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Reasonable Ultrafilters, Again

Andrzej Rosłanowski and Saharon Shelah

Abstract We continue investigations of reasonable ultrafilters on uncountable
cardinals defined in previous work by Shelah. We introduce stronger properties
of ultrafilters and we show that those properties may be handled in λ-support
iterations of reasonably bounding forcing notions. We use this to show that
consistently there are reasonable ultrafilters on an inaccessible cardinal λ with
generating systems of size less than 2λ. We also show how ultrafilters generated
by small systems can be killed by forcing notions which have enough reasonable
completeness to be iterated with λ-supports.

1 Introduction

Reasonable ultrafilters were introduced in Shelah [12] in order to suggest a line of re-
search that would repeat in some sense the beautiful theory created around the notion
of P-points on ω. Most of the generalizations of P-points to uncountable cardinals in
the literature go in the direction of normal ultrafilters and large cardinals (see, e.g.,
Gitik [3]), but one may be interested in the opposite direction. If one wants to keep
away from normal ultrafilters on λ, one may declare interest in ultrafilters which
do not include some clubs and even demand that quotients by a closed unbounded
subset of λ do not extend the club filter of λ. Such ultrafilters are called weakly rea-
sonable ultrafilters (see Definition 2.1, Observation 2.2). But if we are interested in
generalizing P-points, we have to consider also properties that would correspond to
any countable family of members of the ultrafilter has a pseudo-intersection in the
ultrafilter. The choice of the right property in the declared context of very nonnor-
mal ultrafilters is not clear, and one of the goals of the present paper is to show that
the very reasonable ultrafilters suggested in Shelah [12] (see Definition 2.3 here) are
very reasonable indeed; that is, we may prove interesting theorems on them.
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In Section 2 we recall some of the concepts and results presented in Shelah [12]
and we introduce strong properties of generating systems (super and strong reason-
ability, see Definitions 2.11, 2.12) and we show that there may exist super reasonable
systems which generate ultrafilters (Propositions 2.15, 2.16).

In Section 3 we recall from [7] some properties of forcing notions relevant for
λ-support iterations. We also improve in some sense a result of [7] and we show a
preservation theorem for the nice double a-bounding property (Theorem 3.13).

Then in Section 4 we show that super reasonable families generating ultrafilters
will be still at least strongly reasonable and will continue to generate ultrafilters after
forcing with λ-support iterations of A-bounding forcing notions. Therefore, for an
inaccessible cardinal λ, it is consistent that 2λ = λ++ and there is a very reasonable
ultrafilter generated by a system of size λ+ (Corollary 4.5). It should be stressed that
“generating an ultrafilter” has the specific meaning stated in Definition 2.3(3). In par-
ticular, “having a small generating system” does not imply “having small ultrafilter
base.”

Section 5 shows that some technical inconveniences of the proofs from Section 4
reflect the delicate nature of our concepts, not necessarily our lack of knowledge. We
give an example of a nicely double a-bounding forcing notion which kills ultrafilters
generated by systems from the ground model. Then we show that for an inaccessible
cardinal λ, it is consistent that 2λ = λ++ and there is no ultrafilter generated by a
system of size λ+ (see Corollary 4.5).

Studies of ultrafilters generated according to the schema introduced in [12] are
also carried out in Rosłanowski and Shelah [9].

Notation 1.1 Our notation is rather standard and compatible with that of classical
textbooks (such as Jech [5]). In forcing we keep the older convention that a stronger
condition is the larger one.

1. Ordinal numbers will be denoted by the lowercase initial letters of the Greek
alphabet (α, β, γ, δ . . .) and also by i, j (with possible sub- and superscripts).
Cardinal numbers will be called κ, λ, µ (with possible sub- and superscripts).
λ is always assumed to be regular, sometimes even strongly inaccessible.

By χ we will denote a sufficiently large regular cardinal; H(χ) is the
family of all sets hereditarily of size less than χ . Moreover, we fix a well
ordering <∗

χ of H(χ).
2. A sequence is a function with the domain being a set of ordinals. For two

sequences η, ν we write ν C η whenever ν is a proper initial segment of η,
and ν E η when either ν C η or ν = η. The length of a sequence η is the
order type of its domain and it is denoted by lh(η).

3. We will consider several games of two players. One player will be called
Generic or Complete or just com, and we will refer to this player as “she”.
Her opponent will be called Antigeneric or Incomplete or just inc and
will be referred to as “he”.

4. For a forcing notion P, all P-names for objects in the extension via P will
be denoted with a tilde below (e.g., τ

˜
, X

˜
). The canonical P-name for the

generic filter in P is called G
˜

P. The weakest element of P will be denoted by
∅P (and we will always assume that there is one, and that there is no other
condition equivalent to it). We will also assume that all forcing notions under
consideration are atomless.
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By “λ-support iterations” we mean iterations in which domains of condi-
tions are of size ≤ λ. However, we will pretend that conditions in a λ-support
iteration Q̄ = 〈Pζ ,Q

˜
ζ : ζ < ζ ∗

〉 are total functions on ζ ∗ and for p ∈ lim(Q̄)
and α ∈ ζ ∗

\ Dom(p) we will let p(α) = ∅
˜

Q
˜
α .

5. For a filter D on λ, the family of all D-positive subsets of λ is called D+. (So
A ∈ D+ if and only if A ⊆ λ and A ∩ B 6= ∅ for all B ∈ D.) The club filter
of λ is denoted by Dλ.

2 More Reasonable Ultrafilters on λ

Here we recall some basic definitions and results from [12], and then we introduce
even stronger properties of ultrafilters and/or generating systems. We also show that
assumptions like ♦Sλ+λ

imply the existence of such objects.
As explained in the introduction, we are interested in ultrafilters (on an uncount-

able cardinal λ) which are far from being normal. Weakly reasonable ultrafilters
defined below do not contain some clubs even if we look at their quotients by a club.

Definition 2.1 ([12], Definition 1.4) We say that a uniform ultrafilter D on λ is
weakly reasonable if for every function f ∈

λλ there is a club C of λ such that⋃
{[δ, δ + f (δ)) : δ ∈ C} /∈ D.

Observation 2.2 ([12], Observation 1.5) Let D be a uniform ultrafilter on λ. Then
the following conditions are equivalent:

(A) D is weakly reasonable,
(B) for every increasing continuous sequence 〈δξ : ξ < λ〉 ⊆ λ there is a club C∗

of λ such that ⋃ {
[δξ , δξ+1) : ξ ∈ C∗

}
/∈ D.

We want to investigate ultrafilters on λ which are generated by systems defining
“largeness in λ” by giving a condition based on “largeness in intervals below λ.”
The family Q0

λ introduced below is a natural generalization of the approach used
in [6, Sections 5, 6]. The directness of G∗ is an easy way to guarantee that fil(G∗) is
a filter, and (<λ+)-directness has the flavor of P-pointness.

Definition 2.3 ([12], Definition 2.5)

1. Let Q0
λ consist of all tuples

p = (C p, 〈Z p
δ : δ ∈ C p

〉, 〈d p
δ : δ ∈ C p

〉)

such that
(i) C p is a club of λ consisting of limit ordinals only, and for δ ∈ C p:

(ii) Z p
δ =

[
δ,min

(
C p

\ (δ + 1)
))

and
(iii) d p

δ ⊆ P (Z p
δ ) is a proper nonprincipal ultrafilter on Z p

δ .
2. For q ∈ Q0

λ we let

fil(q) def
=

{
A ⊆ λ : (∃ε < λ)(∀δ ∈ Cq

\ ε)(A ∩ Zq
δ ∈ dq

δ )
}
,

and for a set G∗
⊆ Q0

λ we let fil(G∗)
def
=

⋃
{fil(p) : p ∈ G∗

}. We also define
a binary relation ≤

0 on Q0
λ by

p ≤
0 q if and only if fil(p) ⊆ fil(q).
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3. We say that an ultrafilter D on λ is reasonable if it is weakly reasonable (see
Definition 2.1) and there is a directed (with respect to ≤

0) set G∗
⊆ Q0

λ such
that D = fil(G∗). The family G∗ may be called the generating system for D.

4. An ultrafilter D on λ is said to be very reasonable if it is weakly reasonable
and there is a (<λ+)-directed (with respect to ≤

0) set G∗
⊆ Q0

λ such that
D = fil(G∗).

Definition 2.4 Suppose that
(a) X is a nonempty set and e is an ultrafilter on X ,
(b) dx is an ultrafilter on a set Zx (for x ∈ X ).

We let
e⊕

x∈X

dx =
{

A ⊆

⋃
x∈X

Zx : {x ∈ X : Zx ∩ A ∈ dx } ∈ e
}
.

(Clearly,
e⊕

x∈X
dx is an ultrafilter on

⋃
x∈X

Zx .)

Proposition 2.5 ([12], Proposition 2.9) Let p, q ∈ Q0
λ. Then the following are

equivalent:
(a) p ≤

0 q,
(b) there is ε < λ such that(

∀α ∈ Cq
\ ε

)(
∀A ∈ dq

α

)(
∃β ∈ C p)(A ∩ Z p

β ∈ d p
β

)
,

(c) there is ε < λ such that if α ∈ Cq
\ ε, β0 = sup

(
C p

∩ (α + 1)
)
,

β1 = min
(
C p

\ min(Cq
\ (α + 1))

)
, then there is an ultrafilter e on

[β0, β1) ∩ C p such that

dq
α =

{
A ∩ Zq

α : A ∈

e⊕
{d p
β : β ∈ [β0, β1) ∩ C p

}
}
.

Observation 2.6 (Compare [12], Proposition 2.3(4)) If p ∈ Q0
λ, A ⊆ λ, then there

is q ∈ Q0
λ such that p ≤

0 q and either A ∈ fil(q) or λ \ A ∈ fil(q).

Definition 2.7 ([12], Definition 2.10) Let p ∈ Q0
λ. Suppose that X ∈ [C p

]
λ and

C ⊆ C p is a club of λ such that

if α < β are successive elements of C, then |[α, β) ∩ X | = 1.

(In this situation we say that p is restrictable to 〈X,C〉.) We define the restric-
tion of p to 〈X,C〉 as an element q = p�〈X,C〉 ∈ Q0

λ such that Cq
= C , and

if α < β are successive elements of C , x ∈ [α, β) ∩ X , then Zq
α = [α, β) and

dq
α = {A ⊆ Zq

α : A ∩ Z p
x ∈ d p

x }.

Proposition 2.8 ([12], Proposition 2.11)

1. If G∗
⊆ Q0

λ is ≤
0-directed and |G∗

| ≤ λ, then G∗ has a ≤
0-upper bound.

(Hence, in particular, fil(G∗) is not an ultrafilter.)
2. Assume that G∗

⊆ Q0
λ is ≤

0-directed and ≤
0-downward closed, p ∈ G∗,

X ∈ [C p
]
λ, and C ⊆ C p is a club of λ such that p is restrictable to 〈X,C〉.

If
⋃

x∈X
Z p

x ∈ fil(G∗), then p�〈X,C〉 ∈ G∗.

The following definition is used here to simplify our notation in Definition 2.11 only.
However, these concepts play a more central role in [9].
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Definition 2.9

1. Let Q∗
λ be the family of all sets r such that

(a) members of r are triples (α, Z , d) such that α < λ, Z ⊆ [α, λ),
ℵ0 ≤ |Z | < λ, and d is a nonprincipal ultrafilter on Z ,

(b)
(
∀ξ < λ

)(
|{(α, Z , d) ∈ r : α = ξ}| < λ

)
, and |r | = λ.

For r ∈ Q∗
λ we define

fil∗(r) =
{

A ⊆ λ :
(
∃ε < λ

)(
∀(α, Z , d) ∈ r

)(
ε ≤ α ⇒ A ∩ Z ∈ d

)}
,

and we define a binary relation ≤
∗ on Q∗

λ by

r1 ≤
∗ r2 if and only if (r1, r2 ∈ Q∗

λ and) fil∗(r1) ⊆ fil∗(r2).

2. For a set G∗ ⊆ Q∗
λ we let fil∗(G∗) =

⋃ {
fil∗(r) : r ∈ G∗}.

3. We say that an r ∈ Q∗
λ is strongly disjoint if and only if

(a)
(
∀ξ < λ

)(
|{(α, Z , d) ∈ r : α = ξ}| < 2

)
, and

(b)
(
∀(α1, Z1, d1), (α2, Z2, d2) ∈ r

)(
α1 < α2 ⇒ Z1 ⊆ α2

)
.

4. For p ∈ Q0
λ we let #(p) = {(α, Z p

α , d p
α ) : α ∈ C p

}.

Observation 2.10

1. If p ∈ Q0
λ then #(p) ∈ Q∗

λ is strongly disjoint and fil(p) = fil∗(#(p)).
Also, if r ∈ Q∗

λ is strongly disjoint, then fil∗(r) = fil(p) for some p ∈ Q0
λ.

2. Let r, s ∈ Q∗
λ. Then r ≤

∗ s if and only if there is ε < λ such that(
∀(α, Z , d) ∈ s

)(
∀A ∈ d

)(
α > ε ⇒

(
∃(α′, Z ′, d ′) ∈ r

)(
A ∩ Z ′

∈ d ′
))
.

The various definitions of super reasonable ultrafilters introduced in Definition 2.11
below are motivated by the proof of “the Sacks forcing preserves P-points.” In that
proof, a fusion sequence is constructed so that at a stage n < ω of the construction
one deals with finitely many nodes in a condition (the nodes that are declared to be
kept). We would like to carry out this kind of argument, for example, for forcing
notions used in [8, B.8.3, B.8.5], but now we have to deal with < λ nodes in a tree,
and the ultrafilter we try to preserve is not that complete. So what do we do? We
deal with finitely many nodes at a time eventually taking care of everybody. One can
think that in the definition below the set Iα is the set of nodes we have to keep and
the finite sets uα,i are the nodes taken care of at a substage i .

The technical aspects of Definition 2.11 are motivated by the iteration theorems in
[7] and [10]: our games here are tailored to fit the games played on trees of conditions
in λ-support iterations (see Theorems 4.2, 4.4 later). As said earlier, the main goal is
to have a property of G∗ which implies the preservation of “fil(G∗) is an ultrafilter”
by many forcing notions. We would also love to preserve that property itself, but
we failed to achieve it. The “super reasonability” is what we need to preserve the
ultrafilter (see Theorem 4.2); “strong reasonability” is what we can prove about G∗

in the extension (see Theorem 4.4).

Definition 2.11 Let G∗
⊆ Q0

λ and let µ̄ = 〈µα : α < λ〉 be a sequence of
cardinals, 2 ≤ µα ≤ λ for α < λ.

1. We define a game a�
µ̄ (G

∗) between two players, com and inc. A play of

a�
µ̄ (G

∗) lasts λ steps and at a stage α < λ of the play the players choose
Iα, iα, ūα and 〈rα,i , r ′

α,i , (βα,i , Zα,i , dα,i ) : i < iα〉 applying the following
procedure.
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(i) First, inc chooses a nonempty set Iα of cardinality < µα and an enu-
meration ūα = 〈uα,i : i < iα〉 of [Iα]<ω (so iα < µα · ℵ0).

(ii) Next the two players play a subgame of length iα . In the i th move of the
subgame,

(a) com chooses rα,i ∈ G∗, and then
(b) inc chooses r ′

α,i ∈ G∗ such that rα,i ≤
0 r ′

α,i , and finally
(c) com picks (βα,i , Zα,i , dα,i ) ∈ #

(
r ′

α,i
)

such that βα,i > α.
In the end of the play com wins if and only if

(�) there is r ∈ G∗ such that for every j̄ =〈 jα : α < λ〉 ∈
∏
α<λ

Iα we have

{(βα,i , Zα,i , dα,i ) : α < λ, jα ∈ uα,i and i < iα} ≤
∗ #(r).

A game a�
µ̄ (G

∗) is defined similarly to a�
µ̄ (G

∗) except (�) is weakened to
(�) for every j̄ ∈

∏
α<λ

Iα the set
⋃

{Zα,i : α < λ, i < iα and jα ∈ uα,i }

belongs to fil(G∗).
2. We say that the family G∗ is µ̄-super reasonable (µ̄-super− reasonable, re-

spectively) if
(i) G∗ is (<λ+)-directed (with respect to ≤

0), and
(ii) if s ∈ G∗, r ∈ Q0

λ and for some α < λ we have Cr
= Cs

\ α and
dr
β = ds

β for β ∈ Cr , then r ∈ G∗, and

(iii) inc has no winning strategy in the game a�
µ̄ (G

∗) ( a�
µ̄ (G

∗), respec-
tively).

3. We say that a uniform ultrafilter D on λ is µ̄-super reasonable (µ̄-super− rea-
sonable, respectively) if there is a µ̄-super reasonable (µ̄-super− reasonable,
respectively) set G∗

⊆ Q0
λ such that D = fil(G∗).

4. If µα = λ for all α < λ, then we omit µ̄ and say just super reason-
able or super− reasonable (in reference to both ultrafilters on λ and families
G∗

⊆ Q0
λ). Also in this case we may write a� instead of a�

µ̄ .

Definition 2.12 Let G∗
⊆ Q0

λ be directed with respect to ≤
0 and let µ̄ = 〈µα :

α < λ〉 be a sequence of cardinals, 2 ≤ µα ≤ λ for α < λ.

1. A game a⊕

µ̄ (G
∗) between two players, com and inc is defined as follows.

A play of a⊕

µ̄ (G
∗) lasts λ steps and at a stage α < λ of the play the play-

ers choose Iα, iα, ūα and 〈rα,i , δα,i , (βα,i , Zα,i , dα,i ) : i < iα〉 applying the
following procedure.
(i) First, inc chooses a nonempty set Iα of cardinality < µα , and then com

chooses iα < λ and a sequence ūα = 〈uα,i : i < iα〉 of nonempty finite
subsets of Iα such that Iα =

⋃
i<iα

uα,i .

(ii) Next the two players play a subgame of length iα . In the i th move of the
subgame,

(a) com chooses rα,i ∈ G∗, and then
(b) inc chooses δα,i < λ, and finally
(c) com picks (βα,i , Zα,i , dα,i ) ∈ #

(
rα,i

)
such that βα,i is above δα,i

and α.
In the end of the play com wins if and only if
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(⊕) there is r ∈ G∗ such that for every j̄ = 〈 jα : α < λ〉 ∈
∏
α<λ

Iα we have

{(βα,i , Zα,i , dα,i ) : α < λ, jα ∈ uα,i and i < iα} ≤
∗ #(r).

A game a	

µ̄ (G
∗) is defined similarly to a⊕

µ̄ (G
∗) except (⊕) is weakened to

(	) for every j̄ ∈
∏
α<λ

Iα the set
⋃

{Zα,i : α < λ, i < iα and jα ∈ uα,i }

belongs to fil(G∗).
2. If G∗

⊆ Q0
λ is (<λ+)-directed (with respect to ≤

0) and inc has no winning
strategy in the game a⊕

µ̄ (G
∗), then we say that G∗ is µ̄-strongly reasonable.

Also, G∗ is said to be µ̄-strongly− reasonable if it is (<λ+)-directed and inc
has no winning strategy in the game a	

µ̄ (G
∗).

3. We say that a uniform ultrafilter D on λ is µ̄-strongly reasonable (µ̄-
strongly− reasonable, respectively) if there is a µ̄-strongly reasonable (µ̄-
strongly− reasonable, respectively) set G∗

⊆ Q0
λ such that D = fil(G∗). If

µα = λ for all α < λ, then we omit µ̄ and say just strongly reasonable or
strongly− reasonable.

Observation 2.13 Assume that 2 ≤ µα ≤ κα ≤ λ for α < λ and µ̄ = 〈µα : α < λ〉,
κ̄ = 〈κα : α < λ〉. Then for a family G∗

⊆ Q0
λ and/or a uniform ultrafilter D on λ

the following implications hold.

κ̄-super reasonable ⇒ µ̄-super reasonable ⇒ µ̄-strongly reasonable
⇓ ⇓ ⇓

κ̄-super− reasonable ⇒ µ̄-super− reasonable ⇒ µ̄-strongly− reasonable

Proposition 2.14 Assume that 2 ≤ µα ≤ λ for α < λ and µ̄ = 〈µα : α < λ〉. If a
uniform ultrafilter D on λ is µ̄-strongly− reasonable, then it is very reasonable.

Proof Pick a µ̄-strongly− reasonable family G∗
⊆ Q0

λ such that D = fil(G∗).
Then G∗ is (<λ+)-directed and the proof will be completed once we show that D is
weakly reasonable.

Let f ∈
λλ. We will argue that for some club C = {γα : α < γ } ⊆ λ we have⋃

{[δ, δ + f (δ)) : δ ∈ C} /∈ D, where γα are given by the arguments below.
We consider the following strategy st( f ) for inc in a	

µ̄ (G
∗). The strategy

st( f ) instructs inc to construct on the side an increasing continuous sequence
〈γα : α < λ〉 ⊆ λ so that at a stage α < λ of the play, when〈

Iξ , iξ , ūξ , 〈rξ,i , δξ,i , (βξ,i , Zξ,i , dξ,i ) : i < iξ 〉 : ξ < α
〉

is the result of the play so far, then
1. if α is limit, then γα = sup(γξ : ξ < α),
2. if α is not limit, then γα = sup

( ⋃
{Zξ,i : i < iξ , ξ < α}

)
+ 1.

Now (at the stage α) st( f ) instructs inc to choose Iα = {0} and then (after com
picks iα, ūα) he is instructed to play in the subgame of this stage as follows. At stage
i < iα , after com has picked rα,i , inc lets

δα,i = γα + f (γα)+ sup
( ⋃

{Zα, j : j < i}
)
+ 890.

(After this com chooses (βα,i , Zα,i , dα,i ) ∈ #
(
rα,i

)
with βα,i > δα,i .)

The strategy st( f ) cannot be the winning one for inc, so there is a play〈
Iα, iα, ūα, 〈rα,i , δα,i , (βα,i , Zα,i , dα,i ) : i < iα〉 : α < λ

〉
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of a	

µ̄ (G
∗) in which inc follows st( f ) but

A∗ def
=

⋃ {
Zα,i : α < λ, i < iα

}
∈ fil(G∗) = D

(note that necessarily uα,i = Iα = {0}). It follows from the choice of γα, δα,i that
for each α < λ

[γα, γα + f (γα)) ∩

⋃ {
Zξ,i : ξ < λ, i < iξ

}
= ∅,

and hence also
⋃ {

[γα, γα + f (γα)) : α < λ
}

∩ A∗
= ∅. Consequently,⋃ {

[γα, γα + f (γα)) : α < λ
}
/∈ D and one can easily finish the proof. �

Proposition 2.15 Assume λ = λ<λ and ♦Sλ+λ
holds. There exists a sequence

〈rξ : ξ < λ+
〉 ⊆ Q0

λ such that

(i) (∀ξ < ζ < λ+)(rξ ≤
0 rζ ), and

(ii) the family

G∗ def
=

{
r ∈ Q0

λ : (∃ξ < λ+)(r ≤
0 rξ )

}
is super reasonable and fil(G∗) is an ultrafilter on λ.

Proof The sequence 〈rξ : ξ < λ+
〉 will be constructed inductively. At successor

stages we will use Observation 2.6 to make sure that fil(G∗) is an ultrafilter. At
limit stages we will use Proposition 2.8(1) to find upper bounds to the sequence
constructed so far. Moreover, at (some) stages ξ of cofinality λ the element rξ will
be chosen so that “it kills” a strategy for inc in a�(G∗) predicted by the diamond
sequence.

For α < λ let X1
α be the set of all legal plays of a�(Q0

λ) of the form

(�)1α
〈
Iγ , iγ , ūγ , 〈rγ,i , r ′

γ,i , (βγ,i , Zγ,i , dγ,i ) : i < iγ 〉 : γ < α
〉

where each Iγ (for γ < α) is an ordinal below λ. Also let X1
=

⋃
α<λ

X1
α . Next, for

α < λ, 0 < I < λ and an enumeration ū = 〈u j : j < i〉 of [I ]<ω let X2
α,I,ū be the

set of all legal plays of a�(Q0
λ) of the form

(�)2α,I,ū σ̄_〈(I, i, ū)〉_〈r j , r ′

j , (β j , Z j , d j ) : j < j∗〉_〈r〉,

where σ̄ ∈ X1
α , j∗ < i (and 〈r j , r ′

j , (β j , Z j , d j ) : j < j∗〉_〈r〉 is a legal partial play
of the subgame of level α; in particular, r j , r ′

j , r ∈ Q0
λ). Also let

X2
=

⋃ {
X2
α,I,ū : α < λ and 0 < I < λ and

ū = 〈u j : j < i〉 is an enumeration of [I ]<ω
}
.

Any strategy for inc in a�(Q0
λ) can be interpreted as a function st such that

(�)3 the domain of st is X1
∪ X2,

(�)4 if σ̄ ∈ X1
α , α < λ, then st(σ̄ ) = (I, i, ū) for some I < λ and an enumeration

ū = 〈u j : j < i〉 of [I ]<ω,
(�)5 if σ̄ ∈ X2

α,I,ū , α < λ, 0 < I < λ, ū = 〈u j : j < i〉 = [I ]<ω, and
σ̄ = σ̄0

_
〈(I, i, ū)〉_〈r j , r ′

j , (β j , Z j , d j ) : j < j∗〉_〈r〉, then st(σ̄ ) ∈ Q0
λ is

such that r ≤
0 st(σ̄ ).
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Below, whenever we say a strategy for inc we mean a function st satisfying condi-
tions (�)3–(�)5.

Since |Q0
λ| = 22<λ

= λ+, we may pick a bijection π0 : Q0
λ

1−1
−→ λ+ and for

ξ < λ+ let Xξ consist of all σ̄ ∈ X1
∪ X2 such that π0(r) < ξ for all elements

r ∈ Q0
λ involved in the representation of σ̄ as in (�)1, (�)2. We also let Yξ consist

of all pairs (σ̄ , a) such that

1. σ̄ ∈ Xξ and a = st(σ̄ ) for some strategy st of inc, and
2. if σ̄ ∈ X2 (and so a ∈ Q0

λ) then π0(a) < ξ .

Note that |Xξ | ≤ λ and |Yξ | ≤ λ (for each ξ < λ+). Put Y =
⋃
ξ<λ+

Yξ . Plainly,

|Y| = λ+ so we may fix a bijection π1 : λ+ onto
−→ Y. Let C = {ξ < λ+

: π1[ξ ] = Yξ };
it is a club of λ+.

Let 〈Aζ : ζ < λ+
〉 list all subsets of λ and let 〈Bζ : ζ ∈ Sλ

+

λ 〉 be a diamond
sequence on Sλ

+

λ = {ζ < λ+
: cf(ζ ) = λ}. By induction on ξ < λ+ we choose

a ≤
0-increasing sequence 〈rξ : ξ < λ+

〉 ⊆ Q0
λ applying the following procedure.

Assume ξ < λ+ and we have constructed 〈rζ : ζ < ξ〉.

Case 0 ξ = 0. We let r0 be the <∗
χ -first member of Q0

λ.

Case 1 ξ = ζ + 1. Pick rξ ∈ Q0
λ such that rζ ≤

0 rξ and either Aζ ∈ fil(rξ ) or
λ \ Aζ ∈ fil(rξ ) (remember Observation 2.6).

Case 2 ξ is a limit ordinal, cf(ξ) < λ. Pick rξ ∈ Q0
λ such that (∀ζ < ξ)(rζ ≤

0 rξ )
(exists by Proposition 2.8(1)).

Case 3 ξ is a limit ordinal, cf(ξ) = λ. Now we ask if

(�)6ξ ξ ∈ C and (∀ζ < ξ)(π0(rζ ) < ξ) and there is a strategy st for inc in a�(Q0
λ)

such that π1[Bξ ] = st ∩ Yξ = st�Xξ .

If the answer to (�)6ξ is negative, then we choose rξ ∈ Q0
λ as in Case 2.

Suppose now that the answer to (�)6ξ is positive (so, in particular, ξ ∈ C) and st
is a strategy for inc such that π1[Bξ ] = st ∩ Yξ = st�Xξ . Let ξ̄ = 〈ξα : α < λ〉 be
an increasing continuous sequence cofinal in ξ . Consider a play

σ̄ =
〈
Iα, iα, ūα, 〈rα,i , r ′

α,i , (βα,i , Zα,i , dα,i ) : i < iα〉 : α < λ
〉

of a�(Q0
λ) in which inc follows the strategy st and com proceeds as follows. When

playing a�(Q0
λ), at step i < iα of the subgame of level α < λ (of a�(Q0

λ)) com
chooses rα,i = rξα and then, after inc determines r ′

α,i by st, she picks the <∗
χ -first

(βα,i , Zα,i , dα,i ) ∈ #(r ′

α,i ) satisfying

(�)7ξ,α,i (∀γ ≤ α)(∀A ∈ dα,i )(∃δ ∈ Crξγ )(A ∩ Z
rξγ
δ ∈ d

rξγ
δ ) (remember Proposi-

tion 2.5) and
(�)8ξ,α,i (∀γ < α)(∀ j < iγ )(Zγ, j ⊆ βα,i ) and (∀ j < i)(Zα, j ⊆ βα,i ).

The above rules fully determine the play σ̄ and it should be clear that σ̄ �α ∈ Xξ for
each α < λ. Note that σ̄ depends on Bξ and ξ̄ only (and not on st, provided it is as
required by (�)6ξ ).
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By the demands (�)8ξ,α,i , we may choose an increasing continuous sequence
〈γα : α < λ〉 ⊆ λ such that γ0 = 0 and (∀α < λ)(∀i < iα)(Zα,i ⊆ [γα, γα+1)).
Now, for α < λ choose an ultrafilter eα on iα such that

(�)9ξ,α
(
∀ j ∈ Iα

)(
{i < iα : j ∈ uα,i } ∈ eα

)
and let dα be an ultrafilter on [γα, γα+1) such that

(�)10
ξ,α

eα⊕ {
dα,i : i < iα

}
⊆ dα .

Now let rξ ∈ Q0
λ be such that

1. Crξ = {γα : α < λ}, and
2. if δ = γα , then Z

rξ
δ = [γα, γα+1) and d

rξ
δ = dα .

One easily verifies that rξα ≤
0 rξ for all α < λ (remember (�)7 and the choice of

dα; use Proposition 2.5) and so rζ ≤
0 rξ for all ζ < ξ . It follows from (�)9ξ,α and

(�)10
ξ,α that

(�)11
ξ for every j̄ = 〈 jα : α < λ〉 ∈

∏
α<λ

Iα we have{
(βα,i , Zα,i , dα,i ) : α < λ & jα ∈ uα,i & i < iα,i

}
≤

∗ #(rξ ).
After the construction of 〈rξ : ξ < λ+

〉 is carried out we let

G∗
= {r ∈ Q0

λ : (∃ξ < λ+)(r ≤
0 rξ )}.

Plainly, G∗ satisfies demands (i) and (ii) of Definition 2.11(2) and fil(G∗) is an
ultrafilter on λ (remember Case 1 of the construction). We should argue that inc
has no winning strategy in a�(G∗). To this end suppose that st� is a strategy
of inc in a�(G∗). Pick ξ ∈ Sλ

+

λ ∩ C such that (∀ζ < ξ)(π0(rζ ) < ξ) and
π1[Bξ ] = st� ∩ Yξ = st��Xξ . Then when choosing rξ we gave a positive an-
swer to (�)6ξ and we constructed a play σ̄ of a�(Q0

λ). In that play, inc follows st�

and com chooses members of G∗, so it is a play of a�(G∗). Now the condition
(�)11

ξ means that rξ witnesses that com wins the play σ̄ and consequently st� is not
a winning strategy for inc. �

Proposition 2.16 Let Q0
λ = (Q0

λ,≤
0).

1. Q0
λ is a (<λ+)-complete forcing notion of size 22<λ .

2. 
Q0
λ

“G
˜

Q0
λ

is a super reasonable family and fil(G
˜

Q0
λ
) is an ultrafilter”.

Proof (1) Should be clear; see also Proposition 2.8(1).

(2) By the completeness of Q0
λ, forcing with it does not add new subsets of λ, and

by Proposition 2.5


Q0
λ

“fil(G
˜

Q0
λ
) is a uniform ultrafilter on λ”.

It should also be clear that G
˜

Q0
λ

satisfies the demands of Definition 2.11(2)(i+ii) (in

VQ0
λ ). Let us argue that


Q0
λ

“inc has no winning strategy in a�(G
˜

Q0
λ
)”

and to this end suppose p ∈ Q0
λ and st

˜
is a Q0

λ-name such that

p 
Q0
λ

“st
˜

is a strategy of inc in a�(G
˜

Q0
λ
)”.
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We are going to construct a condition q ∈ Q0
λ stronger than p and a play σ̄ of

a�(Q0
λ) such that

q 
Q0
λ

“σ̄ is a play of a�(G
˜

Q0
λ
) in which inc follows st

˜
but com wins”.

Let X1, X2 be defined as in the proof of Proposition 2.15 (see (�)1α , (�)2α,I,ū there).
We may assume that

p 
Q0
λ

“st
˜

is a function satisfying (�)3–(�)5 of the proof of Proposition 2.15”.

By induction on α < λ we choose conditions pα ∈ Q0
λ and partial plays σ̄α ∈ X1

α so
that

(�)1 p ≤
0 pα ≤

0 pβ and σ̄α C σ̄β for α < β < λ,

(�)2 pα 
Q0
λ

“σ̄α is a partial play of a�(G
˜

Q0
λ
) in which inc uses st

˜
”,

(�)3 if σ̄α =
〈
Iγ , iγ , ūγ , 〈rγ,i , r ′

γ,i , (βγ,i , Zγ,i , dγ,i ) : i < iγ 〉 : γ < α
〉
, then for

every γ < δ < α and j < i < iγ we have

r ′

γ,i ≤
0 pα and Zγ, j ⊆ βγ,i and Zγ, j ⊆ βδ,0.

Suppose that α = α∗
+ 1 and we have determined pα∗ , σ̄α∗ . Pick p′

α ≥
0 pα∗

and Iα, iα, ūα such that p′
α 
 st

˜
(σ̄α∗) = (Iα, iα, ūα). Now choose inductively

pi
α, rα,i , r

′

α,i and (βα,i , Zα,i , dα,i ) for i < iα so that for each i < j < iα we have

(�)4 (i) p0
α = p′

α , pi
α ≤

0 p j
α , pi

α = rα,i ≤
0 r ′

α,i ≤
0 pi+1

α , and

(ii) pi+1
α 
 “r ′

α,i is the answer by st
˜

at stage i of the subgame”,

(iii) βα,i satisfies the demand in (�)3 and (βα,i , Zα,i , dα,i ) ∈ #(r ′

α,i ),

(iv) (∀A ∈ dα,i )(∀γ ≤ α∗)(∃δ ∈ C pγ )(A ∩ Z
pγ
δ ∈ d

pγ
δ ).

Then pα+1 is any ≤
0-upper bound to {pi

α : i < iα}. The limit stages of the construc-
tion should be clear.

After the construction is carried out and we have σ̄λ =
⋃

{σ̄α : α < λ}, we define
r ∈ Q0

λ like rξ in the proof of Proposition 2.15 (see (�)9ξ,α + (�)10
ξ there). Then r is

≤
0-stronger then all pα (for α < λ) and

r 
Q0
λ

“σ̄λ is a play of a�(G
˜

Q0
λ
) in which inc uses st

˜
but com wins”.

(Note that the respective version of (�)11
ξ of the proof of Proposition 2.15 holds. By

the completeness it continues to hold in VQ0
λ .) �

3 More on Reasonably Complete Forcing

Definition 3.1 Let P be a forcing notion.
1. For a condition r ∈ P, let aλ0(P, r) be the following game of two players,

Complete and Incomplete:
the game lasts at most λ moves and during a play the players at-
tempt to construct a sequence 〈(pi , qi ) : i < λ〉 of pairs of condi-
tions from P in such a way that (∀ j < i < λ)(r ≤ p j ≤ q j ≤ pi )
and at the stage i < λ of the game, first Incomplete chooses pi
and then Complete chooses qi .

Complete wins if and only if for every i < λ there are legal moves for both
players.



124 Andrzej Rosłanowski and Saharon Shelah

2. We say that the forcing notion P is strategically (<λ)-complete if Complete
has a winning strategy in the game aλ0(P, p) for each condition p ∈ P.

3. Let N ≺ (H(χ),∈, <∗
χ ) be a model such that <λN ⊆ N , |N | = λ, and

P ∈ N . We say that a condition p ∈ P is (N ,P)-generic in the standard
sense (or just (N ,P)-generic) if for every P-name τ

˜
∈ N for an ordinal we

have p 
 “τ
˜

∈ N”.
4. P is λ-proper in the standard sense (or just λ-proper) if there is x ∈ H(χ)

such that for every model N ≺ (H(χ),∈, <∗
χ ) satisfying

<λN ⊆ N , |N | = λ, and P, x ∈ N ,

and every condition p ∈ N ∩ P there is an (N ,P)-generic condition q ∈ P

stronger than p.

Theorem 3.2 (See Shelah [11, Ch. III, Thm. 4.1], Abraham [1, §2], Eisworth [2, §3])
Assume 2λ = λ+, λ<λ = λ. Let Q̄ = 〈Pi ,Q

˜
i : i < λ++

〉 be λ-support iteration
such that for all i < λ++ we have

1. Pi is λ-proper,
2. 
Pi “|Q

˜
i | ≤ λ+”.

Then
1. for every δ < λ++, 
Pδ 2λ = λ+, and
2. the limit Pλ++ satisfies the λ++-cc.

Proposition 3.3 ([8], Proposition A.1.6) Suppose Q̄ = 〈Pi ,Q
˜

i : i < γ 〉 is a λ-
support iteration and, for each i < γ ,


Pi “Q
˜

i is strategically (<λ)-complete”.

Then, for each ε ≤ γ and r ∈ Pε, there is a winning strategy st(ε, r) of Complete
in the game aλ0(Pε, r) such that whenever ε0 < ε1 ≤ γ and r ∈ Pε1 we have

(i) if 〈(pi , qi ) : i < λ〉 is a play of aλ0(Pε0 , r�ε0) in which Complete follows
the strategy st(ε0, r�ε0), then 〈(pi

_r�[ε0, ε1), qi
_r�[ε0, ε1)) : i < λ〉 is a

play of aλ0(Pε1 , r) in which Complete uses st(ε1, r);
(ii) if 〈(pi , qi ) : i < λ〉 is a play of aλ0(Pε1 , r) in which Complete plays ac-

cording to the strategy st(ε1, r), then 〈(pi�ε0, qi�ε0) : i < λ〉 is a play of
aλ0(Pε0 , r�ε0) in which Complete uses st(ε0, r�ε0);

(iii) if 〈(pi , qi ) : i < i∗〉 is a partial play of aλ0(Pε1 , r) in which Complete uses
st(ε1, r) and p′

∈ Pε0 is stronger than all pi�ε0 (for i < i∗), then there is
p∗

∈ Pε1 such that p′
= p∗�ε0 and p∗

≥ pi for i < i∗.

Definition 3.4 (Compare [7], Definition 2.2)

1. Let γ be an ordinal, w ⊆ γ . A standard (w, 1)γ-tree is a pair T = (T, rk)
such that
(a) rk : T −→ w ∪ {γ },
(b) if t ∈ T and rk(t) = ε, then t is a sequence 〈(t)ζ : ζ ∈ w ∩ ε〉,
(c) (T,C) is a tree with root 〈〉 and such that every chain in T has a C-upper

bound in T ,
(d) if t ∈ T , then there is t ′ ∈ T such that t E t ′ and rk(t ′) = γ.

We will keep the convention that T x
y is (T x

y , rkx
y).

2. Let Q̄ = 〈Pi ,Q
˜

i : i < γ 〉 be a λ-support iteration. A standard tree of
conditions in Q̄ is a system p̄ = 〈pt : t ∈ T 〉 such that
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(a) (T, rk) is a standard (w, 1)γ-tree for some w ⊆ γ and
(b) pt ∈ Prk(t) for t ∈ T and
(c) if s, t ∈ T , s C t , then ps = pt�rk(s).

3. Let p̄0, p̄1 be standard trees of conditions in Q̄, p̄i
= 〈pi

t : t ∈ T 〉. We write
p̄0

≤ p̄1 whenever for each t ∈ T we have p0
t ≤ p1

t .

Note that our standard trees and trees of conditions are a special case of that intro-
duced in [8, Definition A.1.7] when α = 1. Also, the rank function rk is essentially
the function giving the level of a node, adjusted to have values in w ∪ {γ } via the
canonical increasing bijection.

Proposition 3.5 (See [8], Proposition A.1.9) Assume that Q̄ = 〈Pi ,Q
˜

i : i < γ 〉 is
a λ-support iteration such that for all i < γ we have


Pi “Q
˜

i is strategically (<λ)-complete”.

Suppose that p̄ = 〈pt : t ∈ T 〉 is a standard tree of conditions in Q̄, |T | < λ, and
I ⊆ Pγ is open dense. Then there is a standard tree of conditions q̄ = 〈qt : t ∈ T 〉

such that p̄ ≤ q̄ and (∀t ∈ T )(rk(t) = γ ⇒ qt ∈ I), and such that conditions
qt0 , qt1 are incompatible whenever t0, t1 ∈ T , rk(t0) = rk(t1) but t0 6= t1.

Definition 3.6 (See [7], Definition 3.1) Let Q be a forcing notion and let
µ̄ = 〈µα : α < λ〉 be a sequence of regular cardinals such that ℵ0 ≤ µα ≤ λ
for all α < λ.

1. For a condition p ∈ Q we define a reasonable A-completeness game
arcA
µ̄ (p,Q) between two players, Generic and Antigeneric, as follows. A

play of arcA
µ̄ (p,Q) lasts λ steps and during a play a sequence〈

Iα, 〈pαt , qαt : t ∈ Iα〉 : α < λ
〉

is constructed. Suppose that the players have arrived to a stage α < λ of the
game. Now,
(ℵ)α first Generic chooses a nonempty set Iα of cardinality < µα and a

system 〈pαt : t ∈ Iα〉 of conditions from Q,
(i)α then Antigeneric answers by picking a system 〈qαt : t ∈ Iα〉 of condi-

tions from Q such that (∀t ∈ Iα)(pαt ≤ qαt ).
At the end, Generic wins the play〈

Iα, 〈pαt , qαt : t ∈ Iα〉 : α < λ
〉

of arcA
µ̄ (p,Q) if and only if

(~)rcA there is a condition p∗
∈ Q stronger than p and such that

p∗ 
Q “
(
∀α < λ

)(
∃t ∈ Iα

)(
qαt ∈ G

˜
Q

)
”.

2. We say that a forcing notion Q is reasonably A-bounding over µ̄ if
(a) Q is strategically (<λ)-complete, and
(b) for any p ∈ Q, Generic has a winning strategy in the game arcA

µ̄ (p,Q).

Definition 3.7 (See [7], Definition 3.2) Let Q̄ = 〈Pξ ,Q
˜
ξ : ξ < γ 〉 be a λ-support

iteration and let µ̄ = 〈µα : α < λ〉 be a sequence of regular cardinals such that
ℵ0 ≤ µα ≤ λ for all α < λ.
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1. For a condition p ∈ Pγ = lim(Q̄) we define a tree A-completeness game
atreeA
µ̄ (p, Q̄) between two players, Generic and Antigeneric, as follows.

A play of atreeA
µ̄ (p, Q̄) lasts λ steps and in the course of a play a sequence

〈Tα, p̄α, q̄α : α < λ〉 is constructed. Suppose that the players have arrived to
a stage α < λ of the game. Now,

(ℵ)α first Generic picks a standard (w, 1)γ-tree Tα such that |Tα| < µα and
a tree of conditions p̄α = 〈pαt : t ∈ Tα〉 ⊆ Pγ (so Generic, as a part
of choosing Tα , picks also w = wα),

(i)α then Antigeneric answers by choosing a tree of conditions
q̄α = 〈qαt : t ∈ Tα〉 ⊆ Pγ such that p̄α ≤ q̄α .

At the end, Generic wins the play 〈Tα, p̄α, q̄α : α < λ〉 of atreeA
µ̄ (p, Q̄) if

and only if

(~)tree
A there is a condition p∗

∈ Pγ stronger than p and such that

p∗ 
Pγ “
(
∀α < λ

)(
∃t ∈ Tα

)(
rkα(t) = γ & qαt ∈ G

˜
Pγ

)
”.

2. We say that Pγ = lim(Q̄) is reasonably∗ A(Q̄)-bounding over µ̄ if Generic
has a winning strategy in the game atreeA

µ̄ (p, Q̄) for every p ∈ Pγ .

Theorem 3.8 (See [7], Theorem 3.2) Assume that

(a) λ is a strongly inaccessible cardinal,
(b) µ̄ = 〈µα : α < λ〉, each µα is a regular cardinal satisfying (for α < λ)

ℵ0 ≤ µα ≤ λ and
(
∀ f ∈

αµα
)(∣∣ ∏

ξ<α

f (ξ)
∣∣ < µα

)
,

(c) Q̄ = 〈Pξ ,Q
˜
ξ : ξ < γ 〉 is a λ-support iteration such that for every ξ < γ,


Pξ “Q
˜
ξ is reasonably A-bounding over µ̄”.

Then Pγ = lim(Q̄) is reasonably∗ A(Q̄)-bounding over µ̄ (and so Pγ is also λ-
proper).

In [7, §3], in addition to A-reasonable completeness game we considered its variant
called a-reasonable completeness game. In that variant, at stage α < λ of the game,
the players played a subgame to construct a sequence 〈pαξ , qαξ : ξ < iα〉 (corre-
sponding to 〈pαt , qαt : t ∈ Iα〉). In the following definition we introduce a further
modification of that game. In the new game, the players will again play subgames,
in some sense repeating several times the subgames from the a-reasonable complete-
ness game.

Definition 3.9 Let Q be a forcing notion and let µ̄ = 〈µα : α < λ〉 be a sequence
of cardinals such that ℵ0 ≤ µα < λ for all α < λ. Suppose also that U is a normal
filter on λ.

1. For a condition p ∈ Q we define a reasonable double-a-completeness game
arc2a
µ̄ (p,Q) between Generic and Antigeneric as follows. A play of

arc2a
µ̄ (p,Q) lasts at most λ steps and in the course of the play the players try

to construct a sequence

(�)
〈
ξα, 〈pαγ , qαγ : γ < µα · ξα〉 : α < λ

〉
.
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(Here µα is treated as an ordinal and µα · ξα is the ordinal product of µα and
ξα .) Suppose that the players have arrived to a stage α < λ of the game. First,
Antigeneric picks a nonzero ordinal ξα < λ. Then the two players start a
subgame of length µα · ξα alternately choosing the terms of the sequence
〈pαγ , qαγ : γ < µα · ξα〉. At a stage γ = µα · i + j (where i < ξα , j < µα)
of the subgame, first Generic picks a condition pαγ ∈ Q stronger than all
conditions qαδ for δ < γ of the form δ = µα · i ′ + j (where i ′ < i), and then
Antigeneric answers with a condition qαγ stronger than pαγ .

At the end, Generic wins the play (�) of arc2a
µ̄ (p,Q) if and only if both

players had always legal moves and

(~)rc2a there is a condition p∗
∈ Q stronger than p and such that

p∗ 
Q “
(
∀α < λ

)(
∃ j < µα

)(
{qαµα ·i+ j : i < ξα} ⊆ G

˜
Q

)
”.

2. Games arc2b
µ̄,U(p,Q) (for p ∈ Q) are defined similarly; we only replace con-

dition (~)rc2a by

(~)rc2b there is a condition p∗
∈ Q stronger than p and such that

p∗ 
Q “
{
α < λ :

(
∃ j < µα

)(
{qαµα ·i+ j : i < ξα} ⊆ G

˜
Q

)}
∈ UQ”,

where UQ is the (Q-name for the) normal filter generated by U in VQ.
3. A strategy st for Generic in arc2a

µ̄ (p,Q) (or arc2b
µ̄,U(p,Q)) is said to be nice

if for every play
〈
ξα, 〈pαγ , qαγ : γ < µα · ξα〉 : α < λ

〉
in which she uses st,

for every α < λ, the conditions in {pαγ : γ < µα} are pairwise incompatible.
(These are conditions played in the first “run” of the subgame. Note that then
pαγ , pαγ ′ are incompatible whenever γ 6≡ γ ′ mod µα .)

4. Let x ∈ {a,b}. A forcing notion Q is nicely double x-bounding over µ̄ (and
U if x = b) if
(a) Q is strategically (<λ)-complete, and
(b) Generic has a nice winning strategy in the game arc2a

µ̄ (p,Q) (arc2b
µ̄,U(p,Q)

if x = b) for every p ∈ Q.

Remark 3.10

1. Reasonable double x-boundedness (for x ∈ {a,b}) is an iterable relative
of reasonable x-boundedness introduced in [7, Definition 3.1, pp. 206-7].
Technical differences in the definitions of suitable games are to achieve the
preservation of the corresponding property in λ-support iterations (see Theo-
rems 3.13, 3.14 below).

2. The game arc2b
µ̄,U(p,Q) is easier to win for Generic than arc2a

µ̄ (p,Q) (be-
cause the winning criterion is weaker). Therefore, if we are interested in
λ-properness for λ-support iterations only, then Theorem 3.14 will cover a
larger class of forcing notions than Theorem 3.13.

Definition 3.11 (See [7], Definition 6.1) Suppose that λ is inaccessible and
κ̄ = 〈κα : α < λ〉 is a sequence of cardinals, 1 < κα < λ for α < λ. We define a
forcing notion Pκ̄ as follows.

A condition in Pκ̄ is a pair p = ( f p,C p) such that

C p
⊆ λ is a club of λ and f p

∈

∏
{κι : ι ∈ λ \ C p

}.
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The order ≤Pκ̄=≤ of Pκ̄ is given by

p ≤Pκ̄ q if and only if Cq
⊆ C p and f p

⊆ f q .

Proposition 3.12

1. Assume that κ̄, λ are as in Definition 3.11 above and let a sequence
µ̄ = 〈µα : α < λ〉 be chosen so that

∏
β<α

κβ ≤ µα < λ (for α < λ).

Then the forcing notion Pκ̄ is nicely double b-bounding over µ̄,Dλ.
2. If κα = κ for all α < λ and µα ≥ κα , then Pκ is nicely double a-bounding

over µ̄.

Proof (1) A natural modification of the proof of [7, Proposition 6.1] works here.
Note that if δ̄ = 〈δα : α < λ〉 is an increasing continuous sequence constructed as

there during a play of arc2b
µ̄,Dλ

(p,Pκ̄), then the set B def
=

{
α < λ :

∏
β<α

κδβ ≤ µα
}

is in

the filter Dλ. In the game, the stages α ∈ λ \ B are ignored and only those for α ∈ B
are “active.” Also, at each stage α we may create µα “not active” steps at each run
of the subgame by picking an antichain of conditions incompatible with p.

(2) Similar; we get double a-bounding here as at each stage α < λ of the game we
know that

∏
β<α

κδβ = κα ≤ µα (so all steps are “active”). �

Theorem 3.13 Assume that

(a) λ is a strongly inaccessible cardinal,
(b) µ̄ = 〈µα : α < λ〉 is a sequence of cardinals below λ such that

(∀α < λ)(ℵ0 ≤ µα = µ
|α+1|
α ),

(c) Q̄ = 〈Pζ ,Q
˜
ζ : ζ < ζ ∗

〉 is a λ-support iteration such that for every ζ < γ ,


Pζ “Q
˜
ζ is nicely double a-bounding over µ̄”.

Then Pζ ∗ = lim(Q̄) is nicely double a-bounding over µ̄ (and so Pζ ∗ is also λ-
proper).

Proof Our arguments refine those presented in the proof of [7, Theorem 3.2,
p. 217], but the differences in the games involved eliminate the use of trees of
conditions. However, trees of conditions are implicitly present here too. The tree at
level δ of the argument is indexed by

Tδ =

⋃ { ∏
ξ∈wδ∩ζ

µδ : ζ ∈ wδ ∪ {ζ ∗
}
}

and it is formed in part by conditions played in the game for various t ∈
∏
ξ∈wδ

µδ =

{t ∈ Tδ : rk(t) = ζ ∗
}; note the coherence demand in (�)7.

Let p ∈ Pζ ∗ . We will describe a strategy st for Generic in the game
arc2a
µ̄ (p,Pζ ∗). The strategy st instructs Generic to play the game arc2a

µ̄ on each
relevant coordinate ζ < ζ ∗ using her winning strategy st

˜
ζ . At stage δ < λ Generic

will be concerned with coordinates ζ ∈ wδ for some set wδ of size < λ. If ξδ < λ is
the ordinal put by Antigeneric in the play of arc2a

µ̄ (p,Pζ ∗), then in the simulated
plays on coordinates ζ ∈ wδ Generic pretends that her opponent put ξ∗

δ = µδ · ξδ .
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The innings of the two players, Generic and Antigeneric, in the subgame of level
δ on a coordinate ζ are

p̄
˜
δ,ζ = 〈p

˜

γ
δ,ζ : γ < µδ · ξ∗

δ 〉 and q̄
˜
δ,ζ = 〈q

˜

γ
δ,ζ : γ < µδ · ξ∗

δ 〉,

respectively. Generic’s innings in the subgame of arc2a
µ̄ (p,Pζ ∗) will be associated

with sequences t ∈
∏
ζ∈wδ

µδ = 〈tδj : j < µδ〉 = t̄δ . The innings of the two players

will be pδε, qδε (for ε < µδ ·ξδ) and they will be related to what happens at coordinates
ζ ∈ wδ as follows. If t = tδj , ζ ∈ wδ , and β = (t)ζ < µδ , then in the subgame of
arc2a
µ̄ (p,Pζ ∗) of level δ at stages of the form ε = µδ ·i + j we will have pδε(ζ ) = p

˜

γ
δ,ζ

and qδε (ζ ) = q
˜

γ
δ,ζ , where γ = µδ ·ε+β. To keep track of what happens at coordinates

ζ /∈ wδ Generic will use conditions rδ .
Let us note that the construction of st presented in detail below would be some-

what simpler if we knew that all forcings Q
˜
ζ are (<λ)-complete (and not only strate-

gically (<λ)-complete). Then st
˜

0
ξ , r

−

δ and pδ,∗ε could be eliminated as their role is
to make sure that some sequences of conditions (related to rδ and/or pδε) have upper
bounds. However, many natural forcing notions tend to have strategic completeness
only (see [8, Part B]).

Let us formalize the ideas presented above. For each ζ < ζ ∗, pick a Pζ -name st
˜

0
ζ

such that


Pζ “st
˜

0
ζ is a winning strategy for Complete in aλ0

(
Q
˜
ζ ,∅

˜
Q
˜
ζ

)
such that if

Incomplete plays ∅
˜

Q
˜
ζ , then Complete answers with ∅

˜
Q
˜
ζ as well”.

In the course of a play of arc2a
µ̄ (p,Pζ ∗), at a stage δ < λ, Generic will be instructed

to construct on the side

(⊗)δ wδ, t̄δ, ξ∗
δ , st

˜
ζ (for ζ ∈ wδ+1 \ wδ), p̄

˜
δ,ζ , q̄

˜
δ,ζ , pδ,∗ε (for ε < µδ · ξδ), and

r−

δ , rδ .

These objects will be chosen so that if〈
ξδ, 〈pδγ , qδγ : γ < µδ · ξδ〉 : δ < λ

〉
is a play of arc2a

µ̄ (p,Pζ ∗) in which Generic follows st, and the additional objects
constructed at stage δ < λ are listed in (⊗)δ , then the following conditions are
satisfied (for each δ < λ).

(�)1 r−

δ , rδ ∈ Pζ ∗ , r−

0 (0) = r0(0) = p(0), wδ ⊆ ζ ∗, |wδ| = |δ + 1|,⋃
α<λ

Dom(rα) =
⋃
α<λ

wα , w0 = {0}, wδ ⊆ wδ+1 and if δ is limit then

wδ =
⋃
α<δ

wα .

(�)2 For each α < δ < λ we have (∀ζ ∈ wα+1)(rα(ζ ) = r−

δ (ζ ) = rδ(ζ )) and
p ≤ r−

α ≤ rα ≤ r−

δ ≤ rδ , and pδ,∗ε ∈ Pζ ∗ (for ε < µδ · ξδ).
(�)3 If ζ ∈ ζ ∗

\ wδ , then
rδ�ζ 
Pζ “the sequence 〈r−

α (ζ ), rα(ζ ) : α ≤ δ〉 is a legal partial play of
aλ0

(
Q
˜
ζ ,∅

˜
Q
˜
ζ

)
in which Complete follows st

˜

0
ζ ”,
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and if ζ ∈ wδ+1 \ wδ , then st
˜
ζ is a Pζ -name for a nice winning strategy for

Generic in arc2a
µ̄ (rδ(ζ ),Q

˜
ζ ). (And st0 is a nice winning strategy of Generic

in arc2a
µ̄ (p(0),Q0).)

(�)4 t̄δ = 〈tδj : j < µδ〉 is an enumeration of
∏
ζ∈wδ

µδ =
wδµδ .

(�)5 ξ∗
δ = µδ · ξδ (the ordinal product) and p̄

˜
δ,ζ = 〈p

˜

γ
δ,ζ : γ < µδ · ξ∗

δ 〉 and
q̄
˜
δ,ζ = 〈q

˜

γ
δ,ζ : γ < µδ · ξ∗

δ 〉 are Pζ -names for sequences of conditions in Q
˜
ζ

of length µδ · ξ∗
δ (for ζ ∈

⋃
α<λ

wα).

(�)6 If ζ ∈ wβ+1 \ wβ , β < δ (or ζ = β = 0), then


Pζ “〈ξ∗
α , 〈p

˜

γ
α,ζ , q

˜

γ
α,ζ : γ < µα · ξ∗

α 〉 : α ≤ δ〉 is a partial play of

arc2a
µ̄ (rβ(ζ ),Q

˜
ζ ) in which Generic uses st

˜
ζ ”.

(�)7 If ε = µδ · i + j , i < ξδ , j < µδ , then

Dom(pδ,∗ε ) = Dom(pδε) = wδ ∪ Dom(p) ∪
⋃
α<δ

Dom(rα) ∪
⋃
ε′<ε

Dom(qδε′),

and for each ζ ∈ wδ ∪ {ζ ∗
} the condition pδ,∗ε �ζ is an upper bound to

{p�ζ } ∪ {rα�ζ : α < δ}∪

{qδε′�ζ : ε′ = µδ · i ′ + j ′ < ε & i ′ < ξδ & j ′ < µδ & tδj ′�ζ = tδj �ζ }.

(�)8 If j < µδ , i < ξδ , ζ ∈ wδ , (tδj )ζ = β, and ε = µδ · i + j , γ = µδ · ε + β,
then pδ,∗ε (ζ ) = pδε(ζ ) = p

˜

γ
δ,ζ and qδε �ζ 
Pζ qδε (ζ ) = q

˜

γ
δ,ζ .

(�)9 If ε = µδ · i + j , i < ξδ , j < µδ , ζ ∈ ζ ∗
\ wδ , and t ∈

∏
{µδ : ξ ∈ wδ ∩ ζ },

t E tδj , then

pδε�ζ 
Pζ “the sequence 〈pδ,∗ε′ (ζ ), pδε′(ζ ) : ε′ = µδ·i ′+ j ′ ≤ ε& i ′ < ξδ & j ′

< µδ & t E tδj ′〉 is a legal partial play of aλ0(Q
˜
ζ , p(ζ )) in

which Complete follows st
˜

0
ζ ”.

(�)10 Dom(r−

δ ) = Dom(rδ) =
⋃

{Dom(qδε ) : ε < µδ · ξδ} and if ζ ∈ ζ ∗
\ wδ ,

t ∈
∏

{µδ : ξ ∈ wδ ∩ ζ }, and q ∈ Pζ , q ≥ r−

δ �ζ and q ≥ qδε �ζ whenever
ε = µδ · i + j , i < ξδ , j < µδ , and t E tδj , then

q 
Pζ “if the set {p(ζ )}∪ {rα(ζ ) : α < δ}∪ {qδε (ζ ) : ε = µδ · i + j & i < ξδ
& j < µδ & t E tδj } has an upper bound in Q

˜
ξ , then r−

δ (ζ ) is
such an upper bound; otherwise, r−

δ (ζ ) is just an upper bound to
{p(ζ )} ∪ {rα(ζ ) : α < δ}”.

Assume that the two players arrived to stage δ of arc2a
µ̄ (p,Pζ ∗) and〈

ξα, 〈pαε , qαε : ε < µα · ξα〉 : α < δ
〉

is the play constructed so far, and that Generic followed st and determined objects
listed in (⊗)α (for α < δ) with properties (�)1–(�)10.

Below, whenever we say Generic chooses x such that we mean Generic chooses
the <∗

χ -first x such that, and so on. First, Generic uses her favorite bookkeeping
device to determine wδ so that the demands of (�)1 are satisfied (and that at the
end we will have

⋃
α<λ

Dom(rα) =
⋃
α<λ

wα). If β < δ and ζ ∈ wβ , then we already

have p̄
˜
α,ζ , q̄

˜
α,ζ for α < δ (see (�)6), but we have not yet defined those objects
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when δ = δ0 + 1 and ζ ∈ wδ \ wδ0 . So if δ = δ0 + 1 and ζ ∈ wδ \ wδ0 then let
p̄
˜
α,ζ = 〈p

˜

γ
α,ζ : γ < µα · ξ∗

α 〉 and q̄
˜
α,ζ = 〈q

˜

γ
α,ζ : γ < µα · ξ∗

α 〉 (for α < δ) be such
that


Pζ “〈ξ∗
α , 〈p

˜

γ
α,ζ , q

˜

γ
α,ζ : γ < µα · ξ∗

α 〉 : α < δ〉 is a partial play of arc2a
µ̄ (rδ0(ζ ),Q

˜
ζ )

in which Generic uses st
˜
ζ and p

˜

γ
α,ζ = q

˜

γ
α,ζ for all α < δ, γ < µα · ξ∗

α”.

Condition (�)4 and our rule of taking “the <∗
χ -first” determine the enumeration

t̄δ = 〈tδj : j < µδ〉 of
∏
ζ∈wδ

µδ . Now Antigeneric picks ξδ and the two players start

a subgame of length µδ · ξδ . During the subgame Generic will simulate subgames
of level δ at coordinates ζ ∈ wδ pretending that Antigeneric played ξ∗

δ = µδ · ξδ
there. Each step in the subgame of arc2a

µ̄ (p,Pζ ∗) will correspond to µδ steps in the
subgames of arc2a

µ̄ (rβ(ζ ),Q
˜
ζ ) (when ζ ∈ wβ+1 \ wβ , β < δ). So suppose that

the two opponents have arrived to a stage ε = µδ · i + j of the subgame, i < ξδ ,
j < µδ , and assume also that Generic (playing according to st) has already defined
p
˜

γ
δ,ζ , q

˜

γ
δ,ζ for ζ ∈ wδ , γ < µδ · ε, and pδ,∗ε′ for ε′ < ε, so that the requirements of

(�)6–(�)9 are satisfied. Note that (by (�)7–(�)9)

(~) if ε > ε′ = µδ · i ′ + j ′ > ε′′ = µδ · i ′′ + j ′′, ζ ∈ wδ ∪ {ζ ∗
} and tδj ′�ζ = tδj ′′�ζ ,

then pδε′′�ζ ≤ qδε′′�ζ ≤ pδ,∗ε′ �ζ ≤ pδε�ζ .

For each ζ ∈ wδ and β < (tδj )ζ , let p
˜

µδ ·ε+β
δ,ζ = q

˜

µδ ·ε+β
δ,ζ be Pζ -names for conditions

in Q
˜
ζ such that (the relevant part of) (�)6 holds. The same clause determines also

p
˜

µδ ·ε+β
δ,ζ for β = (tδj )ζ , ζ ∈ wδ . Then the requirements in (�)7 + (�)8 essentially

describe what pδ,∗ε is. Note that the “upper bound demands” in (�)7 can be satisfied
because of (�)9 + (�)3 and (~) above. Next, Generic’s inning pδε in arc2a

µ̄ (p,Pζ ∗)

is chosen so that Dom(pδε) = Dom(pδ,∗ε ) and clauses (�)8 + (�)9 hold. After
this Antigeneric answers with a condition qδε ≥ pδε , and Generic picks for the
construction on the side names q

˜

µδ ·ε+β
δ,ζ for ζ ∈ wδ and β = (tδj )ζ by the demand in

(�)8. She also picks p
˜

µδ ·ε+β
δ,ζ = q

˜

µδ ·ε+β
δ,ζ for ζ ∈ wδ and (tδj )ζ < β < µδ so that

(�)6 holds.
This completes the description of what happens during the µδ · ξδ steps of the

subgame. After the subgame is over and the sequence 〈pδγ , qδγ : γ < µδ · ξδ〉

is constructed, Generic chooses conditions r−

δ , rδ ∈ Pζ ∗ by (�)1–(�)3 and (�)10.
(Note: since st

˜
ζ are names for nice strategies, if ζ ∈ ζ ∗

\wδ , i0, i1 < ξδ , j0, j1 < µδ ,
ε0 = µδ · i0 + j0, ε1 = µδ · i1 + j1, t0, t1 ∈

∏
{µδ : ξ ∈ wδ ∩ ζ }, t0 E tδj0 , t1 E tδj1

and t0 6= t1, then the conditions qδε0
�ζ, qδε1

�ζ are incompatible.) This finishes the
description of the strategy st.

Let us argue that st is a winning strategy for Generic. Suppose that〈
ξδ, 〈pδγ , qδγ : γ < µδ · ξδ〉 : δ < λ

〉
is a play of arc2a

µ̄ (p,Pζ ∗) in which Generic followed st and she constructed the side
objects listed in (⊗)δ (for δ < λ) so that demands (�)1–(�)10 are satisfied. We
define a condition r ∈ Pζ ∗ as follows. Let Dom(r) =

⋃
δ<λ

Dom(rδ). For ζ ∈ Dom(r)

let r(ζ ) be a Pζ -name for a condition in Q
˜
ζ such that

(�)11 if ζ ∈ wα+1 \ wα , α < λ (or ζ = α = 0), then
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Pζ “r(ζ ) ≥ rα(ζ ) and r(ζ ) 
Q
˜
ζ

(
∀δ<λ

)(
∃ j<µδ

)(
∀ε<ξ∗

δ

)(
q
˜

µδ ·ε+ j
δ,ζ ∈ G

˜
Q
˜
ζ

)
”.

Clearly, r is well defined (remember (�)6) and (∀δ < λ)(rδ ≤ r) and p ≤ r .
Suppose now that δ < λ and r ′

≥ r . We are going to find j < µδ and a condition
r ′′

≥ r ′ such that (∀i < ξδ)(qδµδ ·i+ j ≤ r ′′). To this end let 〈ζα : α ≤ α∗
〉 be the

increasing enumeration of wδ ∪ {ζ ∗
}. For ζ ≤ ζ ∗ and q ∈ Pζ , let st(ζ, q) be a

winning strategy of Complete in aλ0(Pζ , q) with the coherence properties given in
Proposition 3.3.

By induction on α ≤ α∗ we will choose conditions r∗
α, r

∗∗
α ∈ Pζα and (t)ζα < µδ

such that

(�)12 r ′�ζα ≤ r∗
α ,

(�)13 if i < ξδ , j < µδ and (tδj )ζβ = (t)ζβ for β < α, then qδµδ ·i+ j�ζα ≤ r∗
α ,

(�)14 〈r∗
β
_r ′�[ζβ , ζ ∗), r∗∗

β
_r ′�[ζβ , ζ ∗) : β < α〉 is a partial legal play of

aλ0(Pζ ∗ , r ′) in which Complete uses her winning strategy st(ζ ∗, r ′).

Suppose that α ≤ α∗ is a limit ordinal and we have already defined (t)ζβ < µδ
and r∗

β , r
∗∗
β ∈ Pζβ for β < α. Let ζ = sup(ζβ : β < α). It follows from

(�)14 that we may pick a condition s ∈ Pζ stronger than all r∗∗
β for β < α. Put

r∗
α = s_r ′�[ζ, ζα) ∈ Pζα . Then plainly r ′�ζα ≤ r∗

α and qδµδ ·i+ j�ζ ≤ r∗
α�ζ whenever

(�)i, j,α
15 i < ξδ , j < µδ , and (tδj )ζβ = (t)ζβ for all β < α.

Now by induction on ξ ≤ ζα we show that qδµδ ·i+ j�ξ ≤ r∗
α�ξ whenever (�)i, j,α

15
holds. For ξ ≤ ζ we are already done, so assume ξ ∈ [ζ, ζα) and we have shown
that qδµδ ·i+ j�ξ ≤ r∗

α�ξ whenever (�)i, j,α
15 holds. It follows from (�)7 + (�)9 that the

condition r∗
α�ξ forces in Pξ that

“the set {p(ξ)}∪{rα(ξ) : α < δ}∪
{
qδε (ξ) : ε = µδ·i+ j & i < ξδ & j < µδ &(

∀β < α
)(
(tδj )ζβ = (t)ζβ

)
} has an upper bound in Q

˜
ξ ”.

and therefore we may use (�)10 to conclude that

r∗
α�ξ 
 “if (�)i, j,α

15 holds, then qδµδ ·i+ j (ξ) ≤ rδ(ξ) ≤ r ′(ξ) = r∗
α(ξ)”.

The limit stages are trivial and we may claim that qδµδ ·i+ j�ζα ≤ r∗
α whenever (�)i, j,α

15
holds. Next, r∗∗

α is determined by (�)14.
Now suppose that α = β + 1 ≤ α∗ and we have already defined r∗

β , r
∗∗
β ∈ Pζβ

and 〈(t)ζγ : γ < β〉. It follows from (�)11 that

r∗∗
β 
Pζβ

“r(ζβ) 
Q
˜
ζβ

(
∃ρ < µδ

)(
∀ε < ξ∗

δ

)(
q
˜

µδ ·ε+ρ
δ,ζβ

∈ G
˜

Q
˜
ζβ

)
”,

so we may pick ρ = (t)ζβ and a condition s ∈ Pζβ+1 such that r∗∗
β ≤ s�ζβ and

s�ζβ 
Pζβ

(
∀ε < ξ∗

δ

)(
q
˜

µδ ·ε+ρ
δ,ζβ

≤ s(ζβ)
)
.

It follows from (�)13 + (�)8 that then also qδµδ ·i+ j�(ζβ + 1) ≤ s whenever i < ξδ ,
j < µδ , and (tδj )ζγ = (t)ζγ for γ ≤ β. We let r∗

α = s_r ′�(ζβ , ζα) and exactly like
in the limit case we argue that r ′�ζα ≤ r∗

α and qδµδ ·i+ j�ζα ≤ r∗
α whenever i < ξδ ,

j < µδ , and (tδj )ζγ = (t)ζγ for γ ≤ β. Again, r∗∗
α is determined by (�)14.

After the induction is completed look at r ′′
= r∗

α∗ and j < µδ such that
tδj = 〈(t)ζα : α < α∗

〉. �
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Theorem 3.14 Assume (a), (b) of Theorem 3.13. Suppose that U is a normal filter
on λ and

(c) Q̄ = 〈Pζ ,Q
˜
ζ : ζ < ζ ∗

〉 is a λ-support iteration such that for every ζ < γ ,


Pζ “Q
˜
ζ is nicely double b-bounding over µ̄,UPζ ”.

Then Pζ ∗ = lim(Q̄) is nicely double b-bounding over µ̄,U.

Proof The proof essentially repeats that of Theorem 3.13 with the following modi-
fications in the arguments that st is a winning strategy for Generic in arc2b

µ̄,U(p,Pζ ∗).
We assume that

〈
ξδ, 〈pδγ , qδγ : γ < µδ ·ξδ〉 : δ < λ

〉
is a play in which Generic fol-

lows st and the objects listed in (⊗)δ were constructed on a side. A condition r ∈ Pζ ∗

is chosen so that Dom(r) =
⋃
δ<λ

Dom(rδ) =
⋃
δ<λ

wδ and for each ζ ∈ wα+1 \ wα ,

α < λ, we have

Pζ “r(ζ ) ≥ rα(ζ ) and

r(ζ ) 
Q
˜
ζ {δ < λ : (∃ j < µδ)(∀ε < ξ∗

δ )(q
˜

µδ ·ε+ j
δ,ζ ∈ G

˜
Q
˜
ζ )} ∈ UPζ+1 ”.

Then, for each ζ ∈ Dom(r), we choose Pζ+1-names A
˜

ζ
i for elements of U such that


Pζ “r(ζ ) 
Q
˜
ζ (∀δ ∈ 4

δ<λ
A
˜

ξ
i )(∃ j < µδ)(∀ε < ξ∗

δ )(q
˜

µδ ·ε+ j
δ,ζ ∈ G

˜
Q
˜
ζ )”.

Finally, we show that for each limit ordinal δ < λ,

r 
Pζ∗ “(∀ξ ∈ wδ)(δ ∈ 4
δ<λ

A
˜

ξ
i ) ⇒ (∃ j < µδ)(∀i < ξδ)(qδµδ ·i+ j ∈ G

˜
Pζ∗ )”.

For this we start with arbitrary condition r ′
≥ r such that

r 
Pζ∗ “(∀ξ ∈ wδ)(δ ∈ 4
δ<λ

A
˜

ξ
i )”

and we repeat the arguments from the end of the proof of Theorem 3.13 to find
j < µδ and r ′′

≥ r ′ such that (∀i < ξδ)(qδµδ ·i+ j ≤ r ′′). �

4 Reasonable Ultrafilters with Small Generating Systems

Our aim here is to show that, consistently, there may exist a very reasonable ultrafilter
on an inaccessible cardinal λ with generating system of size less than 2λ.

Lemma 4.1 Assume that G∗
⊆ Q0

λ is directed (with respect to ≤
0) and fil(G∗) is

an ultrafilter on λ, r ∈ G∗. Let P be a forcing notion not adding bounded subsets of
λ, p ∈ P and let A

˜
be a P-name for a subset of λ such that p 
P A

˜
∈

(
fil(G∗)

)+.
Then

Y def
=

⋃ {
Zr
δ : δ ∈ Cr and p 1P “A

˜
∩ Zr

δ /∈ dr
δ”

}
∈ fil(G∗).

Proof Assume toward contradiction that Y /∈ fil(G∗). Then we may find s ∈ G∗

such that r ≤
0 s and λ \ Y ∈ fil(s). Take ε < λ such that

if α ∈ Cs
\ ε, then Z s

α \ Y ∈ ds
α and (∀A ∈ ds

α)(∃β ∈ Cr )(A ∩ Zr
β ∈ dr

β).

(Remember Proposition 2.5.) Now take a generic filter G ⊆ P over V such that
p ∈ G and work in V[G]. Since A

˜

G
∈ fil(s)+, we may pick α ∈ Cs such that ε < α

and A
˜

G
∩ Z s

α ∈ ds
α . Then also Z s

α ∩ A
˜

G
\ Y ∈ ds

α and thus we may find β ∈ Cr such
that Z s

α∩ A
˜

G
∩ Zr

β \Y ∈ dr
β . In particular, Zr

β \Y 6= ∅, so p 
 A
˜

∩ Zr
β /∈ dr

β , and thus
A
˜

G
∩ Zr

β /∈ dr
β . Consequently, Z s

α ∩ A
˜

G
∩ Zr

β \ Y /∈ dr
β giving a contradiction. �
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Theorem 4.2 Assume that
(i) λ is strongly inaccessible, µ̄ = 〈µα : α < λ〉, each µα is a regular cardinal,

ℵ0 ≤ µα ≤ λ, and
(
∀ f ∈

αµα
)(∣∣ ∏

ξ<α
f (ξ)

∣∣ < µα
)

for α < λ;

(ii) Q̄ = 〈Pξ ,Q
˜
ξ : ξ < γ 〉 is a λ-support iteration such that for every ξ < γ ,


Pξ “Q
˜
ξ is reasonably A-bounding over µ̄”;

(iii) G∗
⊆ Q0

λ is a ≤
0-downward closed µ̄-super reasonable family such that

fil(G∗) is an ultrafilter on λ.
Then


Pγ “fil(G∗) is an ultrafilter on λ”.

Proof The proof is by induction on the length γ of the iteration Q̄. So we assume
that (i)–(iii) hold and for each ξ < γ

(�)ξ 
Pξ “fil(G∗) is an ultrafilter on λ”.

Note that (by the strategic (<λ)-completeness of Pγ ) forcing with Pγ does not add

bounded subsets of λ, and therefore
(
Q0
λ

)V
⊆

(
Q0
λ

)VPγ

.

Claim 4.3 Assume that
(a) A

˜
is a Pγ -name for a subset of λ such that 
Pγ A

˜
∈

(
fil(G∗)

)+,
(b) w ∈ [γ ]

<ω and T is a finite standard (w, 1)γ -tree, and
(c) p̄ = 〈pt : t ∈ T 〉 is a (finite) tree of conditions in Q̄, and
(d) r ∈ G∗ and X is the set of all α ∈ Cr for which there is a tree of conditions

q̄ = 〈qt : t ∈ T 〉 such that q̄ ≥ p̄ and

(∀t ∈ T )(rk(t) = γ ⇒ qt 
 A
˜

∩ Zr
α ∈ dr

α).

Then
⋃

{Zr
α : α ∈ X} ∈ fil(G∗).

Proof of the Claim Induction on |w|. If w = ∅ and so T = {〈〉}, then the assertion
follows directly from Lemma 4.1 (with p,P there standing for p〈〉,Pγ here). As-
sume that |w| = n + 1, ξ∗

= max(w), w′
= w \ {ξ∗

} and the claim is true for w′

(in place of w) and any A
˜
, p̄. Let P

˜
ξ∗γ be a Pξ∗ -name for a forcing notion with the

universe Pξ∗γ = {p�[ξ∗, γ ) : p ∈ Pγ } and the order relation ≤P
˜
ξ∗γ

such that

if G ⊆ Pξ∗ is generic over V and f, g ∈ Pξ∗γ ,

then V[G] |H f ≤P
˜
ξ∗γ [G] g if and only if (∃p ∈ G)(p ∪ f ≤Pγ p ∪ g).

Note that Pξ∗γ is from V but the relation ≤P
˜
ξ∗γ [G] is defined in V[G] only. Also Pγ

is isomorphic with a dense subset of the composition Pξ∗ ∗ P
˜
ξ∗γ .

We are going to define a Pξ∗ -name Y
˜

for a subset of λ. Suppose that G ⊆ Pξ∗ is
generic over V and work in V[G]. For t ∈ T such that rk(t) = γ let X t consist of all
α ∈ Cr for which there is f ∈ Pξ∗γ such that

pt�[ξ
∗, γ ) ≤P

˜
ξ∗γ [G] f and f 
P

˜
ξ∗γ [G] A

˜
∩ Zr

α ∈ dr
α.

Let Yt =
⋃ {

Zr
α : α ∈ X t

}
(for t ∈ T such that rk(t) = γ ). It follows from

Lemma 4.1 that each Yt belongs to fil(G∗) (remember that 
Pξ∗ “fil(G∗) is an ultra-
filter” by (�)ξ∗ ). Hence

Y ∗ def
=

⋂ {
Yt : t ∈ T & rk(t) = γ

}
∈ fil(G∗).
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Note that for each α ∈ Cr , either Zr
α ∩ Y ∗

= ∅ or Zr
α ⊆ Y ∗.

Going back to V, let Y
˜

∗, Y
˜

t , X
˜

t be Pξ∗ -names for the objects described as
Y ∗, Yt , X t above. Thus 
Pξ∗ Y

˜

∗
∈ fil(G∗) and we may apply the inductive hypoth-

esis to w′, T ′
= {t�ξ∗

: t ∈ T }, and p̄′
= 〈pt ′ : t ′ ∈ T ′

〉 ⊆ Pξ∗ . Thus, if X∗ is the
set of all α ∈ Cr for which there is a tree of conditions q̄ ′

= 〈q ′

t ′ : t ′ ∈ T ′
〉 ⊆ Pξ∗

such that q̄ ′
≥ p̄′ and(

∀t ′ ∈ T
)(

rk(t ′) = ξ∗
⇒ q ′

t ′ 
Pξ∗ Y
˜

∗
∩ Zr

α ∈ dr
α

)
,

then
⋃ {

Zr
α : α ∈ X∗

} ∈ fil(G∗).
Now suppose that α ∈ X∗ is witnessed by q̄ ′ and let t ′ ∈ T be such that

rk(t ′) = ξ∗. Then q ′

t ′ 
Pξ∗ Zr
α ⊆ Y

˜

∗ and hence q ′

t ′ 
Pξ∗ α ∈ X
˜

t for all t ∈ T

with rk(t) = γ , so we have Pξ∗ -names f
˜

t ′
t for elements of P

˜
ξ∗γ such that

q ′

t ′ 
Pξ∗ “pt�[ξ
∗, γ ) ≤P

˜
ξ∗γ

f
˜

t ′
t & f

˜

t ′
t 
P

˜
ξ∗γ

A
˜

∩ Zr
α ∈ dr

α”.

Now use Proposition 3.5 (or just finite induction) to get a tree of conditions

q̄ ′′
= 〈q ′′

t ′ : t ′ ∈ T ′
〉 ⊆ Pξ∗

and objects gt
t ′ (for t ′ ∈ T ′, t ∈ T , rk(t ′) = ξ∗, rk(t) = γ ) such that q̄ ′

≤ q̄ ′′ and
q ′′

t ′ 
Pξ∗ f
˜

t ′
t = gt

t ′ . Now, for t ∈ T , put

1. qt = q ′′
t if rk(t) ≤ ξ∗, and

2. qt = q ′′

t�ξ∗
_gt�ξ∗

t if rk(t) = γ.

It should be clear that q̄ = 〈qt : t ∈ T 〉 is a tree of conditions in Q̄, p̄ ≤ q̄
and for every t ∈ T with rk(t) = γ we have qt 
Pγ A

˜
∩ Zr

α ∈ dr
α . This

shows that X∗ is included in the set X defined in the assumption (d), and hence⋃ {
Zr
α : α ∈ X

}
∈ fil(G∗). �

Let A
˜

be a Pγ-name for a subset of λ such that 
Pγ A
˜

∈
(
fil(G∗)

)+ and let p ∈ Pγ .
We will find a condition p∗

≥ p such that p∗ 
Pγ A
˜

∈ fil(G∗). It will be pro-
vided by the winning criterion (~)tree

A of the game atreeA
µ̄ (p, Q̄) (see Definition 3.7;

remember Pγ is reasonably∗ A(Q̄)-bounding over µ̄ by Theorem 3.8).
Let st be a winning strategy of Generic in atreeA

µ̄ (p, Q̄), and for ε ≤ γ and
q ∈ Pε let us fix a winning strategy st(ε, q) of Complete in aλ0(Pε, q) so that the
coherence demands (i)–(iii) of Proposition 3.3 are satisfied.

We are going to describe a strategy st� of inc in the game a�
µ̄ (G

∗). In the course
of a play of a�

µ̄ (G
∗), inc will construct on the side a play of atreeA

µ̄ (p, Q̄) in which
Generic plays according to st. So suppose that inc and com arrived to a stage α < λ
of a play of a�

µ̄ (G
∗), and they have constructed

(~)α1
〈
Iγ , iγ , ūγ , 〈rγ,i , r ′

γ,i , (βγ,i , Zγ,i , dγ,i ) : i < iγ 〉 : γ < α
〉
.

Also, let us assume that inc (playing according to st�) has written on the side a
partial play

(~)α2
〈
Tγ , p̄γ , q̄γ : γ < α

〉
of atreeA

µ̄ (p, Q̄) (in which Generic plays according to st). Let a standard tree Tα and
a tree of conditions p̄α = 〈pαt : t ∈ Tα〉 be given to Generic by the strategy st in
answer to (~)α2 (so |Tα| < µα).
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On the board of a�
µ̄ (G

∗), the strategy st� instructs inc to play the set

Iα
def
= {t ∈ Tα : rkα(t) = γ }

and the <∗
χ -first enumeration ūα = 〈uα,i : i < iα〉 of [Iα]<ω (so iα < µα).

Now the two players start playing a subgame of length iα to determine a sequence
〈rα,i , r ′

α,i , (βα,i , Zα,i , dα,i ) : i < iα〉. During the subgame inc will construct on the
side a sequence 〈q̄0

i , q̄1
i : i < iα〉 of trees of conditions in Pγ so that

(~)3 q̄`i = 〈q`t,i : t ∈ Tα〉 (for ` < 2, i < iα) and for each t ∈ Tα , the sequence
〈q0

t,i , q1
t,i : i < iα〉 is a legal play of aλ0(Prkα(t), pαt ) in which Complete uses

her winning strategy st(rkα(t), pαt ).

Suppose that com and inc arrive at level i < iα of the subgame (of a�
µ̄ (G

∗)) and

(~)i4 〈rα, j , r ′

α, j , (βα, j , Zα, j , dα, j ) : j < i〉 and 〈q̄0
j , q̄1

j : j < i〉

have been determined and com has chosen rα,i ∈ G∗. inc’s answer is given by st�
as follows. First, inc takes the <∗

χ -first tree of conditions q̄� in Q̄ such that

(~)a5 q̄�
= 〈q�

t : t ∈ Tα〉 and q�
t ∈ Prk(t) is an upper bound to the set

{pαt } ∪ {q1
t, j : j < i} (for each t ∈ Tα)

(remember (~)3). Then inc lets X ⊆ Crα,i be the set of all β ∈ Crα,i greater than
sup

( ⋃
γ<α

⋃
j<iγ

Zγ, j ∪
⋃
j<i

Zα, j

)
+ 890 and such that

(~)b5 there is a tree of conditions q̄ ′ in Q̄ such that q�
≤ q̄ ′ and

if t ∈ uα,i , then q ′
t 
Pγ A

˜
∩ Zrα,i

β ∈ drα,i
β .

Since uα,i is finite, it follows from Claim 4.3 that
⋃ {

Zrα,i
β : β ∈ X

}
∈ fil(G∗).

Then inc picks also the club C of λ such that C ⊆ Crα,i and rα,i is restrictable to
〈X,C〉 (see Definition 2.7) and min(C) = min(X), and his inning at the stage i of
the subgame of a�

µ̄ (G
∗) is r ′

α,i = rα,i�〈X,C〉 (again, see Definition 2.7; note that
r ′

α,i ∈ G∗ by Proposition 2.8).
After this com answers with (βα,i , Zα,i , dα,i ) ∈ #

(
r ′

α,i
)
, and then inc chooses

(for the construction on the side) the <∗
χ -first tree of conditions q̄0

i in Q̄ such that
q̄�

≤ q̄0
i and

(~)6 if t ∈ uα,i , then q0
t,i 
Pγ A

˜
∩ Zα,i ∈ dα,i .

Then q̄1
i = 〈q1

t,i : t ∈ Tα〉 is a tree of conditions determined by the demand in (~)3
and the strategies st(rkα(t), pαt ) (for t ∈ Tα); remember the coherence conditions of
Proposition 3.3.

This completes the description of how inc plays in the subgame of stage α. After
the subgame is finished, inc determines the move q̄α of Antigeneric in the play of
atreeA
µ̄ (p, Q̄) which he is constructing on the side:

(~)7 q̄α is the <∗
χ -first tree of conditions 〈qαt : t ∈ Tα〉 such that q̄0

i ≤ q̄1
i ≤ q̄α

for all i < iα .
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(There is such a tree of conditions by (~)3; remember iα < µα ≤ λ.)
This completes the description of the strategy st�. Since G∗ is µ̄-super reason-

able, st� cannot be a winning strategy, so there is a play

(~)8
〈
Iα, iα, ūα, 〈rα,i , r ′

α,i , (βα,i , Zα,i , dα,i ) : i < iα〉 : α < λ
〉

of a�
µ̄ (G

∗) in which inc follows st�, but

(~)9 for some r ∈ G∗, for every 〈 jα : α < λ〉 ∈
∏
α<λ

Iα we have

{(βα,i , Zα,i , dα,i ) : α < λ & i < iα & jα ∈ uα,i } ≤
∗ #(r).

Let 〈Tα, p̄α, q̄α : α < λ〉 be the play of atreeA
µ̄ (p, Q̄) constructed on the side by inc

(so this is a play in which Generic uses her winning strategy st). Since Generic
won that play, there is a condition p∗

∈ Pγ stronger than p and such that for each
α < λ the set {qαt : t ∈ Tα & rkα(t) = γ } is pre-dense above p∗. Note that if we
show that

(~)10 it is forced in Pγ that for every j̄ = 〈 jα : α < λ〉 ∈
∏
α<λ

Iα we have

{
(βα,i , Zα,i , dα,i ) : α < λ & i < iα & jα ∈ uα,i

}
≤

∗ #(r),
then we will be able to conclude that p∗ 
 A

˜
∈ fil(r) (remember (~)6 + (~)7 and

Observation 2.10), finishing the proof of the theorem. So let us argue that (~)10
holds true.

It follows from the description of st� (see the description of X after (~)a5) that
we may choose a continuous increasing sequence 〈δα : α < λ〉 ⊆ λ such that(

∀α < λ
)(
δα ≤ βα,0 ≤ sup

( ⋃
i<iα

Zα,i
)
< δα+1

)
.

Now, we will say that β ∈ Cr is a sick case whenever there are α0 < α1 < λ and
B ∈ dr

β such that Zr
β ⊆ [δα0 , δα1) and(

∀α ∈ [α0, α1)
)(

∃t ∈ Iα
)(

∀i < iα
)(

t /∈ uα,i or B ∩ Zα,i /∈ dα,i
)
.

Using Observation 2.10(2) one can easily verify that the following two conditions
are equivalent:

(~)one
11 there is 〈 jα : α < λ〉 ∈

∏
α<λ

Iα such that

{
(βα,i , Zα,i , dα,i ) : α < λ & i < iα & jα ∈ uα,i

}
�∗ #(r);

(~)two
11 there are λ many sick cases of β ∈ Cr .

Since the forcing with Pγ does not add bounded subsets of λ, being a sick case is
absolute between V and VPγ . So we may conclude (from (~)9) that (~)10 is true
and thus the proof of Theorem 4.2 is complete. �

Theorem 4.4 Assume (i) and (ii) of Theorem 4.2 and
(α) κ̄ = 〈κα : α < λ〉 is a sequence of regular cardinals such that for each α < λ,

µα ≤ κα ≤ λ and (∀µ < µα)(2µ < κα),

(β) G∗
⊆ Q0

λ is κ̄-super reasonable.
Then 
Pγ “G∗ is µ̄− strongly reasonable”.
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Proof First of all note that the forcing notion Pγ is reasonably∗ A(Q̄)-bounding
over µ̄ and λ-proper (see Theorem 3.8). Therefore 
Pγ “

(
[G∗

]
≤λ

)V is cofinal in
[G∗

]
≤λ”, and consequently 
Pγ “G∗ is (<λ+)-directed (with respect to ≤

0)”.
Suppose that st

˜

⊕ is a Pγ -name, p ∈ Pγ, and


Pγ “st
˜

⊕ is a strategy of inc in a⊕

µ̄ (G
∗) such that

all values given by it are from V”.

We are going to find a condition p∗
≥ p and a Pγ -name g

˜
λ such that

p∗ 
Pγ “g
˜
λ is a play of a⊕

µ̄ (G
∗) in which inc uses st

˜

⊕but com wins the play”.

The condition p∗ will be provided by the winning criterion (~)tree
A of the game

atreeA
µ̄ (p, Q̄) (see Definition 3.7).

In the rest of the proof whenever we say “inc chooses/picks x such that” we mean
“inc chooses/picks the <∗

χ -first x such that”. Let us fix

(i) a winning strategy st of Generic in atreeA
µ̄ (p, Q̄),

(ii) winning strategies st(ε, q) of Complete in aλ0(Pε, q) (for ε ≤ γ , q ∈ Pε)
such that the coherence conditions of Proposition 3.3 are satisfied.

We are going to describe a strategy st� of inc in the game a�
κ̄ (G

∗). In the course of a
play of a�

κ̄ (G
∗), inc will simulate a play of atreeA

µ̄ (p, Q̄) and he will consider names
for partial plays of a⊕

µ̄ (G
∗) in which inc uses st

˜

⊕. Thus players inc/com will appear

in the play of a�
κ̄ (G

∗) in V and in the play of a⊕

µ̄ (G
∗) in VPγ. To avoid confusion we

will refer to them as comV, incV for a�
κ̄ (G

∗) (in V) and comVPγ
, incVPγ for a⊕

µ̄ (G
∗)

(in VPγ ).
So suppose that incV and comV arrived at a stage α < λ of the play of a�

κ̄ (G
∗)

(in V), and incV (playing according to st�) has written on the side,

(⊕)α1 a partial play 〈Tβ , p̄β , q̄β : β < α〉 of atreeA
µ̄ (p, Q̄) in which Generic plays

according to st, and
(⊕)α2 a Pγ -name g

˜
α = 〈I

˜
β , i

˜
β , ū

˜
β , x̄

˜
β : β < α〉 of a partial play of a⊕

µ̄ (G
∗) (in

VPγ ) in which incVPγ uses the strategy st
˜

⊕,
(⊕)α3 ordinals iβ < µβ such that qβt 
 i

˜
β = iβ for every t ∈ Tβ with rkβ(t) = γ

(for β < α).

Note that I
˜
β is a Pγ -name for a set of size < µβ from V, ū

˜
β is a Pγ -name for an

i
˜
β -sequence of finite subsets of I

˜
β and x̄

˜
β is a Pγ -name for the result of the subgame

of length i
˜
β of level β.

Let I
˜
α be a Pγ -name for the answer by st

˜

⊕ to the play g
˜
α of a⊕

µ̄ (G
∗) (in VPγ ).

Let Tα and p̄α = 〈pαt : t ∈ Tα〉 be given to Generic by the strategy st as an answer
to (⊕)α1 . Let q̄�

= 〈q�
t : t ∈ Tα〉 be a tree of conditions in Q̄ such that

(⊕)a4 p̄α ≤ q̄� and q�
t0 , q�

t1 are incompatible for distinct t0, t1 ∈ Tα with
rkα(t0) = rkα(t1),

(⊕)b4 for every t ∈ Tα with rkα(t) = γ the condition q�
t decides the value of I

˜
α ,

say, q�
t 
Pγ “I

˜
α = I t

α”.
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(Note that 
Pγ I
˜
α ∈ V by the choice of st

˜

⊕; remember Proposition 3.5.)
In the play of a�

κ̄ (G
∗), the strategy st� instructs incV to choose the set

Iα =

∏
{I t
α : t ∈ Tα & rkα(t) = γ }

and an enumeration ūα = 〈uα,i : i < iα〉 of [Iα]<ω. Note that |I t
α| < µα for all

relevant t ∈ Tα and |Tα| < µα , so by our assumptions on µα and κα we know that
|Iα| < κα (so also iα < κα).

Then, in the play of a⊕

µ̄ (G
∗), incVPγ pretends that comVPγ played an ordinal

i
˜
α ∈ [iα, λ) and ū

˜
α = 〈u

˜
α,i : i < i

˜
α〉 such that


Pγ “ū
˜
α ⊆ [I

˜
α]
<ω and

⋃
{u
˜
α,i : i < i

˜
α} = I

˜
α”

and for each t ∈ Tα with rkα(t) = γ we have

q�
t 
Pγ “i

˜
α = iα and u

˜
α,i = {c(t) : c ∈ uα,i } for i < iα”.

Now, both in a⊕

µ̄ (G
∗) of VPγ and in a�

κ̄ (G
∗) of V the two players start a subgame.

The length of the subgame in VPγ may be longer than iα , but we will restrict our
attention to the first iα steps of that subgame. In our active case we will have i

˜
α = iα;

see the choice of i
˜
α above. When playing the subgame, incV will build a sequence

〈q̄0
i , q̄1

i : i < iα〉 of trees of conditions in Q̄ such that (in addition to demands stated
later),

(⊕)a5 q̄`j = 〈q`t, j : t ∈ Tα〉, q̄�
≤ q̄0

j ≤ q̄1
j ≤ q̄0

i for ` < 2, j < i < iα , and

(⊕)b5 for each t ∈ Tα , the sequence 〈q0
t,i , q1

t,i : i < iα〉 is a legal play of the game
aλ0(Prkα(t), q�

t ) in which Complete uses her winning strategy st(rkα(t), q�
t ).

He (as incVPγ) will also construct a name for a play of a subgame of a⊕

µ̄ (G
∗) of VPγ

for this stage.
Suppose that incV and comV have arrived to a stage i < iα of the subgame and

incV has determined on the side q̄`j for j < i , ` < 2, and a Pγ -name 〈z
˜

α
j : j < i〉

for a partial play of the subgame of a⊕

µ̄ (G
∗) of VPγ. Now comV chooses rα,i ∈ G∗

which incV passes to incVPγ as an inning of comVPγ at the i th step of the subgame of
level α of a⊕

µ̄ (G
∗) in VPγ . There the strategy st

˜

⊕ gives incVPγ an answer δ
˜
α,i < λ.

Next, incV picks a tree of conditions q̄0
i = 〈q0

t,i : t ∈ Tα〉 in Q̄ such that

(⊕)a6 (∀ j < i)(q̄1
j ≤ q̄0

i ) and q̄�
≤ q̄0

i , and

(⊕)b6 for every t ∈ Tα with rkα(t) = γ , the condition q0
t,i decides the value of δ

˜
α,i ,

say, q0
t,i 
Pγ δ

˜
α,i = δt

α,i .

Then incV lets

δ∗α,i = sup
({
δt
α,i : t ∈ Tα & rkα(t) = γ

}
∪

⋃
β<α

⋃
j<iβ

Zβ, j ∪

⋃
j<i

Zα, j

)
+ 890

and in the subgame of a�
κ̄ (G

∗) (in V) he is instructed to put r ′

α,i such that

Cr ′
α,i = Crα,i \ δ∗α,i and d

r ′
α,i
β = drα,i

β for β ∈ Cr ′
α,i .

(Note that r ′

α,i ∈ G∗ by Definition 2.11(2)(ii).)
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After this comV chooses (βα,i , Zα,i , dα,i ) ∈ #(r ′

α,i ), so βα,i ∈ Crα,i , βα,i ≥ δ∗α,i
and dα,i = drα,i

βα,i
. Next incV lets

1. q̄1
i be the tree of conditions in Q̄ fully determined by demand (⊕)b5 and

2. z
˜

α
i be a Pγ -name for a legal result of stage i of the subgame of level α of

a⊕

µ̄ (G
∗) in VPγ such that for each t ∈ Tα with rkα(t) = γ we have

q0
t,i 
Pγ z

˜

α
i =

(
rα,i , δ

˜
α,i , (βα,i , Zα,i , dα,i )

)
.

Then the subgame continues.
After all iα steps of the subgame are completed, incV chooses a tree of conditions

q̄α = 〈qαt : t ∈ Tα〉 in Q̄ such that (∀i < iα)(q̄1
i ≤ q̄α) and he also lets x̄

˜
α be

a Pγ -name for the result of the subgame of level α of a⊕

µ̄ (G
∗) in VPγ such that

x̄
˜
α�iα = 〈z

˜

α
i : i < iα〉. Note that all the objects described by (⊕)α+1

1 –(⊕)α+1
3 are

determined now.
This completes the description of the strategy st� of inc (i.e., incV) in a�

κ̄ (G
∗).

Since G∗ is κ̄-super reasonable, this strategy cannot be a winning one, so there is a
play

(⊕)7
〈
Iα, iα, ūα, 〈rα,i , r ′

α,i , (βα,i , Zα,i , dα,i ) : i < iα〉 : α < λ
〉

of a�
κ̄ (G

∗) in which inc follows st�, but

(⊕)8 for some r ∈ G∗, for every 〈 jα : α < λ〉 ∈
∏
α<λ

Iα we have

{(βα,i , Zα,i , dα,i ) : α < λ & i < iα & jα ∈ uα,i } ≤
∗ #(r).

Exactly as in the proof of Theorem 4.2 we may argue that then also

(⊕)9 it is forced in Pγ that(
∀ j̄ ∈

∏
α<λ

Iα
)({
(βα,i , Zα,i , dα,i ) : α < λ & i < iα & jα ∈ uα,i

}
≤

∗ #(r)
)
.

(See (~)10 in the proof of Theorem 4.2.)
Let 〈Tα, p̄α, q̄α : α < λ〉 be the play of atreeA

µ̄ (p, Q̄) constructed on the side by
inc. Generic won that play, so there is a condition p∗

∈ Pγ stronger than p and
such that for each α < λ the set {qαt : t ∈ Tα & rkα(t) = γ } is pre-dense above p∗.
Also, let g

˜
λ be the Pγ -name of a play of a⊕

µ̄ (G
∗) (in VPγ ) constructed on the side in

the same run of a�
κ̄ (G

∗) (see (⊕)2). We are going to argue that

(⊕)10 the condition p∗ forces (in Pγ ) that(
∀ j̄ ∈

∏
α<λ

I
˜
α

)(
{(βα,i , Zα,i , dα,i ) : α < λ & i < i

˜
α & jα ∈ u

˜
α,i } ≤

∗ #(r)
)
,

that is,
p∗ 
Pγ “comVPγ

wins the play g
˜
λ as witnessed by r”.

Suppose that G ⊆ Pγ is generic over V, p∗
∈ G and let us work in V[G]. For ev-

ery α < λ there is a unique t = t (α) ∈ Tα such that rkα(t) = γ and qαt ∈ G,
and thus

(
I
˜
α

)G
= I t

α ,
(
i
˜
α

)G
= iα and

(
ū
˜
α

)G
= 〈(u

˜
α,i )

G
: i < iα〉, where(

u
˜
α,i

)G
= {c(t) : c ∈ uα,i } ⊆ I t

α . Suppose that j̄ = 〈 jα : α < λ〉 ∈
∏
α<λ

I t (α)
α . For
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each α < λ, fix j∗α ∈ Iα =
∏

{I t
α : t ∈ Tα & rkα(t) = γ } such that j∗α (t (α)) = jα .

Note that if j∗α ∈ uα,i , i < iα , then jα ∈
(
u
˜
α,i

)G and, therefore,

{(βα,i , Zα,i , dα,i ) : α < λ & i < iα & jα ∈
(
u
˜
α,i

)G
} ≤

∗

{(βα,i , Zα,i , dα,i ) : α < λ & i < iα & j∗α ∈ uα,i } ≤
∗ #(r)

(remember (⊕)9). Now (⊕)10 follows and the proof of the theorem is complete. �

Corollary 4.5 Assume that λ is a strongly inaccessible cardinal. Then there is a
forcing notion P such that


P “λ is strongly inaccessible and 2λ = λ++ and there is a strongly reasonable
family G∗

⊆ Q0
λ such that fil(G∗) is an ultrafilter on λ and |G∗

| = λ+;
in particular, there is a very reasonable ultrafilter on λ with a generating
system of size < 2λ”.

Proof We may start with a universe V in which ♦Sλ+λ
holds (and λ is strongly

inaccessible). It follows from Proposition 2.15 that (in V) there is a ≤
0-increasing

sequence 〈rα : α < λ+
〉 ⊆ Q0

λ such that G∗ def
= {r ∈ Q0

λ : (∃α < λ+)(r ≤
0 rα)} is

super reasonable and fil(G∗) is an ultrafilter on λ.
Let Q̄ = 〈Pα,Q

˜
α : α < λ++

〉 be a λ-support iteration of the forcing notion
Qtree

Dλ
(K1, 61) defined in the proof of [8, Proposition B.8.5]. This forcing is reason-

ably A-bounding (by [7, Proposition 4.1, p. 221] and [8, Theorem B.6.5]), so we
may use Theorems 4.2 and 4.4 to conclude that


Pλ++
“G∗ is strongly reasonable, |G∗

|=λ+< 2λ, and fil(G∗) is ultrafilter on λ”.

If one analyzes the proof of Theorem 4.4, one may notice that even


Pλ++
“{rα : α < λ+

} is strongly reasonable”. �

5 A Feature, Not a Bug

One may wonder if Theorems 4.2 and 4.4 could be improved by replacing the as-
sumption that we are working with the iteration of reasonably A-bounding forcings
by, say, just dealing with a nicely double a-bounding forcing. A result of that sort
would be more natural and the fact that we had to refer to an iteration-specific prop-
erty could be seen as some lack of knowledge. However, this is a feature, not a
bug as nicely double a-bounding forcing notions may cause that fil(G∗) is not an
ultrafilter anymore.

In this section we assume that λ is a strongly inaccessible cardinal.

Definition 5.1

1. Let P∗ consist of all pairs p = (ηp,C p) such that ηp
: λ −→ {−1, 1} and

C p is a club of λ. A binary relation ≤=≤P∗ on P∗ is defined by letting p ≤ q
if and only if
(α) Cq

⊆ C p, ηq� min(C p) = ηp� min(C p), and
(β) for all successive members α < β of C p we have(

∀γ ∈ [α, β)
)(
ηq(γ ) =

ηp(α)

ηq(α)
· ηp(γ )

)
.
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2. For p ∈ P∗ and α ∈ C p let

pos(p, α) def
=

{
ηq�α : q ∈ P∗ & p ≤ q

}
.

3. For p ∈ P∗, α < λ, and ν : α −→ {−1, 1} we define

ν ∗α p = (ν_ηp�[α, λ),C p
\ α).

(Plainly, ν ∗α p ∈ P∗.)

Remark 5.2 P∗ is a natural generalization of the forcing notion used by Goldstern
and Shelah [4] to the context of uncountable cardinals.

Proposition 5.3 Let µ̄ = 〈µα : α < λ〉, µα = 2|α|+ℵ0 (for α < λ). Then P∗ is a
nicely double a-bounding over µ̄ forcing notion. Also |P∗

| = 2λ.

Proof One easily verifies that the relation ≤P∗ is transitive and reflexive; also
plainly |P∗

| = 2λ.

Claim 5.4 P∗ is (<λ)-complete.

Proof of the Claim Suppose that δ < λ and 〈pξ : ξ < δ〉 is a ≤P∗ -increasing
sequence of conditions in P∗. Let C =

⋂
ξ<δ

C pξ (it is a club of λ) and let

η : λ −→ {−1, 1} be defined by
(i) if γ < min(C) and ζ = min

(
ε < δ : γ < min(C pε )

)
,

then η(γ ) = ηpζ (γ );
(ii) if α < β are successive members of the club C , α ≤ γ < β and

ζ = min
(
ε < δ : γ < min

(
C pε \ (α + 1)

))
, then η(γ ) = ηpζ (α) · ηpζ (γ ).

Plainly, η is well defined and q def
= (η,C) ∈ P∗. We claim that (∀ξ < δ)(pξ ≤ q).

To this end, suppose ξ < δ. Clearly, C ⊆ C pξ . Now, if γ < min(C pξ ), then
η(γ ) = ηpζ (γ ) for some ζ ≤ ξ such that γ < min(C pζ ). Since pζ ≤ pξ , we have
ηpζ (γ ) = ηpξ (γ ) and thus ηpξ (γ ) = η(γ ).

Next, suppose that α < β are successive members of C pξ and α ≤ γ < β. If
γ < min(C) and ζ = min

(
ε < δ : γ < min(C pε )

)
, then ζ > ξ , η(α) = ηpζ (α) and

(∗)1 η(γ ) = ηpζ (γ ) =
η

pξ (α)

η
pζ (α)

· ηpξ (γ ) =
η

pξ (α)
η(α) · ηpξ (γ ).

So assume C ∩ β 6= ∅ and let α′ < β ′ be successive members of C such that
α′

≤ α ≤ γ < β ≤ β ′. Let ζ = min
(
ε < δ : γ < min

(
C pε \ (α′

+ 1)
))

. If α = α′,
then ζ ≤ ξ and

(∗)2 η(γ ) = ηpζ (α) · ηpζ (γ ) = ηpζ (α) ·
η

pξ (α)

η
pζ (α)

· ηpξ (γ ) =

ηpξ (α) · ηpξ (γ ) =
η

pξ (α)
η(α) · ηpξ (γ )

(as η(α) = η(α′) = 1). If α′ < α, then ξ < ζ and η(α) = ηpζ (α′) · ηpζ (α), and
hence,

(∗)3 η(γ ) = ηpζ (α′) · ηpζ (γ ) =
η(α)

η
pζ (α)

· ηpζ (γ ) =

η(α)

η
pζ (α)

·
η

pζ (α)

η
pξ (α)

· ηpξ (γ ) =
η

pξ (α)
η(α) · ηpξ (γ ).

Clearly, (∗)1–(∗)3 are what we need to justify Definition 5.1(1β) and conclude
pξ ≤ q. �
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Claim 5.5 Let p ∈ P∗. Then Generic has a nice winning strategy in the game
arc2a
µ̄ (p,P∗) (see Definition 3.9).

Proof of the Claim We will describe a strategy st for Generic in arc2a
µ̄ (p,P∗).

Whenever we say Generic chooses x such that we mean Generic chooses the <∗
χ -

first x such that (and likewise for other variants).
During a play of arc2a

µ̄ (p,P∗) Generic constructs on the side sequences
〈pα : α < λ〉 and δ̄ = 〈δα : α < λ〉 so that for each α < λ:

(a) δ̄ is a strictly increasing continuous sequence of ordinals below λ, pα ∈ P∗

and {δξ : ξ ≤ ω + α} = C pα ∩ (δω+α + 1),

(b) if β < α, then pβ ≤ pα and ηpα�δω+β = ηpβ �δω+β ,

(c) {δξ : ξ ≤ ω} = {δ ∈ C p
: otp(δ ∩ C p) ≤ ω} and p0 = p,

(d) δω+α+1 and pα+1 are determined right after stage α of arc2a
µ̄ (p,P∗).

So suppose that the two players have arrived to a stage α < λ of a play of
arc2a
µ̄ (p,P∗), and Generic has constructed on the side δω+β+1 and pβ+1 for β < α.

If α = 0 or α is a limit ordinal, then conditions (a)–(c) and our rule of taking “the
<∗
χ -first” fully determine {δξ : ξ ≤ ω + α} and pα (the suitable bounds exists

essentially by Claim 5.4).
Now Generic chooses an enumeration (without repetition) ρ̄ = 〈ραj : j < µα〉

of pos(pα, δω+α) such that ρα0 = ηpα�δω+α . Antigeneric picks a nonzero ordinal
ξα < λ and the two players start a subgame of length µα ·ξα . In the course of the sub-
game, in addition to her innings pαγ , Generic will also choose ordinals εαγ = εγ < λ
and sequences ϕαγ = ϕγ : εγ −→ {−1, 1}. These objects will satisfy the following
demands (letting qαγ be the innings of Antigeneric):

(e) δω+α < εγ ′ < εγ ∈ Cqαγ and ϕγ ′�[δω+α, εγ ′) = ϕγ �[δω+α, εγ ′) for
γ ′ < γ < µα · ξα ,

(f) if γ = µα · i + 2 j , i < ξα and j < µα , then
(i) ραj C ϕγ C ϕγ+1, ϕγ = ηqαγ �εγ , and ϕγ+1(δ) = −η

qαγ+1(δ) for
δ ∈ [δω+α, εγ+1),

(ii) pα0 ≥ ρα0 ∗δω+α pα , min(C pα0 ) > δω+α , and (ϕγ �εγ ′) ∗εγ ′ qαγ ′ ≤ pαγ for
γ ′ < γ , and

(iii) qαγ ≤ ϕγ ∗εγ pαγ+1 ≤ ϕγ+1 ∗εγ+1 qαγ+1.

So suppose that the two players have arrived to a stage γ = µα · i + 2 j
(i < ξα , j < µα) of the subgame and pαγ ′ , qαγ ′ , ϕγ ′ , εγ ′ have been determined
for γ ′ < γ . Let ϕ = ραj

_
⋃
γ ′<γ

ϕγ ′�[δω+α, εγ ′). It follows from (f) that the sequence

〈(ϕ�εγ ′ ∗εγ ′ qαγ ′ : γ ′ < γ 〉 is ≤P∗ -increasing, so Generic may choose an upper bound

pαγ ∈ P∗ to it. (Note that necessarily ϕ C ηpαγ , sup(εγ ′ : γ ′ < γ ) ≤ min(C pαγ ).)
She plays pαγ in the subgame and Antigeneric answers with qαγ ≥ pαγ . Now

Generic lets εγ ∈ Cqαγ be such that |Cqαγ ∩ εγ | = 1 and she puts ϕγ = ηqαγ �εγ and
she lets ψ : εγ −→ {−1, 1} be defined by ψ�δω+α = ραj and ψ(δ) = −ϕγ (δ) for
δ ∈ [δω+α, εγ ). Then Generic plays pαγ+1 = ψ ∗εγ qαγ as her inning at stage γ +1 of
the subgame and Antigeneric answers with qαγ+1 ≥ pαγ+1. Finally, Generic picks

εγ+1 ∈ Cqαγ+1 such that |Cqαγ+1 ∩ εγ+1| = 1 and she takes ϕγ+1 : εγ+1 −→ {−1, 1}
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such that ϕγ C ϕγ+1 and ϕγ+1(δ) = −η
qαγ+1(δ) for δ ∈ [εγ , εγ+1). Plainly, if

i ′ < i , γ ′
= µα · i ′ + 2 j then qαγ ′ ≤ pαγ and qαγ ′+1 ≤ pαγ+1 so both pαγ and pαγ+1

are legal innings in arc2a
µ̄ (p,P∗). Also easily the demands in (e)+(f) are satisfied.

Moreover, if j ′ < j < µα then the conditions pαµα+ j ′ and pαµα+ j are incompatible.
After the subgame is over, Generic lets

ϕ = ρα0
_

⋃
{ϕγ �[δω+α, εγ ) : γ < µα · ξα},

and she picks a ≤P∗ -upper bound p′

α+1 to the increasing sequence

〈(ϕ�εγ ) ∗εγ qαγ : γ < µα · ξα〉.

Note that εγ ≤ min
(
C p′

α+1
)

and ϕ�εγ C ηp′

α+1 for all γ < µα · ξα , so also
ρα0 = ηpα�δω+α C ηp′

α+1 . Also

(g) (ηp′

α+1�εγ ) ∗εγ qαγ ≤ p′

α+1 for all γ < µα · ξα .

Let pα+1 ∈ P∗ be such that C pα+1 = {δξ : ξ ≤ ω + α} ∪ C p′

α+1 and ηpα+1 = ηp′

α+1

(plainly pα ≤ pα+1) and let δω+α+1 = min
(
C p′

α+1
)
.

This finishes the description of the strategy st. Let us argue that st is a winning
strategy for Generic. To this end suppose that

(�)
〈
ξα, 〈pαγ , qαγ : γ < µα · ξα〉 : α < λ

〉
is a result of a play of arc2a

µ̄ (p,P∗) in which Generic follows st and the objects
constructed on the side are

(�)∗α p′
α, pα, δξ , 〈εαγ , ϕ

α
γ : γ < µα · ξα〉, 〈ρ

α
j : j < µα〉

(and the demands in (a)–(g) are satisfied). Let C = {δξ : ξ < λ} (so it is a club
of λ) and η =

⋃
α<λ

ηpα�δω+α (clearly, η : λ −→ {−1, 1}; remember (b)), and let

p∗
= (η,C). It is a condition in P∗ and it is stronger than all pα (for α < λ) so

also p∗
≥ p. Suppose that α < λ and p′

≥ p∗. We will show that there is p′′
≥ p′

such that for some j < µα , the condition p′′ is stronger than all qαµα ·i+ j for all

i < ξα . Without loss of generality, min(C p′

) ≥ δω+α+1. Let j ′ < µα be such that
ηp′

�δω+α = ραj ′ . We consider two cases now.

Case 1 ηp′

(δω+α) = ηp∗

(δω+α) = ηpα+1(δω+α). Then ηp′

�[δω+α, δω+α+1) =

ηpα+1�[δω+α, δω+α+1). Let j = 2 · j ′ < µα , and we will argue that qαµα ·i+ j ≤ p′

for all i < ξα . So let i < ξα , γ = µα · i + j . By the choice of j ′ we know that
ηp′

�δω+α = ραj ′ = ηqαγ �δω+α and also

ϕαγ �[δω+α, ε
α
γ ) = ηpα+1�[δω+α, ε

α
γ ) = ηp′

�[δω+α, ε
α
γ ).

Hence (by (f)(i)) ηp′

�εαγ = ηqαγ �εαγ and now

qαγ ≤ (ηp′

�εαγ ) ∗εγ qαγ ≤ (ηp′

�δω+α) ∗δω+α p′

α+1

= (ηp′

�δω+α+1) ∗δω+α+1 p′

α+1 = (ηp′

�δω+α+1) ∗δω+α+1 pα+1

≤ (ηp′

�δω+α+1) ∗δω+α+1 p∗
≤ (ηp′

�δω+α+1) ∗δω+α+1 p′
= p′

(for the second inequality remember (g)).
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Case 2 ηp′

(δω+α) = −ηp∗

(δω+α) = −ηpα+1(δω+α). Then ηp′

(δ) = −ηp∗

(δ) =

−ηpα+1(δ) for all δ ∈ [δω+α, δω+α+1). Let j = 2 · j ′ + 1 and let us argue that
qαµα ·i+ j ≤ p′ for all i < ξα . So let i < ξα , γ = µα · i + j . As in the previous case

we show that ηp′

�εαγ = ηqαγ �εαγ and then easily

qαγ ≤ (ηp′

�εγ ) ∗εαγ qαγ ≤ (ηp′

�δω+α+1) ∗δω+α+1 p′

α+1 ≤

(ηp′

�δω+α+1) ∗δω+α+1 p′
= p′. �

Proposition 5.6 Let η
˜

be a P∗-name such that


P∗ η
˜

=

⋃
{ηp� min(C p) : p ∈ G

˜
P∗}.

Then 
P∗“η
˜

: λ −→ {−1, 1}” and for every s ∈ Q0
λ ∩ V,


P∗ “{α < λ : η
˜

(α) = −1} ∈ fil(s)+ and {α < λ : η
˜

(α) = 1} ∈ fil(s)+”.

Proof It should be clear that 
P∗“η
˜

: λ −→ {−1, 1}”, so let us show the second
statement. Assume p ∈ P∗, s ∈ Q0

λ. Choose a continuous increasing sequence
〈δξ : ξ < λ〉 ⊆ C p such that for every ξ < λ there is α = α(ξ) ∈ Cs such that
Z s
α ⊆ [δξ , δξ+1). Then let C = {δξ : ξ < λ is even } (it is a club of λ) and let
η : λ −→ {−1, 1} be such that

1. η�[δξ , δξ+1) ∈
{
ηp�[δξ , δξ+1),−η

p�[δξ , δξ+1)
}

;

2. if ξ < λ is even, then
{
δ ∈ Z s

α(ξ) : η(δ) = 1
}

∈ ds
α(ξ) ;

3. if ξ < λ is odd, then
{
δ ∈ Z s

α(ξ) : η(δ) = −1
}

∈ ds
α(ξ).

Now note that (η,C) ∈ P∗ is a condition stronger than p and it forces in P∗ that

“
{
α < λ : η

˜

(α) = 1
}

∈ fil(s)+ and
{
α < λ : η

˜

(α) = −1
}

∈ fil(s)+”. �

Corollary 5.7 Assume λ is a strongly inaccessible cardinal. Then there is a forcing
notion P such that


P “λ is strongly inaccessible and 2λ = λ++ and there is no very reasonable
ultrafilter on λ with a generating system of size < 2λ”.

Proof We may start with the universe V in which 2λ = λ+. Let Q̄ = 〈Pα,Q
˜
α : α

< λ++
〉 be a λ-support iteration of the forcing notion P∗ (see Definition 5.1). This

forcing is nicely double a-bounding over µ̄ (where µα = 2|α|+ℵ0 ; remember Propo-
sition 5.3) and hence Pλ++ is nicely double a-bounding over µ̄ (by Theorem 3.13).
Using Theorem 3.2 we conclude that Pλ++ does not collapse any cardinals and forces
that 2λ = λ++. Proposition 5.6 implies that


Pλ++
“for no family G∗

⊆ Q0
λ of size < 2λ, fil(G∗) is an ultrafilter on λ”.

�

Problem 5.8

1. Is it consistent that for some uncountable regular cardinal λ we have that
there is no super reasonable ultrafilter on λ? Or even no very reasonable one?
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2. In particular, are there super reasonable ultrafilters on λ in the model con-
structed for Corollary 5.7?

3. Do we need the inaccessibility of λ for the assertions of Corollaries 4.5 and
5.7 (concerning ultrafilters on λ)?
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