(c2,2 − c2,1) ≥ v(c1,2 − c2,1). Suppose otherwise. By the
ultrametric inequality, v(c1,2 − c2,2) = v(c2,2 − c2,1). From the indiscernibility of
〈c1, j 〉 j over {c2, j } j , we have

v(c1,1 − c2,2) = v(c2,2 − c2,1) = v(c1,2 − c2,2).

Finally, from the indiscernibility of 〈c2, j 〉 j over {c1, j } j , we get

v(c1,1 − c2,1) = v(c1,2 − c2,1),

which contradicts (1). Thus, we have established

v(c2,2 − c2,1) ≥ v(c1,2 − c2,1).

Combining this inequality with (1), we have v(c2,2 − c2,1) ≥ v(c1,1 − c2,1) + 2k,
which completes the proof of the claim. �

By Claim 6.4, we may assume v(c2,2 − c2,1) ≥ v(c1,1 − c2,1)+2k. (Switch the rows
of the ICT pattern if necessary.) Using the indiscernibility of 〈c1, j 〉 j over {c2, j } j , we
get

v(c2,2 − c2,1) ≥ v(c1, j − c2,1)+ 2k (2)

for all j ∈ N.

Claim 6.5 If a ∈ (K \ S1,1) ∩ S1,2, then v(a − c2,1) < v(c1,2 − c2,1)+ k.

Proof Otherwise, v(a − c2,1) ≥ v(c1,2 − c2,1) + k ≥ v(c1,1 − c2,1) + k, so
π(a − c1,2) = π(c2,1 − c1,2) and π(a − c1,1) = π(c2,1 − c1,1). Thus, because
ϕ1 is cell-like, we have c2,1 ∈ S1,2 and c2,1 /∈ S1,1. However, this contradicts the
indiscernibility of 〈d1, j 〉 j over c2,1. �

Claim 6.6 If a ∈ S2,2 ∩
⋂

j>2(K \ S2, j ), then v(a − c2,1) is not in the interval
(v(c1,2 − c2,1)− k, v(c1,2 − c2,1)+ k).

Proof In order to prove the claim, we prove the following:

there is some ` > 1 such that a ∈ S2,` ∩

⋂
j>`

(K \ S2, j ) implies

v(a − c2,1) is not in the interval (v(c1,2 − c2,1)− k, v(c1,2 − c2,1)+ k). (3)

Once we have established (3), we are done: by saturation, some finite part of the
intersection suffices in (3), and thus, by indiscernibility, we can replace ` by 2.
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Suppose (3) is false. For each ` > 1, choose a` ∈ S2,` ∩
⋂

j>`(K \ S2, j ) such
that v(a`−c2,1) is in the specified interval. The interval is finite; because the residue
field is finite, the set {π(a` − c2,1) : ` > 1} is finite. Choose `1 > `2 > 1 such that

π(a`1 − c2,1) = π(a`2 − c2,1).

For each ` > 1, the choice of a` and the inequality (2) yield

v(a` − c2,1) < v(c1,2 − c2,1)+ k ≤ v(c2,2 − c2,1)− k.

By the indiscernibility of 〈c2, j 〉 j over c1,2, we get

v(a` − c2,1) < v(c1,2 − c2,1)+ k ≤ v(c2,`1 − c2,1)− k;

thus, π(a` − c2,`1) = π(a` − c2,1). By the choice of `1 and `2, we get

π(a`1 − c2,`1) = π(a`1 − c2,1) = π(a`2 − c2,1) = π(a`2 − c2,`1).

Because ϕ2 is cell-like, the previous equation contradicts our choices a`1 ∈ S2,`1

and a`2 /∈ S2,`1 . This contradiction establishes (3) and completes the proof of the
claim. �

For i ∈ {1, 2}, build a new parameter sequence 〈d̂i, j 〉 j>1, where d̂i, j = c2,1
_(di, j )>0.

Note that these new sequences are mutually indiscernible. Let Ŝi, j be the correspond-
ing definable sets.

Claim 6.7 The partial type

Ŝ1,2 ∩ (K \ Ŝ1,3) ∩ Ŝ2,2 ∩ (K \ Ŝ2,3) (4)

is consistent.

Proof Choose a ∈ (K \ S1,1)∩ S1,2 ∩ (K \ S1,3)∩ S2,2 ∩
⋂

j>2(K \ S2, j ). We show
that a satisfies (4). By Claim 6.5, we know v(a − c2,1) < v(c1,2 − c2,1) + k. By
Claim 6.6, v(a − c2,1) is not in the interval (v(c1,2 − c2,1)− k, v(c1,2 − c2,1)+ k), so
we have v(a − c2,1) ≤ v(c1,2 − c2,1)− k. Consequently, π(a − c1,2) = π(a − c2,1).
Also, v(c1,2 − c2,1) ≤ v(c1,3 − c2,1) (by the weakly-increasing assumption), so
v(a − c2,1) ≤ v(c1,3 − c2,1) − k; that is, π(a − c1,3) = π(a − c2,1). Since ϕ1 is
cell-like and a ∈ S1,2 (i.e., ϕ1(a, c1,2(d1,2)>0) is true), we know ϕ1(a, c2,1(d1,2)>0)

is true, so a ∈ Ŝ1,2. Similarly, since a /∈ S1,3 (i.e., ϕ1(a, c1,3(d1,3)>0) is false), we
have ϕ1(a, c2,1(d1,3)>0) is false, so a /∈ Ŝ1,3.

We established above that v(a −c2,1)+k ≤ v(c1,2 −c2,1). Since v(c1,2 −c2,1) ≤

v(c2,2 − c2,1) (by (2)) and v(c1,2 − c2,1) ≤ v(c2,3 − c2,1) (by indiscernibility of
〈c2, j 〉 j over c1,2), we have π(a − c2,2) = π(a − c2,1) and π(a − c2,3) = π(a − c2,1).
Since ϕ2 is cell-like and a ∈ S2,2, we know a ∈ Ŝ2,2. Similarly, since a /∈ S2,3, we
know a /∈ Ŝ2,3. �

Examining the proof of Fact 2.8 we obtain the following result specific to the current
setting.

Fact 6.8 There are mutually indiscernible parameter sequences 〈d ′

1, j 〉 j∈N and
〈d ′

2, j 〉 j∈N such that tp(d ′

1,1d ′

1,2d ′

2,1d ′

2,2) = tp(d̂1,1d̂1,2d̂2,1d̂2,2) and for i ∈ {1, 2},
the formulas ϕi (x, Ey1) ↔ ¬ϕi (x, Ey2) together with the parameter sequences
〈d ′

i,2 j
_d ′

i,2 j+1〉 j∈N form an ICT pattern.
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In particular, since tp(d ′

1,1d ′

1,2d ′

2,1d ′

2,2) = tp(d̂1,1d̂1,2d̂2,1d̂2,2), we know that there
is some element c such that each d ′

i, j is c_(d ′

i, j )>0. Let ϕ̃i be the formula
ϕi (x, y0, (Ey1)>0) ↔ ¬ϕi (x, y0, (Ey2)>0). Then, we still get an ICT pattern from
the formulas ϕ̃i and the parameters ẽi, j = c_(di,2 j )>0

_(di,2 j+1)>0. Note that each
ϕ̃i is cell-like, because both ϕ1 and ϕ2 are. Therefore, we have found a cell-like
ICT pattern in which all sets have the same center. This completes the proof of
Proposition 6.3. �

Below, we use Proposition 6.3 to establish dp-minimality of the p-adics. But first,
we state a more general “transfer theorem” for ICT patterns that may be useful in
other valued fields.

Theorem 6.9 Let K be as above, and assume K has finite residue field. If there is a
cell-like ICT pattern in K , then there is an ICT pattern in RVk(K ), for some k ∈ N.

Proof Suppose there is some cell-like ICT pattern in K . Let 〈Si, j 〉i∈{1,2}, j∈N be the
ICT pattern guaranteed by Proposition 6.3; that is, there is c ∈ K such that each
Si, j is cell-like with center c. We may assume the parameter sequences are mutually
indiscernible. Choose k to be large enough to witness that 〈Si, j 〉i, j is cell-like, and
let π be an abbreviation for πk . Let Ti, j ⊆ RVk(K ) be the image of Si, j under the
map x 7→ π(x − c). By Fact 2.8, it suffices to show that

T1,1 ∩ (RVk \ T1,2) ∩ T2,1 ∩ (RVk \ T2,2)

is consistent. Take

a ∈ S1,1 ∩ (K \ S1,2) ∩ S2,1 ∩ (K \ S2,2).

We claim that

π(a − c) ∈ T1,1 ∩ (RVk \ T1,2) ∩ T2,1 ∩ (RVk \ T2,2).

Only π(a − c) /∈ T1,2 and π(a − c) /∈ T2,2 require an argument. Suppose for
a contradiction that π(a − c) ∈ T1,2. Thus, we can choose b ∈ S1,2 such that
π(b − c) = π(a − c). But S1,2 is cell-like with center c, so a ∈ S1,2, contradicting
our choice of a. An analogous argument shows π(a − c) /∈ T2,2. �

We now introduce background information on cells in a p-minimal field, which we
use to show that p-minimality implies dp-minimality. Let K be a p-minimal field
(for example, K0 is either Qp or Qan

p ).

Definition 6.10 ([8])

1. An annulus in K is a set of the form

Ann(c, γ, δ) = {x ∈ K : γ ≥ v(x − c) ≥ δ},

where γ ∈ 0 ∪ {∞}, δ ∈ 0 ∪ {−∞} and c ∈ K .
2. Let Pn be set of nth powers in K . A power coset in K is a set of the form

Pown,λ(c) = {x ∈ K : x − c ∈ λPn},

where, n ∈ N, λ ∈ N ∪ {0}, and c ∈ K .
3. A cell in K is a nonempty set of the form

Celln,λ(c, γ, δ) = Ann(c, γ, δ) ∩ Pown,λ(c).

We call c the center of Celln,λ(c, γ, δ).
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Remark 6.11 For each n there are only finitely many cosets of Pn in K ∗, each
represented by some λ ∈ N. Thus we consider λ to be a term in the language rather
than a parameter.

Proposition 6.12 A cell is cell-like.

Proof Since Definition 6.2 is first-order, it suffices to work in K0. It is clear that
Ann(c, γ, δ) is cell-like with center c (as witnessed by any k ∈ N). Fix n, λ ∈ N.
It suffices to show that Pown,λ(c) is also cell-like with center c. We verify that
k = 2v(n)+ 1 is a witness for Definition 6.2.

Take x, x ′, c, c′
∈ Qp such that x − c ∈ λPn and πk(x − c) = πk(x ′

− c′). We
want to show that x ′

− c′
∈ λPn . The case that x = c is immediate, so we assume

x 6= c. Set y = λ−1(x − c), y′
= λ−1(x ′

− c′). We know y ∈ Pn , so v(y) is divisible
by n. Also, because πk is multiplicative, we have πk(y) = πk(y′). In particular, we
know v(y) = v(y′). Let y0 = p−v(y)y and y′

0 = p−v(y)y′; thus, v(y0) = v(y′

0) = 0.
Furthermore, πk(y0) = πk(y′

0). By Proposition 6.1, v(y0 − y′

0) ≥ v(y0) + k = k.
(Here we are using the fact that both y0 and y′

0 are nonzero; this follows from the
assumption that x 6= c.) Let f (X) = Xn

− y′

0. Let z0 ∈ R be an nth root of y0.
Then,

v( f (z0)) = v(y0 − y′

0) ≥ k = 2v(n)+ 1 > 2v(n) = 2v( f ′(z0)).

Therefore, by the Hensel-Rychlik Theorem (see [10]), we know there is z′

0 ∈ R such

that f (z′

0) = 0. Let z′
= p

v(y)
n z′

0; hence, (z′)n = y′, so y′
∈ Pn . Finally, we see that

x ′
− c′

∈ λPn , as desired. �

Theorem 6.13 If K is a p-minimal field, then Th(K ) is dp-minimal.

Proof For a contradiction, suppose that there is an ICT pattern in K . Because
K is p-minimal and Qp has cell-decomposition (see [9]), we know that in K
every formula with one free variable is equivalent to a finite disjunction of cells.
By Fact 2.13, we get an ICT pattern with formulas Celln1,λ1(x, y0, y1, y2) and
Celln2,λ2(x, y0, y1, y2). By Proposition 6.12, this ICT pattern is cell-like. Thus, by
Proposition 6.3 (and its proof), we know that there is an ICT pattern comprised of
the formulas ϕi (x, Ey) = (Cellni ,λi (x, y0, y1, y2) ↔ ¬ Cellni ,λi (x, y0, y3, y4)) and
parameter sequences 〈di, j 〉 j∈N, where di, j = c_ei, j

_ fi, j . (Here, i ∈ {1, 2} and
each ei, j and fi, j is a tuple of length 2.) The power coset in Cellni ,λi (x, di, j ) is
Powni ,λi (x, c); thus, for fixed i , the power coset is constant as j varies.

Claim 6.14 The single formula

ψ(x, Ey) = (Ann(x, y0, y1, y2) ↔ ¬ Ann(x, y0, y3, y4))

and the parameter sequences 〈d1, j 〉 j and 〈d2, j 〉 j form an ICT pattern.

Proof Fix j1, j2 ∈ N and let a be a realization of ϕ1(x, d1, j1)∧
∧

j 6= j1 ¬ϕ1(x, d1, j )

∧ ϕ2(x, d2, j2) ∧
∧

j 6= j2 ¬ϕ2(x, d2, j ). We show that a satisfies

ψ(x, d1, j1) ∧

∧
j 6= j1

¬ψ(x, d1, j ) ∧ ψ(x, d2, j2) ∧

∧
j 6= j2

¬ψ(x, d2, j ).

Since a satisfies ϕi (x, di, ji ) = (Cellni ,λi (x, c, ei, ji ) ↔ ¬ Cellni ,λi (x, c, fi, ji )), we
know that the formulas Cellni ,λi (x, c, ei, ji ) and Cellni ,λi (x, c, fi, ji ) disagree on a. It
follows that a satisfies Powni ,λi (x, c) (for otherwise, both Cellni ,λi (x, c, ei, ji ) and
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Cellni ,λi (x, c, fi, ji ) are false of a). Hence, Ann(x, c, ei, ji ) and Ann(x, c, fi, ji )
disagree on a, so a satisfies ψ(x, di, ji ). Moreover, for j 6= ji , the formu-
las Cellni ,λi (x, c, ei, j ) and Cellni ,λi (x, c, fi, j ) agree on a. Since a satisfies
Powni ,λi (x, c), we conclude that Ann(x, c, ei, j ) and Ann(x, c, fi, j ) agree on a.
Hence, a does not satisfy ψ(x, di, j ). This completes the proof of the claim. �

Let Si, j be the set defined by ψ(x, di, j ). Let S̃i j be the image of Si, j under the
map x 7→ v(x − c). Then, 〈S̃i, j 〉i, j is a (quantifier-free definable) ICT pattern in
(0,<) ≡ (Z, <), which is clearly impossible. From this contradiction we conclude
that there is no ICT pattern in K , so K is dp-minimal. �
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